-
Notifications
You must be signed in to change notification settings - Fork 1
/
wgan_gp.py
230 lines (174 loc) · 7.59 KB
/
wgan_gp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import torch
def arg_parse():
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--n_critic", type=int, default=5, help="number of training steps for discriminator per iter")
parser.add_argument("--clip_value", type=float, default=0.01, help="lower and upper clip value for disc. weights")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
return parser.parse_args()
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super(Generator, self).__init__()
self.img_shape = img_shape
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.shape[0], *(self.img_shape))
return img
class Discriminator(nn.Module):
def __init__(self, img_shape):
super(Discriminator, self).__init__()
self.img_shape = img_shape
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
)
def forward(self, img):
img_flat = img.view(img.shape[0], -1)
validity = self.model(img_flat)
return validity
def compute_gradient_penalty(D, real_samples, fake_samples):
"""
Calculates the gradient penalty loss for WGAN GP
:param D: The discriminator (the critic)
:param real_samples: The real samples
:param fake_samples: The fake samples
"""
# Random weight term for interpolation between real and fake samples
t = Tensor(np.random.random((real_samples.size(0), 1, 1, 1)))
# Get random interpolation between real and fake samples
interpolates = (t * real_samples + ((1 - t) * fake_samples)).requires_grad_(True)
d_interpolates = D(interpolates)
fake = Variable(Tensor(real_samples.shape[0], 1).fill_(1.0), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
if __name__ == '__main__':
os.makedirs("images", exist_ok=True)
args = arg_parse()
channels, img_size = args.channels, args.img_size
img_shape = (channels, img_size, img_size)
latent_dim = args.latent_dim
CUDA = True if torch.cuda.is_available() else False
# Loss weight for gradient penalty
lambda_gp = 10
# Initialize generator and discriminator
generator = Generator(latent_dim=latent_dim, img_shape=img_shape)
discriminator = Discriminator(img_shape=img_shape)
if CUDA:
generator.cuda()
discriminator.cuda()
batch_size = args.batch_size
lr = args.lr
b1, b2 = args.b1, args.b2
# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=batch_size,
shuffle=True,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))
Tensor = torch.cuda.FloatTensor if CUDA else torch.FloatTensor
# ----------
# Training
# ----------
n_epochs, n_critic, sample_interval = args.n_epochs, args.n_critic, args.sample_interval
batches_done = 0
for epoch in range(n_epochs):
for i, (imgs, _) in enumerate(dataloader):
# Configure input
real_imgs = Variable(imgs.type(Tensor))
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Sample noise as generator input
z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], latent_dim))))
# Generate a batch of images
fake_imgs = generator(z)
# Real images
real_validity = discriminator(real_imgs)
# Fake images
fake_validity = discriminator(fake_imgs)
# Gradient penalty
gradient_penalty = compute_gradient_penalty(discriminator, real_imgs.data, fake_imgs.data)
# Adversarial loss
d_loss = - torch.mean(real_validity) + torch.mean(fake_validity) + lambda_gp * gradient_penalty
d_loss.backward()
optimizer_D.step()
optimizer_G.zero_grad()
# Train the generator every n_critic steps
if i % n_critic == 0:
# -----------------
# Train Generator
# -----------------
# Generate a batch of images
fake_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
# Train on fake images
fake_validity = discriminator(fake_imgs)
g_loss = -torch.mean(fake_validity)
g_loss.backward()
optimizer_G.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)
if batches_done % sample_interval == 0:
save_image(fake_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
batches_done += n_critic