Skip to content

Latest commit

 

History

History
104 lines (76 loc) · 2.25 KB

README.md

File metadata and controls

104 lines (76 loc) · 2.25 KB

serving-utils

travis pypi release

Some python utilities when using tensorflow-serving.

Installation

Prepare an environment with python version >= 3.6

From PYPI:

  1. Manually install tensorflow CPU or GPU version.
  2. pip install serving-utils

From Github repository:

  1. git clone git@github.com:Yoctol/serving-utils.git
  2. Manually install tensorflow CPU or GPU version.
  3. make install

Usage

  1. Saver and Loader
import tensorflow as tf

from serving_utils.saver import Saver
from serving_utils.loader import Loader

saver = Saver(
    session=tf.Session(graph=your_graph),
    output_dir='/path/to/serving',
    signature_def_map={
        'predict': tf.saved_model.signature_def_utils.predict_signature_def(
            inputs={'input': tf.Tensor...},
            outputs={'output': tf.Tensor...},
        )
    },
    freeze=True,  # (default: True) Frozen graph will be saved if True.
)
saver.save()

loader = Loader(
    path='/path/to/serving',
    # version=1,  # if not specified, use the latest version
)
new_sess = tf.Session()

loader.load(new_sess)  # load the saved model into new session
  1. Client
from serving_utils import Client
client = Client(host="localhost", port=8500, n_trys=3)
client.predict(
    {'input': np.ones(1, 10)},
    output_names=['output'],
    model_signature_name='predict',
)

# or async
await client.async_predict(...)
  1. Freeze graph
from serving_utils.freeze_graph import freeze_graph, create_session_from_graphdef

frozen_graph_def = freeze_graph(session, output_op_names)
new_session = create_session_from_graphdef(frozen_graph_def)

Test

Run the following commands:

make lint
make test

Dev

make install-dev

Protos

python -m grpc_tools.protoc -I. --python_out=. --python_grpc_out=. --grpc_python_out=. serving_utils/protos/*.proto