-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddp_infer.py
333 lines (272 loc) · 13 KB
/
ddp_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import logging
import math
import os
from logging import StreamHandler
from typing import Any
import numpy as np
import pandas as pd
import torch
from torch._tensor import Tensor
import torch.distributed as dist
from arguments.inference_args import InferenceArguments
from networks.models import Net
from setproctitle import setproctitle
from simple_parsing import ArgumentParser
from sklearn.preprocessing import MinMaxScaler
from utils.comfy import (
dataclass_to_namespace,
seed_everything,
apply_to_collection,
tensor_dict_to_device,
)
from utils.data.custom_dataloader import CustomDataLoader
from utils.data.custom_sampler import DistributedLengthGroupedSampler
from torch.utils.data import DistributedSampler
from utils.data.np_dataset import NumpyDataset
from torch.cuda.amp import autocast
from utils.model_checkpointing.common_handler import load_checkpoint
from torch.nn.parallel import DistributedDataParallel as DDP
from trainer.ddp import Trainer
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(levelname)8s] %(message)s")
timeFileHandler = StreamHandler()
timeFileHandler.setFormatter(formatter)
logger.addHandler(timeFileHandler)
class DDPTrainer(Trainer):
def __init__(
self, device_id, criterion, eval_metric, precision="fp32", cmd_logger=None, metric_on_cpu: bool = False
) -> None:
"""Exemplary Trainer with Fabric. This is a very simple trainer focused on readablity but with reduced
featureset. As a trainer with more included features, we recommend using the
Args:
precision: fp16, bf16, fp32
loggers: A single logger or a list of loggers.
max_epochs: The maximum number of epochs to train
max_steps: The maximum number of (optimizer) steps to train
grad_accum_steps: How many batches to process before each optimizer step
limit_train_batches: Limits the number of train batches per epoch
If greater than number of batches in the dataloader, this has no effect.
limit_val_batches: Limits the number of test batches per epoch.
If greater than number of batches in the dataloader, this has no effect.
test_frequency: How many epochs to run before each test epoch.
checkpoint_dir: Directory to store checkpoints to.
checkpoint_frequency: How many epochs to run before each checkpoint is written.
non_blocking: async data transfer cpu to gpu or reverse. (if ddp, true is recommanded)
"""
super().__init__(
device_id,
criterion,
eval_metric,
precision,
cmd_logger,
metric_on_cpu,
)
def test_loop(self, model, test_loader, **kwargs):
# no test if test_loader wasn't passed
if test_loader is None:
return
def on_start_test(model):
model.eval()
# requires_grad = True, but loss.backward() raised error
# because grad_fn is None
torch.set_grad_enabled(False)
on_start_test(model)
def on_test_epoch_start():
pass
if self.device_id == 0:
iterable = self.progbar_wrapper(test_loader, total=len(test_loader), desc="test")
pbar = enumerate(iterable)
else:
pbar = enumerate(test_loader)
eval_step = 0
tot_batch_logits = list()
tot_batch_labels = list()
if self.metric_on_cpu:
metric_on_device = torch.device("cpu")
else:
metric_on_device = self.device
for batch_idx, batch in pbar:
# I tried to output the most accurate LOSS to WANDB with ALL_GATHER for all LOSS sections,
# but it was not much different from outputting the value of GPU 0.
# Therefore, all sections except EVAL EPOCH END only output the value of rank 0.
tensor_dict_to_device(batch, self.device, non_blocking=self.non_blocking)
# I use distributed dataloader and wandb log only rank:0, and epoch loss all gather
def on_test_batch_start(batch, batch_idx):
pass
on_test_batch_start(batch, batch_idx)
# TODO(User): fit the input and output for your model architecture!
with autocast(enabled=self.mixed_precision, dtype=self.precision):
labels = batch.pop("labels")
outputs = model(**batch)
loss = self.criterion(outputs, labels)
# TODO(User): what do you want to log items every epoch end?
tot_batch_logits.append(outputs.to(metric_on_device))
tot_batch_labels.append(labels.to(metric_on_device))
log_output = {"loss": loss}
# avoid gradients in stored/accumulated values -> prevents potential OOM
self._current_val_return = apply_to_collection(
log_output, torch.Tensor, lambda x: x.detach().to(metric_on_device)
)
def on_test_batch_end(eval_out, batch, batch_idx):
pass
on_test_batch_end(outputs, batch, batch_idx)
if self.device_id == 0:
self._format_iterable(iterable, self._current_val_return, "test")
eval_step += 1
# TODO(User): Create any form you want to output to wandb!
def on_test_epoch_end(tot_batch_logits, tot_batch_labels, metric_device, **kwargs):
# if you want to see all_reduce example, see `fsdp_train.py`'s eval_loop
tot_batch_logits = torch.cat(tot_batch_logits, dim=0)
tot_batch_labels = torch.cat(tot_batch_labels, dim=0)
# all_gather` requires a `fixed length tensor` as input.
# Since the length of the data on each GPU may be different, the length should be passed to `all_gather` first.
local_size = torch.tensor([tot_batch_logits.size(0)], dtype=torch.long, device=metric_device)
size_list = [
torch.tensor([0], dtype=torch.long, device=metric_device) for _ in range(dist.get_world_size())
]
if metric_device == torch.device("cpu"):
dist.all_gather_object(size_list, local_size)
else:
dist.all_gather(size_list, local_size)
# Create a fixed length tensor with the length of `all_gather`.
logits_gathered_data = [
torch.zeros(
(size.item(), tot_batch_logits.size(-1)), dtype=tot_batch_logits.dtype, device=metric_device
)
for size in size_list
]
labels_gathered_data = [
torch.zeros(
(size.item(), tot_batch_labels.size(-1)), dtype=tot_batch_labels.dtype, device=metric_device
)
for size in size_list
]
# Collect and match data from all GPUs.
if metric_device == torch.device("cpu"):
# Collect and match data from all GPUs.
dist.all_gather_object(logits_gathered_data, tot_batch_logits)
dist.all_gather_object(labels_gathered_data, tot_batch_labels)
else:
dist.all_gather(logits_gathered_data, tot_batch_logits)
dist.all_gather(labels_gathered_data, tot_batch_labels)
if self.device_id == 0:
# example 4 gpus : [gpu0[tensor],gpu1[tensor],gpu2[tensor],gpu3[tensor]]
logits_gathered_data = torch.cat(logits_gathered_data, dim=0)
labels_gathered_data = torch.cat(labels_gathered_data, dim=0)
epoch_loss = self.criterion(logits_gathered_data, labels_gathered_data)
epoch_rmse = torch.sqrt(epoch_loss)
self.logger.info(f"RMSE Loss is {epoch_rmse:0.10f}")
if self.precision == torch.bfloat16:
pred = logits_gathered_data.to(torch.float32).cpu().numpy()
else:
pred = logits_gathered_data.cpu().numpy()
# distributed will shuffle the data for each GPU
# so you won't be able to find the source specified here up to scaler.
np_outputs = np.concatenate([pred, labels_gathered_data.cpu().numpy()], axis=1)
pd_result = pd.DataFrame(np_outputs, columns=["pred", "labels"])
pd_result.to_excel("./ddp_result.xlsx", index=False)
on_test_epoch_end(tot_batch_logits, tot_batch_labels, metric_on_device, **kwargs)
def main(hparams: InferenceArguments):
# reference: https://www.kaggle.com/code/anitarostami/lstm-multivariate-forecasting
setproctitle("ddp_inference")
seed_everything(hparams.seed)
dist.init_process_group("nccl")
world_size = int(os.environ.get("WORLD_SIZE", -1))
rank = int(os.environ.get("RANK", -1))
local_rank = int(os.environ.get("LOCAL_RANK", -1))
logger.info(
f"Start running basic deepspeed example on total {world_size} computers, {rank}'s process on {local_rank}'s gpu."
)
assert world_size > -1 and rank > -1 and local_rank > -1, "Your distributed environ is wrong, plz check and retry!"
torch.cuda.set_device(local_rank)
# I'm not saved MinMaxScaler, so, have to re-calculate, stupid thing...🤣
df_train = pd.read_csv("./raw_data/LSTM-Multivariate_pollution.csv", header=0, encoding="utf-8")
# Kaggle author Test Final RMSE: 0.06539
df_eval = pd.read_csv(hparams.data_path, header=0, encoding="utf-8")
df_train_scaled = df_train.copy()
df_test_scaled = df_eval.copy()
# Define the mapping dictionary
mapping = {"NE": 0, "SE": 1, "NW": 2, "cv": 3}
# Replace the string values with numerical values
df_train_scaled["wnd_dir"] = df_train_scaled["wnd_dir"].map(mapping)
df_test_scaled["wnd_dir"] = df_test_scaled["wnd_dir"].map(mapping)
df_train_scaled["date"] = pd.to_datetime(df_train_scaled["date"])
# Resetting the index
df_train_scaled.set_index("date", inplace=True)
logger.info(df_train_scaled.head())
scaler = MinMaxScaler()
# Define the columns to scale
columns = ["pollution", "dew", "temp", "press", "wnd_dir", "wnd_spd", "snow", "rain"]
df_test_scaled = df_test_scaled[columns]
# Scale the selected columns to the range 0-1
df_train_scaled[columns] = scaler.fit_transform(df_train_scaled[columns])
df_test_scaled[columns] = scaler.transform(df_test_scaled[columns])
# we don't need to df_train_scaled anymore
# Show the scaled data
logger.info(df_test_scaled.head())
df_test_scaled = np.array(df_test_scaled)
n_future = 1
n_past = 11
np_labels = df_test_scaled[n_past:]
index_column = np.arange(np_labels.shape[0]).reshape(-1, 1)
np_idx_labels = np.concatenate([index_column, np_labels], axis=1)
# Test Sets
x = []
y = []
for i in range(n_past, len(df_test_scaled) - n_future + 1):
x.append(df_test_scaled[i - n_past : i, 1 : df_test_scaled.shape[1]])
y.append(df_test_scaled[i + n_future - 1 : i + n_future, 0])
x_test, y_test = np.array(x), np.array(y)
logger.info("X_test shape : {} y_test shape : {} ".format(x_test.shape, y_test.shape))
test_dataset = NumpyDataset(
x_test,
y_test,
feature_column_name=hparams.feature_column_name,
labels_column_name=hparams.labels_column_name,
)
if hparams.group_by_length:
custom_test_sampler = DistributedLengthGroupedSampler(
batch_size=hparams.per_device_test_batch_size,
dataset=test_dataset,
rank=rank,
seed=hparams.seed,
shuffle=False,
model_input_name=test_dataset.length_column_name,
)
else:
# DistributedSampler's shuffle: each device get random indices data segment in every epoch
custom_test_sampler = DistributedSampler(test_dataset, seed=hparams.seed, rank=rank, shuffle=False)
test_dataloader = CustomDataLoader(
dataset=test_dataset,
feature_column_name=hparams.feature_column_name,
labels_column_name=hparams.labels_column_name,
batch_size=hparams.per_device_test_batch_size,
sampler=custom_test_sampler,
num_workers=hparams.num_workers,
drop_last=False,
pin_memory=True,
persistent_workers=True,
)
model = Net().cuda(local_rank)
ddp_model = DDP(model, device_ids=[local_rank], find_unused_parameters=True)
state = {"model": ddp_model}
load_checkpoint(state, hparams.model_path)
eval_metric = None
criterion = torch.nn.MSELoss()
trainer = DDPTrainer(
device_id=local_rank,
criterion=criterion,
eval_metric=eval_metric,
precision=hparams.model_dtype,
cmd_logger=logger,
metric_on_cpu=hparams.metric_on_cpu,
)
trainer.test_loop(model=ddp_model, test_loader=test_dataloader)
dist.destroy_process_group()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_arguments(InferenceArguments, dest="training_args")
args = parser.parse_args()
args = dataclass_to_namespace(args, "training_args")
main(args)