forked from IreneZihuiLi/CLICKER
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtaxonomy.csv
We can make this file beautiful and searchable if this error is corrected: It looks like row 3 should actually have 3 columns, instead of 5 in line 2.
321 lines (321 loc) · 8.5 KB
/
taxonomy.csv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
Topic ID,Topic,
1,Introduction and Linguistics,
2,Language Modeling, Syntax, Parsing,
3,Semantics and Logic,
4,Pragmatics, Discourse, Dialogue, Applications,
5,Classification,
6,Information Retrieval and Topic Modeling,
7,Neural Networks and Deep Learning,
8,Artificial Intelligence,
9,Other Topics,
11,Introduction to NLP,
12,Mathematics,
13,Resources,
14,Language and Linguistics,
15,NLP Tasks,
16,Theory of Computation,
17,Data Structures and Algorithms,
18,Mathematical Models,
19,New,
21,Language Modeling,
22,Hidden Markov Models,
23,Part of Speech Tagging,
24,Syntax,
25,Parsing,
26,Alternative Syntactic Formalisms,
27,NACLO Problems,
31,Lexical Semantics,
32,Compositional Semantics,
33,Semantic Analysis,
34,Dimensionality Reduction,
35,More Semantics,
36,Word Sense Disambiguation,
38,Sentiment,
41,Question Answering,
42,Summarization,
43,Text Generation,
44,Discourse and Dialogue,
45,Machine Translation,
46,Style, Genre, and Authorship,
51,Introduction to Classification,
52,Kernel Methods,
54,Text Classification and Feature Selection,
55,Decision Trees,
57,Unsupervised Learning,
58,Semi-supervised Learning,
61,Information Retrieval,
62,Document Ranking,
63,Latent Models,
64,Network Analysis,
65,Crosslingual IR,
71,Deep Learning,
72,Word Embeddings,
73,Deep Learning Tools,
74,Neural Architectures,
75,Applications of Neural Networks,
81,Introduction to Artificial Intelligence,
82,Search,
83,Logic and Reasoning,
84,Uncertainty,
85,Learning,
86,Cognition and Perception,
87,Robotics and Autonomous Cars,
91,Current Research,
92,Speech Processing,
93,Ethics,
94,Applications to Other Domains,
95,Additional Topics,
96,More Topics,
99,Miscellaneous Topics,
101,Prerequisite Mathematics,
102,Statistics and Probability,
103,Linguistics,
104,Data Structures and Computer Science,
105,Programming,
106,Theory of Computation and Grammars,
107,Machine Learning,
111,Class Logistics,
112,Introduction,
113,History of NLP,
114,Why is NLP Hard?,
115,Methods used in NLP,
121,Linear Algebra,
123,Probabilities,
125,Bayes Theorem,
126,Calculus for NLP,
127,Optimization,
128,Descriptive Statistics,
129,Information Theory,
131,Python,
132,NLTK,
133,NLP Resources,
134,Machine Learning Resources,
135,Other programming languages,
141,Linguistics,
142,Parts of Speech,
143,Morphology + Lexicon,
144,Word Distributions,
151,NLP Tasks,
153,Preprocessing,
154,Working with Corpora,
155,Spelling Correction,
156,Grammar Correction,
161,Regular Expressions,
162,Finite State Machines,
163,Finite State Transducers,
165,CFG,
166,Language and Complexity,
167,CSG,
171,Data Structures and Algorithms,
172,Graph Theory,
173,Relational Databases,
181,Integer Linear Programming,
182,Spectral Methods,
183,Dual Decomposition,
184,Monte Carlo Methods,
185,Physics methods,
186,Bioinformatics Methods,
187,Optimization,
191,Using GPUs,
192,Model persistence and checkpoints,
211,Intro to Language Modeling,
212,Smoothing and Interpolation,
213,Evaluation of Language Modeling,
214,Noisy Channel Model,
215,POS Tagging,
221,Introduction to Hidden Markov Models,
222,Learning for Hidden Markov Models,
231,Statistical POS Tagging,
232,Information Extraction,
233,Relation Extraction,
234,Sequence Labeling,
235,Open Information Extraction,
236,Social Network Extraction,
241,Syntax,
242,Intro to Parsing with CFG,
243,Classic Parsing Methods,
244,CKY Parsing,
245,Earley Parsing,
246,Issues with CFG,
247,Parsing Evaluation,
251,Probabilistic Grammars,
252,Statistical Parsing,
253,Lexicalized Parsing,
254,Unsupervised Parsing,
255,Dependency Syntax,
256,Introduction to Dependency Parsing,
257,Transition-based Dependency Parsing,
258,Evaluation of Dependency Parsing,
259,NN sequence parsing and PP attachment,
261,Alternative Syntactic Formalisms,
262,Features and Unification,
263,Tree Adjoining Grammar,
264,Combinatory Categorial Grammar,
271,NACLO Problems on Parsing,
311,Intro to Text Similarity,
312,Stemming,
313,Edit Distance,
314,Semantic Similarity,
315,Wordnet,
316,Thesaurus-based Similarity,
321,Vector Representations,
322,Vector Semantics,
331,Semantic Parsing,
341,Dimensionality Reduction,
342,Text Kernels,
351,Entailment and Paraphrasing,
352,Collocations,
353,Lexical Acquisition,
354,Commonsense,
361,Introduction to Logic and Semantics,
362,First Order Logic,
363,Knowledge Representation,
364,Inference,
365,Semantic Parsing,
366,AMR,
367,Semantic Role Labeling,
368,Knowledge Graphs,
371,WSD,
381,Sentiment Analysis,
382,Sentiment Lexicons,
383,Emotion and Affect,
384,Style Analysis,
391,Introduction to Word Sense Disambiguation,
411,Question Answering,
421,Text Summarization,
425,Summarization Evaluation,
426,Sentence Simplification,
427,Paraphrasing,
428,Multi-document Summarization,
431,Generation,
432,NLG Systems,
433,Features and Unification,
434,NLG evaluation,
435,Data to text generation,
441,Discourse Analysis,
442,Coreference,
443,Discourse Parsing,
444,Dialogue,
445,Dialogue Systems, Agents,
451,Intro to MT,
452,MT Basic Techniques,
453,Noisy Channel Methods,
454,The IBM Models,
455,Syntax-based MT,
456,Phrase-based MT, Evaluation,
457,Morphology and Semantics of MT,
458,Computer-Aided Translation,
461,Style, Genre, and Authorship Attribution,
511,Classification, Vector Classification, Linear Models,
514,Generative and Discriminative Models,
515,Perceptron,
516,Logistic Regression; Gradient Descent for LR,
521,Support Vector Machines and Kernels,
541,Text Classification,
543,Feature Selection,
544,Evaluation of Text Classification,
551,Decision Trees,
571,Unsupervised Learning,
581,Semi Supervised Learning,
582,Structured Learning,
611,Introduction to Information Retrieval, Indexing,
612,Search Engine Architecture,
613,Evaluation of Information Retrieval,
614,Toolkits for Information Retrieval,
621,Compression,
622,Query Modification,
623,Random Walks and Harmonic Functions,
624,Semi Supervised Retrieval, Pagerank, hits; spectral clustering,
625,Search Engines,
626,Language Models for IR,
631,Latent Variable Models,
632,Topic Modeling,
641,Introduction to Network Analysis,
642,Link Analysis,
651,Crosslingual IR,
711,Introduction to Neural Networks and Deep Learning,
712,Neural Architectures, Training Neural Networks,
713,Miscellaneous Deep Learning,
714,Transformers + BERT,
721,Word Embeddings,
723,Sentence Representations,
731,Tools for Deep Learning - Theano,
741,Sequence models: RNN,
742,LSTM + GRU,
743,Recursive NN + Compositionality,
744,Convolutional NN,
745,Neural Attention,
746,GAN, GAT,
747,Capsule Networks,
748,Graph Neural Networks,
749,Autoencoders,
751,Neural Language Models,
752,Neural Parsing,
753,Neural MT, Seq-to-seq, Unsupervised NMT,
754,Neural Summarization,
755,Neural Question Answering and Reading Comprehension,
756,Neural Generation + Dialogue,
757,Neural IR,
759,Neural Semantic Parsing,
811,Introduction to AI,
812,Programming Languages for AI,
813,Agent-based view of AI,
821,Problem solving and search,
822,Informed search,
823,Heuristic search,
824,Adversarial search,
825,Game playing,
826,Genetic algorithms,
827,Constraint satisfaction,
828,Planning,
829,Multi-agent systems,
831,Intro to Logic and Logical agents,
832,Predicate Logic,
833,First Order Logic (see topic 362),
834,Inference (see topic 364),
835,Knowledge representation (see topic 363),
841,Intro to uncertainty,
842,Bayesian Networks,
843,Markov Decision Processes,
844,Particle filters,
851,Intro to learning,
852,Learning from examples,
857,Reinforcement learning,
861,Intro to Communication and Perception,
862,Vision,
871,Robotics,
872,Autonomous cars,
911,New Research,
912,New Local Research,
913,Miscellaneous Projects,
914,Corpus Creation,
921,Phonetics,
922,Computational Phonology,
923,Speech Processing,
924,Automatic Speech Recognition,
925,Text to Speech Generation,
926,Prosody,
931,Ethics in NLP,
932,Bias and Debiasing,
933,Explainability and Interpretability,
941,NLP for Computational Social Science,
942,NLP for Biology,
943,NLP for DB,
944,NLP and Vision,
945,NLP and Bibliometrics,
946,NLP for Historical Texts,
947,NLP for the Humanities,
948,NLP for Medical Texts,
949,NLP and Humor,
951,Crowdsourcing,
952,Language Identification,
953,Graph-based NLP,
954,Language Acquisition,
955,Readability,
956,Computer-Aided Translation,
957,Domain Adaptation,
958,Computational Psycholinguistics,
959,Social Media Analysis,
961,Stuctured Prediction,
999,Others,
10000,Natural Language Processing,