forked from google/youtube-8m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frame_level_models.py
253 lines (220 loc) · 10.7 KB
/
frame_level_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains a collection of models which operate on variable-length sequences."""
import math
import model_utils as utils
import models
import tensorflow as tf
from tensorflow import flags
import tensorflow.contrib.slim as slim
import video_level_models
FLAGS = flags.FLAGS
flags.DEFINE_integer("iterations", 30, "Number of frames per batch for DBoF.")
flags.DEFINE_bool("dbof_add_batch_norm", True,
"Adds batch normalization to the DBoF model.")
flags.DEFINE_bool(
"sample_random_frames", True,
"If true samples random frames (for frame level models). If false, a random"
"sequence of frames is sampled instead.")
flags.DEFINE_integer("dbof_cluster_size", 8192,
"Number of units in the DBoF cluster layer.")
flags.DEFINE_integer("dbof_hidden_size", 1024,
"Number of units in the DBoF hidden layer.")
flags.DEFINE_string(
"dbof_pooling_method", "max",
"The pooling method used in the DBoF cluster layer. "
"Choices are 'average' and 'max'.")
flags.DEFINE_string(
"dbof_activation", "sigmoid",
"The nonlinear activation method for cluster and hidden dense layer, e.g., "
"sigmoid, relu6, etc.")
flags.DEFINE_string(
"video_level_classifier_model", "MoeModel",
"Some Frame-Level models can be decomposed into a "
"generalized pooling operation followed by a "
"classifier layer")
flags.DEFINE_integer("lstm_cells", 1024, "Number of LSTM cells.")
flags.DEFINE_integer("lstm_layers", 2, "Number of LSTM layers.")
class FrameLevelLogisticModel(models.BaseModel):
"""Creates a logistic classifier over the aggregated frame-level features."""
def create_model(self, model_input, vocab_size, num_frames, **unused_params):
"""See base class.
This class is intended to be an example for implementors of frame level
models. If you want to train a model over averaged features it is more
efficient to average them beforehand rather than on the fly.
Args:
model_input: A 'batch_size' x 'max_frames' x 'num_features' matrix of
input features.
vocab_size: The number of classes in the dataset.
num_frames: A vector of length 'batch' which indicates the number of
frames for each video (before padding).
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
'batch_size' x 'num_classes'.
"""
num_frames = tf.cast(tf.expand_dims(num_frames, 1), tf.float32)
feature_size = model_input.get_shape().as_list()[2]
denominators = tf.reshape(tf.tile(num_frames, [1, feature_size]),
[-1, feature_size])
avg_pooled = tf.reduce_sum(model_input, axis=[1]) / denominators
output = slim.fully_connected(avg_pooled,
vocab_size,
activation_fn=tf.nn.sigmoid,
weights_regularizer=slim.l2_regularizer(1e-8))
return {"predictions": output}
class DbofModel(models.BaseModel):
"""Creates a Deep Bag of Frames model.
The model projects the features for each frame into a higher dimensional
'clustering' space, pools across frames in that space, and then
uses a configurable video-level model to classify the now aggregated features.
The model will randomly sample either frames or sequences of frames during
training to speed up convergence.
"""
ACT_FN_MAP = {
"sigmoid": tf.nn.sigmoid,
"relu6": tf.nn.relu6,
}
def create_model(self,
model_input,
vocab_size,
num_frames,
iterations=None,
add_batch_norm=None,
sample_random_frames=None,
cluster_size=None,
hidden_size=None,
is_training=True,
**unused_params):
"""See base class.
Args:
model_input: A 'batch_size' x 'max_frames' x 'num_features' matrix of
input features.
vocab_size: The number of classes in the dataset.
num_frames: A vector of length 'batch' which indicates the number of
frames for each video (before padding).
iterations: the number of frames to be sampled.
add_batch_norm: whether to add batch norm during training.
sample_random_frames: whether to sample random frames or random sequences.
cluster_size: the output neuron number of the cluster layer.
hidden_size: the output neuron number of the hidden layer.
is_training: whether to build the graph in training mode.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
'batch_size' x 'num_classes'.
"""
iterations = iterations or FLAGS.iterations
add_batch_norm = add_batch_norm or FLAGS.dbof_add_batch_norm
random_frames = sample_random_frames or FLAGS.sample_random_frames
cluster_size = cluster_size or FLAGS.dbof_cluster_size
hidden1_size = hidden_size or FLAGS.dbof_hidden_size
act_fn = self.ACT_FN_MAP.get(FLAGS.dbof_activation)
assert act_fn is not None, ("dbof_activation is not valid: %s." %
FLAGS.dbof_activation)
num_frames = tf.cast(tf.expand_dims(num_frames, 1), tf.float32)
if random_frames:
model_input = utils.SampleRandomFrames(model_input, num_frames,
iterations)
else:
model_input = utils.SampleRandomSequence(model_input, num_frames,
iterations)
max_frames = model_input.get_shape().as_list()[1]
feature_size = model_input.get_shape().as_list()[2]
reshaped_input = tf.reshape(model_input, [-1, feature_size])
tf.compat.v1.summary.histogram("input_hist", reshaped_input)
if add_batch_norm:
reshaped_input = slim.batch_norm(reshaped_input,
center=True,
scale=True,
is_training=is_training,
scope="input_bn")
cluster_weights = tf.compat.v1.get_variable(
"cluster_weights", [feature_size, cluster_size],
initializer=tf.random_normal_initializer(stddev=1 /
math.sqrt(feature_size)))
tf.compat.v1.summary.histogram("cluster_weights", cluster_weights)
activation = tf.matmul(reshaped_input, cluster_weights)
if add_batch_norm:
activation = slim.batch_norm(activation,
center=True,
scale=True,
is_training=is_training,
scope="cluster_bn")
else:
cluster_biases = tf.compat.v1.get_variable(
"cluster_biases", [cluster_size],
initializer=tf.random_normal_initializer(stddev=1 /
math.sqrt(feature_size)))
tf.compat.v1.summary.histogram("cluster_biases", cluster_biases)
activation += cluster_biases
activation = act_fn(activation)
tf.compat.v1.summary.histogram("cluster_output", activation)
activation = tf.reshape(activation, [-1, max_frames, cluster_size])
activation = utils.FramePooling(activation, FLAGS.dbof_pooling_method)
hidden1_weights = tf.compat.v1.get_variable(
"hidden1_weights", [cluster_size, hidden1_size],
initializer=tf.random_normal_initializer(stddev=1 /
math.sqrt(cluster_size)))
tf.compat.v1.summary.histogram("hidden1_weights", hidden1_weights)
activation = tf.matmul(activation, hidden1_weights)
if add_batch_norm:
activation = slim.batch_norm(activation,
center=True,
scale=True,
is_training=is_training,
scope="hidden1_bn")
else:
hidden1_biases = tf.compat.v1.get_variable(
"hidden1_biases", [hidden1_size],
initializer=tf.random_normal_initializer(stddev=0.01))
tf.compat.v1.summary.histogram("hidden1_biases", hidden1_biases)
activation += hidden1_biases
activation = act_fn(activation)
tf.compat.v1.summary.histogram("hidden1_output", activation)
aggregated_model = getattr(video_level_models,
FLAGS.video_level_classifier_model)
return aggregated_model().create_model(model_input=activation,
vocab_size=vocab_size,
**unused_params)
class LstmModel(models.BaseModel):
"""Creates a model which uses a stack of LSTMs to represent the video."""
def create_model(self, model_input, vocab_size, num_frames, **unused_params):
"""See base class.
Args:
model_input: A 'batch_size' x 'max_frames' x 'num_features' matrix of
input features.
vocab_size: The number of classes in the dataset.
num_frames: A vector of length 'batch' which indicates the number of
frames for each video (before padding).
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
'batch_size' x 'num_classes'.
"""
lstm_size = FLAGS.lstm_cells
number_of_layers = FLAGS.lstm_layers
stacked_lstm = tf.contrib.rnn.MultiRNNCell([
tf.contrib.rnn.BasicLSTMCell(lstm_size, forget_bias=1.0)
for _ in range(number_of_layers)
])
_, state = tf.nn.dynamic_rnn(stacked_lstm,
model_input,
sequence_length=num_frames,
dtype=tf.float32)
aggregated_model = getattr(video_level_models,
FLAGS.video_level_classifier_model)
return aggregated_model().create_model(model_input=state[-1].h,
vocab_size=vocab_size,
**unused_params)