forked from vccimaging/DiffOptics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
render_image.py
73 lines (61 loc) · 2 KB
/
render_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import cv2
import torch
import matplotlib.pyplot as plt
from pathlib import Path
from tqdm import tqdm
import sys
sys.path.append("../")
import diffoptics as do
# initialize a lens
device = torch.device('cuda')
lens = do.Lensgroup(device=device)
# load optics
lens.load_file(Path('./lenses/DoubleGauss/US02532751-1.txt'))
# set sensor pixel size and film size
pixel_size = 6.45e-3 # [mm]
film_size = [768, 1024]
# set a rendering image sensor, and call prepare_mts to prepare the lensgroup for rendering
lens.prepare_mts(pixel_size, film_size)
# lens.plot_setup2D()
# create a dummy screen
z0 = 10e3 # [mm]
pixelsize = 1.1 # [mm]
texture = cv2.cvtColor(cv2.imread('./images/squirrel.jpg'), cv2.COLOR_BGR2RGB)
texture = np.flip(texture.astype(np.float32), axis=(0,1)).copy()
texture_torch = torch.Tensor(texture).to(device=device)
texturesize = np.array(texture.shape[0:2])
screen = do.Screen(
do.Transformation(np.eye(3), np.array([0, 0, z0])),
texturesize * pixelsize, texture_torch, device=device
)
# helper function
def render_single(wavelength, screen):
valid, ray_new = lens.sample_ray_sensor(wavelength)
uv, valid_screen = screen.intersect(ray_new)[1:]
mask = valid & valid_screen
I = screen.shading(uv, mask)
return I, mask
# sample wavelengths in [nm]
wavelengths = [656.2725, 587.5618, 486.1327]
# render
ray_counts_per_pixel = 100
Is = []
for wavelength_id, wavelength in enumerate(wavelengths):
screen.update_texture(texture_torch[..., wavelength_id])
# multi-pass rendering by sampling the aperture
I = 0
M = 0
for i in tqdm(range(ray_counts_per_pixel)):
I_current, mask = render_single(wavelength, screen)
I = I + I_current
M = M + mask
I = I / (M + 1e-10)
# reshape data to a 2D image
I = I.reshape(*np.flip(np.asarray(film_size))).permute(1,0)
Is.append(I.cpu())
# show image
I_rendered = torch.stack(Is, axis=-1).numpy().astype(np.uint8)
plt.imshow(I_rendered)
plt.show()
plt.imsave('I_rendered.png', I_rendered)