forked from qkhy/poetry-seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathword2vec.py
74 lines (66 loc) · 3.13 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#! /usr/bin/env python
#-*- coding:utf-8 -*-
import os
from utils import DATA_PROCESSED_DIR
import numpy as np
from vocab import get_vocab, VOCAB_SIZE
from quatrains import get_quatrains
from gensim import models
from numpy.random import uniform
_w2v_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec.npy')
_w2v_model_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec.model')
_w2v_with_alignment_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec_with_alignment.npy')
_w2v_with_alignment_model_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec_with_alignment.model')
def _gen_embedding(ndim, alignment=False):
print "Generating %d-dim word embedding ..." %ndim
int2ch, ch2int = get_vocab()
ch_lists = []
quatrains = get_quatrains()
for idx, poem in enumerate(quatrains):
for sentence in poem['sentences']:
ch_lists.append(filter(lambda ch: ch in ch2int, sentence))
if alignment:
# the i-th characters in the poem, used to boost Dui Zhang
i_characters = [[sentence[j] for sentence in poem['sentences']] for j in range(len(poem['sentences'][0]))]
for characters in i_characters:
ch_lists.append(filter(lambda ch: ch in ch2int, characters))
if 0 == (idx+1)%10000:
print "[Word2Vec] %d/%d poems have been processed." %(idx+1, len(quatrains))
print "Hold on. This may take some time ..."
model = models.Word2Vec(ch_lists, size = ndim, min_count = 5)
embedding = uniform(-1.0, 1.0, [VOCAB_SIZE, ndim])
for idx, ch in enumerate(int2ch):
if ch in model.wv:
embedding[idx,:] = model.wv[ch]
if alignment:
model.save(_w2v_with_alignment_model_path)
print "Word2Vec model is saved."
np.save(_w2v_with_alignment_path, embedding)
print "Word embedding is saved."
else:
model.save(_w2v_model_path)
print "Word2Vec model is saved."
np.save(_w2v_path, embedding)
print "Word embedding is saved."
def get_word_embedding(ndim, alignment=False):
if alignment:
if not os.path.exists(_w2v_with_alignment_path) or not os.path.exists(_w2v_with_alignment_model_path):
_gen_embedding(ndim, alignment=True)
return np.load(_w2v_with_alignment_path)
else:
if not os.path.exists(_w2v_path) or not os.path.exists(_w2v_model_path):
_gen_embedding(ndim)
return np.load(_w2v_path)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Generate or load a Wrod2Vec embedding')
parser.add_argument('--alignment', help='Use Wrod2Vec with alignment', action='store_true', required=False)
args = parser.parse_args()
if args.alignment:
print "Using Word2vec with alignment, use -h for usage"
embedding = get_word_embedding(128, alignment=True)
print "Finished loading Word2vec with alignment. Size of embedding: (%d, %d)" %embedding.shape
else:
print "Using Word2vec without alignment, use -h for usage"
embedding = get_word_embedding(128)
print "Finished loading Word2vec without alignment. Size of embedding: (%d, %d)" %embedding.shape