-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
36 lines (27 loc) · 1.38 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os, warnings, argparse
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
os.environ["CUDA_VISIBLE_DEVICES"]='0'
warnings.filterwarnings('ignore')
import source.datamanager as dman
import source.neuralnet as nn
import source.tf_process as tfp
def main():
dataset = dman.Dataset(normalize=FLAGS.datnorm)
neuralnet = nn.DGM(height=dataset.height, width=dataset.width, channel=dataset.channel, \
ksize=FLAGS.ksize, zdim=FLAGS.zdim, learning_rate=FLAGS.lr, path='Checkpoint')
neuralnet.confirm_params(verbose=False)
# neuralnet.confirm_bn()
tfp.training(neuralnet=neuralnet, dataset=dataset, \
epochs=FLAGS.epoch, batch_size=FLAGS.batch, normalize=True)
tfp.test(neuralnet=neuralnet, dataset=dataset, \
batch_size=FLAGS.batch)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--datnorm', type=bool, default=True, help='Data normalization')
parser.add_argument('--ksize', type=int, default=3, help='Size of Kernel')
parser.add_argument('--zdim', type=int, default=2, help='Dimension of latent vector z')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate for training')
parser.add_argument('--epoch', type=int, default=100, help='Training epoch')
parser.add_argument('--batch', type=int, default=32, help='Mini batch size')
FLAGS, unparsed = parser.parse_known_args()
main()