-
Notifications
You must be signed in to change notification settings - Fork 297
/
Copy pathrun_gradio.py
418 lines (395 loc) · 13.1 KB
/
run_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
from typing import List
import math
from argparse import ArgumentParser
import random
import numpy as np
import torch
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from tqdm import tqdm
from accelerate.utils import set_seed
from diffbir.model.cldm import ControlLDM
from diffbir.model.swinir import SwinIR
from diffbir.inference.pretrained_models import MODELS
from diffbir.utils.common import instantiate_from_config, load_model_from_url
from diffbir.model.gaussian_diffusion import Diffusion
from diffbir.pipeline import SwinIRPipeline
from diffbir.utils.caption import (
EmptyCaptioner,
LLaVACaptioner,
RAMCaptioner,
LLAVA_AVAILABLE,
RAM_AVAILABLE,
)
torch.set_grad_enabled(False)
# This gradio script only support DiffBIR v2.1
parser = ArgumentParser()
parser.add_argument("--captioner", type=str, choices=["none", "ram", "llava"], required=True)
parser.add_argument("--llava_bit", type=str, choices=["4", "8", "16"], default="4")
args = parser.parse_args()
# Set max height and width to constraint inference time for online demo
max_height = 2048
max_width = 2048
tasks = ["sr", "face"]
device = "cuda"
precision = "fp16"
llava_bit = args.llava_bit
# Set captioner to llava or ram to enable auto-caption
captioner = args.captioner
if captioner == "llava":
assert LLAVA_AVAILABLE
elif captioner == "ram":
assert RAM_AVAILABLE
# 1. load stage-1 models
swinir: SwinIR = instantiate_from_config(
OmegaConf.load("configs/inference/swinir.yaml")
)
swinir.load_state_dict(load_model_from_url(MODELS["swinir_realesrgan"]))
swinir.eval().to(device)
face_swinir: SwinIR = instantiate_from_config(
OmegaConf.load("configs/inference/swinir.yaml")
)
face_swinir.load_state_dict(load_model_from_url(MODELS["swinir_face"]))
face_swinir.eval().to(device)
# 2. load stage-2 model
cldm: ControlLDM = instantiate_from_config(
OmegaConf.load("configs/inference/cldm.yaml")
)
# 2.1 load pre-trained SD
sd_weight = load_model_from_url(MODELS["sd_v2.1_zsnr"])
unused, missing = cldm.load_pretrained_sd(sd_weight)
print(
f"load pretrained stable diffusion, "
f"unused weights: {unused}, missing weights: {missing}"
)
# 2.2 load ControlNet
control_weight = load_model_from_url(MODELS["v2.1"])
cldm.load_controlnet_from_ckpt(control_weight)
print("load controlnet weight")
cldm.eval().to(device)
cast_type = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}[precision]
cldm.cast_dtype(cast_type)
# 3. load noise schedule
diffusion: Diffusion = instantiate_from_config(
OmegaConf.load("configs/inference/diffusion_v2.1.yaml")
)
diffusion.to(device)
# 4. load captioner
if captioner == "none":
captioner = EmptyCaptioner(device)
elif captioner == "llava":
captioner = LLaVACaptioner(device, llava_bit)
else:
captioner = RAMCaptioner(device)
error_image = np.array(Image.open("assets/gradio_error_img.png"))
@torch.no_grad()
def process(
input_image,
task,
upscale,
cleaner_tiled,
cleaner_tile_size,
vae_encoder_tiled,
vae_encoder_tile_size,
vae_decoder_tiled,
vae_decoder_tile_size,
cldm_tiled,
cldm_tile_size,
positive_prompt,
negative_prompt,
cfg_scale,
rescale_cfg,
strength,
noise_aug,
steps,
sampler_type,
s_churn,
s_tmin,
s_tmax,
s_noise,
order,
seed,
progress=gr.Progress(track_tqdm=True),
) -> List[np.ndarray]:
if seed == -1:
seed = random.randint(0, 2147483647)
set_seed(seed)
lq = input_image
# Prepare prompt
caption = captioner(lq)
pos_prompt = ", ".join([text for text in [caption, positive_prompt] if text])
neg_prompt = negative_prompt
# Upscale and convert to numpy array
out_w, out_h = tuple(int(x * upscale) for x in lq.size)
if out_w > max_width or out_h > max_height:
return [error_image], (
"Failed :( The requested resolution exceeds the maximum limit. "
f"Your requested resolution is ({out_h}, {out_w}). "
f"The maximum allowed resolution is ({max_height}, {max_width})."
)
lq = lq.resize((out_w, out_h), Image.BICUBIC)
lq = np.array(lq)
# Select cleaner
if task == "sr":
cleaner = swinir
else:
cleaner = face_swinir
# Create pipeline
pipeline = SwinIRPipeline(cleaner, cldm, diffusion, None, device)
# Run pipeline to restore this image
try:
sample = pipeline.run(
lq[None],
steps,
strength,
cleaner_tiled,
cleaner_tile_size,
cleaner_tile_size // 2,
vae_encoder_tiled,
vae_encoder_tile_size,
vae_decoder_tiled,
vae_decoder_tile_size,
cldm_tiled,
cldm_tile_size,
cldm_tile_size // 2,
pos_prompt,
neg_prompt,
cfg_scale,
"noise",
sampler_type,
noise_aug,
rescale_cfg,
s_churn,
s_tmin,
s_tmax,
s_noise,
1,
order,
)[0]
return [sample], "Success :)"
except Exception as e:
return [error_image], f"Failed :( {e}"
# TODO: add help information for each option
MARKDOWN = """
## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
[GitHub](https://github.com/XPixelGroup/DiffBIR) | [Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/)
If DiffBIR is helpful for you, please help star the GitHub Repo. Thanks!
"""
DEFAULT_POS_PROMPT = (
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, "
"hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, "
"skin pore detailing, hyper sharpness, perfect without deformations."
)
DEFAULT_NEG_PROMPT = (
"painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, "
"CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, "
"signature, jpeg artifacts, deformed, lowres, over-smooth."
)
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(sources="upload", type="pil")
run_button = gr.Button(value="Run")
with gr.Accordion("Basic Options", open=True):
with gr.Row():
task = gr.Dropdown(
label="Task",
choices=tasks,
value="sr",
)
upscale = gr.Slider(
label="Upsample factor",
minimum=1,
maximum=8,
value=4,
step=1,
)
with gr.Row():
with gr.Column():
cleaner_tiled = gr.Checkbox(
label="Tiled cleaner",
value=False,
)
cleaner_tile_size = gr.Slider(
label="Cleaner tile size",
minimum=256,
maximum=1024,
value=256,
step=64,
)
with gr.Column():
vae_encoder_tiled = gr.Checkbox(
label="Tiled VAE encoder",
value=False,
)
vae_encoder_tile_size = gr.Slider(
label="VAE encoder tile size",
minimum=256,
maximum=1024,
value=256,
step=64,
)
with gr.Row():
with gr.Column():
vae_decoder_tiled = gr.Checkbox(
label="Tiled VAE decoder",
value=False,
)
vae_decoder_tile_size = gr.Slider(
label="VAE decoder tile size",
minimum=256,
maximum=1024,
value=256,
step=64,
)
with gr.Column():
cldm_tiled = gr.Checkbox(
label="Tiled diffusion",
value=True,
)
cldm_tile_size = gr.Slider(
label="Diffusion tile size",
minimum=512,
maximum=1024,
value=512,
step=64,
)
seed = gr.Slider(
label="Seed", minimum=-1, maximum=2147483647, step=1, value=231
)
with gr.Accordion("Condition Options", open=True):
pos_prompt = gr.Textbox(
label="Positive prompt",
value=DEFAULT_POS_PROMPT,
)
neg_prompt = gr.Textbox(
label="Negative prompt",
value=DEFAULT_NEG_PROMPT,
)
cfg_scale = gr.Slider(
label="Classifier-free guidance (cfg) scale",
minimum=1,
maximum=10,
value=8,
step=1,
)
rescale_cfg = gr.Checkbox(value=False, label="Gradually increase cfg scale")
with gr.Row():
strength = gr.Slider(
label="Control strength",
minimum=0.0,
maximum=1.5,
value=1.0,
step=0.1,
)
noise_aug = gr.Slider(
label="Noise level of condition",
minimum=0,
maximum=199,
value=0,
step=10,
)
with gr.Accordion("Sampler Options", open=True):
steps = gr.Slider(
label="Steps", minimum=5, maximum=50, value=10, step=5
)
sampler_type = gr.Dropdown(
label="Select a sampler",
choices=[
"dpm++_m2",
"spaced",
"ddim",
"edm_euler",
"edm_euler_a",
"edm_heun",
"edm_dpm_2",
"edm_dpm_2_a",
"edm_lms",
"edm_dpm++_2s_a",
"edm_dpm++_sde",
"edm_dpm++_2m",
"edm_dpm++_2m_sde",
"edm_dpm++_3m_sde",
],
value="edm_dpm++_3m_sde",
)
s_churn = gr.Slider(
label="s_churn",
minimum=0,
maximum=40,
value=0,
step=1,
)
s_tmin = gr.Slider(
label="s_tmin",
minimum=0,
maximum=300,
value=0,
step=10,
)
s_tmax = gr.Slider(
label="s_tmax",
minimum=0,
maximum=300,
value=300,
step=10,
)
s_noise = gr.Slider(
label="s_noise",
minimum=1,
maximum=1.1,
value=1,
step=0.001,
)
order = gr.Slider(
label="order",
minimum=1,
maximum=8,
value=1,
step=1,
)
with gr.Column():
result_gallery = gr.Gallery(
label="Output", show_label=False, columns=2, format="png"
)
status = gr.Textbox(label="Status")
run_button.click(
fn=process,
inputs=[
input_image,
task,
upscale,
cleaner_tiled,
cleaner_tile_size,
vae_encoder_tiled,
vae_encoder_tile_size,
vae_decoder_tiled,
vae_decoder_tile_size,
cldm_tiled,
cldm_tile_size,
pos_prompt,
neg_prompt,
cfg_scale,
rescale_cfg,
strength,
noise_aug,
steps,
sampler_type,
s_churn,
s_tmin,
s_tmax,
s_noise,
order,
seed,
],
outputs=[result_gallery, status],
)
block.launch()