forked from niluthpol/multimodal_vtt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
316 lines (247 loc) · 9.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import torch
import torch.nn as nn
import torch.nn.init
import torchvision.models as models
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import torch.backends.cudnn as cudnn
from torch.nn.utils.clip_grad import clip_grad_norm_
import numpy as np
from collections import OrderedDict
def l2norm(X):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=1).sqrt()
X = X / norm[:,None]
return X
# We consider Image feature is precomputed
class EncoderImage(nn.Module):
def __init__(self, data_name, img_dim, embed_size, use_abs=False, no_imgnorm=False):
super(EncoderImage, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.use_abs = use_abs
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.) / np.sqrt(self.fc.in_features +
self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
# assuming that the precomputed features are already l2-normalized
features = self.fc(images)
# normalize in the joint embedding space
if not self.no_imgnorm:
features = l2norm(features)
# take the absolute value of embedding (used in order embeddings)
if self.use_abs:
features = torch.abs(features)
return features
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImage, self).load_state_dict(new_state)
# RNN Based Language Model
class EncoderText(nn.Module):
def __init__(self, vocab_size, word_dim, embed_size, num_layers,
use_abs=False):
super(EncoderText, self).__init__()
self.use_abs = use_abs
self.embed_size = embed_size
# word embedding
self.embed = nn.Embedding(vocab_size, word_dim)
# caption embedding
self.rnn = nn.GRU(word_dim, embed_size, num_layers, batch_first=True)
self.init_weights()
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
def forward(self, x, lengths):
"""Handles variable size captions
"""
# Embed word ids to vectors
x = self.embed(x)
#print(lengths)
packed = pack_padded_sequence(x, lengths, batch_first=True)
# Forward propagate RNN
out, _ = self.rnn(packed)
# Reshape *final* output to (batch_size, hidden_size)
padded = pad_packed_sequence(out, batch_first=True)
I = torch.LongTensor(lengths).view(-1, 1, 1)
I = Variable(I.expand(x.size(0), 1, self.embed_size)-1).cuda()
out = torch.gather(padded[0], 1, I).squeeze(1)
# normalization in the joint embedding space
out = l2norm(out)
# take absolute value, used by order embeddings
if self.use_abs:
out = torch.abs(out)
return out
def cosine_sim(im, s):
"""Cosine similarity between all the image and sentence pairs
"""
return im.mm(s.t())
def order_sim(im, s):
"""Order embeddings similarity measure $max(0, s-im)$
"""
YmX = (s.unsqueeze(1).expand(s.size(0), im.size(0), s.size(1))
- im.unsqueeze(0).expand(s.size(0), im.size(0), s.size(1)))
score = -YmX.clamp(min=0).pow(2).sum(2).squeeze(2).sqrt().t()
return score
class Loss(nn.Module):
"""
Compute contrastive loss
"""
def __init__(self, margin=0, measure=False, max_violation=False):
super(Loss, self).__init__()
self.margin = margin
self.sim = cosine_sim
self.max_violation = max_violation
def forward(self, im, s):
# compute image-sentence score matrix
scores = self.sim(im, s)
diagonal = scores.diag().view(im.size(0), 1)
d1 = diagonal.expand_as(scores)
d2 = diagonal.t().expand_as(scores)
d1_sort, d1_indice=torch.sort(scores)
val, id1 = torch.min(d1_indice,1)
rank_weights1 = id1.float()
for j in range(d1.size(0)):
rank_weights1[j]=1/(rank_weights1[j]+1)
d2_sort, d2_indice=torch.sort(scores.t())
val, id2 = torch.min(d2_indice,1)
rank_weights2 = id2.float()
for k in range(d2.size(0)):
rank_weights2[j]=1/(rank_weights2[j]+1)
# compare every diagonal score to scores in its column
# caption retrieval
cost_s = (self.margin + scores - d1).clamp(min=0)
# compare every diagonal score to scores in its row
# image retrieval
cost_im = (self.margin + scores - d2).clamp(min=0)
# clear diagonals
mask = torch.eye(scores.size(0)) > .5
I = Variable(mask)
if torch.cuda.is_available():
I = I.cuda()
cost_s = cost_s.masked_fill_(I, 0)
cost_im = cost_im.masked_fill_(I, 0)
# keep the maximum violating negative for each query
cost_s = cost_s.max(1)[0]
cost_im = cost_im.max(0)[0]
# weight similarity scores
cost_s= torch.mul(rank_weights1, cost_s)
cost_im= torch.mul(rank_weights2, cost_im)
return (cost_s.sum() + cost_im.sum())
class VSE(object):
"""
rkiros/uvs model
"""
def __init__(self, opt):
# tutorials/09 - Image Captioning
# Build Models
self.grad_clip = opt.grad_clip
self.img_enc = EncoderImage(opt.data_name, opt.img_dim, opt.embed_size,
use_abs=opt.use_abs,
no_imgnorm=opt.no_imgnorm)
self.txt_enc = EncoderText(opt.vocab_size, opt.word_dim,
opt.embed_size, opt.num_layers,
use_abs=opt.use_abs)
if torch.cuda.is_available():
self.img_enc.cuda()
self.txt_enc.cuda()
cudnn.benchmark = True
# Loss and Optimizer
self.criterion = Loss(margin=opt.margin,
measure=opt.measure,
max_violation=opt.max_violation)
params = list(self.txt_enc.parameters())
params += list(self.img_enc.fc.parameters())
# if opt.finetune:
# params += list(self.img_enc.cnn.parameters())
self.params = params
self.optimizer = torch.optim.Adam(params, lr=opt.learning_rate)
self.Eiters = 0
def state_dict(self):
state_dict = [self.img_enc.state_dict(), self.txt_enc.state_dict()]
return state_dict
def load_state_dict(self, state_dict):
self.img_enc.load_state_dict(state_dict[0])
self.txt_enc.load_state_dict(state_dict[1])
def train_start(self):
"""switch to train mode
"""
self.img_enc.train()
self.txt_enc.train()
def val_start(self):
"""switch to evaluate mode
"""
self.img_enc.eval()
self.txt_enc.eval()
def forward_emb(self, images, captions, lengths, volatile=False):
"""Compute the image and caption embeddings
"""
# Set mini-batch dataset
images = Variable(images)
captions = Variable(captions)
if torch.cuda.is_available():
images = images.cuda()
captions = captions.cuda()
# Forward
img_emb = self.img_enc(images)
cap_emb = self.txt_enc(captions, lengths)
return img_emb, cap_emb
def forward_emb_image(self, images, volatile=False):
"""Compute the image and caption embeddings
"""
# Set mini-batch dataset
images = Variable(images)
if torch.cuda.is_available():
images = images.cuda()
#captions = captions.cuda()
# Forward
img_emb = self.img_enc(images)
return img_emb
def forward_emb_caption(self, captions, lengths, volatile=False):
#"""Compute the image and caption embeddings"""
# Set mini-batch dataset
captions = Variable(captions)
if torch.cuda.is_available():
captions = captions.cuda()
# Forward
cap_emb = self.txt_enc(captions, lengths)
return cap_emb
def forward_loss(self, img_emb, cap_emb, **kwargs):
"""Compute the loss given pairs of image and caption embeddings
"""
#print(img_emb)
#print(cap_emb)
loss = self.criterion(img_emb, cap_emb)
# print (loss.data, img_emb.size(0))
self.logger.update('Le', loss.data.item(), img_emb.size(0))
return loss
def train_emb(self, images, captions, lengths, ids=None, *args):
"""One training step given images and captions.
"""
#print(ids)
self.Eiters += 1
self.logger.update('Eit', self.Eiters)
self.logger.update('lr', self.optimizer.param_groups[0]['lr'])
# compute the embeddings
img_emb, cap_emb = self.forward_emb(images, captions, lengths)
# measure accuracy and record loss
self.optimizer.zero_grad()
loss = self.forward_loss(img_emb, cap_emb)
# compute gradient and do SGD step
loss.backward()
if self.grad_clip > 0:
clip_grad_norm_(self.params, self.grad_clip)
self.optimizer.step()