-
Notifications
You must be signed in to change notification settings - Fork 25
/
SlotTaggingModel_multitask.py
343 lines (328 loc) · 19.5 KB
/
SlotTaggingModel_multitask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
''' Natural language understanding model based on multi-task learning.
This model is trained on two tasks: slot tagging and user intent prediction.
Inputs: user utterance, e.g. BOS w1 w2 ... EOS
Outputs: slot tags and user intents, e.g. O O B-moviename ... O\tinform+moviename
Author : Xuesong Yang
Email : xyang45@illinois.edu
Created Date: Dec. 31, 2016
'''
from DataSetCSVslotTagging import DataSetCSVslotTagging
from keras.layers import Input, LSTM, Dense, Dropout, merge, Embedding, TimeDistributed
from keras.models import Model
from utils import print_params, eval_slotTagging, eval_intentPredict, writeTxt, getNLUpred, getActPred, getTagPred, checkExistence, getNLUframeAccuracy, eval_actPred
import os
import numpy as np
np.random.seed(1983)
def writeUtterTagIntentTxt(utter_txt, tag_txt, intent_txt, target_fname):
with open(target_fname, 'wb') as f:
for (utter, tag, intent) in zip(utter_txt, tag_txt, intent_txt):
tag_new = [token.replace('tag-', '', 1) for token in tag.split()]
intent_new = [token.replace('intent-', '', 1)
for token in intent.split(';')]
new_line = '{}\t{}\t{}'.format(
utter, ' '.join(tag_new), ';'.join(intent_new))
f.write('{}\n'.format(new_line))
class SlotTaggingModel(object):
def __init__(self, **argparams):
self.train_data = argparams['train_data']
if self.train_data is not None:
assert isinstance(self.train_data, DataSetCSVslotTagging)
self.test_data = argparams['test_data']
if self.test_data is not None:
assert isinstance(self.test_data, DataSetCSVslotTagging)
self.dev_data = argparams['dev_data']
if self.dev_data is not None:
assert isinstance(self.dev_data, DataSetCSVslotTagging)
self.model_folder = argparams['model_folder']
if self.model_folder is None:
pid = argparams['pid']
self.model_folder = './model/slot_{}'.format(pid)
os.makedirs('{}/weights'.format(self.model_folder))
os.makedirs('{}/dev_results'.format(self.model_folder))
self.epoch_nb = argparams['epoch_nb']
self.batch_size = argparams['batch_size']
self.embedding_size = argparams['embedding_size']
self.hidden_size = argparams['hidden_size']
self.dropout = argparams['dropout_ratio']
self.optimizer = argparams['optimizer']
self.patience = argparams['patience']
self.loss = argparams['loss']
self.test_tag_flag = argparams['test_tag_only']
self.test_intent_flag = argparams['test_intent_only']
self.threshold = argparams['threshold']
self.weights_fname = argparams['weights_fname']
self.params = argparams
def _build(self):
print('Building Graph ...')
words_input = Input(shape=(self.maxlen_userUtter,),
dtype='int32', name='words_input')
# reserve 0 for masking, therefore vocab_size + 1
embeddings = Embedding(input_dim=self.word_vocab_size + 1,
output_dim=self.embedding_size,
input_length=self.maxlen_userUtter,
mask_zero=True)(words_input)
embeddings = Dropout(self.dropout)(embeddings)
lstm_forward = LSTM(output_dim=self.hidden_size,
return_sequences=True,
name='LSTM_forward')(embeddings)
lstm_forward = Dropout(self.dropout)(lstm_forward)
lstm_backward = LSTM(output_dim=self.hidden_size,
return_sequences=True,
go_backwards=True,
name='LSTM_backward')(embeddings)
lstm_backward = Dropout(self.dropout)(lstm_backward)
lstm_concat = merge([lstm_forward, lstm_backward],
mode='concat',
concat_axis=-1,
name='merge_bidirections')
slot_softmax_seq = TimeDistributed(Dense(
output_dim=self.userTag_vocab_size,
activation='softmax'), name='slot_output')(lstm_concat)
intent_summary = LSTM(output_dim=self.hidden_size,
return_sequences=False,
name='summarize_to_dense')(lstm_concat)
intent_summary = Dropout(self.dropout)(intent_summary)
# intent_softmax = Dense(output_dim=self.userIntent_vocab_size,
# activation='softmax', name='intent_output')(intent_summary)
intent_softmax = Dense(output_dim=self.userIntent_vocab_size,
activation='sigmoid', name='intent_output')(intent_summary)
self.model = Model(input=words_input, output=[
slot_softmax_seq, intent_softmax])
self.model.compile(optimizer=self.optimizer,
# metrics=['accuracy'],
sample_weight_mode={
'slot_output': 'temporal', 'intent_output': None},
loss={'slot_output': self.loss, 'intent_output': 'binary_crossentropy'})
def train(self):
print('Training model ...')
# load params
self.maxlen_userUtter = self.train_data.maxlen_userUtter
self.word_vocab_size = self.train_data.word_vocab_size
self.userIntent_vocab_size = self.train_data.userIntent_vocab_size
self.userTag_vocab_size = self.train_data.userTag_vocab_size
self.id2word = self.train_data.id2word
self.id2userTag = self.train_data.id2userTag
self.id2userIntent = self.train_data.id2userIntent
self.userTag2id = self.train_data.userTag2id
other_npz = '{}/other_vars.npz'.format(self.model_folder)
train_vars = {'id2userTag': self.id2userTag,
'id2word': self.id2word,
'id2userIntent': self.id2userIntent,
'userTag2id': self.userTag2id,
'userTag_vocab_size': self.userTag_vocab_size,
'userIntent_vocab_size': self.userIntent_vocab_size,
'word_vocab_size': self.word_vocab_size,
'maxlen_userUtter': self.maxlen_userUtter}
np.savez_compressed(other_npz, **train_vars)
self.params['maxlen_userUtter'] = self.maxlen_userUtter
self.params['word_vocab_size'] = self.word_vocab_size
self.params['userTag_vocab_size'] = self.userTag_vocab_size
self.params['userIntent_vocab_size'] = self.userIntent_vocab_size
print_params(self.params)
# build model graph, save graph and plot graph
self._build()
self._plot_graph()
graph_yaml = '{}/graph-arch.yaml'.format(self.model_folder)
with open(graph_yaml, 'w') as fyaml:
fyaml.write(self.model.to_yaml())
# load train data
X_train = self.train_data.userUtter_encodePad
tag_train = self.train_data.userTag_1hotPad
intent_train = self.train_data.userIntent_vecBin
train_utter_txt = self.train_data.userUtter_txt
train_intent_txt = self.train_data.userIntent_txt
train_tag_txt = self.train_data.userTag_txt
train_target_fname = '{}/train.target'.format(self.model_folder)
writeUtterTagIntentTxt(train_utter_txt, train_tag_txt, train_intent_txt, train_target_fname)
# load dev data
X_dev = self.dev_data.userUtter_encodePad
tag_dev = self.dev_data.userTag_1hotPad
intent_dev = self.dev_data.userIntent_vecBin
dev_utter_txt = self.dev_data.userUtter_txt
dev_intent_txt = self.dev_data.userIntent_txt
dev_tag_txt = self.dev_data.userTag_txt
dev_target_fname = '{}/dev.target'.format(self.model_folder)
writeUtterTagIntentTxt(dev_utter_txt, dev_tag_txt, dev_intent_txt, dev_target_fname)
# get mask matrix for train and dev set
mask_array_train = np.zeros_like(X_train)
mask_array_train[X_train != 0] = 1
mask_array_dev = np.zeros_like(X_dev)
mask_array_dev[X_dev != 0] = 1
# jointly training
for ep in xrange(self.epoch_nb):
print('<Epoch {}>'.format(ep))
self.model.fit(x=X_train,
y={'slot_output': tag_train,
'intent_output': intent_train},
sample_weight={'slot_output': mask_array_train,
'intent_output': None},
batch_size=self.batch_size, nb_epoch=1, verbose=2)
tag_probs, intent_probs = self.model.predict(X_dev)
# calculate token-level scores
precision_tag, recall_tag, fscore_tag, accuracy_frame_tag = eval_slotTagging(tag_probs, mask_array_dev,
tag_dev, self.userTag2id['tag-O'])
print('SlotTagging: ep={}, precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(ep, precision_tag, recall_tag, fscore_tag, accuracy_frame_tag))
precision_intent, recall_intent, fscore_intent, accuracy_frame_intent, threshold = eval_intentPredict(intent_probs,
intent_dev)
print('Intent Prediction: ep={}, precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}, threshold={:.4f}'.format(ep, precision_intent, recall_intent, fscore_intent, accuracy_frame_intent, threshold))
accuracy_frame_both = getNLUframeAccuracy(tag_probs, mask_array_dev, tag_dev, intent_probs, intent_dev, threshold)
print('NLU Frame: ep={}, accuracy={:.4f}'.format(ep, accuracy_frame_both))
dev_tag_pred_txt, dev_intent_pred_txt = getNLUpred(tag_probs, mask_array_dev, self.id2userTag, intent_probs, threshold, self.id2userIntent)
dev_results_fname = '{}/dev_results/dev_ep={}.pred'.format(self.model_folder, ep)
writeUtterTagIntentTxt(dev_utter_txt, dev_tag_pred_txt, dev_intent_pred_txt, dev_results_fname)
print('Write dev results: {}'.format(dev_results_fname))
weights_fname = '{}/weights/ep={}_tagF1={:.4f}frameAcc={:.4f}_intentF1={:.4f}frameAcc={:.4f}th={:.4f}.h5'.format(self.model_folder, ep, fscore_tag, accuracy_frame_tag, fscore_intent, accuracy_frame_intent, threshold)
print('Saving Model: {}'.format(weights_fname))
self.model.save_weights(weights_fname, overwrite=True)
def _plot_graph(self):
from keras.utils import visualize_util
graph_png = '{}/graph-plot.png'.format(self.model_folder)
visualize_util.plot(self.model,
to_file=graph_png,
show_shapes=True,
show_layer_names=True)
def predict(self):
print('Predicting ...')
result_folder = '{}/test_result'.format(self.model_folder)
if not os.path.exists(result_folder):
os.makedirs(result_folder)
# write user utters
utter_fname = '{}/utter.txt'.format(result_folder)
if not os.path.exists(utter_fname):
utter_txt = self.test_data.userUtter_txt
writeTxt(utter_txt, utter_fname, prefix='', delimiter=None)
print('\ttest_utter={}'.format(utter_fname))
# load test data and calculate posterior probs.
X_test = self.test_data.userUtter_encodePad
tag_probs, intent_probs = self.model.predict(X_test) # a tuple, slot_tags and intents
# make prediction
if self.test_intent_flag:
assert self.threshold is not None, 'Argument required: --threshold'
intent_probs_fname = '{}/intentProb_{}.npz'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0])
np.savez_compressed(intent_probs_fname, probs=intent_probs)
print('\tintent_probs={}'.format(intent_probs_fname))
# write prediction test results
pred_intent_fname = '{}/intent_{}.pred'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0])
pred_intent_txt = getActPred(intent_probs, self.threshold, self.id2userIntent)
writeTxt(pred_intent_txt, pred_intent_fname, prefix='intent-', delimiter=';')
print('\tintent_pred={}'.format(pred_intent_fname))
# write target test
target_intent_fname = '{}/intent_test.target'.format(result_folder)
target_intent = self.test_data.userIntent_txt
writeTxt(target_intent, target_intent_fname, prefix='intent-', delimiter=';')
print('\tintent_target={}'.format(target_intent_fname))
# calculate performance scores
preds_indicator, precision, recall, fscore, accuracy_frame = eval_actPred(intent_probs,
self.test_data.userIntent_vecBin,
self.threshold)
print('IntentPred: precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(precision, recall, fscore, accuracy_frame))
if self.test_tag_flag:
tag_probs_fname = '{}/tagProb_{}.npz'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0])
np.savez_compressed(tag_probs_fname, probs=tag_probs)
print('\ttag_probs={}'.format(tag_probs_fname))
# write prediction results
pred_tag_fname = '{}/tag_{}.pred'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0])
mask_test = np.zeros_like(X_test)
mask_test[X_test != 0] = 1
pred_tag_txt = getTagPred(tag_probs, mask_test, self.id2userTag)
writeTxt(pred_tag_txt, pred_tag_fname, prefix='tag-', delimiter=None)
print('\ttag_pred={}'.format(pred_tag_fname))
# write target
target_tag_fname = '{}/tag_test.target'.format(result_folder)
target_tag = self.test_data.userTag_txt
writeTxt(target_tag, target_tag_fname, prefix='tag-', delimiter=None)
print('\ttag_target={}'.format(target_tag_fname))
# calculate performance scores
precision, recall, fscore, accuracy_frame = eval_slotTagging(tag_probs, mask_test,
self.test_data.userTag_1hotPad, self.userTag2id['tag-O'])
print('SlotTagging: precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(precision, recall, fscore, accuracy_frame))
def load_model(self):
print('Loading model ...')
# check existence of params
assert os.path.exists(self.model_folder), 'model_fold is not found: {}'.format(self.model_folder)
assert self.weights_fname is not None, 'Argument required: --weights-file'
checkExistence(self.weights_fname)
model_graph = '{}/graph-arch.yaml'.format(self.model_folder)
model_train_vars = '{}/other_vars.npz'.format(self.model_folder)
checkExistence(model_graph)
checkExistence(model_train_vars)
from keras.models import model_from_yaml
with open(model_graph, 'r') as fgraph:
self.model = model_from_yaml(fgraph.read())
self.model.load_weights(self.weights_fname)
npzfile = np.load(model_train_vars)
self.maxlen_userUtter = np.int32(npzfile['maxlen_userUtter'][()])
self.word_vocab_size = np.int32(npzfile['word_vocab_size'][()])
self.userTag_vocab_size = np.int32(npzfile['userTag_vocab_size'][()])
self.userIntent_vocab_size = np.int32(
npzfile['userIntent_vocab_size'][()])
self.id2userTag = npzfile['id2userTag'][()]
self.id2word = npzfile['id2word'][()]
self.id2userIntent = npzfile['id2userIntent'][()]
self.userTag2id = npzfile['userTag2id'][()]
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data-npz', dest='data_npz',
help='.npz file including instances of DataSetCSVslotTagging for train, dev and test')
parser.add_argument('--loss', dest='loss',
default='categorical_crossentropy',
help='objective function')
parser.add_argument('--optimizer', dest='optimizer',
default='adam', help='optimizer')
parser.add_argument('--epoch-nb', dest='epoch_nb', type=int,
default=300, help='number of epoches')
parser.add_argument('--embedding-size', dest='embedding_size', type=int,
default=512, help='the dimention of word embeddings.')
parser.add_argument('--patience', dest='patience', type=int,
default=10, help='the patience for early stopping criteria')
parser.add_argument('--batch-size', dest='batch_size', type=int,
default=32, help='batch size')
parser.add_argument('--hidden-size', dest='hidden_size', type=int,
default=128, help='the number of hidden units in recurrent layer')
parser.add_argument('--dropout-ratio', dest='dropout_ratio',
type=float, default=0.5, help='dropout ratio')
parser.add_argument('--model-folder', dest='model_folder',
help='the folder contains graph.yaml, weights.h5, and other_vars.npz')
parser.add_argument('--test-tag', dest='test_tag_only', action='store_true',
help='only perform user Tagging test if this option is activated.')
parser.add_argument('--test-intent', dest='test_intent_only', action='store_true',
help='only perform user intent test if this option is activated.')
parser.add_argument('--train', dest='train_only', action='store_true',
help='only perform training if this option is activated.')
parser.add_argument('--weights-file', dest='weights_fname', help='.h5 weights file.')
parser.add_argument('--threshold', dest='threshold', type=float, help='float number of threshold for multi-label prediction decision.')
args = parser.parse_args()
argparams = vars(args)
# early stop criteria are different for two tasks, therefore one model is
# chosen for each.
test_tag_only = argparams['test_tag_only']
test_intent_only = argparams['test_intent_only']
train_only = argparams['train_only']
assert train_only or test_tag_only or test_intent_only, 'Arguments required: either --train, --test-tag, or --test-intent'
pid = os.getpid()
argparams['pid'] = pid
npz_fname = argparams['data_npz']
checkExistence(npz_fname)
data_npz = np.load(npz_fname)
if train_only: # train model
argparams['train_data'] = data_npz['train_data'][()]
argparams['dev_data'] = data_npz['dev_data'][()]
argparams['test_data'] = None
model = SlotTaggingModel(**argparams)
model.train()
else:
# train_only is False, while test_only is True
# need to load model
argparams['train_data'] = None
argparams['dev_data'] = None
argparams['test_data'] = None
if argparams['model_folder'] is None:
raise Exception('Argument required: --model-folder')
model = SlotTaggingModel(**argparams)
model.load_model()
# test
if test_tag_only or test_intent_only:
model.test_data = data_npz['test_data'][()]
model.predict()