-
Notifications
You must be signed in to change notification settings - Fork 539
/
train.py
219 lines (185 loc) · 8.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import json
import time
from time import gmtime, strftime
import test
from models import *
from shutil import copyfile
from utils.datasets import JointDataset, collate_fn
from utils.utils import *
from utils.log import logger
from torchvision.transforms import transforms as T
def train(
cfg,
data_cfg,
weights_from="",
weights_to="",
save_every=10,
img_size=(1088, 608),
resume=False,
epochs=100,
batch_size=16,
accumulated_batches=1,
freeze_backbone=False,
opt=None,
):
# The function starts
timme = strftime("%Y-%d-%m %H:%M:%S", gmtime())
timme = timme[5:-3].replace('-', '_')
timme = timme.replace(' ', '_')
timme = timme.replace(':', '_')
weights_to = osp.join(weights_to, 'run' + timme)
mkdir_if_missing(weights_to)
if resume:
latest_resume = osp.join(weights_from, 'latest.pt')
torch.backends.cudnn.benchmark = True # unsuitable for multiscale
# Configure run
f = open(data_cfg)
data_config = json.load(f)
trainset_paths = data_config['train']
dataset_root = data_config['root']
f.close()
transforms = T.Compose([T.ToTensor()])
# Get dataloader
dataset = JointDataset(dataset_root, trainset_paths, img_size, augment=True, transforms=transforms)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True,
num_workers=8, pin_memory=True, drop_last=True, collate_fn=collate_fn)
# Initialize model
model = Darknet(cfg, dataset.nID)
cutoff = -1 # backbone reaches to cutoff layer
start_epoch = 0
if resume:
checkpoint = torch.load(latest_resume, map_location='cpu')
# Load weights to resume from
model.load_state_dict(checkpoint['model'])
model.cuda().train()
# Set optimizer
optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=opt.lr, momentum=.9)
start_epoch = checkpoint['epoch'] + 1
if checkpoint['optimizer'] is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
del checkpoint # current, saved
else:
# Initialize model with backbone (optional)
if cfg.endswith('yolov3.cfg'):
load_darknet_weights(model, osp.join(weights_from, 'darknet53.conv.74'))
cutoff = 75
elif cfg.endswith('yolov3-tiny.cfg'):
load_darknet_weights(model, osp.join(weights_from, 'yolov3-tiny.conv.15'))
cutoff = 15
model.cuda().train()
# Set optimizer
optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad, model.parameters()), lr=opt.lr, momentum=.9,
weight_decay=1e-4)
model = torch.nn.DataParallel(model)
# Set scheduler
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[int(0.5 * opt.epochs), int(0.75 * opt.epochs)],
gamma=0.1)
# An important trick for detection: freeze bn during fine-tuning
if not opt.unfreeze_bn:
for i, (name, p) in enumerate(model.named_parameters()):
p.requires_grad = False if 'batch_norm' in name else True
# model_info(model)
t0 = time.time()
for epoch in range(epochs):
epoch += start_epoch
logger.info(('%8s%12s' + '%10s' * 6) % (
'Epoch', 'Batch', 'box', 'conf', 'id', 'total', 'nTargets', 'time'))
# Freeze darknet53.conv.74 for first epoch
if freeze_backbone and (epoch < 2):
for i, (name, p) in enumerate(model.named_parameters()):
if int(name.split('.')[2]) < cutoff: # if layer < 75
p.requires_grad = False if (epoch == 0) else True
ui = -1
rloss = defaultdict(float) # running loss
optimizer.zero_grad()
for i, (imgs, targets, _, _, targets_len) in enumerate(dataloader):
if sum([len(x) for x in targets]) < 1: # if no targets continue
continue
# SGD burn-in
burnin = min(1000, len(dataloader))
if (epoch == 0) & (i <= burnin):
lr = opt.lr * (i / burnin) ** 4
for g in optimizer.param_groups:
g['lr'] = lr
# Compute loss, compute gradient, update parameters
loss, components = model(imgs.cuda(), targets.cuda(), targets_len.cuda())
components = torch.mean(components.view(-1, 5), dim=0)
loss = torch.mean(loss)
loss.backward()
# accumulate gradient for x batches before optimizing
if ((i + 1) % accumulated_batches == 0) or (i == len(dataloader) - 1):
optimizer.step()
optimizer.zero_grad()
# Running epoch-means of tracked metrics
ui += 1
for ii, key in enumerate(model.module.loss_names):
rloss[key] = (rloss[key] * ui + components[ii]) / (ui + 1)
# rloss indicates running loss values with mean updated at every epoch
s = ('%8s%12s' + '%10.3g' * 6) % (
'%g/%g' % (epoch, epochs - 1),
'%g/%g' % (i, len(dataloader) - 1),
rloss['box'], rloss['conf'],
rloss['id'], rloss['loss'],
rloss['nT'], time.time() - t0)
t0 = time.time()
if i % opt.print_interval == 0:
logger.info(s)
# Save latest checkpoint
checkpoint = {'epoch': epoch,
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict()}
copyfile(cfg, weights_to + '/cfg/yolo3.cfg')
copyfile(data_cfg, weights_to + '/cfg/ccmcpe.json')
latest = osp.join(weights_to, 'latest.pt')
torch.save(checkpoint, latest)
if epoch % save_every == 0 and epoch != 0:
# making the checkpoint lite
checkpoint["optimizer"] = []
torch.save(checkpoint, osp.join(weights_to, "weights_epoch_" + str(epoch) + ".pt"))
# Calculate mAP
if epoch % opt.test_interval == 0:
with torch.no_grad():
mAP, R, P = test.test(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size,
print_interval=40, nID=dataset.nID)
test.test_emb(cfg, data_cfg, weights=latest, batch_size=batch_size, img_size=img_size,
print_interval=40, nID=dataset.nID)
# Call scheduler.step() after opimizer.step() with pytorch > 1.1.0
scheduler.step()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=30, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step')
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--weights-from', type=str, default='weights/',
help='Path for getting the trained model for resuming training (Should only be used with '
'--resume)')
parser.add_argument('--weights-to', type=str, default='weights/',
help='Store the trained weights after resuming training session. It will create a new folder '
'with timestamp in the given path')
parser.add_argument('--save-model-after', type=int, default=10,
help='Save a checkpoint of model at given interval of epochs')
parser.add_argument('--data-cfg', type=str, default='cfg/ccmcpe.json', help='coco.data file path')
parser.add_argument('--img-size', type=int, default=[1088, 608], nargs='+', help='pixels')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--print-interval', type=int, default=40, help='print interval')
parser.add_argument('--test-interval', type=int, default=9, help='test interval')
parser.add_argument('--lr', type=float, default=1e-2, help='init lr')
parser.add_argument('--unfreeze-bn', action='store_true', help='unfreeze bn')
opt = parser.parse_args()
init_seeds()
train(
opt.cfg,
opt.data_cfg,
weights_from=opt.weights_from,
weights_to=opt.weights_to,
save_every=opt.save_model_after,
img_size=opt.img_size,
resume=opt.resume,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulated_batches=opt.accumulated_batches,
opt=opt,
)