forked from vccimaging/DiffOptics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
caustic_pyramid.py
193 lines (162 loc) · 5.86 KB
/
caustic_pyramid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import numpy as np
import torch
import matplotlib.pyplot as plt
from matplotlib.image import imread, imsave
from skimage.transform import resize
import sys
sys.path.append("../")
import diffoptics as do
# initialize a lens
device = do.init()
# device = torch.device('cpu')
lens = do.Lensgroup(device=device)
# construct freeform optics
R = 25.4
ns = [256, 256]
surfaces = [
do.Aspheric(R, 0.0, c=0., is_square=True, device=device),
do.Mesh(R, 1.0, ns, is_square=True, device=device)
]
materials = [
do.Material('air'),
do.Material('N-BK7'),
do.Material('air')
]
lens.load(surfaces, materials)
# set scene geometry
D = torch.Tensor([50.0]).to(device) # [mm]
wavelength = torch.Tensor([532.8]).to(device) # [nm]
# example image
filename = 'einstein'
img_org = imread('./images/' + filename + '.jpg') # assume image is grayscale
if img_org.mean() > 1.0:
img_org = img_org / 255.0
# downsample the image
NN = 2
img_org = img_org[::NN,::NN]
N_max = 128
img_org = img_org[:N_max,:N_max]
# mark differentiable variables
lens.surfaces[1].c.requires_grad = True
# create save dir
savepath = './einstein_pyramid/'
if not os.path.exists(savepath):
os.mkdir(savepath)
def caustic(N, pyramid_i, lr=1e-3, maxit=100):
img = resize(img_org, (N, N))
E = np.sum(img) # total energy
print(f'image size = {img.shape}')
N_pad = 0
N_total = N + 2*N_pad
img = np.pad(img, (N_pad,N_pad), 'constant', constant_values=np.inf)
img[np.isinf(img)] = 0.0 # revert img back for visualization
I_ref = torch.Tensor(img).to(device) # [mask]
# max square length
R_square = R * N_total/N
# set image plane pixel grid
R_image = R_square
pixel_size = 2*R_image / N_total # [mm]
def sample_ray(M=1, random=False):
M = int(M*N)
x, y = torch.meshgrid(
torch.linspace(-R_square, R_square, M, device=device),
torch.linspace(-R_square, R_square, M, device=device)
)
p = 2*R_square / M
if random:
x = x + p * (torch.rand(M,M,device=device)-0.5)
y = y + p * (torch.rand(M,M,device=device)-0.5)
o = torch.stack((x,y,torch.zeros_like(x, device=device)), axis=2)
d = torch.zeros_like(o)
d[...,2] = torch.ones_like(x)
return do.Ray(o, d, wavelength, device=device), E
def render_single(I, ray_init, irr):
ray, valid = lens.trace(ray_init)[:2]
J = irr * valid * ray.d[...,2]
p = ray(D)
p = p[...,:2]
del ray, valid
# compute shifts and do linear interpolation
uv = (p + R_square) / pixel_size
index_l = torch.clamp(torch.floor(uv).long(), min=0, max=N_total-1)
index_r = torch.clamp(index_l + 1, min=0, max=N_total-1)
w_r = torch.clamp(uv - index_l, min=0, max=1)
w_l = 1.0 - w_r
del uv
# compute image
I = torch.index_put(I, (index_l[...,0],index_l[...,1]), w_l[...,0]*w_l[...,1]*J, accumulate=True)
I = torch.index_put(I, (index_r[...,0],index_l[...,1]), w_r[...,0]*w_l[...,1]*J, accumulate=True)
I = torch.index_put(I, (index_l[...,0],index_r[...,1]), w_l[...,0]*w_r[...,1]*J, accumulate=True)
I = torch.index_put(I, (index_r[...,0],index_r[...,1]), w_r[...,0]*w_r[...,1]*J, accumulate=True)
return I
def render(spp=1):
I = torch.zeros((N_total,N_total), device=device)
ray_init, irr = sample_ray(M=24, random=True) # Reduce M if your GPU memory is low
I = render_single(I, ray_init, irr)
return I / spp
# optimize
ls = []
save_path = savepath + "/{}".format("pyramid_" + str(pyramid_i))
if not os.path.exists(save_path):
os.makedirs(save_path)
print('optimizing ...')
optimizer = torch.optim.Adam([lens.surfaces[1].c], lr=lr, betas=(0.99,0.99), amsgrad=True)
for it in range(maxit+1):
I = render(spp=8)
I = I / I.sum() * I_ref.sum()
L = torch.mean((I - I_ref)**2)
optimizer.zero_grad()
L.backward(retain_graph=True)
# record
ls.append(L.cpu().detach().numpy())
if it % 10 == 0:
print('iter = {}: loss = {:.4e}, grad_bar = {:.4e}'.format(
it, L.item(), torch.sum(torch.abs(lens.surfaces[1].c.grad))
))
I_current = I.cpu().detach().numpy()
imsave("{}/{:04d}.png".format(save_path, it), I_current, vmin=0.0, vmax=1.0, cmap='gray')
# descent
optimizer.step()
if pyramid_i == 0: # last one, render final image
lens.surfaces[1].c.requires_grad = False
del L
I_final = 0
spp = 100
for i in range(spp):
if i % 10 == 0:
print("=== rendering spp = {}".format(i))
I_final += render().cpu().detach().numpy()
return I_final / spp, I_ref, ls
else:
return I.cpu().detach().numpy(), None, ls
pyramid_levels = 2
for i in range(pyramid_levels, -1, -1):
N = int(N_max/(2**i))
print("=== N = {}".format(N))
I_final, I_ref, ls = caustic(N, i, lr=1e-3, maxit=int(1000/4**i))
if i == 0:
I_ref = I_ref.cpu().numpy()
I_final = I_final / I_final.sum() * I_ref.sum()
imsave(savepath + "/I_target.png", I_ref, vmin=0.0, vmax=1.0, cmap='gray')
imsave(savepath + "/I_final.png", I_final, vmin=0.0, vmax=1.0, cmap='gray')
# final results
plt.imshow(I_final, cmap='gray')
plt.title('Final caustic image')
plt.show()
fig, ax = plt.subplots()
ax.plot(ls, 'k-o', linewidth=2)
ax.set_xlabel('iteration')
ax.set_ylabel('loss')
fig.savefig("ls.pdf", bbox_inches='tight')
plt.title('Loss')
S = lens.surfaces[1].mesh().cpu().detach().numpy()
S = S - S.min()
imsave(savepath + "/phase.png", S, vmin=0, vmax=S.max(), cmap='coolwarm')
imsave(savepath + "/phase_mod.png", np.mod(S*1e3,100), cmap='coolwarm')
print(S.max())
plt.figure()
plt.imshow(S, cmap='jet')
plt.colorbar()
plt.title('Optimized phase plate height [mm]')
plt.show()