-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoon_sim.py
500 lines (476 loc) · 23.3 KB
/
moon_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
'''This module was intially created by Zhilei Xu (zhileixu@space.mit.edu) and modified by Michael Brewer
for the CLASS experiment.
Zhilei adapted the CLASS-specific code for general use. If you use this package please cite the
related paper (Zhilei Xu et al 2020 ApJ 891 134).
'''
import numpy as np
from scipy.ndimage.filters import gaussian_filter
from scipy.optimize import curve_fit
from datetime import datetime, timedelta
import cPickle as pickle
import ephem
import time
SIG2FWHM = 2.35482
MEAN_RADIUS = 1737.4 #km
REF_ANG_RADIUS = 948.0 / 3600.0 #degrees
AU = 149597870.7 #km
MEAN_DISK_BT = {'q_band' : 221.04,
'w1_band': 218.04,
'gl_band': 215.94,
'gh_band': 213.65}
# Default Site Information (the plateau home to ACT, CLASS, PB, and SO)
latitude_deg = -22.9585
longitude_deg = -67.7876
elevation_m = 5188.
# A class to hold data
class MoonSimData:
def __init__(self, recv='q_band'):
#Moon brightness temperature map (degrees K)
self.moon_temp = None
#Moon polarization map
self.moon_u = None
#Moon illumination map (percent illuminated)
self.moon_illum = None
#Scaled map x coordinate grid (degrees)
self.x = None
#Scaled map y coordinate grid (degrees)
self.y = None
#Scaled map size (degrees)
self.map_size = None
#Scaled map resolution (degrees)
self.res = None
#Moon phase angle (radians)
self.phase = None
#Moon sub-solar longitude (radians)
self.sslong = None
#Position angle of North Lunar Pole (wrt NCP, positive CCW on the sky, radians)
self.pa_p = None
#Position angle of bright limb (wrt NCP, positive CCW on the sky, radians)
self.pa_bl = None
#Moon parallactic angle (positive CCW on the sky, radians)
self.par_ang = None
#Moon distance (topocentric km)
self.distance = None
#Moon radius (topocentric degrees)
self.radius = None
#Moon illumination fraction (positive waxing, negative waning)
self.illum_frac = None
#Mean disk averaged brightness temperature (non-convolved)
self.mean_bt = MEAN_DISK_BT[recv]
#Standard reference radius (topocentric degrees)
self.ref_radius = REF_ANG_RADIUS
def gauss_map_gen(moon_x, moon_y, fwhm_x=1.5, fwhm_y=1.5, theta=0.0):
'''Generate N x N elliptical Gaussian map given a set of x, y coordinates such
as those returned by moon_sim_map
'''
theta_rad = np.radians(theta)
sigma_x, sigma_y = fwhm_x/SIG2FWHM, fwhm_y/SIG2FWHM
beam_solid_angle = 2.0 * np.pi * sigma_x * sigma_y
x_p = moon_x * np.cos(theta_rad) + moon_y * np.sin(theta_rad)
y_p = -moon_x * np.sin(theta_rad) + moon_y * np.cos(theta_rad)
beam = np.exp(-0.5 * ((x_p/sigma_x)**2 + (y_p/sigma_y)**2))
return beam, beam_solid_angle
class moon_sim:
def __init__(self, observer=None, dt=None, recv='q_band', fwhm=1.5, res=0.01, map_size=0.6):
'''Initialize the moon_sim object
Parameters
----------
observer: obj
observer object from the ephem package with the observer site information
dt: obj
a datetime object defined from timestamps
Return
------
'''
#Datetime for Moon simulation
self.dt = dt
#Receiver
self.recv = recv
#FWHM for convolution
self.fwhm = fwhm
#Map resolution (degrees, will be scaled to keep image size constant)
self.res = res
#Map size (degrees, will be scaled to keep image size constant)
self.map_size = map_size
self.map_data = MoonSimData(recv)
if observer is None:
obs = ephem.Observer()
obs.lat = np.radians(latitude_deg)
obs.lon = np.radians(longitude_deg)
obs.elevation = elevation_m
if dt is None:
obs.date = datetime.fromtimestamp(time.time())
else:
obs.date = dt
self.obs = obs
else:
self.obs = observer
self.moon = self.ephem.get_object('Moon')
self.sun = self.ephem.get_object('Sun')
self.map_data.distance = self.moon.earth_distance * AU
self.map_data.radius = np.degrees(MEAN_RADIUS / self.map_data.distance)
# if dt is not None:
# #Ephemeris Setup
# self.ephem = CLASSEphem()
# self.ephem.site.pressure = 0
# self.ephem.site.date = dt
# self.moon = self.ephem.get_object('Moon')
# self.sun = self.ephem.get_object('Sun')
# self.map_data.distance = self.moon.earth_distance * AU
# self.map_data.radius = np.degrees(MEAN_RADIUS / self.map_data.distance)
def constants(self):
return self.map_data.mean_bt, self.map_data.ref_radius
def moon_center_temps(self, fwhm_x=1.5, fwhm_y=1.5, theta=0.0):
'''
Convolve an elliptical Gaussian beam with the moon center and return the resulting
beam diluted peak antenna and effective brightness temperatures.
The provided beam parameters may be either a single instance or a list.
Useful for looking at temperatures as a function of beamwidth or for a set of
detector beam parameters.
'''
if self.map_data.moon_temp is None: self.moon_sim_map(convolve=False)
moon_solid_angle = np.pi * self.map_data.radius**2
#moon_sim_map scales resolution
resolution = self.map_data.res
mask = np.where(self.map_data.moon_temp > 10.)
if isinstance(fwhm_x, list):
cent_at, cent_bt = [],[]
for i in range(len(fwhm_x)):
beam, beam_solid_angle = gauss_map_gen(self.map_data.x[mask], self.map_data.y[mask], fwhm_x[i], fwhm_y[i], theta[i])
# Convolve beam at moon center
moon_beam = np.sum(self.map_data.moon_temp[mask] * beam) * resolution**2
# Moon center effective brightness temperature
#cent_bt.append(moon_beam / min(moon_solid_angle, beam_solid_angle))
# Moon center brightness temperature
cent_bt.append(moon_beam / (np.sum(beam) * resolution**2))
# Moon center beam convolved antenna temperature
cent_at = moon_beam / beam_solid_angle
return cent_at, cent_bt
else:
beam, beam_solid_angle = gauss_map_gen(self.map_data.x[mask], self.map_data.y[mask], fwhm_x, fwhm_y, theta)
# Convolve beam at moon center
moon_beam = np.sum(self.map_data.moon_temp[mask] * beam) * resolution**2
# Moon center effective brightness temperature
#cent_bt = moon_beam / min(moon_solid_angle, beam_solid_angle)
# Moon center brightness temperature
cent_bt = moon_beam / (np.sum(beam) * resolution**2)
# Moon center beam convolved antenna temperature
cent_at = moon_beam / beam_solid_angle
return cent_at, cent_bt
def moon_sim_map(self, obs_bs=0, convolve=False, cmb=False, illum=False, illum_map=False, pol=False):
'''
Given the datetime object, simulate the Moon temperature map with data from Chang'E satellite scaled
down in mean temperature to agree with the Krotikov & Pelyushenko (1987) model.
Other bands use same data scaled up by the ratio of the amplitude of the temperature variation in
the Krotikov & Pelyushenko (1987) model to their 37 GHz amplitude and also scaled to the mean
temperature at zero latitude in the same model with the accompanying reduced phase offset.
The default observatory is the CLASS site
obs_bs provides the telescope boresight (in deg) during the observation
map_size specifies the size of the* moon_ square map (in deg)
res specifies the resolution of the map (in deg), can divide the map_size
fwhm is the size of the beam
convolve controls whether the map is convolved with the beam
illum_map returns cartoon illuminatin amp if True
pol returns polarization map if True
Return a 2-D (N, N) arrays with as the maps (None for non-chosen options)
'''
# Detailed Moon Temp Map from Chang'E Satellite Data
b0 = np.array( [270.87558, 0.61600, -7.563E-03, -4.700E-05, 3.013E-07, 1.275E-09, -3.988E-12, -1.275E-14])
b20 = np.array([265.34897, 0.56421, -7.875E-03, -3.613E-05, 3.350E-07, 6.763E-10, -4.625E-12, -3.075E-15])
b40 = np.array([247.42729, 0.52149, -6.838E-03, -3.988E-05, 2.900E-07, 1.113E-09, -3.975E-12, -1.205E-14])
b60 = np.array([216.04583, 0.45040, -5.200E-03, -3.538E-05, 2.263E-07, 9.950E-10, -3.188E-12, -1.045E-14])
#Scaled data for 87 GHz
c0 = np.array( [268.51860, 0.62504, -0.00767, -4.77E-05, 3.06E-07, 1.29E-09, -4.05E-12, -1.29E-14])
c20 = np.array([262.99199, 0.57249, -0.00799, -3.67E-05, 3.40E-07, 6.86E-10, -4.69E-12, -3.12E-15])
c40 = np.array([245.07031, 0.52914, -0.00694, -4.05E-05, 2.94E-07, 1.13E-09, -4.03E-12, -1.22E-14])
c60 = np.array([213.68885, 0.45701, -0.00528, -3.59E-05, 2.30E-07, 1.01E-09, -3.23E-12, -1.06E-14])
#Scaled data for 150 GHz
d0 = np.array( [274.21189, 0.76442, -0.00938, -5.83E-05, 3.74E-07, 1.58E-09, -4.95E-12, -1.58E-14])
d20 = np.array([268.68528, 0.70016, -0.00977, -4.48E-05, 4.16E-07, 8.39E-10, -5.74E-12, -3.82E-15])
d40 = np.array([250.76360, 0.64714, -0.00848, -4.95E-05, 3.60E-07, 1.38E-09, -4.93E-12, -1.50E-14])
d60 = np.array([219.38214, 0.55892, -0.00645, -4.39E-05, 2.81E-07, 1.23E-09, -3.96E-12, -1.30E-14])
#Scaled data for 220 GHz
e0 = np.array( [278.70844, 0.88368, -0.01085, -6.74E-05, 4.32E-07, 1.83E-09, -5.72E-12, -1.83E-14])
e20 = np.array([273.18183, 0.80939, -0.01130, -5.18E-05, 4.81E-07, 9.70E-10, -6.63E-12, -4.41E-15])
e40 = np.array([255.26015, 0.74810, -0.00981, -5.72E-05, 4.16E-07, 1.60E-09, -5.70E-12, -1.73E-14])
e60 = np.array([223.87869, 0.64612, -0.00746, -5.07E-05, 3.25E-07, 1.43E-09, -4.57E-12, -1.50E-14])
def lat_temp(ha, b):
#ha is the hour angle of the Sun on the Moon in degrees
# -90 is sunrise, +90 is sunset
#b contains the coefficients at a certain latitude
ha = np.array([ha,])
ha[ha > 180] -= 360
ha[ha < -180] += 360
tb = np.zeros(len(ha)) #brightness temperature
#This will avoid a lot of round off error
tb = b[7]
for i in range(6, -1, -1):
tb = ha * tb + b[i]
return tb[0]
def calc_ha_lat(x, y, radius, offset):
#output hour angle and latitude (absolute value) given
#x, y on a map.
#Offset is the origin of hour angle
#Note: Mirroring happened in coordinate system conversion.
R = radius #Moon radius in deg
lat = np.arcsin(y/R)
R_prime = R*np.cos(lat)
ha = np.degrees(np.arcsin(x/R_prime)) - offset
return ha, abs(np.degrees(lat))
def calc_tb(recv, x, y, radius, offset, rot):
#calculate the brightness temperature of given x, y
#offset gives the offset hour angle (sub-solar longitude of the Moon) in degrees
#rot gives the rotation of the Moon on the sky (right hand rule of the map) in degrees
rot_rad = np.radians(rot)
sin_rot = np.sin(rot_rad)
cos_rot = np.cos(rot_rad)
x_p = x * cos_rot + y * sin_rot
y_p = -x * sin_rot + y * cos_rot
ha, lat = calc_ha_lat(x_p, y_p, radius, offset)
if recv == 'q_band':
if lat < 10:
tb = lat_temp(ha, b0)
elif lat < 30:
tb = lat_temp(ha, b20)
elif lat < 50:
tb = lat_temp(ha, b40)
else:
tb = lat_temp(ha, b60)
elif recv == 'w1_band':
ha_p = ha + 12.0
if ha_p > 182: ha_p -= 349.0
if lat < 10:
tb = lat_temp(ha_p, c0)
elif lat < 30:
tb = lat_temp(ha_p, c20)
elif lat < 50:
tb = lat_temp(ha_p, c40)
else:
tb = lat_temp(ha_p, c60)
elif recv == 'gl_band':
ha_p = ha + 18.0
if ha_p > 185: ha_p -= 347.0
if lat < 10:
tb = lat_temp(ha_p, d0)
elif lat < 30:
tb = lat_temp(ha_p, d20)
elif lat < 50:
tb = lat_temp(ha_p, d40)
else:
tb = lat_temp(ha_p, d60)
elif recv == 'gh_band':
ha_p = ha + 22.0
if ha_p > 186: ha_p -= 344.0
if lat < 10:
tb = lat_temp(ha_p, e0)
elif lat < 30:
tb = lat_temp(ha_p, e20)
elif lat < 50:
tb = lat_temp(ha_p, e40)
else:
tb = lat_temp(ha_p, e60)
else:
raise ValueError('Invalid receiver.')
return tb
def calc_illum(x, y, radius, offset, rot):
#calculate cartoon of illumination given x, y
#offset gives the offset hour angle (phase angle of the Moon) in degrees
#rot gives the rotation of the Moon on the sky (right hand rule of the map) in degrees
rot_rad = np.radians(rot)
sin_rot = np.sin(rot_rad)
cos_rot = np.cos(rot_rad)
x_p = x * cos_rot + y * sin_rot
y_p = -x * sin_rot + y * cos_rot
ha, lat = calc_ha_lat(x_p, y_p, radius, offset)
ha = np.array([ha,])
ha[ha > 180] -= 360
ha[ha < -180] += 360
#illumination (dark = 30, light = 100)
if abs(ha) < 90:
illum = 100
else:
illum = 30
return illum
def pol_frac(r, radius, eps=1.9):
'''Calculate Moon polarization fraction at certain radius
r is the radius to query (in deg)
radius is the radius of the Moon (in deg)
eps is the dielectric constant, taking 1.9 for now
Returns the polarization fraction
'''
alpha = np.arcsin(r/radius)
a = np.cos(alpha)
b = np.sqrt(eps - np.sin(alpha)**2)
r_s = ((a - b)/(a + b))**2
a = np.sqrt(eps)*np.cos(alpha)
b = np.sqrt(1 - np.sin(alpha)**2/eps)
r_p = ((a - b)/(a + b))**2
t_s = 1 - r_s
t_p = 1 - r_p
return 0.5*(t_p - t_s)
N = int(self.map_size/self.res)
temp_bg = 2.725 #K of the CMB
#Moon Phase/Radius Calculation
if illum_map: illum = True
phase, sslong, rot_p, rot_bl = self.moon_phase_rot(obs_bs, illum)
#Scale map according to the Moon's radius
scale = self.map_data.radius / self.map_data.ref_radius
self.map_data.res = self.res * scale
self.map_data.map_size = self.map_size * scale
x = np.linspace(-self.map_data.map_size/2., self.map_data.map_size/2., N, endpoint=False) + self.map_data.res/2.
y = np.linspace(-self.map_data.map_size/2., self.map_data.map_size/2., N, endpoint=False) + self.map_data.res/2.
self.map_data.x, self.map_data.y = np.meshgrid(x, y, indexing='ij')
r = np.sqrt(self.map_data.x**2 + self.map_data.y**2)
idx = np.array(np.where(r <= self.map_data.radius))
if cmb:
self.map_data.moon_temp = np.full((N, N), temp_bg)
else:
self.map_data.moon_temp = np.full((N, N), 0.)
if pol:
self.map_data.moon_u = np.zeros((N, N))
if illum_map:
self.map_data.moon_illum = np.zeros((N, N))
for i0, i1 in idx.T:
x_t = self.map_data.x[i0, i1]
y_t = self.map_data.y[i0, i1]
r_t = r[i0, i1]
self.map_data.moon_temp[i0, i1] = calc_tb(self.recv, x_t, y_t, self.map_data.radius, sslong, rot_p) #Unit: Kelvin
if illum_map:
self.map_data.moon_illum[i0, i1] = calc_illum(x_t, y_t, self.map_data.radius, phase, rot_bl)
if pol:
chi = np.arctan2(y_t, x_t)
self.map_data.moon_u[i0, i1] = self.map_data.moon_temp[i0, i1] * pol_frac(r_t, self.map_data.radius) * np.sin(2*chi)
if convolve:
#beam = gauss_map_gen(map_size=map_size, res=res)
sigma = self.fwhm/(self.map_data.res * SIG2FWHM)
self.map_data.moon_temp = gaussian_filter(self.map_data.moon_temp, sigma)
if pol:
self.map_data.moon_u = gaussian_filter(self.map_data.moon_u, sigma)
return self.map_data
def moon_phase_rot(self, obs_bs, illum=False):
'''Calculate the Moon phase angle, sub-solar longitude and rotation in the receiver coordinates
'''
self.moon_phase_pa(illum)
#No problem with the NLP, just subtract the parallactic and boresight angles
rot_p = np.degrees(self.map_data.pa_p - self.map_data.par_ang) - obs_bs #deg
if illum:
#Rotate bright limb vector 90 degrees to align with its pole.
#Note that this is NOT aligned with the NLP.
rot_bl = np.degrees(self.map_data.pa_bl - self.map_data.par_ang) - obs_bs + 90.0 #deg
#convert phase angle to degrees
phase = np.degrees(self.map_data.phase)
else:
#dummy return value
phase = None
rot_bl = None
return phase, np.degrees(self.map_data.sslong), rot_p, rot_bl
def moon_pole_angle(self, geocentric=False):
'''
Returns topocentric or geocentric position angle of the lunar pole wrt the NCP (positive CCW on the sky)
Ignoring nutations and physical librations. Should be good to about +/-2 arcminutes.
Ref: Computation of the Quantities Describing the Lunar Librations in The Astronomical Almanac, D.B. Taylor et al.
Explanatory Supplement to the Astronomical Almanac, P.K. Seidelmann
'''
if self.dt is None:
raise ValueError('A time must be specified.')
sec_to_rad = np.pi / 648000.0
dtai = 37.0
if self.dt < datetime(2012, 7, 1): dtai = 34.0
elif self.dt < datetime(2015, 7, 1): dtai = 35.0
elif self.dt < datetime(2017, 7, 1): dtai = 36.0
deltaT = 32.184 + dtai
jd_tt = ephem.julian_date(self.dt + timedelta(seconds=deltaT))
t = jd_tt - ephem.julian_date(ephem.J2000)
#Centuries since J2000
t /= 36525.0
#longitude of moon's ascending node
omega = 450160.280 + (-482890.539 + (7.455 + 0.008 * t) * t) * t - 1296000.0 * ((5.0 * t) % 1.0)
omega = (omega * sec_to_rad) % (2.0 * np.pi)
#mean obliquity of ecliptic
eps = 84381.448 + (-46.8150 + (-0.00059 + 0.001813 * t) * t) * t
eps = eps * sec_to_rad
#inclination of the ecliptic to the mean lunar equator
I = 1.542666667 * np.pi / 180.0
sin_I = np.sin(I)
cos_I = np.cos(I)
sin_eps = np.sin(eps)
cos_eps = np.cos(eps)
sin_omega = np.sin(omega)
cos_omega = np.cos(omega)
#inclination of the mean equator of the Moon to the true equator of the Earth
i = np.arccos(cos_I * cos_eps + sin_I * sin_eps * cos_omega)
#distance from the true equinox of date to the ascending node of the mean equator
#of the Moon on the true equator of the Earth.
omega_prime = np.arctan2(-sin_I * sin_omega, cos_I * sin_eps - sin_I * cos_eps * cos_omega)
sin_i = np.sin(i)
if geocentric:
dec = self.moon.g_dec
ra = self.moon.g_ra
else:
dec = self.moon.dec
ra = self.moon.ra
sin_m_dec = np.sin(dec)
cos_m_dec = np.cos(dec)
#position angle of the lunar pole CCW wrt NCP
c_prime_o = np.arctan2(-sin_i * np.cos(omega_prime - ra),
cos_m_dec * np.cos(i) - sin_m_dec * sin_i * np.sin(omega_prime - ra))
return c_prime_o
def moon_phase_pa(self, illum=True, geocentric=False):
'''
Computes the Moon phase, sub-solar longitude, NLP position angle and parallactic angle
Bright limb position angle option
Geocentric option (mainly for checking calculations)
return phase, sub-solar longitude and position angles (in radians), Moon radius in degrees
'''
if self.dt is None:
raise ValueError('A time must be specified.')
if geocentric:
m_dec = self.moon.g_dec
m_ra = self.moon.g_ra
s_dec = self.sun.g_dec
s_ra = self.sun.g_ra
else:
m_dec = self.moon.dec
m_ra = self.moon.ra
s_dec = self.sun.dec
s_ra = self.sun.ra
sin_m_dec = np.sin(m_dec)
cos_m_dec = np.cos(m_dec)
sin_s_dec = np.sin(s_dec)
cos_s_dec = np.cos(s_dec)
cos_dra = np.cos(s_ra - m_ra)
sin_dra = np.sin(s_ra - m_ra)
#Moon's elongation from the Sun.
elong = np.arccos(sin_s_dec * sin_m_dec + cos_s_dec * cos_m_dec * cos_dra)
#Moon sub-solar longitude used for brightness temperature
# (co-longitude is the west longitude of the morning terminator)
self.map_data.sslong = np.pi / 2.0 - self.moon.colong
#Keep it between +/-180 (colong ranges from 0 to 360)
if self.map_data.sslong < -np.pi: self.map_data.sslong += 2.0 * np.pi
#Position angle of the NLP
self.map_data.pa_p = self.moon_pole_angle(geocentric)
if illum:
#Moon phase angle calculation used for illumination.
self.map_data.phase = np.arctan2(self.sun.earth_distance * np.sin(elong),
self.moon.earth_distance - self.sun.earth_distance * np.cos(elong))
#Position angle of the bright limb wrt NCP (CCW positive on the sky)
#Positive cooresponds to a waning moon, negative to a waxing moon
self.map_data.pa_bl = np.arctan2(cos_s_dec * sin_dra,
sin_s_dec * cos_m_dec - cos_s_dec * sin_m_dec * cos_dra)
self.map_data.illum_frac = 0.5 * (1.0 + np.cos(self.map_data.phase))
#Negative for waning moon
if self.map_data.pa_bl > 0.0: self.map_data.illum_frac *= -1.0
#print ('elong', np.degrees(elong), 'ephem_elong', np.degrees(moon.elong), 'libration_long', np.degrees(moon.libration_long),
# 'sslong', np.degrees(sslong),'phase', np.degrees(phase), 'pa_bl', np.degrees(pa_bl))
lat = self.ephem.site.lat
cos_lat = np.cos(lat)
lst = self.ephem.sidereal_time()
ha = lst - self.moon.ra
if geocentric:
# parallactic angle is never geocentric, of course
cos_m_dec = np.cos(self.moon.dec)
sin_m_dec = np.sin(self.moon.dec)
self.map_data.par_ang = np.arctan2(cos_lat * np.sin(ha),
np.sin(lat) * cos_m_dec - cos_lat * sin_m_dec * np.cos(ha))
#print 'hour angle', ephem.hours(ha), 'parallactic angle', np.degrees(par_ang)
return self.map_data