-
Notifications
You must be signed in to change notification settings - Fork 101
/
axisswitch.v
631 lines (565 loc) · 15.7 KB
/
axisswitch.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
////////////////////////////////////////////////////////////////////////////////
//
// Filename: axisswitch.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Switch from among several AXI streams based upon an AXI-lite
// controlled index. All streams must have the same width.
// The switch will use TLAST to guarantee that it will not change
// mid-packet. If TLAST is unused for a particular input, simply set it
// to 1'b1.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2020-2024, Gisselquist Technology, LLC
// {{{
//
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module axisswitch #(
// {{{
//
// Size of the AXI-lite bus. These are fixed, since 1) AXI-lite
// is fixed at a width of 32-bits by Xilinx def'n, and 2) since
// we only ever have a single configuration words.
parameter C_AXI_ADDR_WIDTH = 2,
localparam C_AXI_DATA_WIDTH = 32,
//
parameter NUM_STREAMS = 4,
parameter C_AXIS_DATA_WIDTH = 32,
parameter [0:0] OPT_LOWPOWER = 0
// }}}
) (
// {{{
input wire S_AXI_ACLK,
input wire S_AXI_ARESETN,
// AXI-Lite control
// {{{
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [2:0] S_AXI_AWPROT,
//
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
//
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
output wire [1:0] S_AXI_BRESP,
//
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [2:0] S_AXI_ARPROT,
//
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
// }}}
// AXI stream inputs to be switched
// {{{
input wire [NUM_STREAMS-1:0] S_AXIS_TVALID,
output wire [NUM_STREAMS-1:0] S_AXIS_TREADY,
input wire [NUM_STREAMS*C_AXIS_DATA_WIDTH-1:0] S_AXIS_TDATA,
input wire [NUM_STREAMS-1:0] S_AXIS_TLAST,
// }}}
// AXI stream output result
// {{{
output reg M_AXIS_TVALID,
input wire M_AXIS_TREADY,
output reg [C_AXIS_DATA_WIDTH-1:0] M_AXIS_TDATA,
output reg M_AXIS_TLAST
// }}}
// }}}
);
////////////////////////////////////////////////////////////////////////
//
// Register/wire signal declarations
// {{{
////////////////////////////////////////////////////////////////////////
//
//
localparam LGNS = $clog2(NUM_STREAMS);
localparam ADDRLSB = $clog2(C_AXI_DATA_WIDTH)-3;
wire i_reset = !S_AXI_ARESETN;
wire axil_write_ready;
wire [0:0] awskd_addr; // UNUSED
//
wire [C_AXI_DATA_WIDTH-1:0] wskd_data;
wire [C_AXI_DATA_WIDTH/8-1:0] wskd_strb;
reg axil_bvalid;
//
wire axil_read_ready;
wire [0:0] arskd_addr; // UNUSED
reg [C_AXI_DATA_WIDTH-1:0] axil_read_data;
reg axil_read_valid;
reg [LGNS-1:0] r_index;
wire [31:0] wskd_index;
genvar gk;
reg [NUM_STREAMS-1:0] skd_switch_ready;
reg [LGNS-1:0] switch_index;
wire [C_AXIS_DATA_WIDTH-1:0] skd_data [0:NUM_STREAMS-1];
wire [NUM_STREAMS-1:0] skd_valid, skd_last;
reg mid_packet, r_mid_packet;
// }}}
////////////////////////////////////////////////////////////////////////
//
// AXI-lite signaling
// {{{
////////////////////////////////////////////////////////////////////////
//
//
//
// Write signaling
//
// {{{
wire awskd_valid, wskd_valid;
skidbuffer #(.OPT_OUTREG(0),
.OPT_LOWPOWER(OPT_LOWPOWER), .DW(1))
axilawskid(//
.i_clk(S_AXI_ACLK), .i_reset(i_reset),
.i_valid(S_AXI_AWVALID), .o_ready(S_AXI_AWREADY),
.i_data(1'b0),
.o_valid(awskd_valid), .i_ready(axil_write_ready),
.o_data(awskd_addr));
skidbuffer #(.OPT_OUTREG(0),
.OPT_LOWPOWER(OPT_LOWPOWER),
.DW(C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8))
axilwskid(//
.i_clk(S_AXI_ACLK), .i_reset(i_reset),
.i_valid(S_AXI_WVALID), .o_ready(S_AXI_WREADY),
.i_data({ S_AXI_WDATA, S_AXI_WSTRB }),
.o_valid(wskd_valid), .i_ready(axil_write_ready),
.o_data({ wskd_data, wskd_strb }));
assign axil_write_ready = awskd_valid && wskd_valid
&& (!S_AXI_BVALID || S_AXI_BREADY);
initial axil_bvalid = 0;
always @(posedge S_AXI_ACLK)
if (i_reset)
axil_bvalid <= 0;
else if (axil_write_ready)
axil_bvalid <= 1;
else if (S_AXI_BREADY)
axil_bvalid <= 0;
assign S_AXI_BVALID = axil_bvalid;
assign S_AXI_BRESP = 2'b00;
// }}}
//
// Read signaling
//
// {{{
wire arskd_valid;
skidbuffer #(.OPT_OUTREG(0),
.OPT_LOWPOWER(OPT_LOWPOWER),
.DW(1))
axilarskid(//
.i_clk(S_AXI_ACLK), .i_reset(i_reset),
.i_valid(S_AXI_ARVALID), .o_ready(S_AXI_ARREADY),
.i_data(1'b0),
.o_valid(arskd_valid), .i_ready(axil_read_ready),
.o_data(arskd_addr));
assign axil_read_ready = arskd_valid
&& (!axil_read_valid || S_AXI_RREADY);
initial axil_read_valid = 1'b0;
always @(posedge S_AXI_ACLK)
if (i_reset)
axil_read_valid <= 1'b0;
else if (axil_read_ready)
axil_read_valid <= 1'b1;
else if (S_AXI_RREADY)
axil_read_valid <= 1'b0;
assign S_AXI_RVALID = axil_read_valid;
assign S_AXI_RDATA = axil_read_data;
assign S_AXI_RRESP = 2'b00;
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// AXI-lite register logic
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// apply_wstrb(old_data, new_data, write_strobes)
// r_index, (wskd_index)
// {{{
assign wskd_index = apply_wstrb(
{ {(C_AXI_DATA_WIDTH-LGNS){1'b0}}, r_index },
wskd_data, wskd_strb);
// r_index
initial r_index = 0;
always @(posedge S_AXI_ACLK)
if (i_reset)
r_index <= 0;
else if (axil_write_ready)
r_index <= wskd_index[LGNS-1:0];
// }}}
// axil_read_data
// {{{
initial axil_read_data = 0;
always @(posedge S_AXI_ACLK)
if (OPT_LOWPOWER && !S_AXI_ARESETN)
axil_read_data <= 0;
else if (!S_AXI_RVALID || S_AXI_RREADY)
begin
axil_read_data <= 0;
axil_read_data[LGNS-1:0] <= r_index;
if (OPT_LOWPOWER && !axil_read_ready)
axil_read_data <= 0;
end
// }}}
// function apply_wstrb
// {{{
function [C_AXI_DATA_WIDTH-1:0] apply_wstrb;
input [C_AXI_DATA_WIDTH-1:0] prior_data;
input [C_AXI_DATA_WIDTH-1:0] new_data;
input [C_AXI_DATA_WIDTH/8-1:0] wstrb;
integer k;
for(k=0; k<C_AXI_DATA_WIDTH/8; k=k+1)
begin
apply_wstrb[k*8 +: 8]
= wstrb[k] ? new_data[k*8 +: 8] : prior_data[k*8 +: 8];
end
endfunction
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// The actual AXI switch
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Place a skidbuffer on every incoming stream input
// {{{
generate for(gk=0; gk<NUM_STREAMS; gk=gk+1)
begin
skidbuffer #(
// {{{
.OPT_OUTREG(0),
.OPT_LOWPOWER(OPT_LOWPOWER),
.DW(C_AXIS_DATA_WIDTH+1)
// }}}
) skdswitch(//
// {{{
.i_clk(S_AXI_ACLK), .i_reset(i_reset),
.i_valid(S_AXIS_TVALID[gk]),.o_ready(S_AXIS_TREADY[gk]),
.i_data({ S_AXIS_TDATA[gk*C_AXIS_DATA_WIDTH
+: C_AXIS_DATA_WIDTH], S_AXIS_TLAST[gk] }),
.o_valid(skd_valid[gk]), .i_ready(skd_switch_ready[gk]),
.o_data({ skd_data[gk], skd_last[gk] })
// }}}
);
end endgenerate
// }}}
// skd_switch_ready
// {{{
always @(*)
begin
skd_switch_ready = (1<<switch_index);
if (M_AXIS_TVALID && !M_AXIS_TREADY)
skd_switch_ready = 0;
if (!mid_packet && r_index != switch_index)
skd_switch_ready = 0;
end
// }}}
// mid_packet -- are we currently within a packet or not
// {{{
initial r_mid_packet = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
r_mid_packet <= 0;
else if (M_AXIS_TVALID)
r_mid_packet <= !M_AXIS_TLAST;
always @(*)
if (M_AXIS_TVALID)
mid_packet = !M_AXIS_TLAST;
else
mid_packet = r_mid_packet;
// }}}
// switch_index -- the current index of the skidbuffer switch
// {{{
initial switch_index = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
switch_index <= 0;
else if (!mid_packet)
switch_index <= r_index;
// }}}
// M_AXIS_TVALID
// {{{
initial M_AXIS_TVALID = 1'b0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
M_AXIS_TVALID <= 1'b0;
else if (!M_AXIS_TVALID || M_AXIS_TREADY)
M_AXIS_TVALID <= |(skd_valid & skd_switch_ready);
// }}}
// M_AXIS_TDATA, M_AXIS_TLAST
// {{{
initial M_AXIS_TDATA = 0;
initial M_AXIS_TLAST = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN && OPT_LOWPOWER)
begin
M_AXIS_TDATA <= 0;
M_AXIS_TLAST <= 0;
end else if (!M_AXIS_TVALID || M_AXIS_TREADY)
begin
M_AXIS_TDATA <= skd_data[switch_index];
M_AXIS_TLAST <= skd_last[switch_index];
if (OPT_LOWPOWER && (skd_valid | skd_switch_ready) == 0)
begin
M_AXIS_TDATA <= 0;
M_AXIS_TLAST <= 0;
end
end
// }}}
// }}}
// Make Verilator happy
// {{{
// Verilator lint_off UNUSED
wire unused;
assign unused = &{ 1'b0, S_AXI_AWPROT, S_AXI_ARPROT,
S_AXI_ARADDR[ADDRLSB-1:0], awskd_addr, arskd_addr,
S_AXI_AWADDR[ADDRLSB-1:0], wskd_index };
// Verilator lint_on UNUSED
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal properties used in verfiying this core
// {{{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
reg f_past_valid;
initial f_past_valid = 0;
always @(posedge S_AXI_ACLK)
f_past_valid <= 1;
////////////////////////////////////////////////////////////////////////
//
// The AXI-lite control interface
// {{{
////////////////////////////////////////////////////////////////////////
//
//
localparam F_AXIL_LGDEPTH = 4;
wire [F_AXIL_LGDEPTH-1:0] faxil_rd_outstanding,
faxil_wr_outstanding,
faxil_awr_outstanding;
faxil_slave #(
// {{{
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.F_LGDEPTH(F_AXIL_LGDEPTH),
.F_AXI_MAXWAIT(2),
.F_AXI_MAXDELAY(2),
.F_AXI_MAXRSTALL(3),
.F_OPT_COVER_BURST(4)
// }}}
) faxil(
// {{{
.i_clk(S_AXI_ACLK), .i_axi_reset_n(S_AXI_ARESETN),
//
.i_axi_awvalid(S_AXI_AWVALID),
.i_axi_awready(S_AXI_AWREADY),
.i_axi_awaddr( S_AXI_AWADDR),
.i_axi_awprot( S_AXI_AWPROT),
//
.i_axi_wvalid(S_AXI_WVALID),
.i_axi_wready(S_AXI_WREADY),
.i_axi_wdata( S_AXI_WDATA),
.i_axi_wstrb( S_AXI_WSTRB),
//
.i_axi_bvalid(S_AXI_BVALID),
.i_axi_bready(S_AXI_BREADY),
.i_axi_bresp( S_AXI_BRESP),
//
.i_axi_arvalid(S_AXI_ARVALID),
.i_axi_arready(S_AXI_ARREADY),
.i_axi_araddr( S_AXI_ARADDR),
.i_axi_arprot( S_AXI_ARPROT),
//
.i_axi_rvalid(S_AXI_RVALID),
.i_axi_rready(S_AXI_RREADY),
.i_axi_rdata( S_AXI_RDATA),
.i_axi_rresp( S_AXI_RRESP),
//
.f_axi_rd_outstanding(faxil_rd_outstanding),
.f_axi_wr_outstanding(faxil_wr_outstanding),
.f_axi_awr_outstanding(faxil_awr_outstanding)
// }}}
);
always @(*)
begin
assert(faxil_awr_outstanding== (S_AXI_BVALID ? 1:0)
+(S_AXI_AWREADY ? 0:1));
assert(faxil_wr_outstanding == (S_AXI_BVALID ? 1:0)
+(S_AXI_WREADY ? 0:1));
assert(faxil_rd_outstanding == (S_AXI_RVALID ? 1:0)
+(S_AXI_ARREADY ? 0:1));
end
always @(*)
assert(S_AXI_RDATA[C_AXI_DATA_WIDTH-1:LGNS] == 0);
always @(posedge S_AXI_ACLK)
if (f_past_valid && $past(S_AXI_ARESETN
&& axil_read_ready))
begin
assert(S_AXI_RVALID);
assert(S_AXI_RDATA[LGNS-1:0] == $past(r_index));
end
//
// Check that our low-power only logic works by verifying that anytime
// S_AXI_RVALID is inactive, then the outgoing data is also zero.
//
always @(*)
if (OPT_LOWPOWER && !S_AXI_RVALID)
assert(S_AXI_RDATA == 0);
// }}}
////////////////////////////////////////////////////////////////////////
//
// AXI Stream properties
// {{{
////////////////////////////////////////////////////////////////////////
//
//
generate for(gk=0; gk<NUM_STREAMS; gk=gk+1)
begin : S_STREAM_ASSUMPTIONS
always @(posedge S_AXI_ACLK)
if (!f_past_valid || $past(!S_AXI_ARESETN))
assume(S_AXIS_TVALID[gk] == 0);
else if ($past(S_AXIS_TVALID[gk] && !S_AXIS_TREADY[gk]))
begin
assume(S_AXIS_TVALID[gk]);
assume($stable(S_AXIS_TDATA[gk*C_AXIS_DATA_WIDTH +: C_AXIS_DATA_WIDTH]));
assume($stable(S_AXIS_TLAST[gk]));
end
end endgenerate
always @(posedge S_AXI_ACLK)
if (!f_past_valid || $past(!S_AXI_ARESETN))
assert(!M_AXIS_TVALID);
else if ($past(M_AXIS_TVALID && !M_AXIS_TREADY))
begin
assert(M_AXIS_TVALID);
assert($stable(M_AXIS_TDATA));
assert($stable(M_AXIS_TLAST));
end
always @(*)
if (OPT_LOWPOWER && !M_AXIS_TVALID)
begin
assert(M_AXIS_TDATA == 0);
assert(M_AXIS_TLAST == 0);
end
(* anyconst *) reg [LGNS-1:0] f_const_index;
(* anyconst *) reg [C_AXIS_DATA_WIDTH-1:0] f_never_data;
reg [LGNS-1:0] f_this_index;
reg [3:0] f_count, f_recount;
reg f_accepts, f_delivers;
always @(*)
assume(f_const_index < NUM_STREAMS);
// f_this_index
// {{{
initial f_this_index = 1'b0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
f_this_index <= 1'b0;
else if (!M_AXIS_TVALID || M_AXIS_TREADY)
f_this_index <= switch_index;
always @(*)
assert(f_this_index < NUM_STREAMS);
always @(*)
assert(switch_index < NUM_STREAMS);
// }}}
// f_count
// {{{
always @(*)
begin
f_accepts = S_AXIS_TVALID[f_const_index]
&& S_AXIS_TREADY[f_const_index];
f_delivers = M_AXIS_TVALID && M_AXIS_TREADY
&& f_this_index == f_const_index;
end
initial f_count = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
f_count <= 0;
else case( { f_accepts, f_delivers })
2'b01: f_count <= f_count - 1;
2'b10: f_count <= f_count + 1;
default: begin end
endcase
// }}}
// f_count induction
// {{{
always @(*)
begin
f_recount = 0;
if (!S_AXIS_TREADY[f_const_index])
f_recount = 1;
if (M_AXIS_TVALID && f_this_index == f_const_index)
f_recount = f_recount + 1;
assert(f_recount == f_count);
end
// }}}
// f_this_index induction
always @(*)
if (M_AXIS_TVALID && !M_AXIS_TLAST)
assert(f_this_index == switch_index);
// assume != f_never_data
// {{{
always @(posedge S_AXI_ACLK)
if (S_AXIS_TVALID[f_const_index])
assume({ S_AXIS_TDATA[f_const_index * C_AXIS_DATA_WIDTH +: C_AXIS_DATA_WIDTH], S_AXIS_TLAST[f_const_index] } != f_never_data);
// }}}
// Never data induction
// {{{
always @(*)
begin
if (skd_valid[f_const_index])
assert({ skd_data[f_const_index], skd_last[f_const_index] } != f_never_data);
if (M_AXIS_TVALID && f_this_index == f_const_index)
assert({ M_AXIS_TDATA, M_AXIS_TLAST } != f_never_data);
end
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// Cover checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// While there are already cover properties in the formal property
// set above, you'll probably still want to cover something
// application specific here
// }}}
`endif
// }}}
endmodule