-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrpn.py
executable file
·440 lines (362 loc) · 16.5 KB
/
rpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#!/usr/bin/env python3
import os
import math
import sys
from abc import abstractmethod
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from nets import nets_factory, resnet_utils
import aardvark
import cv2
from tf_utils import *
import cpp
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('priors', 'priors', '')
flags.DEFINE_integer('rpn_stride', 4, '')
flags.DEFINE_integer('pooling_size', 7, '')
flags.DEFINE_float('anchor_th', 0.5, '')
flags.DEFINE_integer('nms_max', 128, '')
flags.DEFINE_float('nms_th', 0.5, '')
flags.DEFINE_float('match_th', 0.5, '')
flags.DEFINE_integer('max_masks', 64, '')
flags.DEFINE_float('lower_th', 0.1, '')
flags.DEFINE_float('upper_th', 0.5, '')
# optimizer settings
flags.DEFINE_float('rpn_logits_weight', 1.0, '')
flags.DEFINE_float('rpn_positive_extra', 0, '')
flags.DEFINE_float('rpn_params_weight', 1.0, '')
flags.DEFINE_float('frcnn_params_weight', 1.0, '')
flags.DEFINE_boolean('frcnn_only', False, '')
flags.DEFINE_boolean('rpn_only', False, '')
dump_cnt = 0
def prior_file_version (path):
with open(path, 'r') as f:
for l in f:
if 'priors' in l:
return 1
return 0
pass
pass
def load_priors_v0 (path):
priors = []
with open(FLAGS.priors, 'r') as f:
for l in f:
if l[0] == '#':
continue
s, r = l.strip().split(' ')
s, r = float(s), float(r)
# w * h = s * s
# w / h = r
w = math.sqrt(s * s * r)
h = math.sqrt(s * s / r)
priors.append([w, h])
pass
pass
return priors
def load_priors_v1 (path):
priors = []
with open(FLAGS.priors, 'r') as f:
l = next(f)
txt, n, dim = l.strip().split(' ')
assert txt == 'priors'
n = int(n)
dim = int(dim)
for l in f:
if l[0] == '#':
continue
prior = [float(x) for x in l.strip().split(' ')]
assert len(prior) == dim
priors.append(prior)
pass
pass
assert len(priors) == n
return priors
def load_priors (path):
ver = prior_file_version(path)
if ver == 0:
return load_priors_v0(path)
elif ver == 1:
return load_priors_v1(path)
assert False
class BasicRPN (aardvark.Model2D):
# RPN for generic shape
def __init__ (self, min_size=1):
super().__init__()
#self.gt_matcher = cpp.GTMatcher(FLAGS.match_th, FLAGS.max_masks, min_size)
priors = []
if os.path.exists(FLAGS.priors):
priors = load_priors(FLAGS.priors)
if len(priors) == 0:
priors.append([1,1])
aardvark.print_red("PRIORS %s" % str(priors))
# TODO: need a better way to generalize this to multiple priors and 0 priors
self.n_priors = len(priors)
self.priors = priors
pass
@abstractmethod
def rpn_params_size (self):
pass
@abstractmethod
def rpn_params_loss (self, params, gt_params, priors):
pass
@abstractmethod
def rpn_backbone (self, image):
pass
@abstractmethod
def rpn_logits (self, channels, strides):
pass
@abstractmethod
def rpn_params (self, channels, strides):
pass
def rpn_generate_shapes (self, shape, anchor_params, priors, n_priors):
return None
def non_max_supression (self):
return None
def build_rpn (self, images, add_loss=True):
# Set up model inputs
# parameters
if not hasattr(self, 'is_training'):
self.is_training = tf.placeholder(tf.bool, name="is_training")
anchor_th = tf.constant(FLAGS.anchor_th, dtype=tf.float32, name="anchor_th")
# the reset are for training only
# whether a location should be activated
self.gt_anchors = tf.placeholder(tf.float32, shape=(None, None, None, self.n_priors), name='gt_anchors')
self.gt_anchors_weight = tf.placeholder(tf.float32, shape=(None, None, None, self.n_priors), name='gt_anchors_weight')
# parameter of that location
self.gt_params = tf.placeholder(tf.float32, shape=(None, None, None, self.n_priors * self.rpn_params_size()), name='gt_params')
self.gt_params_weight = tf.placeholder(tf.float32, shape=(None, None, None, self.n_priors), name='gt_params_weight')
#self.gt_boxes = tf.placeholder(tf.float32, shape=(None, 7))
priors = tf.expand_dims(tf.constant(self.priors, dtype=tf.float32), axis=0)
# 1 * priors * 2
priors2 = tf.tile(priors,[1,1,2])
self.rpn_backbone(images)
logits = self.rpn_logits(self.n_priors, FLAGS.rpn_stride)
probs = tf.sigmoid(logits)
self.probs = probs
probs = tf.reshape(probs, (-1,))
if FLAGS.dice:
dice, dice_chs = weighted_dice_loss_by_channel(self.gt_anchors, probs, self.gt_anchors_weight, self.n_priors)
activation_loss = tf.identity(dice, name='di')
else:
logits1 = tf.reshape(logits, (-1,)) # ? * 2
gt_anchors = tf.reshape(self.gt_anchors, (-1,))
gt_anchors_weight = tf.reshape(self.gt_anchors_weight, (-1,))
xe = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits1, labels=gt_anchors)
if FLAGS.rpn_positive_extra > 0:
xe *= 1.0 + FLAGS.rpn_positive_extra * gt_anchors
xe = tf.reduce_sum(xe * gt_anchors_weight) / (tf.reduce_sum(gt_anchors_weight) + 0.0001)
activation_loss = tf.identity(xe, name='xe')
pass
params = self.rpn_params(self.rpn_params_size() * self.n_priors, FLAGS.rpn_stride)
self.params = params
params = tf.identity(params, name='rpn_all_params')
anchor_layer_shape = tf.shape(params)
params = tf.reshape(params, (-1, self.n_priors, self.rpn_params_size())) # ? * 4
gt_params = tf.reshape(self.gt_params, (-1, self.n_priors, self.rpn_params_size()))
gt_params_weight = tf.reshape(self.gt_params_weight, (-1, self.n_priors))
pl = weighted_loss_by_channel(self.rpn_params_loss(params, gt_params, priors2), gt_params_weight, self.n_priors)
pl = tf.check_numerics(pl, 'p1', name='p1') # params-loss
tf.identity(probs, name='rpn_all_probs')
if add_loss:
tf.losses.add_loss(activation_loss * FLAGS.rpn_logits_weight)
self.metrics.append(activation_loss)
tf.losses.add_loss(pl * FLAGS.rpn_params_weight)
self.metrics.append(pl)
#prob = tf.reshape(anchors, (-1,))
# index is index within mini batch
shape_and_index = self.rpn_generate_shapes(anchor_layer_shape, params, priors2, self.n_priors)
if shape_and_index is None:
return
shapes, index = shape_and_index
with tf.device('/cpu:0'):
# fuck tensorflow, these lines fail on GPU
# pre-filtering by threshold so we put less stress on non_max_suppression
sel = tf.greater_equal(prob, anchor_th)
# sel is a boolean mask
# select only boxes with prob > th for nms
prob = tf.boolean_mask(prob, sel)
#params = tf.boolean_mask(params, sel)
shapes = tf.boolean_mask(shapes, sel)
index = tf.boolean_mask(index, sel)
self.rpn_probs_all = prob
self.rpn_shapes_all = shapes
self.rpn_index_all = index
#self.metrics.append(tf.identity(tf.cast(tf.shape(boxes)[0], dtype=tf.float32), name='o'))
sel = self.rpn_non_max_supression(shapes, index, prob)
if sel is None:
self.rpn_probs = tf.identify(prob, name='rpn_probs')
self.rpn_shapes = tf.identify(shapes, name='rpn_shapes')
self.rpn_index = tf.identify(index, name='rpn_index')
else:
self.rpn_probs = tf.gather(prob, sel, name='rpn_probs')
self.rpn_shapes = tf.gather(shapes, sel, name='rpn_shapes')
self.rpn_index = tf.gather(index, sel, name='rpn_index')
pass
# sel is a list of indices
pass
def shift_boxes (boxes, offset):
# boxes N * [x1, y1, x2, y2]
# offsets N
offset = tf.expand_dims(offset * FLAGS.max_size * 2, axis=1)
# offset N * [V]
# such that there's no way for boxes from different offset to overlap
return boxes + tf.cast(offset, dtype=tf.float32)
# box rpns
class RPN (BasicRPN):
def __init__ (self, min_size=1):
super().__init__()
def rpn_params_size (self):
return 4
def rpn_params_loss (self, params, gt_params, priors):
# params ? * priors * 4
# gt_params ? * priors * 4
# priors 1 * priors * 2
gt_params = gt_params / priors
l1 = tf.losses.huber_loss(params, gt_params, reduction=tf.losses.Reduction.NONE, loss_collection=None)
return tf.reduce_sum(l1, axis=2)
def rpn_generate_shapes (self, shape, anchor_params, priors, n_priors):
# anchor parameters are: dx, dy, w, h
# anchor_params: n * n_priors * 4
# priors: 1 * priors * 2
B = shape[0]
H = shape[1]
W = shape[2]
offset = tf_repeat(tf.range(B), [H * W * n_priors])
if True: # generate array of box centers
x0 = tf.cast(tf.range(W) * FLAGS.rpn_stride, tf.float32)
y0 = tf.cast(tf.range(H) * FLAGS.rpn_stride, tf.float32)
x0, y0 = tf.meshgrid(x0, y0)
x0 = tf.reshape(x0, (-1,))
y0 = tf.reshape(y0, (-1,))
x0 = tf.tile(tf_repeat(x0, [n_priors]), [B])
y0 = tf.tile(tf_repeat(y0, [n_priors]), [B])
anchor_params = tf.reshape(anchor_params * priors, (-1, 4))
dx, dy, w, h = [tf.squeeze(x, axis=1) for x in tf.split(anchor_params, [1,1,1,1], 1)]
W = tf.cast(W * FLAGS.rpn_stride, tf.float32)
H = tf.cast(H * FLAGS.rpn_stride, tf.float32)
max_X = W-1
max_Y = H-1
x1 = x0 + dx - w/2
y1 = y0 + dy - h/2
x2 = x1 + w
y2 = y1 + h
x1 = tf.clip_by_value(x1, 0, max_X)
y1 = tf.clip_by_value(y1, 0, max_Y)
x2 = tf.clip_by_value(x2, 0, max_X)
y2 = tf.clip_by_value(y2, 0, max_Y)
boxes = tf.stack([x1, y1, x2, y2], axis=1)
return boxes, offset
def rpn_non_max_supression (self, boxes, index, prob):
return tf.image.non_max_suppression(shift_boxes(boxes, index), prob, self.nms_max, iou_threshold=self.nms_th)
def build_graph (self, add_loss=True):
self.is_training = tf.placeholder(tf.bool, name="is_training")
self.images = tf.placeholder(tf.float32, shape=(None, None, None, FLAGS.channels), name="images")
self.nms_max = tf.constant(FLAGS.nms_max, dtype=tf.int32, name="nms_max")
self.nms_th = tf.constant(FLAGS.nms_th, dtype=tf.float32, name="nms_th")
self.gt_boxes = tf.placeholder(tf.float32, shape=(None, 7)) # not really used in RPN, but used in Faster-RCNN
self.build_rpn(self.images, add_loss)
pass
def extra_stream_config (self, is_training):
if len(self.priors) > 0:
aardvark.print_red('priors %s' % str(self.priors))
augments = aardvark.load_augments(is_training)
shift = 0
if is_training:
shift = FLAGS.clip_shift
return {
"annotate": [1],
"transforms":
[{"type": "resize", "max_size": FLAGS.max_size}] +
augments + [
#{"type": "clip", "round": FLAGS.backbone_stride},
{"type": "clip", "shift": shift, "width": FLAGS.fix_width, "height": FLAGS.fix_height, "round": FLAGS.clip_stride},
{"type": "anchors.dense.box", 'downsize': FLAGS.rpn_stride, 'lower_th': FLAGS.lower_th, 'upper_th': FLAGS.upper_th, 'weighted': False, 'priors': self.priors, 'params_default': 1.0},
{"type": "box_feature"},
{"type": "drop"},
]
}
def feed_dict (self, record, is_training = True):
global dump_cnt
_, images, _, gt_anchors, gt_anchors_weight, \
gt_params, gt_params_weight, gt_boxes = record
assert np.all(gt_anchors < 2)
#gt_boxes = np.reshape(gt_boxes, [-1, 7]) # make sure shape is correct
if dump_cnt < 20:
# dump images for sanity check
for i in range(images.shape[0]):
cv2.imwrite('picpac_dump2/%d_a_image.png' % dump_cnt, images[i])
for j in range(gt_anchors.shape[3]):
cv2.imwrite('picpac_dump2/%d_b_%d_anchor.png' % (dump_cnt, j), gt_anchors[i,:,:,j]*255)
cv2.imwrite('picpac_dump2/%d_c_%d_mask.png' % (dump_cnt, j), gt_anchors_weight[i,:,:,j]*255)
cv2.imwrite('picpac_dump2/%d_d_%d_weight.png' % (dump_cnt, j), gt_params_weight[i,:,:,j]*255)
dump_cnt += 1
if len(gt_boxes.shape) > 1:
assert np.all(gt_boxes[:, 1] < FLAGS.classes)
assert np.all(gt_boxes[:, 1] > 0)
return {self.is_training: is_training,
self.images: images,
self.gt_anchors: gt_anchors,
self.gt_anchors_weight: gt_anchors_weight,
self.gt_params: gt_params,
self.gt_params_weight: gt_params_weight,
self.gt_boxes: gt_boxes}
class FRCNN (RPN):
def __init__ (self, min_size=1):
super().__init__()
self.gt_matcher = cpp.GTMatcher(FLAGS.match_th, FLAGS.max_masks, min_size, False)
pass
def refine_params (self, net, scope='frcnn_refine'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
net = slim.conv2d(net, 128, 3, 1, scope='conv1')
net = slim.conv2d(net, 128, 3, 1, scope='conv2')
net = slim.max_pool2d(net, [2,2], padding='SAME')
net = slim.conv2d(net, 256, 3, 1, scope='conv3')
net = slim.conv2d(net, 256, 3, 1, scope='conv4')
#net = slim.conv2d(patches, 64, 3, 1)
net = tf.reduce_mean(net, [1, 2], keep_dims=False)
return slim.fully_connected(net, 4, activation_fn=None, scope='fc')
def refine_box (self, boxes, index, gt_boxes = None):
shape = tf.shape(self.images)
max_X = tf.cast(shape[2]-1, tf.float32)
max_Y = tf.cast(shape[1]-1, tf.float32)
x1,y1,x2,y2 = [tf.squeeze(x, axis=1) for x in tf.split(boxes, [1,1,1,1], 1)]
w = x2 - x1 + 1
h = y2 - y1 + 1
gt_params = None
if not gt_boxes is None:
gx1,gy1,gx2,gy2 = [tf.squeeze(x, axis=1) for x in tf.split(gt_boxes, [1,1,1,1], 1)]
gx1 = (gx1 - x1) / w
gy1 = (gy1 - y1) / h
gx2 = (gx2 - x2) / w
gy2 = (gy2 - y2) / h
gt_params = tf.stack([gx1, gy1, gx2, gy2], axis=1)
nboxes = tf.stack([y1/max_Y, x1/max_X, y2/max_Y, x2/max_X], axis=1)
mask_size = FLAGS.pooling_size * 2
net = tf.image.crop_and_resize(self.backbone, nboxes, index, [mask_size, mask_size])
params = self.refine_params(net)
dx1, dy1, dx2, dy2 = [tf.squeeze(x, axis=1) for x in tf.split(params, [1,1,1,1], 1)]
x1 += w * dx1
x2 += w * dx2
y1 += h * dy1
y2 += h * dy2
return tf.stack([x1, y1, x2, y2], axis=1), params, gt_params
def build_graph (self):
super().build_graph(add_loss=not FLAGS.frcnn_only)
n_hits, rpn_hits, gt_hits = tf.py_func(self.gt_matcher.apply, [self.rpn_shapes_all, self.rpn_index_all, self.gt_boxes], [tf.float32, tf.int32, tf.int32])
recall = n_hits / (tf.cast(tf.shape(self.gt_boxes)[0], tf.float32) + 0.0001);
self.metrics.append(tf.identity(recall, name='r'))
hit_boxes = tf.gather(self.rpn_shapes_all, rpn_hits) # x1, y1, x2, y2
hit_index = tf.gather(self.rpn_index_all, rpn_hits)
hit_gt = tf.gather(self.gt_boxes, gt_hits)
_, params, gt_params = self.refine_box(hit_boxes, hit_index, tf.slice(hit_gt, [0, 3], [-1, 4]))
pl = tf.losses.huber_loss(params, gt_params, reduction=tf.losses.Reduction.NONE, loss_collection=None)
pl = tf.reduce_sum(pl) / (tf.cast(tf.shape(pl)[0], tf.float32) * 4 + 0.0001)
pl = tf.check_numerics(pl, 'p2', name='p2') # params-loss
if not FLAGS.rpn_only:
tf.losses.add_loss(pl*FLAGS.frcnn_params_weight)
self.metrics.append(pl)
boxes, _, _ = self.refine_box(self.rpn_shapes, self.rpn_index, None)
self.boxes = tf.identity(boxes, name='boxes')
pass