- Add support typing information according to PEP 561.
- Add
Attention
base class,MultiHeadAttention
, andScaledDotProductAttention
classes. - Add
branch_network
andtrunk_network
arguments toDeepONet
to allow for custom network architectures. - Add
MaskedOperator
base class. - Add
DeepCatOperator
. - Restructure documentation, separating notebooks into tutorials and how-to guides.
- Move all content of
__init__.py
files to sub-modules. - Add
Trainer
class to replaceoperator.fit
method. - Implement
BelNet
. - Add
Sampler
,BoxSampler
,UniformBoxSampler
, andRegularGridSampler
classes. - Moved
DataLoader
into thefit
method of theTrainer
. Therefore,Trainer.fit
expects anOperatorDataset
now. - A
Criterion
now enables stopping the training loop. - The
plotting
module has been removed. - Add
timeseries.ipynb
example. - Add
Function
,FunctionSet
, andFunctionOperatorDataset
classes. - Add
function.ipynb
example. - Add
Benchmark
base class. - Add
SineBenchmark
. - Implement
DeepNeuralOperator
. - Generalize
NeuralOperator
to take a list of operators. - The
data.DatasetShapes
class becomesoperators.OperatorShapes
withoutnum_observations
attribute. - Change
torch
dependency from "==2.1.0" to ">=2.1.0,<3.0.0". - Change
optuna
dependency from "3.5.0" to ">=3.5.0,<4.0.0". - Add
FourierLayer
andFourierNeuralOperator
with example. - Add
benchmarks
infrastructure. - An
Operator
now takes adevice
argument. - Add
QuantileScaler
class.
- Set up project structure.
- Implement basic functionality.
- Build documentation.
- Create first notebooks.
- Introduce neural operators.
- Add CI/CD.