forked from google/youtube-8m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
segment_eval_inference.py
188 lines (161 loc) · 6.34 KB
/
segment_eval_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""Eval mAP@N metric from inference file."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import mean_average_precision_calculator as map_calculator
import numpy as np
import tensorflow as tf
flags.DEFINE_string(
"eval_data_pattern", "",
"File glob defining the evaluation dataset in tensorflow.SequenceExample "
"format. The SequenceExamples are expected to have an 'rgb' byte array "
"sequence feature as well as a 'labels' int64 context feature.")
flags.DEFINE_string(
"label_cache", "",
"The path for the label cache file. Leave blank for not to cache.")
flags.DEFINE_string("submission_file", "",
"The segment submission file generated by inference.py.")
flags.DEFINE_integer(
"top_n", 0,
"The cap per-class predictions by a maximum of N. Use 0 for not capping.")
FLAGS = flags.FLAGS
class Labels(object):
"""Contains the class to hold label objects.
This class can serialize and de-serialize the groundtruths.
The ground truth is in a mapping from (segment_id, class_id) -> label_score.
"""
def __init__(self, labels):
"""__init__ method."""
self._labels = labels
@property
def labels(self):
"""Return the ground truth mapping. See class docstring for details."""
return self._labels
def to_file(self, file_name):
"""Materialize the GT mapping to file."""
with tf.gfile.Open(file_name, "w") as fobj:
for k, v in self._labels.items():
seg_id, label = k
line = "%s,%s,%s\n" % (seg_id, label, v)
fobj.write(line)
@classmethod
def from_file(cls, file_name):
"""Read the GT mapping from cached file."""
labels = {}
with tf.gfile.Open(file_name) as fobj:
for line in fobj:
line = line.strip().strip("\n")
seg_id, label, score = line.split(",")
labels[(seg_id, int(label))] = float(score)
return cls(labels)
def read_labels(data_pattern, cache_path=""):
"""Read labels from TFRecords.
Args:
data_pattern: the data pattern to the TFRecords.
cache_path: the cache path for the label file.
Returns:
a Labels object.
"""
if cache_path:
if tf.gfile.Exists(cache_path):
tf.logging.info("Reading cached labels from %s..." % cache_path)
return Labels.from_file(cache_path)
tf.enable_eager_execution()
data_paths = tf.gfile.Glob(data_pattern)
ds = tf.data.TFRecordDataset(data_paths, num_parallel_reads=50)
context_features = {
"id": tf.FixedLenFeature([], tf.string),
"segment_labels": tf.VarLenFeature(tf.int64),
"segment_start_times": tf.VarLenFeature(tf.int64),
"segment_scores": tf.VarLenFeature(tf.float32)
}
def _parse_se_func(sequence_example):
return tf.parse_single_sequence_example(sequence_example,
context_features=context_features)
ds = ds.map(_parse_se_func)
rated_labels = {}
tf.logging.info("Reading labels from TFRecords...")
last_batch = 0
batch_size = 5000
for cxt_feature_val, _ in ds:
video_id = cxt_feature_val["id"].numpy()
segment_labels = cxt_feature_val["segment_labels"].values.numpy()
segment_start_times = cxt_feature_val["segment_start_times"].values.numpy()
segment_scores = cxt_feature_val["segment_scores"].values.numpy()
for label, start_time, score in zip(segment_labels, segment_start_times,
segment_scores):
rated_labels[("%s:%d" % (video_id, start_time), label)] = score
batch_id = len(rated_labels) // batch_size
if batch_id != last_batch:
tf.logging.info("%d examples processed.", len(rated_labels))
last_batch = batch_id
tf.logging.info("Finish reading labels from TFRecords...")
labels_obj = Labels(rated_labels)
if cache_path:
tf.logging.info("Caching labels to %s..." % cache_path)
labels_obj.to_file(cache_path)
return labels_obj
def read_segment_predictions(file_path, labels, top_n=None):
"""Read segement predictions.
Args:
file_path: the submission file path.
labels: a Labels object containing the eval labels.
top_n: the per-class class capping.
Returns:
a segment prediction list for each classes.
"""
cls_preds = {} # A label_id to pred list mapping.
with tf.gfile.Open(file_path) as fobj:
tf.logging.info("Reading predictions from %s..." % file_path)
for line in fobj:
label_id, pred_ids_val = line.split(",")
pred_ids = pred_ids_val.split(" ")
if top_n:
pred_ids = pred_ids[:top_n]
pred_ids = [
pred_id for pred_id in pred_ids
if (pred_id, int(label_id)) in labels.labels
]
cls_preds[int(label_id)] = pred_ids
if len(cls_preds) % 50 == 0:
tf.logging.info("Processed %d classes..." % len(cls_preds))
tf.logging.info("Finish reading predictions.")
return cls_preds
def main(unused_argv):
"""Entry function of the script."""
if not FLAGS.submission_file:
raise ValueError("You must input submission file.")
eval_labels = read_labels(FLAGS.eval_data_pattern,
cache_path=FLAGS.label_cache)
tf.logging.info("Total rated segments: %d." % len(eval_labels.labels))
positive_counter = {}
for k, v in eval_labels.labels.items():
_, label_id = k
if v > 0:
positive_counter[label_id] = positive_counter.get(label_id, 0) + 1
seg_preds = read_segment_predictions(FLAGS.submission_file,
eval_labels,
top_n=FLAGS.top_n)
map_cal = map_calculator.MeanAveragePrecisionCalculator(len(seg_preds))
seg_labels = []
seg_scored_preds = []
num_positives = []
for label_id in sorted(seg_preds):
class_preds = seg_preds[label_id]
seg_label = [eval_labels.labels[(pred, label_id)] for pred in class_preds]
seg_labels.append(seg_label)
seg_scored_pred = []
if class_preds:
seg_scored_pred = [
float(x) / len(class_preds) for x in range(len(class_preds), 0, -1)
]
seg_scored_preds.append(seg_scored_pred)
num_positives.append(positive_counter[label_id])
map_cal.accumulate(seg_scored_preds, seg_labels, num_positives)
map_at_n = np.mean(map_cal.peek_map_at_n())
tf.logging.info("Num classes: %d | mAP@%d: %.6f" %
(len(seg_preds), FLAGS.top_n, map_at_n))
if __name__ == "__main__":
app.run(main)