-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrc_optimization_model.py
202 lines (116 loc) · 4.83 KB
/
rc_optimization_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
"""
Created on Tue May 16 17:02:01 2023
@author: zmzhai
"""
import numpy as np
import rc_multi
from bayes_opt import BayesianOptimization
import time
import scipy
from pathos.multiprocessing import ProcessingPool as Pool
import multiprocessing
import pickle
import warnings
from joblib import Parallel, delayed
import random
from scipy.ndimage import gaussian_filter1d
import netCDF4
import datetime
warnings.filterwarnings("ignore")
start = time.time()
file2read = scipy.io.loadmat('../recover_data/amoc_model_data.mat')
# file2read = netCDF4.Dataset('../recover_data/os_MOVE_TRANSPORTS.nc', 'r')
data = file2read['ts_train']
data = data[500:]
t = range(len(data))
vali_length = 40
def target_amoc(d, rho, gamma, alpha, beta, bias, iter_time=5, proportion=1):
forecast_iteration=True
dim = 1
# vali_length_all = int(np.floor(450 / vali_length))
vali_length_all = 3000
config = {}
config['n'] = 500
config['d'] = d
config['alpha'] = alpha
config['beta'] = beta
config['gamma'] = gamma
config['rho'] = rho
config['bias'] = bias
config['train_length'] = 6000 - np.random.randint(100)
config['wash_length'] = 0
config['vali_length'] = vali_length
config['vali_length_all'] = vali_length_all
config['input_dim'] = dim
config['output_dim'] = dim
rmse_all = []
for i in range(iter_time):
rc_model = rc_multi.Reservoir(data=data, config=config, Win_type=1, forecast=True, forecast_iteration=forecast_iteration)
rc_model.data_preprocessing() # normalization
rc_model.initialize_rc()
train_preditions, train_x = rc_model.train()
rmse_vali = []
rmse, vali_real, vali_pred, _ = rc_model.validation(r_index=0, u_update=False)
rmse_vali.append(rmse)
vali_real_all, vali_pred_all = vali_real, vali_pred
for pred_i in range(vali_length_all-1):
rmse, vali_real, vali_pred, _ = rc_model.validation(r_index=0, u_update=True)
if pred_i % vali_length == 0:
vali_real_all = np.concatenate((vali_real_all, vali_real))
vali_pred_all = np.concatenate((vali_pred_all, vali_pred))
rmse_vali.append(rmse)
rmse_all.append(np.mean(rmse))
rmse_mean = np.average(sorted(rmse_all)[:int(proportion * iter_time)])
print(rmse_mean)
return 1 / rmse_mean
def target_amoc_noiter(d, rho, gamma, alpha, beta, bias, iter_time=5, proportion=1):
forecast_iteration=False
dim = 1
# vali_length_all = int(np.floor(450 / vali_length))
vali_length_all = 3000
config = {}
config['n'] = 500
config['d'] = d
config['alpha'] = alpha
config['beta'] = beta
config['gamma'] = gamma
config['rho'] = rho
config['bias'] = bias
config['train_length'] = 6000 - np.random.randint(100)
config['wash_length'] = 0
config['vali_length'] = vali_length
config['vali_length_all'] = vali_length_all
config['input_dim'] = dim
config['output_dim'] = dim * vali_length
rmse_all = []
for i in range(iter_time):
rc_model = rc_multi.Reservoir(data=data, config=config, Win_type=1, forecast=True, forecast_iteration=forecast_iteration)
rc_model.data_preprocessing() # normalization
rc_model.initialize_rc()
train_preditions, train_x = rc_model.train()
rmse, vali_real, vali_pred = rc_model.validation_noiteration(r_index=0, u_update=False)
rmse_all.append(np.mean(rmse))
rmse_mean = np.average(sorted(rmse_all)[:int(proportion * iter_time)])
print(rmse_mean)
return 1 / rmse_mean
for i in range(5):
optimizer = BayesianOptimization(target_amoc,
{'d': (0.01, 1), 'rho': (0.01, 5), 'gamma': (0.01, 5), 'alpha': (0.01, 1), 'beta': (-7, -1), 'bias': (-5, 5)},)
optimizer.maximize(n_iter=200)
print('rapid')
print(optimizer.max)
pkl_file = open('./save_opt/rc_opt_model_{}_{}'.format(vali_length, i) + '.pkl', 'wb')
pickle.dump(optimizer.max, pkl_file)
pkl_file.close()
for i in range(5):
optimizer = BayesianOptimization(target_amoc_noiter,
{'d': (0.01, 1), 'rho': (0.01, 5), 'gamma': (0.01, 5), 'alpha': (0.01, 1), 'beta': (-7, -1), 'bias': (-5, 5)},)
optimizer.maximize(n_iter=200)
print('rapid')
print(optimizer.max)
pkl_file = open('./save_opt/rc_opt_model_noiter_{}_{}'.format(vali_length, i) + '.pkl', 'wb')
pickle.dump(optimizer.max, pkl_file)
pkl_file.close()
end = time.time()
print(end - start)