-
Notifications
You must be signed in to change notification settings - Fork 2
/
driver-knc.c
865 lines (768 loc) · 25.8 KB
/
driver-knc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
/*
* cgminer driver for KnCminer devices
*
* Copyright 2014 KnCminer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
#include <zlib.h>
#include "logging.h"
#include "miner.h"
#include "knc-transport.h"
#include "knc-asic.h"
#define MAX_ASICS 6
#define DIES_PER_ASIC 4
#define MAX_CORES_PER_DIE 360
#define WORKS_PER_CORE 3
#define CORE_ERROR_LIMIT 30
#define CORE_ERROR_INTERVAL 30
#define CORE_ERROR_DISABLE_TIME 5*60
#define CORE_SUBMIT_MIN_TIME 2
#define CORE_TIMEOUT 20
#define SCAN_ADJUST_RANGE 32
static struct timeval now;
static const struct timeval core_check_interval = {
CORE_ERROR_INTERVAL, 0
};
static const struct timeval core_disable_interval = {
CORE_ERROR_DISABLE_TIME, 0
};
static const struct timeval core_submit_interval = {
CORE_SUBMIT_MIN_TIME, 0
};
static const struct timeval core_timeout_interval = {
CORE_TIMEOUT, 0
};
struct knc_die;
struct knc_core_state {
int generation;
int core;
int coreid;
struct knc_die *die;
struct {
int slot;
struct work *work;
} workslot[WORKS_PER_CORE]; /* active, next */
int transfer_stamp;
struct knc_report report;
struct {
int slot;
uint32_t nonce;
} last_nonce;
uint32_t works;
uint32_t shares;
uint32_t errors;
uint32_t completed;
int last_slot;
uint32_t errors_now;
struct timeval disabled_until;
struct timeval hold_work_until;
struct timeval timeout;
bool inuse;
};
struct knc_state;
struct knc_die {
int channel;
int die;
int version;
int cores;
struct knc_state *knc;
struct knc_core_state *core;
};
#define MAX_SPI_SIZE (4096)
#define MAX_SPI_RESPONSES (MAX_SPI_SIZE / (2 + 4 + 1 + 1 + 1 + 4))
#define MAX_SPI_MESSAGE (128)
#define KNC_SPI_BUFFERS (3)
struct knc_state {
struct cgpu_info *cgpu;
void *ctx;
int generation; /* work/block generation, incremented on each flush invalidating older works */
int dies;
struct knc_die die[MAX_ASICS*DIES_PER_ASIC];
int cores;
int scan_adjust;
int startup;
/* Statistics */
uint64_t shares; /* diff1 shares reported by hardware */
uint64_t works; /* Work units submitted */
uint64_t completed; /* Work units completed */
uint64_t errors; /* Hardware & communication errors */
struct timeval next_error_interval;
/* End of statistics */
/* SPI communications thread */
pthread_mutex_t spi_qlock; /* SPI queue status lock */
struct thr_info spi_thr; /* SPI I/O thread */
pthread_cond_t spi_qcond; /* SPI queue change wakeup */
struct knc_spi_buffer {
enum {
KNC_SPI_IDLE=0,
KNC_SPI_PENDING,
KNC_SPI_DONE
} state;
int size;
uint8_t txbuf[MAX_SPI_SIZE];
uint8_t rxbuf[MAX_SPI_SIZE];
int responses;
struct knc_spi_response {
int request_length;
int response_length;
enum {
KNC_UNKNOWN = 0,
KNC_NO_RESPONSE,
KNC_SETWORK,
KNC_REPORT,
KNC_INFO
} type;
struct knc_core_state *core;
uint32_t data;
int offset;
} response_info[MAX_SPI_RESPONSES];
} spi_buffer[KNC_SPI_BUFFERS];
int send_buffer;
int read_buffer;
int send_buffer_count;
int read_buffer_count;
/* end SPI thread */
/* Do not add anything below here!! core[] must be last */
struct knc_core_state core[];
};
int opt_knc_device_idx = 0;
int opt_knc_device_bus = -1;
char *knc_log_file = NULL;
static void *knc_spi(void *thr_data)
{
struct cgpu_info *cgpu = thr_data;
struct knc_state *knc = cgpu->device_data;
int buffer = 0;
pthread_mutex_lock(&knc->spi_qlock);
while (!cgpu->shutdown) {
int this_buffer = buffer;
while (knc->spi_buffer[buffer].state != KNC_SPI_PENDING && !cgpu->shutdown)
pthread_cond_wait(&knc->spi_qcond, &knc->spi_qlock);
pthread_mutex_unlock(&knc->spi_qlock);
if (cgpu->shutdown)
return NULL;
knc_trnsp_transfer(knc->ctx, knc->spi_buffer[buffer].txbuf, knc->spi_buffer[buffer].rxbuf, knc->spi_buffer[buffer].size);
buffer += 1;
if (buffer >= KNC_SPI_BUFFERS)
buffer = 0;
pthread_mutex_lock(&knc->spi_qlock);
knc->spi_buffer[this_buffer].state = KNC_SPI_DONE;
pthread_cond_signal(&knc->spi_qcond);
}
pthread_mutex_unlock(&knc->spi_qlock);
return NULL;
}
static void knc_process_responses(struct thr_info *thr);
static void knc_flush(struct thr_info *thr)
{
struct cgpu_info *cgpu = thr->cgpu;
struct knc_state *knc = cgpu->device_data;
struct knc_spi_buffer *buffer = &knc->spi_buffer[knc->send_buffer];
if (buffer->state == KNC_SPI_IDLE && buffer->size > 0) {
pthread_mutex_lock(&knc->spi_qlock);
buffer->state = KNC_SPI_PENDING;
pthread_cond_signal(&knc->spi_qcond);
knc->send_buffer += 1;
knc->send_buffer_count += 1;
if (knc->send_buffer >= KNC_SPI_BUFFERS)
knc->send_buffer = 0;
buffer = &knc->spi_buffer[knc->send_buffer];
/* Block for SPI to finish a transfer if all buffers are busy */
while (buffer->state == KNC_SPI_PENDING) {
applog(LOG_DEBUG, "KnC: SPI buffer full (%d), waiting for SPI thread", buffer->responses);
pthread_cond_wait(&knc->spi_qcond, &knc->spi_qlock);
}
pthread_mutex_unlock(&knc->spi_qlock);
}
knc_process_responses(thr);
}
static void knc_sync(struct thr_info *thr)
{
struct cgpu_info *cgpu = thr->cgpu;
struct knc_state *knc = cgpu->device_data;
struct knc_spi_buffer *buffer = &knc->spi_buffer[knc->send_buffer];
int sent = 0;
pthread_mutex_lock(&knc->spi_qlock);
if (buffer->state == KNC_SPI_IDLE && buffer->size > 0) {
buffer->state = KNC_SPI_PENDING;
pthread_cond_signal(&knc->spi_qcond);
knc->send_buffer += 1;
knc->send_buffer_count += 1;
if (knc->send_buffer >= KNC_SPI_BUFFERS)
knc->send_buffer = 0;
sent = 1;
}
int prev_buffer = knc->send_buffer - 1;
if (prev_buffer < 0)
prev_buffer = KNC_SPI_BUFFERS - 1;
buffer = &knc->spi_buffer[prev_buffer];
while (buffer->state == KNC_SPI_PENDING)
pthread_cond_wait(&knc->spi_qcond, &knc->spi_qlock);
pthread_mutex_unlock(&knc->spi_qlock);
int pending = knc->send_buffer - knc->read_buffer;
if (pending <= 0)
pending += KNC_SPI_BUFFERS;
pending -= 1 - sent;
applog(LOG_INFO, "KnC: sync %d pending buffers", pending);
knc_process_responses(thr);
}
static void knc_transfer(struct thr_info *thr, struct knc_core_state *core, int request_length, uint8_t *request, int response_length, int response_type, uint32_t data)
{
struct cgpu_info *cgpu = thr->cgpu;
struct knc_state *knc = cgpu->device_data;
struct knc_spi_buffer *buffer = &knc->spi_buffer[knc->send_buffer];
/* FPGA control, request header, request body/response, CRC(4), ACK(1), EXTRA(3) */
int msglen = 2 + MAX(request_length, 4 + response_length ) + 4 + 1 + 3;
if (buffer->size + msglen > MAX_SPI_SIZE || buffer->responses >= MAX_SPI_RESPONSES) {
applog(LOG_INFO, "KnC: SPI buffer sent, %d messages %d bytes", buffer->responses, buffer->size);
knc_flush(thr);
buffer = &knc->spi_buffer[knc->send_buffer];
}
struct knc_spi_response *response_info = &buffer->response_info[buffer->responses];
buffer->responses++;
response_info->offset = buffer->size;
response_info->type = response_type;
response_info->request_length = request_length;
response_info->response_length = response_length;
response_info->core = core;
response_info->data = data;
buffer->size = knc_prepare_transfer(buffer->txbuf, buffer->size, MAX_SPI_SIZE, core->die->channel, request_length, request, response_length);
}
static int knc_transfer_stamp(struct knc_state *knc)
{
return knc->send_buffer_count;
}
static int knc_transfer_completed(struct knc_state *knc, int stamp)
{
/* signed delta math, counter wrap OK */
return (int)(knc->read_buffer_count - stamp) >= 1;
}
static bool knc_detect_one(void *ctx)
{
/* Scan device for ASICs */
int channel, die, cores = 0, core;
struct cgpu_info *cgpu;
struct knc_state *knc;
struct knc_die_info die_info[MAX_ASICS][DIES_PER_ASIC];
memset(die_info, 0, sizeof(die_info));
/* Send GETINFO to each die to detect if it is usable */
for (channel = 0; channel < MAX_ASICS; channel++) {
if (!knc_trnsp_asic_detect(ctx, channel))
continue;
for (die = 0; die < DIES_PER_ASIC; die++) {
if (knc_detect_die(ctx, channel, die, &die_info[channel][die]) == 0)
cores += die_info[channel][die].cores;
}
}
if (!cores) {
applog(LOG_NOTICE, "no KnCminer cores found");
return false;
}
applog(LOG_ERR, "Found a KnC miner with %d cores", cores);
cgpu = calloc(1, sizeof(*cgpu));
knc = calloc(1, sizeof(*knc) + cores * sizeof(struct knc_core_state));
if (!cgpu || !knc) {
applog(LOG_ERR, "KnC miner detected, but failed to allocate memory");
return false;
}
knc->cgpu = cgpu;
knc->ctx = ctx;
knc->generation = 1;
/* Index all cores */
int dies = 0;
cores = 0;
struct knc_core_state *pcore = knc->core;
for (channel = 0; channel < MAX_ASICS; channel++) {
for (die = 0; die < DIES_PER_ASIC; die++) {
if (die_info[channel][die].cores) {
knc->die[dies].channel = channel;
knc->die[dies].die = die;
knc->die[dies].version = die_info[channel][die].version;
knc->die[dies].cores = die_info[channel][die].cores;
knc->die[dies].core = pcore;
knc->die[dies].knc = knc;
for (core = 0; core < knc->die[dies].cores; core++) {
knc->die[dies].core[core].die = &knc->die[dies];
knc->die[dies].core[core].core = core;
}
cores += knc->die[dies].cores;
pcore += knc->die[dies].cores;
dies++;
}
}
}
for (core = 0; core < cores; core++)
knc->core[core].coreid = core;
knc->dies = dies;
knc->cores = cores;
knc->startup = 2;
cgpu->drv = &knc_drv;
cgpu->name = "KnCminer";
cgpu->threads = 1;
cgpu->device_data = knc;
pthread_mutex_init(&knc->spi_qlock, NULL);
pthread_cond_init(&knc->spi_qcond, NULL);
if (thr_info_create(&knc->spi_thr, NULL, knc_spi, (void *)cgpu)) {
applog(LOG_ERR, "%s%i: SPI thread create failed",
cgpu->drv->name, cgpu->device_id);
free(cgpu);
free(knc);
return false;
}
add_cgpu(cgpu);
return true;
}
/* Probe devices and register with add_cgpu */
void knc_detect(bool __maybe_unused hotplug)
{
void *ctx = knc_trnsp_new(opt_knc_device_idx);
if (ctx != NULL) {
if (!knc_detect_one(ctx))
knc_trnsp_free(ctx);
}
}
/* Core helper functions */
static int knc_core_hold_work(struct knc_core_state *core)
{
return timercmp(&core->hold_work_until, &now, >);
}
static int knc_core_has_work(struct knc_core_state *core)
{
int i;
for (i = 0; i < WORKS_PER_CORE; i++) {
if (core->workslot[i].slot > 0)
return true;
}
return false;
}
static int knc_core_need_work(struct knc_core_state *core)
{
return !knc_core_hold_work(core) && !core->workslot[1].work && !core->workslot[2].work;
}
static int knc_core_disabled(struct knc_core_state *core)
{
return timercmp(&core->disabled_until, &now, >);
}
static int _knc_core_next_slot(struct knc_core_state *core)
{
/* Avoid slot #0 and #15. #0 is "no work assigned" and #15 is seen on bad cores */
int slot = core->last_slot + 1;
if (slot >= 15)
slot = 1;
core->last_slot = slot;
return slot;
}
static bool knc_core_slot_busy(struct knc_core_state *core, int slot)
{
if (slot == core->report.active_slot)
return true;
if (slot == core->report.next_slot)
return true;
int i;
for (i = 0; i < WORKS_PER_CORE; i++) {
if (slot == core->workslot[i].slot)
return true;
}
return false;
}
static int knc_core_next_slot(struct knc_core_state *core)
{
int slot;
do slot = _knc_core_next_slot(core);
while (knc_core_slot_busy(core, slot));
return slot;
}
static void knc_core_failure(struct knc_core_state *core)
{
core->errors++;
core->errors_now++;
core->die->knc->errors++;
if (knc_core_disabled(core))
return;
if (core->errors_now > CORE_ERROR_LIMIT) {
applog(LOG_ERR, "KnC: %d.%d.%d disabled for %d seconds due to repeated hardware errors",
core->die->channel, core->die->die, core->core, core_disable_interval.tv_sec);
timeradd(&now, &core_disable_interval, &core->disabled_until);
}
}
static int knc_core_handle_nonce(struct thr_info *thr, struct knc_core_state *core, int slot, uint32_t nonce)
{
int i;
if (!slot)
return;
core->last_nonce.slot = slot;
core->last_nonce.nonce = nonce;
if (core->die->knc->startup)
return;
for (i = 0; i < WORKS_PER_CORE; i++) {
if (slot == core->workslot[i].slot && core->workslot[i].work) {
applog(LOG_INFO, "KnC: %d.%d.%d found nonce %08x", core->die->channel, core->die->die, core->core, nonce);
if (submit_nonce(thr, core->workslot[i].work, nonce)) {
/* Good share */
core->shares++;
core->die->knc->shares++;
/* This core is useful. Ignore any errors */
core->errors_now = 0;
} else {
applog(LOG_INFO, "KnC: %d.%d.%d hwerror nonce %08x", core->die->channel, core->die->die, core->core, nonce);
/* Bad share */
knc_core_failure(core);
}
}
}
}
static int knc_core_process_report(struct thr_info *thr, struct knc_core_state *core, uint8_t *response)
{
struct knc_report *report = &core->report;
knc_decode_report(response, report, core->die->version);
bool had_event = false;
applog(LOG_DEBUG, "KnC %d.%d.%d: Process report %d %d(%d) / %d %d %d", core->die->channel, core->die->die, core->core, report->active_slot, report->next_slot, report->next_state, core->workslot[0].slot, core->workslot[1].slot, core->workslot[2].slot);
int n;
for (n = 0; n < KNC_NONCES_PER_REPORT; n++) {
if (report->nonce[n].slot < 0)
break;
if (core->last_nonce.slot == report->nonce[n].slot && core->last_nonce.nonce == report->nonce[n].nonce)
break;
}
while(n-- > 0) {
knc_core_handle_nonce(thr, core, report->nonce[n].slot, report->nonce[n].nonce);
}
if (report->active_slot && core->workslot[0].slot != report->active_slot) {
had_event = true;
applog(LOG_INFO, "KnC: New work on %d.%d.%d, %d %d / %d %d %d", core->die->channel, core->die->die, core->core, report->active_slot, report->next_slot, core->workslot[0].slot, core->workslot[1].slot, core->workslot[2].slot);
/* Core switched to next work */
if (core->workslot[0].work) {
core->die->knc->completed++;
core->completed++;
applog(LOG_INFO, "KnC: Work completed on core %d.%d.%d!", core->die->channel, core->die->die, core->core);
free_work(core->workslot[0].work);
}
core->workslot[0] = core->workslot[1];
core->workslot[1].work = NULL;
core->workslot[1].slot = -1;
/* or did it switch directly to pending work? */
if (report->active_slot == core->workslot[2].slot) {
applog(LOG_INFO, "KnC: New work on %d.%d.%d, %d %d %d %d (pending)", core->die->channel, core->die->die, core->core, report->active_slot, core->workslot[0].slot, core->workslot[1].slot, core->workslot[2].slot);
if (core->workslot[0].work)
free_work(core->workslot[0].work);
core->workslot[0] = core->workslot[2];
core->workslot[2].work = NULL;
core->workslot[2].slot = -1;
}
}
if (report->next_state && core->workslot[2].slot > 0 && (core->workslot[2].slot == report->next_slot || report->next_slot == -1)) {
had_event = true;
applog(LOG_INFO, "KnC: Accepted work on %d.%d.%d, %d %d %d %d (pending)", core->die->channel, core->die->die, core->core, report->active_slot, core->workslot[0].slot, core->workslot[1].slot, core->workslot[2].slot);
/* core accepted next work */
if (core->workslot[1].work)
free_work(core->workslot[1].work);
core->workslot[1] = core->workslot[2];
core->workslot[2].work = NULL;
core->workslot[2].slot = -1;
}
if (core->workslot[2].work && knc_transfer_completed(core->die->knc, core->transfer_stamp)) {
had_event = true;
applog(LOG_INFO, "KnC: Setwork failed on core %d.%d.%d?", core->die->channel, core->die->die, core->core);
free_work(core->workslot[2].work);
core->workslot[2].slot = -1;
}
if (had_event)
applog(LOG_INFO, "KnC: Exit report on %d.%d.%d, %d %d / %d %d %d", core->die->channel, core->die->die, core->core, report->active_slot, report->next_slot, core->workslot[0].slot, core->workslot[1].slot, core->workslot[2].slot);
return 0;
}
static void knc_process_responses(struct thr_info *thr)
{
struct cgpu_info *cgpu = thr->cgpu;
struct knc_state *knc = cgpu->device_data;
struct knc_spi_buffer *buffer = &knc->spi_buffer[knc->read_buffer];
while (buffer->state == KNC_SPI_DONE) {
int i;
for (i = 0; i < buffer->responses; i++) {
struct knc_spi_response *response_info = &buffer->response_info[i];
uint8_t *rxbuf = &buffer->rxbuf[response_info->offset];
struct knc_core_state *core = response_info->core;
int status = knc_decode_response(rxbuf, response_info->request_length, &rxbuf, response_info->response_length);
/* Invert KNC_ACCEPTED to simplify logics below */
if (response_info->type == KNC_SETWORK && !KNC_IS_ERROR(status))
status ^= KNC_ACCEPTED;
if (core->die->version != KNC_VERSION_JUPITER && status != 0) {
applog(LOG_ERR, "KnC %d.%d.%d: Communication error (%x / %d)", core->die->channel, core->die->die, core->core, status, i);
if (status == KNC_ACCEPTED) {
/* Core refused our work vector. Likely out of sync. Reset it */
core->inuse = false;
}
knc_core_failure(core);
}
switch(response_info->type) {
case KNC_REPORT:
case KNC_SETWORK:
/* Should we care about failed SETWORK explicit? Or simply handle it by next state not loaded indication in reports? */
knc_core_process_report(thr, core, rxbuf);
break;
}
}
buffer->state = KNC_SPI_IDLE;
buffer->responses = 0;
buffer->size = 0;
knc->read_buffer += 1;
knc->read_buffer_count += 1;
if (knc->read_buffer >= KNC_SPI_BUFFERS)
knc->read_buffer = 0;
buffer = &knc->spi_buffer[knc->read_buffer];
}
}
static int knc_core_send_work(struct thr_info *thr, struct knc_core_state *core, struct work *work, bool clean)
{
struct knc_state *knc = core->die->knc;
struct cgpu_info *cgpu = knc->cgpu;
int request_length = 4 + 1 + 6*4 + 3*4 + 8*4;
uint8_t request[request_length];
int response_length = 1 + 1 + (1 + 4) * 5;
uint8_t response[response_length];
int slot = knc_core_next_slot(core);
if (slot < 0)
goto error;
applog(LOG_INFO, "KnC setwork%s %d.%d.%d = %d, %d %d / %d %d %d", clean ? " CLEAN" : "", core->die->channel, core->die->die, core->core, slot, core->report.active_slot, core->report.next_slot, core->workslot[0].slot, core->workslot[1].slot, core->workslot[2].slot);
if (!clean && !knc_core_need_work(core))
goto error;
switch(core->die->version) {
case KNC_VERSION_JUPITER:
if (clean) {
/* Double halt to get rid of any previous queued work */
request_length = knc_prepare_jupiter_halt(request, core->die->die, core->core);
knc_transfer(thr, core, request_length, request, 0, KNC_NO_RESPONSE, 0);
knc_transfer(thr, core, request_length, request, 0, KNC_NO_RESPONSE, 0);
}
request_length = knc_prepare_jupiter_setwork(request, core->die->die, core->core, slot, work);
knc_transfer(thr, core, request_length, request, 0, KNC_NO_RESPONSE, 0);
break;
case KNC_VERSION_NEPTUNE:
request_length = knc_prepare_neptune_setwork(request, core->die->die, core->core, slot, work, clean);
knc_transfer(thr, core, request_length, request, response_length, KNC_SETWORK, slot);
break;
default:
goto error;
}
core->workslot[2].work = work;
core->workslot[2].slot = slot;
core->works++;
core->die->knc->works++;
core->transfer_stamp = knc_transfer_stamp(knc);
core->inuse = true;
timeradd(&now, &core_submit_interval, &core->hold_work_until);
timeradd(&now, &core_timeout_interval, &core->timeout);
return 0;
error:
applog(LOG_INFO, "KnC: %d.%d.%d Failed to setwork (%d)",
core->die->channel, core->die->die, core->core, core->errors_now);
knc_core_failure(core);
free_work(work);
return -1;
}
static int knc_core_request_report(struct thr_info *thr, struct knc_core_state *core)
{
struct knc_state *knc = core->die->knc;
struct cgpu_info *cgpu = knc->cgpu;
int request_length = 4;
uint8_t request[request_length];
int response_length = 1 + 1 + (1 + 4) * 5;
uint8_t response[response_length];
applog(LOG_DEBUG, "KnC: %d.%d.%d Request report", core->die->channel, core->die->die, core->core);
request_length = knc_prepare_report(request, core->die->die, core->core);
switch(core->die->version) {
case KNC_VERSION_JUPITER:
response_length = 1 + 1 + (1 + 4);
knc_transfer(thr, core, request_length, request, response_length, KNC_REPORT, 0);
return 0;
case KNC_VERSION_NEPTUNE:
knc_transfer(thr, core, request_length, request, response_length, KNC_REPORT, 0);
return 0;
}
error:
applog(LOG_INFO, "KnC: Failed to scan work report");
knc_core_failure(core);
return -1;
}
/* return value is number of nonces that have been checked since
* previous call
*/
static int64_t knc_scanwork(struct thr_info *thr)
{
#define KNC_COUNT_UNIT shares
struct cgpu_info *cgpu = thr->cgpu;
struct knc_state *knc = cgpu->device_data;
int64_t ret = 0;
uint32_t last_count = knc->KNC_COUNT_UNIT;
applog(LOG_DEBUG, "KnC running scanwork");
gettimeofday(&now, NULL);
knc_trnsp_periodic_check(knc->ctx);
int i;
knc_process_responses(thr);
if (timercmp(&knc->next_error_interval, &now, >)) {
/* Reset hw error limiter every check interval */
timeradd(&now, &core_check_interval, &knc->next_error_interval);
for (i = 0; i < knc->cores; i++) {
struct knc_core_state *core = &knc->core[i];
core->errors_now = 0;
}
}
for (i = 0; i < knc->cores; i++) {
struct knc_core_state *core = &knc->core[i];
bool clean = !core->inuse;
if (knc_core_disabled(core))
continue;
if (core->generation != knc->generation) {
applog(LOG_INFO, "KnC %d.%d.%d flush gen=%d/%d", core->die->channel, core->die->die, core->core, core->generation, knc->generation);
/* clean set state, forget everything */
int slot;
for (slot = 0; slot < WORKS_PER_CORE; slot ++) {
if (core->workslot[slot].work)
free_work(core->workslot[slot].work);
core->workslot[slot].slot = -1;
}
core->hold_work_until = now;
core->generation = knc->generation;
} else if (timercmp(&core->timeout, &now, <=) && (core->workslot[0].slot > 0 || core->workslot[1].slot > 0 || core->workslot[2].slot > 0)) {
applog(LOG_ERR, "KnC %d.%d.%d timeout", core->die->channel, core->die->die, core->core, core->generation, knc->generation);
clean = true;
}
if (!knc_core_has_work(core))
clean = true;
if (core->workslot[0].slot < 0 && core->workslot[1].slot < 0 && core->workslot[2].slot < 0)
clean = true;
if (i % SCAN_ADJUST_RANGE == knc->scan_adjust)
clean = true;
if ((knc_core_need_work(core) || clean) && !knc->startup) {
struct work *work = get_work(thr, thr->id);
knc_core_send_work(thr, core, work, clean);
} else {
knc_core_request_report(thr, core);
}
}
/* knc->startup delays initial work submission until we have had chance to query all cores on their current status, to avoid slot number collisions with earlier run */
if (knc->startup)
knc->startup--;
else if (knc->scan_adjust < SCAN_ADJUST_RANGE)
knc->scan_adjust++;
knc_flush(thr);
return (int64_t)(knc->KNC_COUNT_UNIT - last_count) * 0x100000000UL;
}
static void knc_flush_work(struct cgpu_info *cgpu)
{
struct knc_state *knc = cgpu->device_data;
applog(LOG_INFO, "KnC running flushwork");
knc->generation++;
knc->scan_adjust=0;
if (!knc->generation)
knc->generation++;
}
static void knc_zero_stats(struct cgpu_info *cgpu)
{
int core;
struct knc_state *knc = cgpu->device_data;
for (core = 0; core < knc->cores; core++) {
knc->shares = 0;
knc->completed = 0;
knc->works = 0;
knc->errors = 0;
knc->core[core].works = 0;
knc->core[core].errors = 0;
knc->core[core].shares = 0;
knc->core[core].completed = 0;
}
}
static struct api_data *knc_api_stats(struct cgpu_info *cgpu)
{
struct knc_state *knc = cgpu->device_data;
struct api_data *root = NULL;
unsigned int cursize;
int asic, core, n;
char label[256];
root = api_add_int(root, "dies", &knc->dies, 1);
root = api_add_int(root, "cores", &knc->cores, 1);
root = api_add_uint64(root, "shares", &knc->shares, 1);
root = api_add_uint64(root, "works", &knc->works, 1);
root = api_add_uint64(root, "completed", &knc->completed, 1);
root = api_add_uint64(root, "errors", &knc->errors, 1);
/* Active cores */
int active = knc->cores;
for (core = 0; core < knc->cores; core++) {
if (knc_core_disabled(&knc->core[core]))
active -= 1;
}
root = api_add_int(root, "active", &active, 1);
/* Per ASIC/die data */
for (n = 0; n < knc->dies; n++) {
struct knc_die *die = &knc->die[n];
#define knc_api_die_string(name, value) do { \
snprintf(label, sizeof(label), "%d.%d.%s", die->channel, die->die, name); \
root = api_add_string(root, label, value, 1); \
} while(0)
#define knc_api_die_int(name, value) do { \
snprintf(label, sizeof(label), "%d.%d.%s", die->channel, die->die, name); \
uint64_t v = value; \
root = api_add_uint64(root, label, &v, 1); \
} while(0)
/* Model */
{
char *model = "?";
switch(die->version) {
case KNC_VERSION_JUPITER:
model = "Jupiter";
break;
case KNC_VERSION_NEPTUNE:
model = "Neptune";
break;
}
knc_api_die_string("model", model);
knc_api_die_int("cores", die->cores);
}
/* Core based stats */
{
int active = 0;
uint64_t errors = 0;
uint64_t shares = 0;
uint64_t works = 0;
uint64_t completed = 0;
char coremap[die->cores+1];
for (core = 0; core < die->cores; core++) {
coremap[core] = knc_core_disabled(&die->core[core]) ? '0' : '1';
works += die->core[core].works;
shares += die->core[core].shares;
errors += die->core[core].errors;
completed += die->core[core].completed;
}
coremap[die->cores] = '\0';
knc_api_die_int("errors", errors);
knc_api_die_int("shares", shares);
knc_api_die_int("works", works);
knc_api_die_int("completed", completed);
knc_api_die_string("coremap", coremap);
}
}
return root;
}
struct device_drv knc_drv = {
.drv_id = DRIVER_knc,
.dname = "KnCminer Neptune",
.name = "KnC",
.drv_detect = knc_detect,
.hash_work = hash_driver_work,
.flush_work = knc_flush_work,
.scanwork = knc_scanwork,
.zero_stats = knc_zero_stats,
.get_api_stats = knc_api_stats,
};