-
Notifications
You must be signed in to change notification settings - Fork 2
/
logistic_regression_advanced.py
232 lines (144 loc) · 7.67 KB
/
logistic_regression_advanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
##############################################################################
# IMPORT REQUIRED PACKAGES
##############################################################################
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pickle
from sklearn.linear_model import LogisticRegression
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.feature_selection import RFECV
##############################################################################
# IMPORT SAMPLE DATA
##############################################################################
# import
data_for_model = pickle.load(open("data/abc_classification_modelling.p", "rb"))
# drop necessary columns
data_for_model.drop("customer_id", axis = 1, inplace = True)
# shuffle data
data_for_model = shuffle(data_for_model, random_state = 42)
# class balance
data_for_model["signup_flag"].value_counts(normalize = True)
##############################################################################
# DEAL WITH MISSING VALUES
##############################################################################
data_for_model.isna().sum()
data_for_model.dropna(how = "any", inplace = True)
##############################################################################
# DEAL WITH OUTLIERS
##############################################################################
outlier_investigation = data_for_model.describe()
outlier_columns = ["distance_from_store", "total_sales", "total_items"]
# boxplot approach
for column in outlier_columns:
lower_quartile = data_for_model[column].quantile(0.25)
upper_quartile = data_for_model[column].quantile(0.75)
iqr = upper_quartile - lower_quartile
iqr_extended = iqr * 2
min_border = lower_quartile - iqr_extended
max_border = upper_quartile + iqr_extended
outliers = data_for_model[(data_for_model[column] < min_border) | (data_for_model[column] > max_border)].index
print(f"{len(outliers)} outliers detected in column {column}")
data_for_model.drop(outliers, inplace = True)
##############################################################################
# SPLIT INPUT VARIABLES & OUTPUT VARIABLES
##############################################################################
X = data_for_model.drop(["signup_flag"], axis = 1)
y = data_for_model["signup_flag"]
##############################################################################
# SPLIT OUT TRAINING & TEST SETS
##############################################################################
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42, stratify = y)
##############################################################################
# DEAL WITH CATEGORICAL VALUES
##############################################################################
categorical_vars = ["gender"]
one_hot_encoder = OneHotEncoder(sparse=False, drop = "first")
X_train_encoded = one_hot_encoder.fit_transform(X_train[categorical_vars])
X_test_encoded = one_hot_encoder.transform(X_test[categorical_vars])
encoder_feature_names = one_hot_encoder.get_feature_names(categorical_vars)
X_train_encoded = pd.DataFrame(X_train_encoded, columns = encoder_feature_names)
X_train = pd.concat([X_train.reset_index(drop=True), X_train_encoded.reset_index(drop=True)], axis = 1)
X_train.drop(categorical_vars, axis = 1, inplace = True)
X_test_encoded = pd.DataFrame(X_test_encoded, columns = encoder_feature_names)
X_test = pd.concat([X_test.reset_index(drop=True), X_test_encoded.reset_index(drop=True)], axis = 1)
X_test.drop(categorical_vars, axis = 1, inplace = True)
##############################################################################
# FEATURE SELECTION
##############################################################################
clf = LogisticRegression(random_state = 42, max_iter = 1000)
feature_selector = RFECV(clf)
fit = feature_selector.fit(X_train, y_train)
optimal_feature_count = feature_selector.n_features_
print(f"Optimal numer of features: {optimal_feature_count}")
X_train = X_train.loc[:, feature_selector.get_support()]
X_test = X_test.loc[:, feature_selector.get_support()]
plt.plot(range(1, len(fit.grid_scores_) + 1), fit.grid_scores_, marker = "o")
plt.ylabel("Model Score")
plt.xlabel("Number of Features")
plt.title(f"Feature Selection using RFE \n Optimal number of features is {optimal_feature_count} (at score of {round(max(fit.grid_scores_), 4)})")
plt.tight_layout()
plt.show()
##############################################################################
# MODEL TRAINING
##############################################################################
clf = LogisticRegression(random_state = 42, max_iter = 1000)
clf.fit(X_train, y_train)
##############################################################################
# MODEL ASSESSMENT
##############################################################################
y_pred_class = clf.predict(X_test)
y_pred_prob = clf.predict_proba(X_test)[:,1]
##############################################################################
# CONFUSION MATRIX
##############################################################################
conf_matrix = confusion_matrix(y_test, y_pred_class)
plt.style.use("seaborn-poster")
plt.matshow(conf_matrix, cmap = "coolwarm")
plt.gca().xaxis.tick_bottom()
plt.title("Confusion Matrix")
plt.ylabel("Actual Class")
plt.xlabel("Predicted Class")
for (i, j), corr_value in np.ndenumerate(conf_matrix):
plt.text(j, i, corr_value, ha = "center", va = "center", fontsize = 20)
plt.show()
# accuracy (the number of correct classifications out of all attempted classifications)
accuracy_score(y_test, y_pred_class)
# precision (of all observations that were predicted as positive, how many were actually positive)
precision_score(y_test, y_pred_class)
# recall (of all positive observations, how many did we predict as positive)
recall_score(y_test, y_pred_class)
# f1-score (harmonic mean of precision and recall)
f1_score(y_test, y_pred_class)
##############################################################################
# FINDING THE OPTIMAL THRESHOLD
##############################################################################
thresholds = np.arange(0,1, 0.01)
precision_scores = []
recall_scores = []
f1_scores = []
for threshold in thresholds:
pred_class = (y_pred_prob >= threshold) * 1
precision = precision_score(y_test, pred_class, zero_division = 0)
precision_scores.append(precision)
recall = recall_score(y_test, pred_class)
recall_scores.append(recall)
f1 = f1_score(y_test, pred_class)
f1_scores.append(f1)
max_f1 = max(f1_scores)
max_f1_idx = f1_scores.index(max_f1)
plt.style.use("seaborn-poster")
plt.plot(thresholds, precision_scores, label = "Precision", linestyle = "--")
plt.plot(thresholds, recall_scores, label = "Recall", linestyle = "--")
plt.plot(thresholds, f1_scores, label = "F1", linewidth = 5)
plt.title(f"Finding the Optimal Threshold for Classification Model \n Max F1: {round(max_f1,2)} (Threshold = {round(thresholds[max_f1_idx],2)})")
plt.xlabel("Threshold")
plt.ylabel("Assessment Score")
plt.legend(loc = "lower left")
plt.tight_layout()
plt.show()
optimal_threshold = 0.44
y_pred_class_opt_thresh = (y_pred_prob >= optimal_threshold) * 1