本页面的代码/命令可在AIStudio上在线运行,类似notebook的环境,只需通过浏览器即可访问,无需准备环境,非常方便开发者快速体验。
先以计算机视觉任务为例,我们选用一张测试图片test.jpg,分别实现如下四项功能:
-
人体部位分割(ace2p)
注:如果需要查找PaddleHub中可以调用哪些预训练模型,获取模型名称(如deeplabv3p_xception65_humanseg,后续代码中通过该名称调用模型),请参考官网文档,文档中已按照模型类别分好类,方便查找,并且提供了详细的模型介绍。
# 安装最新版本,使用清华源更稳定、更迅速
$ pip install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
# 下载待测试图片
$ wget https://paddlehub.bj.bcebos.com/resources/test_image.jpg
--2020-07-22 12:22:19-- https://paddlehub.bj.bcebos.com/resources/test_image.jpg
Resolving paddlehub.bj.bcebos.com (paddlehub.bj.bcebos.com)... 182.61.200.195, 182.61.200.229
Connecting to paddlehub.bj.bcebos.com (paddlehub.bj.bcebos.com)|182.61.200.195|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 967120 (944K) [image/jpeg]
Saving to: ‘test_image.jpg.1’
test_image.jpg.1 100%[===================>] 944.45K 5.51MB/s in 0.2s
2020-07-22 12:22:19 (5.51 MB/s) - ‘test_image.jpg.1’ saved [967120/967120]
PaddleHub采用模型即软件的设计理念,所有的预训练模型与Python软件包类似,具备版本的概念,通过hub install
、hub uninstall
命令可以便捷地完成模型的安装、升级和卸载。
使用如下命令默认下载最新版本的模型,如果需要指定版本,可在后面接版本号,如
==1.1.1
。
#安装预训练模型,deeplabv3p_xception65_humanseg是模型名称
$ hub install deeplabv3p_xception65_humanseg
Downloading deeplabv3p_xception65_humanseg
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmpo32jeve0/deeplabv3p_xception65_humanseg
[==================================================] 100.00%
Successfully installed deeplabv3p_xception65_humanseg-1.1.1
# 导入paddlehub库
import paddlehub as hub
# 指定模型名称、待预测的图片路径、输出结果的路径,执行并输出预测结果
module = hub.Module(name="deeplabv3p_xception65_humanseg")
res = module.segmentation(paths = ["./test_image.jpg"], visualization=True, output_dir='humanseg_output')
[32m[2020-07-22 12:22:49,474] [ INFO] - Installing deeplabv3p_xception65_humanseg module [0m
Downloading deeplabv3p_xception65_humanseg
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmpzrrl1duq/deeplabv3p_xception65_humanseg
[==================================================] 100.00%
[32m[2020-07-22 12:23:11,811] [ INFO] - Successfully installed deeplabv3p_xception65_humanseg-1.1.1 [0m
可以看到,使用Python代码调用PaddleHub只需要三行代码即可实现:
import paddlehub as hub # 导入PaddleHub代码库
module = hub.Module(name="deeplabv3p_xception65_humanseg") # 指定模型名称
res = module.segmentation(paths = ["./test.jpg"], visualization=True, output_dir='humanseg_output') # 指定模型的输入和输出路径,执行并输出预测结果,其中visualization=True表示将结果可视化输出
- 模型名称均通过
hub.Module
API来指定; module.segmentation
用于执行图像分割类的预测任务,不同类型任务设计了不同的预测API,比如人脸检测任务采用face_detection
函数执行预测,建议调用预训练模型之前先仔细查阅对应的模型介绍文档。- 预测结果保存在
output_dir='humanseg_output'
目录下,可以到该路径下查看输出的图片。
其他任务的实现方式,均可参考这个“套路”。看一下接下来几个任务如何实现。
#安装预训练模型
$ hub install ace2p
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/sklearn/externals/joblib/externals/cloudpickle/cloudpickle.py:47: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp
Downloading ace2p
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmpfsovt3f8/ace2p
[==================================================] 100.00%
Successfully installed ace2p-1.1.0
# 导入paddlehub库
import paddlehub as hub
# 指定模型名称、待预测的图片路径、输出结果的路径,执行并输出预测结果
module = hub.Module(name="ace2p")
res = module.segmentation(paths = ["./test_image.jpg"], visualization=True, output_dir='ace2p_output')
[32m[2020-07-22 12:23:58,027] [ INFO] - Installing ace2p module [0m
Downloading ace2p
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmptrogpj6j/ace2p
[==================================================] 100.00%
[32m[2020-07-22 12:24:22,575] [ INFO] - Successfully installed ace2p-1.1.0 [0m
#安装预训练模型
$ hub install ultra_light_fast_generic_face_detector_1mb_640
Downloading ultra_light_fast_generic_face_detector_1mb_640
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmpz82xnmy6/ultra_light_fast_generic_face_detector_1mb_640
[==================================================] 100.00%
Successfully installed ultra_light_fast_generic_face_detector_1mb_640-1.1.2
# 导入paddlehub库
import paddlehub as hub
# 指定模型名称、待预测的图片路径、输出结果的路径,执行并输出预测结果
module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")
res = module.face_detection(paths = ["./test_image.jpg"], visualization=True, output_dir='face_detection_output')
[32m[2020-07-22 12:25:12,948] [ INFO] - Installing ultra_light_fast_generic_face_detector_1mb_640 module [0m
Downloading ultra_light_fast_generic_face_detector_1mb_640
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmpw44mo56p/ultra_light_fast_generic_face_detector_1mb_640
[==================================================] 100.00%
[32m[2020-07-22 12:25:14,698] [ INFO] - Successfully installed ultra_light_fast_generic_face_detector_1mb_640-1.1.2�[0m
#安装预训练模型
$ hub install human_pose_estimation_resnet50_mpii
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/sklearn/externals/joblib/externals/cloudpickle/cloudpickle.py:47: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp
Downloading human_pose_estimation_resnet50_mpii
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmpn_ppwkzq/human_pose_estimation_resnet50_mpii
[======== ] 17.99%
# 导入paddlehub库
import paddlehub as hub
# 指定模型名称、待预测的图片路径、输出结果的路径,执行并输出预测结果
module = hub.Module(name="human_pose_estimation_resnet50_mpii")
res = module.keypoint_detection(paths = ["./test_image.jpg"], visualization=True, output_dir='keypoint_output')
[32m[2020-07-23 11:27:33,989] [ INFO] - Installing human_pose_estimation_resnet50_mpii module [0m
[32m[2020-07-23 11:27:33,992] [ INFO] - Module human_pose_estimation_resnet50_mpii already installed in /home/aistudio/.paddlehub/modules/human_pose_estimation_resnet50_mpii [0m
image saved in keypoint_output/test_imagetime=1595474855.jpg
再看两个自然语言处理任务的示例,下面以中文分词和情感分类的任务为例介绍。
- 中文分词(lac)
- 情感分析(senta_bilstm)
#安装预训练模型
$ hub install lac
2020-07-22 10:03:09,866-INFO: font search path ['/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/afm', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/pdfcorefonts']
2020-07-22 10:03:10,208-INFO: generated new fontManager
Downloading lac
[==================================================] 100.00%
Uncompress /home/aistudio/.paddlehub/tmp/tmp8ukaz690/lac
[==================================================] 100.00%
Successfully installed lac-2.1.1
# 导入paddlehub库
import paddlehub as hub
# 指定模型名称、待分词的文本,执行并输出预测结果
lac = hub.Module(name="lac")
test_text = ["1996年,曾经是微软员工的加布·纽维尔和麦克·哈灵顿一同创建了Valve软件公司。他们在1996年下半年从id software取得了雷神之锤引擎的使用许可,用来开发半条命系列。"]
res = lac.lexical_analysis(texts = test_text)
# 打印预测结果
print("中文词法分析结果:", res)
[32m[2020-07-22 10:03:18,439] [ INFO] - Installing lac module[0m
[32m[2020-07-22 10:03:18,531] [ INFO] - Module lac already installed in /home/aistudio/.paddlehub/modules/lac [0m
中文词法分析结果: [{'word': ['1996年', ',', '曾经', '是', '微软', '员工', '的', '加布·纽维尔', '和', '麦克·哈灵顿', '一同', '创建', '了', 'Valve软件公司', '。', '他们', '在', '1996年下半年', '从', 'id', ' ', 'software', '取得', '了', '雷神之锤', '引擎', '的', '使用', '许可', ',', '用来', '开发', '半条命', '系列', '。'], 'tag': ['TIME', 'w', 'd', 'v', 'ORG', 'n', 'u', 'PER', 'c', 'PER', 'd', 'v', 'u', 'ORG', 'w', 'r', 'p', 'TIME', 'p', 'nz', 'w', 'n', 'v', 'u', 'n', 'n', 'u', 'vn', 'vn', 'w', 'v', 'v', 'n', 'n', 'w']}]
可以看到,与计算机视觉任务相比,输入和输出接口(这里需要输入文本,以函数参数的形式传入)存在差异,这与任务类型相关,具体可查看对应预训练模型的API介绍。
#安装预训练模型
$ hub install senta_bilstm
Module senta_bilstm-1.1.0 already installed in /home/aistudio/.paddlehub/modules/senta_bilstm
import paddlehub as hub
senta = hub.Module(name="senta_bilstm")
test_text = ["味道不错,确实不算太辣,适合不能吃辣的人。就在长江边上,抬头就能看到长江的风景。鸭肠、黄鳝都比较新鲜。"]
res = senta.sentiment_classify(texts = test_text)
print("情感分析结果:", res)
[32m[2020-07-22 10:34:06,922] [ INFO] - Installing senta_bilstm module [0m
[32m[2020-07-22 10:34:06,984] [ INFO] - Module senta_bilstm already installed in /home/aistudio/.paddlehub/modules/senta_bilstm�[0m
[32m[2020-07-22 10:34:08,937] [ INFO] - Installing lac module[0m
[32m[2020-07-22 10:34:08,939] [ INFO] - Module lac already installed in /home/aistudio/.paddlehub/modules/lac [0m
情感分析结果: [{'text': '味道不错,确实不算太辣,适合不能吃辣的人。就在长江边上,抬头就能看到长江的风景。鸭肠、黄鳝都比较新鲜。', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9771, 'negative_probs': 0.0229}]
PaddleHub提供了丰富的预训练模型,包括图像分类、语义模型、视频分类、图像生成、图像分割、文本审核、关键点检测等主流模型,只需要3行Python代码即可快速调用,即时输出预测结果,非常方便。您可以尝试一下,从预训练模型列表中选择一些模型体验一下。