diff --git a/demo/datacube.ipynb b/demo/datacube.ipynb index 6353077e..700c8d26 100644 --- a/demo/datacube.ipynb +++ b/demo/datacube.ipynb @@ -669,7 +669,7 @@ " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", " value_type: ordinal\n", - " value_labels: {1: 'SVHNIR', 2: 'SVLNIR', 3: 'AVHNIR', 4: 'AVLNIR', 5: '...
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    ordinal
    value_labels :
    {1: 'SVHNIR', 2: 'SVLNIR', 3: 'AVHNIR', 4: 'AVLNIR', 5: 'WV', 6: 'SHV', 7: 'SHRBRHNIR', 8: 'SHRBRLNIR', 9: 'HRBCR', 10: 'WR', 11: 'PB', 12: 'GH', 13: 'VBBB', 14: 'BBB', 15: 'SBB', 16: 'ABB', 17: 'DBB', 18: 'WBBorSHB', 19: 'NIRPBB', 20: 'BA', 21: 'DPWASH', 22: 'SLWASH', 23: 'TWASH', 24: 'SASLWA', 27: 'TNCLV', 28: 'TNCLWA_BB', 29: 'SN', 30: 'SHSN', 31: 'SH', 32: 'FLAME'}
  • " ], "text/plain": [ "\n", @@ -815,7 +815,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 13, diff --git a/demo/gallery.ipynb b/demo/gallery.ipynb index 42eed111..aa7aa48a 100644 --- a/demo/gallery.ipynb +++ b/demo/gallery.ipynb @@ -558,7 +558,7 @@ " <meta name="viewport" content="width=device-width,\n", " initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />\n", " <style>\n", - " #map_bd1b267a704991f4ea5ca47212c23308 {\n", + " #map_4efcd1f48557bf06f7d61b4ef606dca0 {\n", " position: relative;\n", " width: 100.0%;\n", " height: 100.0%;\n", @@ -588,14 +588,14 @@ "<body>\n", " \n", " \n", - " <div class="folium-map" id="map_bd1b267a704991f4ea5ca47212c23308" ></div>\n", + " <div class="folium-map" id="map_4efcd1f48557bf06f7d61b4ef606dca0" ></div>\n", " \n", "</body>\n", "<script>\n", " \n", " \n", - " var map_bd1b267a704991f4ea5ca47212c23308 = L.map(\n", - " "map_bd1b267a704991f4ea5ca47212c23308",\n", + " var map_4efcd1f48557bf06f7d61b4ef606dca0 = L.map(\n", + " "map_4efcd1f48557bf06f7d61b4ef606dca0",\n", " {\n", " center: [47.32110812526405, 12.808509961311596],\n", " crs: L.CRS.EPSG3857,\n", @@ -604,77 +604,77 @@ " preferCanvas: false,\n", " }\n", " );\n", - " L.control.scale().addTo(map_bd1b267a704991f4ea5ca47212c23308);\n", + " L.control.scale().addTo(map_4efcd1f48557bf06f7d61b4ef606dca0);\n", "\n", " \n", "\n", " \n", " \n", - " var tile_layer_2a444d041205613cd28eb73e51ad0a3d = L.tileLayer(\n", + " var tile_layer_5edb3da093f4664fdb5bcb2650bd0e9b = L.tileLayer(\n", " "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",\n", " {"attribution": "Data by \\u0026copy; \\u003ca target=\\"_blank\\" href=\\"http://openstreetmap.org\\"\\u003eOpenStreetMap\\u003c/a\\u003e, under \\u003ca target=\\"_blank\\" href=\\"http://www.openstreetmap.org/copyright\\"\\u003eODbL\\u003c/a\\u003e.", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_bd1b267a704991f4ea5ca47212c23308);\n", + " ).addTo(map_4efcd1f48557bf06f7d61b4ef606dca0);\n", " \n", " \n", - " map_bd1b267a704991f4ea5ca47212c23308.fitBounds(\n", + " map_4efcd1f48557bf06f7d61b4ef606dca0.fitBounds(\n", " [[47.30444420302901, 12.799052458545688], [47.33777204749909, 12.817967464077503]],\n", " {}\n", " );\n", " \n", " \n", - " function geo_json_e30bce70e58f00ad1f3365ab9ca796a6_styler(feature) {\n", + " function geo_json_f2efe087d1728c7a219440b096478d0d_styler(feature) {\n", " switch(feature.id) {\n", " default:\n", " return {"fillOpacity": 0.5, "weight": 2};\n", " }\n", " }\n", - " function geo_json_e30bce70e58f00ad1f3365ab9ca796a6_highlighter(feature) {\n", + " function geo_json_f2efe087d1728c7a219440b096478d0d_highlighter(feature) {\n", " switch(feature.id) {\n", " default:\n", " return {"fillOpacity": 0.75};\n", " }\n", " }\n", - " function geo_json_e30bce70e58f00ad1f3365ab9ca796a6_pointToLayer(feature, latlng) {\n", + " function geo_json_f2efe087d1728c7a219440b096478d0d_pointToLayer(feature, latlng) {\n", " var opts = {"bubblingMouseEvents": true, "color": "#3388ff", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "#3388ff", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 2, "stroke": true, "weight": 3};\n", " \n", - " let style = geo_json_e30bce70e58f00ad1f3365ab9ca796a6_styler(feature)\n", + " let style = geo_json_f2efe087d1728c7a219440b096478d0d_styler(feature)\n", " Object.assign(opts, style)\n", " \n", " return new L.CircleMarker(latlng, opts)\n", " }\n", "\n", - " function geo_json_e30bce70e58f00ad1f3365ab9ca796a6_onEachFeature(feature, layer) {\n", + " function geo_json_f2efe087d1728c7a219440b096478d0d_onEachFeature(feature, layer) {\n", " layer.on({\n", " mouseout: function(e) {\n", " if(typeof e.target.setStyle === "function"){\n", - " geo_json_e30bce70e58f00ad1f3365ab9ca796a6.resetStyle(e.target);\n", + " geo_json_f2efe087d1728c7a219440b096478d0d.resetStyle(e.target);\n", " }\n", " },\n", " mouseover: function(e) {\n", " if(typeof e.target.setStyle === "function"){\n", - " const highlightStyle = geo_json_e30bce70e58f00ad1f3365ab9ca796a6_highlighter(e.target.feature)\n", + " const highlightStyle = geo_json_f2efe087d1728c7a219440b096478d0d_highlighter(e.target.feature)\n", " e.target.setStyle(highlightStyle);\n", " }\n", " },\n", " });\n", " };\n", - " var geo_json_e30bce70e58f00ad1f3365ab9ca796a6 = L.geoJson(null, {\n", - " onEachFeature: geo_json_e30bce70e58f00ad1f3365ab9ca796a6_onEachFeature,\n", + " var geo_json_f2efe087d1728c7a219440b096478d0d = L.geoJson(null, {\n", + " onEachFeature: geo_json_f2efe087d1728c7a219440b096478d0d_onEachFeature,\n", " \n", - " style: geo_json_e30bce70e58f00ad1f3365ab9ca796a6_styler,\n", - " pointToLayer: geo_json_e30bce70e58f00ad1f3365ab9ca796a6_pointToLayer\n", + " style: geo_json_f2efe087d1728c7a219440b096478d0d_styler,\n", + " pointToLayer: geo_json_f2efe087d1728c7a219440b096478d0d_pointToLayer\n", " });\n", "\n", - " function geo_json_e30bce70e58f00ad1f3365ab9ca796a6_add (data) {\n", - " geo_json_e30bce70e58f00ad1f3365ab9ca796a6\n", + " function geo_json_f2efe087d1728c7a219440b096478d0d_add (data) {\n", + " geo_json_f2efe087d1728c7a219440b096478d0d\n", " .addData(data)\n", - " .addTo(map_bd1b267a704991f4ea5ca47212c23308);\n", + " .addTo(map_4efcd1f48557bf06f7d61b4ef606dca0);\n", " }\n", - " geo_json_e30bce70e58f00ad1f3365ab9ca796a6_add({"bbox": [12.799052458545688, 47.30444420302901, 12.817967464077503, 47.33777204749909], "features": [{"bbox": [12.803868147852612, 47.33056389640604, 12.817967464077503, 47.33777204749909], "geometry": {"coordinates": [[[12.803868147852612, 47.33091868331674], [12.817596157332153, 47.33056389640604], [12.817967464077503, 47.33741720662344], [12.804237649967712, 47.33777204749909], [12.803868147852612, 47.33091868331674]]], "type": "Polygon"}, "id": "0", "properties": {"name": "Northern"}, "type": "Feature"}, {"bbox": [12.799052458545688, 47.30444420302901, 12.815746431172713, 47.31514111553671], "geometry": {"coordinates": [[[12.799052458545688, 47.30486091070503], [12.815190335969971, 47.30444420302901], [12.815746431172713, 47.3147243128484], [12.799605373818284, 47.31514111553671], [12.799052458545688, 47.30486091070503]]], "type": "Polygon"}, "id": "1", "properties": {"name": "Southern"}, "type": "Feature"}], "type": "FeatureCollection"});\n", + " geo_json_f2efe087d1728c7a219440b096478d0d_add({"bbox": [12.799052458545688, 47.30444420302901, 12.817967464077503, 47.33777204749909], "features": [{"bbox": [12.803868147852612, 47.33056389640604, 12.817967464077503, 47.33777204749909], "geometry": {"coordinates": [[[12.803868147852612, 47.33091868331674], [12.817596157332153, 47.33056389640604], [12.817967464077503, 47.33741720662344], [12.804237649967712, 47.33777204749909], [12.803868147852612, 47.33091868331674]]], "type": "Polygon"}, "id": "0", "properties": {"name": "Northern"}, "type": "Feature"}, {"bbox": [12.799052458545688, 47.30444420302901, 12.815746431172713, 47.31514111553671], "geometry": {"coordinates": [[[12.799052458545688, 47.30486091070503], [12.815190335969971, 47.30444420302901], [12.815746431172713, 47.3147243128484], [12.799605373818284, 47.31514111553671], [12.799052458545688, 47.30486091070503]]], "type": "Polygon"}, "id": "1", "properties": {"name": "Southern"}, "type": "Feature"}], "type": "FeatureCollection"});\n", "\n", " \n", " \n", - " geo_json_e30bce70e58f00ad1f3365ab9ca796a6.bindTooltip(\n", + " geo_json_f2efe087d1728c7a219440b096478d0d.bindTooltip(\n", " function(layer){\n", " let div = L.DomUtil.create('div');\n", " \n", @@ -701,7 +701,7 @@ "</html>\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" allowfullscreen webkitallowfullscreen mozallowfullscreen>" ], "text/plain": [ - "" + "" ] }, "execution_count": 16, diff --git a/demo/mapping.ipynb b/demo/mapping.ipynb index c506eb02..96632f2e 100644 --- a/demo/mapping.ipynb +++ b/demo/mapping.ipynb @@ -949,7 +949,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -1050,7 +1050,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 28, diff --git a/demo/processor.ipynb b/demo/processor.ipynb index 3d04382d..2170831b 100644 --- a/demo/processor.ipynb +++ b/demo/processor.ipynb @@ -591,7 +591,7 @@ " long_name: index\n", " _FillValue: nan\n", " value_type: nominal\n", - " value_labels: {1: 'feature_1'}
    • y
      PandasIndex
      PandasIndex(Index([2696250.0, 2694750.0, 2693250.0, 2691750.0], dtype='float64', name='y'))
    • x
      PandasIndex
      PandasIndex(Index([4530750.0, 4532250.0, 4533750.0, 4535250.0], dtype='float64', name='x'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2019-01-01', '2020-12-31'], dtype='datetime64[ns]', name='time', freq=None))
  • name :
    index
    long_name :
    index
    _FillValue :
    nan
    value_type :
    nominal
    value_labels :
    {1: 'feature_1'}
  • " ], "text/plain": [ "\n", @@ -1188,7 +1188,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -2192,7 +2192,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", diff --git a/demo/recipes.ipynb b/demo/recipes.ipynb index f8059f23..b5956729 100644 --- a/demo/recipes.ipynb +++ b/demo/recipes.ipynb @@ -301,7 +301,7 @@ " <meta name="viewport" content="width=device-width,\n", " initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />\n", " <style>\n", - " #map_78b4224d1a3e26c8f75a849a6651af6c {\n", + " #map_e8be241db80d8499da712abc7231fc1d {\n", " position: relative;\n", " width: 100.0%;\n", " height: 100.0%;\n", @@ -331,14 +331,14 @@ "<body>\n", " \n", " \n", - " <div class="folium-map" id="map_78b4224d1a3e26c8f75a849a6651af6c" ></div>\n", + " <div class="folium-map" id="map_e8be241db80d8499da712abc7231fc1d" ></div>\n", " \n", "</body>\n", "<script>\n", " \n", " \n", - " var map_78b4224d1a3e26c8f75a849a6651af6c = L.map(\n", - " "map_78b4224d1a3e26c8f75a849a6651af6c",\n", + " var map_e8be241db80d8499da712abc7231fc1d = L.map(\n", + " "map_e8be241db80d8499da712abc7231fc1d",\n", " {\n", " center: [47.32182848564892, 12.802874710259392],\n", " crs: L.CRS.EPSG3857,\n", @@ -347,77 +347,77 @@ " preferCanvas: false,\n", " }\n", " );\n", - " L.control.scale().addTo(map_78b4224d1a3e26c8f75a849a6651af6c);\n", + " L.control.scale().addTo(map_e8be241db80d8499da712abc7231fc1d);\n", "\n", " \n", "\n", " \n", " \n", - " var tile_layer_6aa9f2f56c95e0e715edcf99799b7af8 = L.tileLayer(\n", + " var tile_layer_60193151dc4d4325b347c7a4102e173a = L.tileLayer(\n", " "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",\n", " {"attribution": "Data by \\u0026copy; \\u003ca target=\\"_blank\\" href=\\"http://openstreetmap.org\\"\\u003eOpenStreetMap\\u003c/a\\u003e, under \\u003ca target=\\"_blank\\" href=\\"http://www.openstreetmap.org/copyright\\"\\u003eODbL\\u003c/a\\u003e.", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_78b4224d1a3e26c8f75a849a6651af6c);\n", + " ).addTo(map_e8be241db80d8499da712abc7231fc1d);\n", " \n", " \n", - " map_78b4224d1a3e26c8f75a849a6651af6c.fitBounds(\n", + " map_e8be241db80d8499da712abc7231fc1d.fitBounds(\n", " [[47.29549949362208, 12.763509083137114], [47.34815747767577, 12.84224033738167]],\n", " {}\n", " );\n", " \n", " \n", - " function geo_json_aee406f078c837798ce3422871f685e9_styler(feature) {\n", + " function geo_json_d5439c5616315899d13c8dcb21f02363_styler(feature) {\n", " switch(feature.id) {\n", " default:\n", " return {"fillOpacity": 0.5, "weight": 2};\n", " }\n", " }\n", - " function geo_json_aee406f078c837798ce3422871f685e9_highlighter(feature) {\n", + " function geo_json_d5439c5616315899d13c8dcb21f02363_highlighter(feature) {\n", " switch(feature.id) {\n", " default:\n", " return {"fillOpacity": 0.75};\n", " }\n", " }\n", - " function geo_json_aee406f078c837798ce3422871f685e9_pointToLayer(feature, latlng) {\n", + " function geo_json_d5439c5616315899d13c8dcb21f02363_pointToLayer(feature, latlng) {\n", " var opts = {"bubblingMouseEvents": true, "color": "#3388ff", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "#3388ff", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 2, "stroke": true, "weight": 3};\n", " \n", - " let style = geo_json_aee406f078c837798ce3422871f685e9_styler(feature)\n", + " let style = geo_json_d5439c5616315899d13c8dcb21f02363_styler(feature)\n", " Object.assign(opts, style)\n", " \n", " return new L.CircleMarker(latlng, opts)\n", " }\n", "\n", - " function geo_json_aee406f078c837798ce3422871f685e9_onEachFeature(feature, layer) {\n", + " function geo_json_d5439c5616315899d13c8dcb21f02363_onEachFeature(feature, layer) {\n", " layer.on({\n", " mouseout: function(e) {\n", " if(typeof e.target.setStyle === "function"){\n", - " geo_json_aee406f078c837798ce3422871f685e9.resetStyle(e.target);\n", + " geo_json_d5439c5616315899d13c8dcb21f02363.resetStyle(e.target);\n", " }\n", " },\n", " mouseover: function(e) {\n", " if(typeof e.target.setStyle === "function"){\n", - " const highlightStyle = geo_json_aee406f078c837798ce3422871f685e9_highlighter(e.target.feature)\n", + " const highlightStyle = geo_json_d5439c5616315899d13c8dcb21f02363_highlighter(e.target.feature)\n", " e.target.setStyle(highlightStyle);\n", " }\n", " },\n", " });\n", " };\n", - " var geo_json_aee406f078c837798ce3422871f685e9 = L.geoJson(null, {\n", - " onEachFeature: geo_json_aee406f078c837798ce3422871f685e9_onEachFeature,\n", + " var geo_json_d5439c5616315899d13c8dcb21f02363 = L.geoJson(null, {\n", + " onEachFeature: geo_json_d5439c5616315899d13c8dcb21f02363_onEachFeature,\n", " \n", - " style: geo_json_aee406f078c837798ce3422871f685e9_styler,\n", - " pointToLayer: geo_json_aee406f078c837798ce3422871f685e9_pointToLayer\n", + " style: geo_json_d5439c5616315899d13c8dcb21f02363_styler,\n", + " pointToLayer: geo_json_d5439c5616315899d13c8dcb21f02363_pointToLayer\n", " });\n", "\n", - " function geo_json_aee406f078c837798ce3422871f685e9_add (data) {\n", - " geo_json_aee406f078c837798ce3422871f685e9\n", + " function geo_json_d5439c5616315899d13c8dcb21f02363_add (data) {\n", + " geo_json_d5439c5616315899d13c8dcb21f02363\n", " .addData(data)\n", - " .addTo(map_78b4224d1a3e26c8f75a849a6651af6c);\n", + " .addTo(map_e8be241db80d8499da712abc7231fc1d);\n", " }\n", - " geo_json_aee406f078c837798ce3422871f685e9_add({"bbox": [12.763509083137114, 47.29549949362208, 12.84224033738167, 47.34815747767577], "features": [{"bbox": [12.763509083137114, 47.29549949362208, 12.84224033738167, 47.34815747767577], "geometry": {"coordinates": [[[12.763509083137114, 47.29745731209052], [12.766203393446109, 47.34815747767577], [12.84224033738167, 47.3461974559335], [12.83947215089213, 47.29549949362208], [12.763509083137114, 47.29745731209052]]], "type": "Polygon"}, "id": "0", "properties": {}, "type": "Feature"}], "type": "FeatureCollection"});\n", + " geo_json_d5439c5616315899d13c8dcb21f02363_add({"bbox": [12.763509083137114, 47.29549949362208, 12.84224033738167, 47.34815747767577], "features": [{"bbox": [12.763509083137114, 47.29549949362208, 12.84224033738167, 47.34815747767577], "geometry": {"coordinates": [[[12.763509083137114, 47.29745731209052], [12.766203393446109, 47.34815747767577], [12.84224033738167, 47.3461974559335], [12.83947215089213, 47.29549949362208], [12.763509083137114, 47.29745731209052]]], "type": "Polygon"}, "id": "0", "properties": {}, "type": "Feature"}], "type": "FeatureCollection"});\n", "\n", " \n", " \n", - " geo_json_aee406f078c837798ce3422871f685e9.bindTooltip(\n", + " geo_json_d5439c5616315899d13c8dcb21f02363.bindTooltip(\n", " function(layer){\n", " let div = L.DomUtil.create('div');\n", " \n", @@ -429,7 +429,7 @@ "</html>\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" allowfullscreen webkitallowfullscreen mozallowfullscreen>" ], "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -945,29 +945,29 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -1384,10 +1384,10 @@ " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-1...\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: discrete
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -1795,7 +1795,7 @@ " spatial_ref int64 0\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: discrete" + " value_type: discrete" ], "text/plain": [ "\n", diff --git a/demo/test.ipynb b/demo/test.ipynb index b4aefa19..5c1cddaa 100644 --- a/demo/test.ipynb +++ b/demo/test.ipynb @@ -511,29 +511,29 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -572,7 +572,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, diff --git a/demo/verbs.ipynb b/demo/verbs.ipynb index ce989775..c67a6382 100644 --- a/demo/verbs.ipynb +++ b/demo/verbs.ipynb @@ -603,7 +603,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -1053,7 +1053,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -1552,11 +1552,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -1965,11 +1965,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -2427,11 +2427,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -2840,11 +2840,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -3310,7 +3310,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -3760,7 +3760,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -4210,7 +4210,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -4705,7 +4705,7 @@ " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", " value_type: ordinal\n", - " value_labels: {1: 'SVHNIR', 2: 'SVLNIR', 3: 'AVHNIR', 4: 'AVLNIR', 5: '...
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    ordinal
    value_labels :
    {1: 'SVHNIR', 2: 'SVLNIR', 3: 'AVHNIR', 4: 'AVLNIR', 5: 'WV', 6: 'SHV', 7: 'SHRBRHNIR', 8: 'SHRBRLNIR', 9: 'HRBCR', 10: 'WR', 11: 'PB', 12: 'GH', 13: 'VBBB', 14: 'BBB', 15: 'SBB', 16: 'ABB', 17: 'DBB', 18: 'WBBorSHB', 19: 'NIRPBB', 20: 'BA', 21: 'DPWASH', 22: 'SLWASH', 23: 'TWASH', 24: 'SASLWA', 27: 'TNCLV', 28: 'TNCLWA_BB', 29: 'SN', 30: 'SHSN', 31: 'SH', 32: 'FLAME'}
  • " ], "text/plain": [ "\n", @@ -5156,7 +5156,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -5634,7 +5634,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -6113,7 +6113,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -6594,10 +6594,10 @@ " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-1...\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: binary
  • value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -6998,10 +6998,10 @@ " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-1...\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: binary
  • value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -7461,11 +7461,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: binary
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
  • value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -7946,11 +7946,11 @@ " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-1...\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: datetime
  • value_type :
    datetime
  • " ], "text/plain": [ "\n", @@ -8357,7 +8357,7 @@ " standard_name: projection_x_coordinate\n", " units: metre\n", " resolution: 1800\n", - " value_type: continuous" + " value_type: continuous" ], "text/plain": [ "\n", @@ -8798,14 +8798,14 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: coords
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
  • value_type :
    coords
  • " ], "text/plain": [ "\n", @@ -9263,10 +9263,10 @@ " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-1...\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: discrete
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -9710,11 +9710,11 @@ " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", " value_type: nominal\n", - " value_labels: {1: 'feature_1'}
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    nominal
    value_labels :
    {1: 'feature_1'}
  • " ], "text/plain": [ "\n", @@ -10189,7 +10189,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -10639,7 +10639,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -11089,7 +11089,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -11565,11 +11565,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -11978,11 +11978,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -12448,7 +12448,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -12928,7 +12928,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -13421,7 +13421,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -13871,7 +13871,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -14366,7 +14366,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -14816,7 +14816,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: continuous
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    continuous
  • " ], "text/plain": [ "\n", @@ -15292,11 +15292,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -15705,11 +15705,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -16182,7 +16182,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -16633,7 +16633,7 @@ " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", " value_type: ordinal\n", - " value_labels: {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: ...
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    ordinal
    value_labels :
    {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May', 6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October', 11: 'November', 12: 'December'}
  • " ], "text/plain": [ "\n", @@ -17115,7 +17115,7 @@ " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", " value_type: ordinal\n", - " value_labels: {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: ...
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    ordinal
    value_labels :
    {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May', 6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October', 11: 'November', 12: 'December'}
  • " ], "text/plain": [ "\n", @@ -17594,11 +17594,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -18007,11 +18007,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -18522,7 +18522,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -18959,11 +18959,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -19368,10 +19368,10 @@ " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-1...\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: discrete
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -19799,7 +19799,7 @@ " spatial_ref int64 0\n", " temporal_ref int64 0\n", "Attributes:\n", - " value_type: discrete" + " value_type: discrete" ], "text/plain": [ "\n", @@ -20276,7 +20276,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -20726,7 +20726,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -21235,7 +21235,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -21685,7 +21685,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -22135,7 +22135,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -22638,7 +22638,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -23084,16 +23084,16 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2020-09-05 10:17:43.167942', '2020-12-19 10:17:34.610661'], dtype='datetime64[ns]', name='time', freq=None))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -23548,16 +23548,16 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2020-09-05 10:17:43.167942', '2020-12-19 10:17:34.610661'], dtype='datetime64[ns]', name='time', freq=None))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -24031,7 +24031,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -24477,7 +24477,7 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: ordinal
  • value_type :
    ordinal
  • " ], "text/plain": [ "\n", @@ -24974,7 +24974,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -25424,7 +25424,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -25900,11 +25900,11 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: discrete
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -26314,11 +26314,11 @@ " spatial_ref int64 0\n", "Attributes:\n", " value_type: discrete\n", - " _FillValue: nan
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • value_type :
    discrete
    _FillValue :
    nan
  • " ], "text/plain": [ "\n", @@ -26795,7 +26795,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -27241,7 +27241,7 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: ordinal
  • value_type :
    ordinal
  • " ], "text/plain": [ "\n", @@ -27800,11 +27800,11 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2020-09-05 10:17:43.167942'], dtype='datetime64[ns]', name='time', freq=None))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -28227,16 +28227,16 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2019-12-15 10:17:33.408715', '2020-12-19 10:17:34.610661'], dtype='datetime64[ns]', name='time', freq=None))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -28689,11 +28689,11 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2020-09-05 10:17:43.167942'], dtype='datetime64[ns]', name='time', freq=None))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -29116,16 +29116,16 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2019-12-15 10:17:33.408715', '2020-12-19 10:17:34.610661'], dtype='datetime64[ns]', name='time', freq=None))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -29593,11 +29593,11 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -30016,11 +30016,11 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -30439,11 +30439,11 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
    • x
      PandasIndex
      PandasIndex(Index([4531500.0, 4533300.0, 4535100.0], dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([2695500.0, 2693700.0, 2691900.0], dtype='float64', name='y'))
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -30980,7 +30980,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -31527,7 +31527,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -32027,7 +32027,7 @@ " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", " value_type: nominal\n", - " value_labels: {1: 'water', 2: 'snow', 3: 'vegetation'}
  • value_type :
    nominal
    value_labels :
    {1: 'water', 2: 'snow', 3: 'vegetation'}
  • " ], "text/plain": [ "\n", @@ -32515,7 +32515,7 @@ " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", - " value_type: binary
  • value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -33007,7 +33007,7 @@ " temporal_ref int64 0\n", " * year (year) int64 2019 2020\n", "Attributes:\n", - " value_type: continuous" + " value_type: continuous" ], "text/plain": [ "\n", @@ -33096,7 +33096,7 @@ " <meta name="viewport" content="width=device-width,\n", " initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />\n", " <style>\n", - " #map_51b2c8a5099f1fc338869872792e2968 {\n", + " #map_65a6206f6ffaf9004eaf6a9aa00f4bc2 {\n", " position: relative;\n", " width: 100.0%;\n", " height: 100.0%;\n", @@ -33126,14 +33126,14 @@ "<body>\n", " \n", " \n", - " <div class="folium-map" id="map_51b2c8a5099f1fc338869872792e2968" ></div>\n", + " <div class="folium-map" id="map_65a6206f6ffaf9004eaf6a9aa00f4bc2" ></div>\n", " \n", "</body>\n", "<script>\n", " \n", " \n", - " var map_51b2c8a5099f1fc338869872792e2968 = L.map(\n", - " "map_51b2c8a5099f1fc338869872792e2968",\n", + " var map_65a6206f6ffaf9004eaf6a9aa00f4bc2 = L.map(\n", + " "map_65a6206f6ffaf9004eaf6a9aa00f4bc2",\n", " {\n", " center: [47.32110812526405, 12.808509961311596],\n", " crs: L.CRS.EPSG3857,\n", @@ -33142,77 +33142,77 @@ " preferCanvas: false,\n", " }\n", " );\n", - " L.control.scale().addTo(map_51b2c8a5099f1fc338869872792e2968);\n", + " L.control.scale().addTo(map_65a6206f6ffaf9004eaf6a9aa00f4bc2);\n", "\n", " \n", "\n", " \n", " \n", - " var tile_layer_695dc49cf953f06da1f1198efd7e831b = L.tileLayer(\n", + " var tile_layer_53978dc8b3420db7bcd1caad9e29275f = L.tileLayer(\n", " "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",\n", " {"attribution": "Data by \\u0026copy; \\u003ca target=\\"_blank\\" href=\\"http://openstreetmap.org\\"\\u003eOpenStreetMap\\u003c/a\\u003e, under \\u003ca target=\\"_blank\\" href=\\"http://www.openstreetmap.org/copyright\\"\\u003eODbL\\u003c/a\\u003e.", "detectRetina": false, "maxNativeZoom": 18, "maxZoom": 18, "minZoom": 0, "noWrap": false, "opacity": 1, "subdomains": "abc", "tms": false}\n", - " ).addTo(map_51b2c8a5099f1fc338869872792e2968);\n", + " ).addTo(map_65a6206f6ffaf9004eaf6a9aa00f4bc2);\n", " \n", " \n", - " map_51b2c8a5099f1fc338869872792e2968.fitBounds(\n", + " map_65a6206f6ffaf9004eaf6a9aa00f4bc2.fitBounds(\n", " [[47.30444420302901, 12.799052458545688], [47.33777204749909, 12.817967464077503]],\n", " {}\n", " );\n", " \n", " \n", - " function geo_json_300db5eaee160c747ab6c68c5c473be2_styler(feature) {\n", + " function geo_json_4f058b95cc78bb9e3637559bb5bc3f88_styler(feature) {\n", " switch(feature.id) {\n", " default:\n", " return {"fillOpacity": 0.5, "weight": 2};\n", " }\n", " }\n", - " function geo_json_300db5eaee160c747ab6c68c5c473be2_highlighter(feature) {\n", + " function geo_json_4f058b95cc78bb9e3637559bb5bc3f88_highlighter(feature) {\n", " switch(feature.id) {\n", " default:\n", " return {"fillOpacity": 0.75};\n", " }\n", " }\n", - " function geo_json_300db5eaee160c747ab6c68c5c473be2_pointToLayer(feature, latlng) {\n", + " function geo_json_4f058b95cc78bb9e3637559bb5bc3f88_pointToLayer(feature, latlng) {\n", " var opts = {"bubblingMouseEvents": true, "color": "#3388ff", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "#3388ff", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 2, "stroke": true, "weight": 3};\n", " \n", - " let style = geo_json_300db5eaee160c747ab6c68c5c473be2_styler(feature)\n", + " let style = geo_json_4f058b95cc78bb9e3637559bb5bc3f88_styler(feature)\n", " Object.assign(opts, style)\n", " \n", " return new L.CircleMarker(latlng, opts)\n", " }\n", "\n", - " function geo_json_300db5eaee160c747ab6c68c5c473be2_onEachFeature(feature, layer) {\n", + " function geo_json_4f058b95cc78bb9e3637559bb5bc3f88_onEachFeature(feature, layer) {\n", " layer.on({\n", " mouseout: function(e) {\n", " if(typeof e.target.setStyle === "function"){\n", - " geo_json_300db5eaee160c747ab6c68c5c473be2.resetStyle(e.target);\n", + " geo_json_4f058b95cc78bb9e3637559bb5bc3f88.resetStyle(e.target);\n", " }\n", " },\n", " mouseover: function(e) {\n", " if(typeof e.target.setStyle === "function"){\n", - " const highlightStyle = geo_json_300db5eaee160c747ab6c68c5c473be2_highlighter(e.target.feature)\n", + " const highlightStyle = geo_json_4f058b95cc78bb9e3637559bb5bc3f88_highlighter(e.target.feature)\n", " e.target.setStyle(highlightStyle);\n", " }\n", " },\n", " });\n", " };\n", - " var geo_json_300db5eaee160c747ab6c68c5c473be2 = L.geoJson(null, {\n", - " onEachFeature: geo_json_300db5eaee160c747ab6c68c5c473be2_onEachFeature,\n", + " var geo_json_4f058b95cc78bb9e3637559bb5bc3f88 = L.geoJson(null, {\n", + " onEachFeature: geo_json_4f058b95cc78bb9e3637559bb5bc3f88_onEachFeature,\n", " \n", - " style: geo_json_300db5eaee160c747ab6c68c5c473be2_styler,\n", - " pointToLayer: geo_json_300db5eaee160c747ab6c68c5c473be2_pointToLayer\n", + " style: geo_json_4f058b95cc78bb9e3637559bb5bc3f88_styler,\n", + " pointToLayer: geo_json_4f058b95cc78bb9e3637559bb5bc3f88_pointToLayer\n", " });\n", "\n", - " function geo_json_300db5eaee160c747ab6c68c5c473be2_add (data) {\n", - " geo_json_300db5eaee160c747ab6c68c5c473be2\n", + " function geo_json_4f058b95cc78bb9e3637559bb5bc3f88_add (data) {\n", + " geo_json_4f058b95cc78bb9e3637559bb5bc3f88\n", " .addData(data)\n", - " .addTo(map_51b2c8a5099f1fc338869872792e2968);\n", + " .addTo(map_65a6206f6ffaf9004eaf6a9aa00f4bc2);\n", " }\n", - " geo_json_300db5eaee160c747ab6c68c5c473be2_add({"bbox": [12.799052458545688, 47.30444420302901, 12.817967464077503, 47.33777204749909], "features": [{"bbox": [12.803868147852612, 47.33056389640604, 12.817967464077503, 47.33777204749909], "geometry": {"coordinates": [[[12.803868147852612, 47.33091868331674], [12.817596157332153, 47.33056389640604], [12.817967464077503, 47.33741720662344], [12.804237649967712, 47.33777204749909], [12.803868147852612, 47.33091868331674]]], "type": "Polygon"}, "id": "0", "properties": {"name": "Northern"}, "type": "Feature"}, {"bbox": [12.799052458545688, 47.30444420302901, 12.815746431172713, 47.31514111553671], "geometry": {"coordinates": [[[12.799052458545688, 47.30486091070503], [12.815190335969971, 47.30444420302901], [12.815746431172713, 47.3147243128484], [12.799605373818284, 47.31514111553671], [12.799052458545688, 47.30486091070503]]], "type": "Polygon"}, "id": "1", "properties": {"name": "Southern"}, "type": "Feature"}], "type": "FeatureCollection"});\n", + " geo_json_4f058b95cc78bb9e3637559bb5bc3f88_add({"bbox": [12.799052458545688, 47.30444420302901, 12.817967464077503, 47.33777204749909], "features": [{"bbox": [12.803868147852612, 47.33056389640604, 12.817967464077503, 47.33777204749909], "geometry": {"coordinates": [[[12.803868147852612, 47.33091868331674], [12.817596157332153, 47.33056389640604], [12.817967464077503, 47.33741720662344], [12.804237649967712, 47.33777204749909], [12.803868147852612, 47.33091868331674]]], "type": "Polygon"}, "id": "0", "properties": {"name": "Northern"}, "type": "Feature"}, {"bbox": [12.799052458545688, 47.30444420302901, 12.815746431172713, 47.31514111553671], "geometry": {"coordinates": [[[12.799052458545688, 47.30486091070503], [12.815190335969971, 47.30444420302901], [12.815746431172713, 47.3147243128484], [12.799605373818284, 47.31514111553671], [12.799052458545688, 47.30486091070503]]], "type": "Polygon"}, "id": "1", "properties": {"name": "Southern"}, "type": "Feature"}], "type": "FeatureCollection"});\n", "\n", " \n", " \n", - " geo_json_300db5eaee160c747ab6c68c5c473be2.bindTooltip(\n", + " geo_json_4f058b95cc78bb9e3637559bb5bc3f88.bindTooltip(\n", " function(layer){\n", " let div = L.DomUtil.create('div');\n", " \n", @@ -33239,7 +33239,7 @@ "</html>\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" allowfullscreen webkitallowfullscreen mozallowfullscreen>" ], "text/plain": [ - "" + "" ] }, "execution_count": 194, @@ -33647,11 +33647,11 @@ " temporal_ref int64 0\n", " * feat (feat) object 'Northern' 'Southern'\n", "Attributes:\n", - " value_type: discrete
  • value_type :
    discrete
  • " ], "text/plain": [ "\n", @@ -34148,7 +34148,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n",