-
Notifications
You must be signed in to change notification settings - Fork 2
/
run.py
38 lines (28 loc) · 1.49 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os, warnings, argparse
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
os.environ["CUDA_VISIBLE_DEVICES"]='0'
warnings.filterwarnings('ignore')
import tensorflow as tf
import source.datamanager as dman
import source.neuralnet as nn
import source.tf_process as tfp
def main():
dataset = dman.Dataset(normalize=FLAGS.datnorm)
neuralnet = nn.SkipGANomaly(height=dataset.height, width=dataset.width, channel=dataset.channel, \
z_dim=FLAGS.z_dim, leaning_rate=FLAGS.lr)
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=sess_config)
sess.run(tf.compat.v1.global_variables_initializer())
saver = tf.compat.v1.train.Saver()
tfp.training(sess=sess, neuralnet=neuralnet, saver=saver, dataset=dataset, epochs=FLAGS.epoch, batch_size=FLAGS.batch, normalize=True)
tfp.test(sess=sess, neuralnet=neuralnet, saver=saver, dataset=dataset, batch_size=FLAGS.batch)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--datnorm', type=bool, default=True, help='Data normalization')
parser.add_argument('--z_dim', type=int, default=128, help='Dimension of latent vector')
parser.add_argument('--lr', type=int, default=1e-4, help='Learning rate for training')
parser.add_argument('--epoch', type=int, default=1000, help='Training epoch')
parser.add_argument('--batch', type=int, default=32, help='Mini batch size')
FLAGS, unparsed = parser.parse_known_args()
main()