Skip to content

Latest commit

 

History

History
100 lines (55 loc) · 2.84 KB

INSTALL.md

File metadata and controls

100 lines (55 loc) · 2.84 KB

Installing Conda Environment from Zero to Hero

The following guidance works well for a machine with 3090/A40/A800/A100 GPU, cuda 11.7, driver 515.65.01.

First, git clone this repo and cd into it.

git clone https://github.com/YanjieZe/3D-Diffusion-Policy.git

Please strictly follow the guidance to avoid any potential errors. Especially, make sure Gym version is the same.

Don't worry about the gym version now. Just install my version in third_party/gym-0.21.0 and you will be fine.


1.create python/pytorch env

conda remove -n dp3 --all
conda create -n dp3 python=3.8
conda activate dp3

2.install torch

# if using cuda>=12.1
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# else, 
# just install the torch version that matches your cuda version

3.install dp3

cd 3D-Diffusion-Policy && pip install -e . && cd ..

4.install mujoco in ~/.mujoco

cd ~/.mujoco
wget https://github.com/deepmind/mujoco/releases/download/2.1.0/mujoco210-linux-x86_64.tar.gz -O mujoco210.tar.gz --no-check-certificate

tar -xvzf mujoco210.tar.gz

and put the following into your bash script (usually in YOUR_HOME_PATH/.bashrc). Remember to source ~/.bashrc to make it work and then open a new terminal.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HOME}/.mujoco/mujoco210/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export MUJOCO_GL=egl

and then install mujoco-py (in the folder of third_party):

cd YOUR_PATH_TO_THIRD_PARTY
cd mujoco-py-2.1.2.14
pip install -e .
cd ../..

5.install sim env

pip install setuptools==59.5.0 Cython==0.29.35 patchelf==0.17.2.0

cd third_party
cd dexart-release && pip install -e . && cd ..
cd gym-0.21.0 && pip install -e . && cd ..
cd Metaworld && pip install -e . && cd ..
cd rrl-dependencies && pip install -e mj_envs/. && pip install -e mjrl/. && cd ..

download assets from Google Drive, unzip it, and put it in third_party/dexart-release/assets.

download Adroit RL experts from OneDrive, unzip it, and put the ckpts folder under $YOUR_REPO_PATH/third_party/VRL3/.


6.install pytorch3d (a simplified version)

cd third_party/pytorch3d_simplified && pip install -e . && cd ..

7.install some necessary packages

pip install zarr==2.12.0 wandb ipdb gpustat dm_control omegaconf hydra-core==1.2.0 dill==0.3.5.1 einops==0.4.1 diffusers==0.11.1 numba==0.56.4 moviepy imageio av matplotlib termcolor

8.install our visualizer for pointclouds (optional)

pip install kaleido plotly
cd visualizer && pip install -e . && cd ..