-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
118 lines (93 loc) · 3.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Import packages
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.optimizers import Adam
from keras.layers import Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
import numpy as np
import cv2
import os
# Parameters
path = 'Data'
testRatio = 0.2
valRatio = 0.2
imageDimensions = (32, 32, 3)
# Importing Data
count = 0
images = [] # List of Images
classNo = [] # Id of all the corresponding Images
myList = os.listdir(path)
noOfClasses = len(myList)
for x in range(0, noOfClasses):
myPicList = os.listdir(path+"/"+str(x))
for y in myPicList:
curImg = cv2.imread(path+"/"+str(x)+"/"+y)
curImg = cv2.resize(curImg, (32, 32))
images.append(curImg)
classNo.append(x)
# Converting Images to Numpy Array
images = np.array(images)
classNo = np.array(classNo)
# Spliting data into Train and Test
X_train, X_test, y_train, y_test = train_test_split(
images, classNo, test_size=testRatio)
X_train, X_validation, y_train, y_validation = train_test_split(
X_train, y_train, test_size=valRatio)
# Preprocessing
def preProcessing(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
img = img/255
return img
X_train = np.array(list(map(preProcessing, X_train)))
X_test = np.array(list(map(preProcessing, X_test)))
X_validation = np.array(list(map(preProcessing, X_validation)))
# Reshape and Transform Images
X_train = X_train.reshape(
X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], 1)
X_validation = X_validation.reshape(
X_validation.shape[0], X_validation.shape[1], X_validation.shape[2], 1)
dataGen = ImageDataGenerator(width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2,
shear_range=0.1,
rotation_range=10)
dataGen.fit(X_train)
# One HOT ENCODING
y_train = to_categorical(y_train, noOfClasses)
y_test = to_categorical(y_test, noOfClasses)
y_validation = to_categorical(y_validation, noOfClasses)
def myModel(): # Creating model
noOfFilters = 60
sizeOfFilter1 = (5, 5)
sizeOfFilter2 = (3, 3)
sizeOfPool = (2, 2)
noOfNodes = 500
model = Sequential()
model.add((Conv2D(noOfFilters, sizeOfFilter1, input_shape=(imageDimensions[0],
imageDimensions[1], 1), activation='relu')))
model.add((Conv2D(noOfFilters, sizeOfFilter1, activation='relu')))
model.add(MaxPooling2D(pool_size=sizeOfPool))
model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
model.add(MaxPooling2D(pool_size=sizeOfPool))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(noOfNodes, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(noOfClasses, activation='softmax'))
model.compile(Adam(lr=0.001), loss='categorical_crossentropy',
metrics=['accuracy'])
return model
model = myModel()
history = model.fit(X_train, y_train, validation_data=(
X_validation, y_validation), epochs=10, steps_per_epoch=2000)
# Score evaluation
score = model.evaluate(X_test, y_test, verbose=0)
# Saving model
model.save("model_trained.p")