-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_completions.py
69 lines (45 loc) · 2.44 KB
/
generate_completions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Generates completions from RWKV model based on a prompt.
# Usage example: python generate_completions.py C:\rwkv.cpp-169M-Q5_1.bin 20B
import argparse
import time
import sampling
from rwkv_cpp import rwkv_cpp_shared_library, rwkv_cpp_model
from tokenizer_util import add_tokenizer_argument, get_tokenizer
from typing import List
# ======================================== Script settings ========================================
prompt: str = """# rwkv.cpp
This is a port of [BlinkDL/RWKV-LM](https://github.com/BlinkDL/RWKV-LM) to [ggerganov/ggml](https://github.com/ggerganov/ggml).
Besides the usual **FP32**, it supports **FP16**, **quantized INT4, INT5 and INT8** inference. This project is **focused on CPU**, but cuBLAS is also supported."""
# How many completions to generate.
generation_count: int = 3
# Token count per single completion.
tokens_per_generation: int = 100
# Sampling settings.
temperature: float = 0.8
top_p: float = 0.5
# =================================================================================================
parser = argparse.ArgumentParser(description='Generate completions from RWKV model based on a prompt')
parser.add_argument('model_path', help='Path to RWKV model in ggml format')
add_tokenizer_argument(parser)
args = parser.parse_args()
assert prompt != '', 'Prompt must not be empty'
library = rwkv_cpp_shared_library.load_rwkv_shared_library()
print(f'System info: {library.rwkv_get_system_info_string()}')
print('Loading RWKV model')
model = rwkv_cpp_model.RWKVModel(library, args.model_path)
tokenizer_decode, tokenizer_encode = get_tokenizer(args.tokenizer, model.n_vocab)
prompt_tokens: List[int] = tokenizer_encode(prompt)
prompt_token_count: int = len(prompt_tokens)
print(f'{prompt_token_count} tokens in prompt')
init_logits, init_state = model.eval_sequence_in_chunks(prompt_tokens, None, None, None, use_numpy=True)
for GENERATION in range(generation_count):
print(f'\n--- Generation {GENERATION} ---\n')
print(prompt, end='[')
start: float = time.time()
logits, state = init_logits.copy(), init_state.copy()
for i in range(tokens_per_generation):
token: int = sampling.sample_logits(logits, temperature, top_p)
print(tokenizer_decode([token]), end='', flush=True)
logits, state = model.eval(token, state, state, logits, use_numpy=True)
delay: float = time.time() - start
print(']\n\nTook %.3f sec, %d ms per token' % (delay, delay / tokens_per_generation * 1000))