Skip to content

Latest commit

 

History

History
47 lines (39 loc) · 1.72 KB

CHANGELOG.md

File metadata and controls

47 lines (39 loc) · 1.72 KB

CHANGELOG

0.3.0

  • Add support typing information according to PEP 561.

0.2.0

  • Add Attention base class, MultiHeadAttention, and ScaledDotProductAttention classes.
  • Add branch_network and trunk_network arguments to DeepONet to allow for custom network architectures.
  • Add MaskedOperator base class.
  • Add DeepCatOperator.
  • Restructure documentation, separating notebooks into tutorials and how-to guides.

0.1.0

  • Move all content of __init__.py files to sub-modules.
  • Add Trainer class to replace operator.fit method.
  • Implement BelNet.
  • Add Sampler, BoxSampler, UniformBoxSampler, and RegularGridSampler classes.
  • Moved DataLoader into the fit method of the Trainer. Therefore, Trainer.fit expects an OperatorDataset now.
  • A Criterion now enables stopping the training loop.
  • The plotting module has been removed.
  • Add timeseries.ipynb example.
  • Add Function, FunctionSet, and FunctionOperatorDataset classes.
  • Add function.ipynb example.
  • Add Benchmark base class.
  • Add SineBenchmark.
  • Implement DeepNeuralOperator.
  • Generalize NeuralOperator to take a list of operators.
  • The data.DatasetShapes class becomes operators.OperatorShapes without num_observations attribute.
  • Change torch dependency from "==2.1.0" to ">=2.1.0,<3.0.0".
  • Change optuna dependency from "3.5.0" to ">=3.5.0,<4.0.0".
  • Add FourierLayer and FourierNeuralOperator with example.
  • Add benchmarks infrastructure.
  • An Operator now takes a device argument.
  • Add QuantileScaler class.

0.0.0 (2024-02-22)

  • Set up project structure.
  • Implement basic functionality.
  • Build documentation.
  • Create first notebooks.
  • Introduce neural operators.
  • Add CI/CD.