-
Notifications
You must be signed in to change notification settings - Fork 0
/
geometry.cpp
130 lines (112 loc) · 2.75 KB
/
geometry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include <vector>
#include <cassert>
#include "geometry.h"
Matrix::Matrix(int r, int c):
m(std::vector<std::vector<float>>(r, std::vector<float>(c, 0.f))),
rows{r},
cols{c}
{}
Matrix::Matrix(Vec3f v):
m(std::vector<std::vector<float>>(4, std::vector<float>(1, 0.f))),
rows{4},
cols{1}
{
m[0][0] = v.x;
m[1][0] = v.y;
m[2][0] = v.z;
m[3][0] = 1.f;
}
inline int Matrix::nrows() {return rows; }
inline int Matrix::ncols() {return cols; }
Matrix Matrix::identity(int dimensions) {
Matrix I(dimensions, dimensions);
for (int i{0}; i < dimensions; i++) {
for (int j{0}; j < dimensions; j++) {
I[i][j] = (i == j) ? 1.f : 0.f;
}
}
return I;
}
std::vector<float>& Matrix::operator[](const int i) {
assert(i >= 0 && i < rows);
return m[i];
}
Matrix Matrix::operator*(const Matrix& a) {
assert(cols == a.rows);
Matrix result(rows, a.cols);
for (int i{0}; i < rows; i++) {
for (int j{0}; j < a.cols; j++) {
result.m[i][j] = 0.f;
for (int k{0}; k < cols; k++) {
result.m[i][j] += m[i][k]*a.m[k][j];
}
}
}
return result;
}
Matrix Matrix::transpose() {
Matrix result(cols, rows);
for (int i{0}; i < rows; i++) {
for (int j{0}; j < cols; j++) {
result[j][i] = m[i][j];
}
}
return result;
}
Matrix Matrix::inverse() {
assert(rows==cols);
// augmenting the square matrix with the identity matrix of the same dimensions a => [ai]
Matrix result(rows, cols*2);
for(int i=0; i<rows; i++)
for(int j=0; j<cols; j++)
result[i][j] = m[i][j];
for(int i=0; i<rows; i++)
result[i][i+cols] = 1;
// first pass
for (int i=0; i<rows-1; i++) {
// normalize the first row
for(int j=result.cols-1; j>=0; j--)
result[i][j] /= result[i][i];
for (int k=i+1; k<rows; k++) {
float coeff = result[k][i];
for (int j=0; j<result.cols; j++) {
result[k][j] -= result[i][j]*coeff;
}
}
}
// normalize the last row
for(int j=result.cols-1; j>=rows-1; j--)
result[rows-1][j] /= result[rows-1][rows-1];
// second pass
for (int i=rows-1; i>0; i--) {
for (int k=i-1; k>=0; k--) {
float coeff = result[k][i];
for (int j=0; j<result.cols; j++) {
result[k][j] -= result[i][j]*coeff;
}
}
}
// cut the identity matrix back
Matrix truncate(rows, cols);
for(int i=0; i<rows; i++)
for(int j=0; j<cols; j++)
truncate[i][j] = result[i][j+cols];
return truncate;
}
std::ostream& operator<<(std::ostream& s, Matrix& m) {
for (int i=0; i<m.nrows(); i++) {
for (int j=0; j<m.ncols(); j++) {
s << m[i][j];
if (j<m.ncols()-1) s << "\t";
}
s << "\n";
}
return s;
}
Vec3f Matrix::to_Vec3f() {
return Vec3f(
m[0][0]/m[3][0],
m[1][0]/m[3][0],
m[2][0]/m[3][0]
);
}