-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_recognizer.py
29 lines (26 loc) · 1.21 KB
/
speech_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright (c) 2022 Savoir-faire Linux Inc.
# This code is licensed under MIT license
import whisper
import time
class SpeechRecognizer:
SAMPLE_RATE=16000
def init(self, model = 'medium', task = 'translate'):
print(f'Loading Whisper model...')
self.model = whisper.load_model(model)
self.audio_options = whisper.DecodingOptions(task = task)
def process_audio(self, audio):
duration = len(audio)/float(SpeechRecognizer.SAMPLE_RATE)
# print(f'Processing audio block of {duration} s')
start_time = time.time()
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(self.model.device)
#_, probs = model.detect_language(mel)
#print(f'Detected languages: {probs}')
result = whisper.decode(self.model, mel, self.audio_options)
took = time.time() - start_time
if took > duration:
print(f'Whisper took {took} seconds to analyse {duration} seconds!')
if result.no_speech_prob < .5 and not result.text.startswith('Thank you for watching') and not result.text.startswith('Thanks for watching'):
return result.language, result.text
else:
return None, ''