Skip to content

Latest commit

 

History

History
105 lines (71 loc) · 2.49 KB

README.md

File metadata and controls

105 lines (71 loc) · 2.49 KB

LRLG: Depth Image Inpainting: Improving Low Rank Completion with Low Gradient Regularization

Table of Contents

Introduction

LRLG is an algorithm for single depth image inpainting.

Performance

Datasets

Compared Algorithms

Results

LRLG achieved the best search performance among all the compared algorithms.

Building Instruction

Prerequisites

  • GCC 4.5+
  • CMake 2.8+
  • OpenCV 2.4.1+

Compile

  1. Install Dependencies:
$ sudo apt-get install g++ cmake opencv-dev
  1. Compile:
$ git clone https://github.com/ZJULearning/depthInpainting.git
$ mkdir build/ && cd build/
$ cmake ..
$ make -j

Usage

TV norm: ./depthInpainting TV depthImage

PSNR calc: ./depthInpainting P depthImage mask inpainted

Inpainting: ./depthInpainting LRTV depthImage mask outputPath"

Generating: ./depthInpainting G depthImage missingRate outputMask outputMissing

LowRank: ./depthInpainting L depthImahe mask outputpath

LRTVPHI: ./depthInpainting LRTVPHI depthImage mask outputPath

TVPHI norm: ./depthInpainting TVPHI depthImage

LRL0: ./depthInpainting LRL0 depthImage mask outputPath initImage K lambda_L0 MaxIterCnt

LRL0PHI: ./depthInpainting LRL0PHI depthImage mask outputPath initImage K lambda_L0 MaxIterCnt

L0: /depthInpainting L0 depthImage

Reference

Reference to cite when you use LRLG in a research paper:

@article{xue2017depth,
  title={Depth image inpainting: Improving low rank matrix completion with low gradient regularization},
  author={Xue, Hongyang and Zhang, Shengming and Cai, Deng},
  journal={IEEE Transactions on Image Processing},
  volume={26},
  number={9},
  pages={4311--4320},
  year={2017},
  publisher={IEEE}
}

License

LRLG is MIT-licensed.