From 9f12b0864226ae90271f9f4bd1fc523e312d27d4 Mon Sep 17 00:00:00 2001 From: Avdhesh-Varshney <114330097+Avdhesh-Varshney@users.noreply.github.com> Date: Fri, 19 Jan 2024 17:41:32 +0530 Subject: [PATCH] =?UTF-8?q?Nurse=20Stress=20Prediction=F0=9F=91=A9?= =?UTF-8?q?=E2=80=8D=E2=9A=95=EF=B8=8F?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Nurse Stress Prediction/Dataset/README.md | 40 + Nurse Stress Prediction/Images/EDA_plot.jpg | Bin 0 -> 52834 bytes Nurse Stress Prediction/Images/HR_plot.jpg | Bin 0 -> 65037 bytes Nurse Stress Prediction/Images/MSE_plot.png | Bin 0 -> 30039 bytes Nurse Stress Prediction/Images/TEMP_plot.jpg | Bin 0 -> 68932 bytes Nurse Stress Prediction/Images/X_plot.jpg | Bin 0 -> 63802 bytes .../Images/actual_vs_prediction.png | Bin 0 -> 68481 bytes .../Images/correlation_heatmap.jpg | Bin 0 -> 51614 bytes Nurse Stress Prediction/Images/label_plot.jpg | Bin 0 -> 56638 bytes Nurse Stress Prediction/Images/pca.jpg | Bin 0 -> 20196 bytes .../Images/prediction_plot.png | Bin 0 -> 26770 bytes .../Models/nurse_stress_prediction.ipynb | 4574 +++++++++++++++++ Nurse Stress Prediction/README.md | 92 + Nurse Stress Prediction/requirements.txt | 10 + 14 files changed, 4716 insertions(+) create mode 100644 Nurse Stress Prediction/Dataset/README.md create mode 100644 Nurse Stress Prediction/Images/EDA_plot.jpg create mode 100644 Nurse Stress Prediction/Images/HR_plot.jpg create mode 100644 Nurse Stress Prediction/Images/MSE_plot.png create mode 100644 Nurse Stress Prediction/Images/TEMP_plot.jpg create mode 100644 Nurse Stress Prediction/Images/X_plot.jpg create mode 100644 Nurse Stress Prediction/Images/actual_vs_prediction.png create mode 100644 Nurse Stress Prediction/Images/correlation_heatmap.jpg create mode 100644 Nurse Stress Prediction/Images/label_plot.jpg create mode 100644 Nurse Stress Prediction/Images/pca.jpg create mode 100644 Nurse Stress Prediction/Images/prediction_plot.png create mode 100644 Nurse Stress Prediction/Models/nurse_stress_prediction.ipynb create mode 100644 Nurse Stress Prediction/README.md create mode 100644 Nurse Stress Prediction/requirements.txt diff --git a/Nurse Stress Prediction/Dataset/README.md b/Nurse Stress Prediction/Dataset/README.md new file mode 100644 index 000000000..e10817ab2 --- /dev/null +++ b/Nurse Stress Prediction/Dataset/README.md @@ -0,0 +1,40 @@ +# Nurse Stress Prediction Dataset + +The Dataset used here is taken from the Kaggle database website. You can download the file from the link given here, [Nurse Stress Prediction](https://www.kaggle.com/datasets/priyankraval/nurse-stress-prediction-wearable-sensors) + +## About the dataset + +There are 9 different features in the datasets: + +#### X, Y, Z: +- ***Description***: Numerical values representing orientation data. +- ***Unique Entries***: Each column has 256 unique values. + +#### EDA (Electrodermal Activity): +- ***Description***: Continuous numerical values measuring electrodermal activity. +- ***Unique Entries***: Contains 274,452 unique numerical values. + +#### HR (Heart Rate): +- ***Description***: Continuous numerical values representing heart rate measurements. +- ***Unique Entries***: Comprises 6,268 distinct numerical values. + +#### TEMP (Temperature): +- ***Description***: Continuous numerical values denoting temperature readings. +- ***Unique Entries***: Contains 599 unique numerical values. + +#### id: +- ***Description***: Categorical data serving as identifiers for specific subjects or entities. +- ***Unique Entries***: Consists of 18 distinct categorical entries. + +#### datetime: +- ***Description***: Object type encompassing a wide range of date and time entries. +- ***Unique Entries***: Holds approximately 10.6 million unique date and time values. + +#### label: +- ***Description***: Categorical data representing different states or classes. +- ***Unique Entries***: Contains three unique categorical values. + +--- + +Each column in this dataset offers distinct information. The orientation data (X, Y, Z) seemingly represents spatial or directional measurements. Electrodermal activity (EDA), heart rate (HR), and temperature (TEMP) columns provide continuous physiological measurements. The 'id' column serves as a categorical identifier, while 'datetime' indicates timestamps. Lastly, the 'label' column presents categorical classifications. + diff --git a/Nurse Stress Prediction/Images/EDA_plot.jpg b/Nurse Stress Prediction/Images/EDA_plot.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c05dac3f33e743cc4a88e06f8c9c7d086c9f8d5b GIT binary patch literal 52834 zcmeFa1z1$w+CIMN29eHDLQqPOkOq|!5k&!M6_ApW&LN~51Qh9(6r@w6K{^HL?vNN@ znE7ws_pkcDtJl6})*AMjz4l&D-Ov53K@KA)fipLy<)i@=6cj)Y{0|^U zf$IP^CMFgp1~wKJ77h+JE0|%F!f|81w`2q{;#Y?<=`~p`6 zg|6R_l9rK`yLs=vvWn^hHFaG*{U-*7M#fgwHnw*54vwDBy}W&V{rtltUPMMkzkC&w zoRXTBo{{+`tMFY>aY<=edBunNhQ_Amme#i3zW#y1q2W&>Q`0lEbMp&}OUql^Uv_r) z_F)HyC-Xu9(0-lP|IF;vyokYhp`xRsp<|uQ3kB58Q z{X^DdH{74c&wKE54g6dKKi9xtvj*5+Y;|P~SEm4JuRq1_{ZqZgCA&;~aV6&r2=a6$D ze-Z{)Gs<74R*8=?wb&YMHk+M1E6F1b_rRW1bl1w*z zG5*5rzbqtGWIKP)%K^PmAI+LwfKYT1Eh(UBoIXL-^b*Y%=50;BcOOD!Z^{x9PE+7s zfy;Py;xt;Rx^hL_>UCyz9%qoxW~)5Vt*UWSey%{Bnn8ozHknELFxF`R3HXFbN5E>7 zCFtPSt;!2p-`|2JI8HH?dvw)72s!hT93J|ph09=jwYeDxzZDdA-KT$nvK&Rv)6K^r ze5ba!mH;!>YrX!);%27OCp~?F?z2}HXrJUMG5l6J0;!>94_$5M|wMw$vGmVbg`Kk6qw+q7M z%qII+rTSg(5xwJiqm(E6{^=&xJr74*V8vR|mtQE~-$sj2c0O3%q`=&)-H7|Fvs=NF z(PF_CD#mlDLjI*0_6fK9;1JB*ESNhN$B1g6c5%V;wsBonsX+X2?ovQ+twYb=Nx7gG z!2rvauPK*z8a*1;FY>>QzcPES&2c-`a!Iq~#YzUu;C;p1tl7xzgv<$=lKY(JIlr(! zyG$2Zxz_Z?lh#IWy1ra2$LUF8;*K-_YCSC;q&;U;>*b$G^*^&vec7c9SJ%o6# zV-{o?^LH4LlKX3N?vAL9(kM$Xg)15Ziy|7+Y#qYVg{G*&PPvNr;?5Vy73x0qSZzQh zL}jC|iF`9P_E;2JU*Vcdy+(0|Juu<(Q|IXFM69aY*~_km90m17+$2M!`2{T9Se+RnTc zq{L%wsY9Ia(k>Sg?6uJl#gePpO3&iVO)p_fsScE5B9T@#4lTgEgWa?`L$yGPvUCPnd*;3camx zhGf2ndjXD5il?h7>U$drGo0o+E=9}g`pt!AE|1=A&Fm!DZQjE2SF+Ct zTgIx&%_trai(E$n58D%tNe7xWU`XJ)I8mU&H#VZ0E^MU@!Nglx?T?6qQa)nXK?*%v(PD0d|vTR6O*_Sy>Z8LjVKX@7IR?~x_# zJM^bbjUH?IO_R^+J+5{*G|mS(OtIDC$Yq)cs4GOK`#;sIE%CbWz)XPcvgu--vfKNo zL=~70=_a-@_iG8@YA(8YpI06umiyMObl^4xwlm3ZuSwn8o?$Y`$ORm=BW4KDH2d}5 z_7!8q%#n0_nyWCsHS>%d5L%#p!x-Z~+AKy}HK3|c(vM$CaMA0gJ1~ojPJnEMaH-cq8+m&-K&Ah8tRD5ecr92_cL4s1-3j^4 zZ7NP)`Ghl?=QZMN=Qe!JvWX8K>3rZ*{5T{&v$r_{zp=Trr8->uuBOfo2|(OPCo0%& zHU_~jwGr+hk}j{^dXkproBYTx_q=_Ndu&LO}UK5 zvU-l3p16)UH}5;w!ihQp@##%2%)&*=HccBGm5+ zd{Xi*3l>l}&fBM3qu|&}$5+$-M$-846=BBp0JJ$~KAYt8=Q9PSD%_RCWvrnDuM0Y_BpCCV)4=SmS38MH!|Qn;QgNFz z<~$7aSj|$l-({#mu%`G-mU`eDW~m(A4zm#AekCVOjT)DE(FFBv%2Jc*$5%~wFj1ejSc|(GCvDE6 zSW+A=n5QGm$YokAK>vx6?7|!C5_+-zU6Xv$F~b>?{o`y2=_R+yLTOCF8UO6$H}7C6(=Wk4 zGkv-~i3E(uwE5vLiH?@tuH+)lk9}TxGCtmkS4*s^qotwtNh8CuB0Nqoc2{mVW}nx!j6Up`zYCM1a0o_(GH2V;h(k&r-tA?nOurW=EA#yw0TjR>_uLrpHE$z!?llSe*A7`@OXGrl>`z{bC1h#H z(aIGOaZYn3AYH7fA+&Y@oT-TaH9z_@!4p5A4E0L7gCh8bo;*gk)}-RQ35&U$`Q4D zx|yMbX_RiXM0;{MYgmn_qAU$U!PS{Ebh+O7HfDt_sJ_!OC=~9k3v{jfd9E`L`kdu+ zVFI_i!w{qCV*vq~@Tlv$xF1@2YGm5vE|qQgx5u+k)6H#p$gS>d(6rmxhb39fW`}AR z&U!IxKvui4lGN=-CHt+9uPrz2rXS%;%S~UFEzE3^+-~zZHxo!`Tyo^3UIm^IxI+K!oYB7qfA}Eo{YUidZMH${xSIq9GKKwXw;xt|T~JH`EO+PKIPXf40{`lv`jRCOuIbF3347T()uXG= z(Q?EdCQqAJAlvTF@=|)5A|(0^+0yPLKL_|I5yTu1jM<(z-{jo5C3Z8R#G%IOK!YFt z>8K0|-~xMW8{|tux1%4qWOY96Sib0wMkA7Q)B6&!U#(u1m@Fvq?5s=xmocDuYR5fStwN0G#4CJH8ncF6L)D zc#Q*Z7&qgU7Zj0ry2sAMJ}wZ^&0Rj!YVt8iaq%+aW9xgWz0DGK#=-31Lt!kurZ{M` zcU+N3E)%A!dVY6tSgYOkK|zh*TXG4FglHPbzv#~_CBd;Ib?5d}~`fiY~`A96mCb8bs)PC`nWlNsg3=`3dx0j?HXGYxktE9H@ z6ndS-(^klNICgW7XYa6wNw4!$)F-?kDZ__ngiCYBv!(a(32Qz6AiQ$rqQ@;So)23B z=$?@ll+T3yx7F_U)u~oYe46*U^}4aZI1JO*qa^vkmkXcuP?cY2T#wnUzH+}{@F`<$ zpILH6QN;NReucRnl68k3tZ4K|pgEqhk58sApU-f*EGUxsc=Uze>qI*=W5~X5o>LS3 zHKweR?A-ze!YZtye&5}C|d3U2B+{|uQ-=q6~(9%`thO1|RrfB5rUuTN&G2NqG;LOD~b4~2Vx;sPg zc&2`waKOgthQEA(@RKOM7iUvL?qFYqODXpf1NCUkS`XC zfM__0-kfh^H9PlG*f%zlxjqz!5&`*80vDYg<_jUxHdYO#!6{l|_PpahY8S?Iom0S$ zvJR_zh;a%+4YQI&0?)&{lm;GoubS*{>{;N+O1_xEO^iq|ZY?YAU$5eGd3?@@J$f_LcI7H*q&9#Z>0NaJ9K`TYpOCcxj(6`ke6J>(T&pK|JeDlr=^e+JIsP7Hjs9qSW>{dm@$(x+dTJEW0t&G z$$s!2&15Viw>0sATMEJIm8#uY6+5pg#;IIIg{rFBO+>Vf)rIU#^B5=Du~CX=?%~q6 z0kqBBT9|}09TK>f=Z6H`h@o4&z}h`Y7u_3$eVn_bhBIaU8inTp%`E=omsoQc9t-(E z@Img{((xR8B>{YFSalOSmlhLXC=^J5L?t7+_H#V?X*!iX+qk zDztzErcgHRj&Unk5P%eD7kiKZHj!uTqH>S;CMp-=f}0S*$+(N-3FA7QAe?df!k{0} zCN~brtQFxv021&^B=r1c++V&T4~jSg!Gd;YCqpOEb>Iq+O*fb@!b=MTo&W|UFl~sI z_{*?CKd=1fJ^%7^wfyHw=nI~L_YW->P2x{$m;2TPj0!zf&^(PLN0;0{g7gRF!6Rfr z@>HDeSMLbEhlC~)emD)BhQ8HKCCcS^=6dDryZ&7++)ooDk~XFnvW}+WFE0)kl`)>% zbN~>fC-ztb=Qtqul-;0z zt(b~fVXjcb@+PeZ*;e^<q8lx-Le($iH^!P`5vNT=8z%onkE?cl4Efgl`=?DgNX$ zxvR8Wv6IRWGQ&61=6K6OTqA>{Yhje|waPuKAv0;HQ2zgV*)=)-?soZTbVhb3&c#n% z{%`5>rS~2vSm*ZhEa4cFn?Xo`G|#UO;e6sU89Adh*Vht2hdD=)fD{K{egCc$K>GDD zwv2<}EmJL2<|0r}P55rwoLtj5hBMBEXW25j)#_>ZWt~EeSk(7h;fga7bR|EPAn4=% zAJpGJt>&pP=%>N|HJ7Xbq zYLsdO(=y^9W{nj{_Wyy$8|~%8C$HJLb(Z;~3UAjvmRq>bbJhaY!$EK-y9l_e+<5%j zm>?sdj9|HWzPK#Z!Tm~5qvMQ-LE3{vLaRE+HVPOlzs*ZQ0%;MdGMWn>;mjS_Jg+iRMz?Hid)8c z#1mOGb+H4$9Yu=7Jw|R&)w-gjU8Wbn#z?f&Vx77)0PzCa#0tyBl;i4rYR=vz<7+ zXp#usHQnLsf?*-#CcJA`DNK<-a+I6UrPH*w1ra_ZaDIaVI;(Yt_q-m$ROR2$$d!Qi#l?8=`eo zaWT)8HdLCIEXKsz?K^7bJ6T?JGqbvM7N({_9F#=*Ok%Y8o_0`HeYOIru3YuI;!sFj zUaq=DeK$rJ_d!hYo`#hz=SO0fRB2t3r!*f(!YeCg&e1yEFG6XDp*+#Smn}WZ6cHqU z=d6g~UA3Aaepw|sG|@uKWs}UjKS-nmRm>|SaJ#Q|r65HZ0cJ*ZP-!TKAc86q34>2Rv+}O9 zNT9{(gZLg9^q8?cFZfi)ucr{+YgQnmZ1bc%=zH<) z+i*|>A6A+llNO=$oR)S~!KwTMBKu0jhc`$d)ph{9Mc;JvqxAIr8#$)aU-viKD1Q*h zyl4A}o6;cI`7nFqn8rkl?py!+YhV03zPF0UMgpM(UB_NFkYo0k6KzF|1kTYU9N{jD zAFAi)LX$kwD6>7q{@#bKG@a`GkB5le!A~(2QmplBCY{>ZC4MBZ;&r4V8 zu+X2l3A+ew%O6RKlnC(OmczsgecdGf`3WQ}2l|Z|W>(=DSsJBHc$btF7la?m^sVKg z5RsMRxfg9GzI{fzgKoWapHB<5OJPgLD{u1k9S7zCX8cm>=U>isq}5H)wFSqyHQxl* z7L)yfX#^wxa240aG#l43_K=aLKtt0gmRIen?mHy#DZ4yxdF41N`ndWaS+(IraL@h} z+`l2TCmzRtk>CboC%|4CCG7Sc`j6y@g8odyi~E!k)4|f6E-RL?5E@KDPmX5k!HgQ=K^EAFL1pSV2AV!;T#BGxjkM!q>KCeH#nj zYK%b{r9n4uXbtjxR`c1qycD59(ss^6?xyf_rBPk2kHb{&>AH#mIjM(Bh>QMTlmisX z`}pYi=j}%{Y^sBRSE@86FP_xV_+VkhM^;PF{vkvv??Q*RU@jm&RD>X+6hJ%sa0Ls& zqHcH8e!^KF&x1Y?-x7Iym=9(YF--1F`E|+9BxK%|A`9#O1`zv>MwqNq4caO@Si4FF z`c^4s;4*mD4*CMcC%ypWn8rqej_!2yW);s2+U@=4(A7&w;84a&i|%yKuP4!4Zdn!( zc|lhNQ4ltZyYmT@G{i6sL_IfTK|5MI>LRq@4iYG>zUOtHVIO|g66kQFU@6CKBN%I{oY zxok0qBx%dsu)E#mxtHOJBbVxNr1(F0^M?uJ75w! z2nPN}t0W*Hjo9r)=L>hU_mlK))Hc)3J|Dr#&M=LI4bm`=L99#*2$+ zv4i5X!YDiUkwEtfXslI0rPK?Ngn*`k&J;8i9WuX~3cud}1XH2JJ(4;Zi$8e>wMY9= zn$|M6;W+7*{BmiZmI*~@+E`V@I|e>ZwY9f!L^bH@y zjW1K~USto<(tVinF=T$q_v&6EVfrcm?2Yqz7lQTYXIb;6!Ur8VGQ8L4@|c2^b<3zI z!)IbW8jm+Vvgd9Ls9=X~mCg55gdRpd@MEee{F01)9#Wh6{le0tNJl z?503ea}>ImmgkNH21>h!#3vyKEUuv8d8<{5@K*;GGf#O%p!yqv`&4OxfGoH~dWDTa zH1t#tu(){Yq#t2&Pg|xTL9if?nGs}Sy;a^v1QnkE#XkUbJUyo1DOc+cXamqNuy(Vv z)Cpz~#6Oe4SE^Pq1a|;oW37mT!APSEpOrs843Ev7JFyUIuQ9%Z3IEeE{y7L6>x%xQ zi%`?yh+aia_+YO=eD4Rj`*r4w2J9(j>jL~}+-M>wDyf^R9T_9)jni~buu4A@d}ybU zW7SPaaJ+nV?L9*&Ya;$Jg>+GO5fUgEamc|BVh{f~Hyb4_Xz*lRF6SS@uoFCgf?%HN`t>xClo^4;4z7{TO~hN(?4by_ z-n=|y&w8cruui)`yX4AoJpmFhM?A5Fy##~3*_gk#VE&!Yej*0{K9Vp8H&0us7>uM( zNWGrH!`t1#6m7>vb&s_59KdcGyIRK-Xi%*c-lsBPs$Veh_^p52a^qB)hJ)6a{$tg- z$62^fMP;$X21=y>%L-K=o4(A&kX*%wgNIB{OV*4vtJ`0~6W1w$m)9m(IofTeD@5*e} zYg(dzw09jt;vfqJ;k2YpO@O@+HC0wUtkHvLr@fJ|J3Kyr!M< z!wMAsVw3kPAplEoGUNdG4C-#xyP&(=dV+tRrZ`AYRV=_gCXVM2k3pjZde))05;nNL zkfo_0Fuok)4{bq`kFS9#Ro>IS=XYy=ix>RwDb_EF|zmW5TDLb1P##mMJj7 zLFpR5Af+I#9Hm%fu8j>wWa^MAPtKid-f~P3;+EF_TAgkneW%5kHMG%WpFzGZmD32?_nZBc@E_Il@FM? zREgSw3oiqvnxPguJeu%e=s-0eZ3 zV76|Tt3Zi7S5~`Hfdm+}BeYGYYY#9QLGNeifO;q9haunpHDOxE5OkJUU;w&vUR^mZ z52OpwLt#XS=WI8uv!STF(4-gy>0}hkiiA>YG;Q}3N!}bWH}N#7U^>#XkWRB8NR;iyL4?z4>l5AxL`Z?42ma#Pa_#Maw2IxZzk|?eJo1T@v$4*7_?;$Opj>NfQmJD0;69+ zk>7*-_t(LhubB$!slrw7OAfr8Bx-V_lLEuL%~y*PoBl+^4j?@*y<5w-lq=?b-ejfK zex6(FjQs3A9NuFYM^hB-u#TbZ7R_qN{&gZF*=-7=KWHXAZCueiE3pn z%#JX{!H!xhttwgm4Fz5WPy77k9br3aVA(LAW7BIdnQwv!&yTMXS~4PQ2Dw+p(+E8$ z@%}?<0{f;8y0q=WoM<(X@*qc%eM*Ap@2-`{QLpCAD*vdOc z0Xtu7rlPx2KhCVFp5j=6DeHDFkbO6F?2!ZAF&zM`txuAL&)oy#t1p_MHFghwHsY3Y zNzpPM&7i+Qo^qD`wFV*N*?~P3O)0(s-6EQ+|Ce?=ar(u*eTst5QkKSkHFVV5x>gqN zZSGp2PK8hsR2ft|{>l#`>$HzXTptHHJ8!eWj0;@{NcB6_^Xu0;m^ZlEj7dQIOD#bS zL%pMQZb9m;SjiT+Dj2FZrXgbI`>~GYBcO|>+Fr@Di`168#Q`T;W>pu|GOwDa^}#(| ztE?oxv#9(oZYcSP+!}B2fdU{+QFs%)b8EFbN<$JzV0m=WBw>>X9`WbZ36kef<=)dN z0Hi8f(SE!NHyJsivW+aylpXQI<}hxRwMaOUc#aga0;dw|f0k*_=YfH~5FFV)zsM?gNEhH{Yteg=fZ)uKpSdz_r!Nt@=CsGCK8r>CvqI>Z{rZ2W|LV(*KRBE z>KtL{Ko>{V7Z-oO^WXI~Yk!d3F)lXBZZA}8q%~->i!zJ`oj6j2_6*UK3Tq+}Teq`- z==f{>H;affoBDB;tWJ-t@Z>Bh=>*C&H)i7Hu*&(CBWH#V@r5`O_*RhsVO6DJ*Q+ZT zz7TAjgScuRC6i%8G?E9KAE}Gsc3Tq@OG9sP+`9A`vPEtz=$ffecAcAHWI=xtHTvPu zC9UvN!w}kS4ai%U=dCYqT17Fwd4_}Wt|d2%743DO2#raG_9xBOH^!eSeiDa-LJ|>=^JNgZt{!hpbhfd}4vFS3 z&FU=QJMIC4lof=u2`r??H3h`|J%5z^0H+uOV37VTE&JEB1DpF+ecOn40uPY-%k5(*?fwkZXHVss4*&4er9i1tv`x!K4Z3g!c-^fJu{6J-=T4 zHb^}EGHrST+F!|n@ZOzR#1f^C3AlffplZWk%3tPy{oKF*$;#zjL-ntP=ro34tl=ME~Ynnk*?UK`m`S9fOa*%_s% ztF^yT*Dfj6uA?b_bS^>sXeNxxwai-;Jn|JvQ$eXd!`b z4j#b3{vZ^aYEf1Y9e1Y!#9mJ&s)qY*gb5hB$Bb1=_G~A;cs}1ONMuQDy_)A#7ro~g zpEjM{j+e=qt2dyk*DXs&Lmo9b8BBC8?5X{-27(-UV?oKo>yW%c!LTzYtH41QLCbK&>LkXY0n?CG$iAI2k^*iwxo$ zAkebK3;kd;wQ-0Yas+}-a0S3zm3fNmfCv_isA)z#-+jE%tWHZFE|1Y#7AezuHszx3 zE+ZOzH;?G{mTgkHwvJ{!!8_5_cs=(4Uo56A?|rc%lvQ5UXs}GUc~E>|q!|H&A})o% z9vn8qkHGkGf(QvT-oeVetF40s@E~AMf(hgZjJ{!6;#0aSkS}YX%jygk_L6~{|42DN z;p{HD2$vk_h7VYDmx%|l!6?wE+xLLPR+MAe% zbslQM%UjXRB=WESPf5!^R4B!|A`Y5rBw!8YRsjX}F61cXKv_W-At?Y^2b(I1VE)U# z_A{g{7mnB80VO`<>JR@WTIx6UQpS8zIhMiD-t=q(q()O%q7jonq6YRYMFP0v1BrhLfS z=qZN{$zy#CJ#%J#wKH#2WbVP41RfKi#QeL(lG_S`?1Ozi zLedgCWP^~dzTn0RO1_cK4nF7zya$KF6))h;Kg3jnP6~m>PdnL-Cl4-=s;w?(Hb}nZ zLpece99%Q$uI-Wv6F9ner+>|LV$Q`|hs!Ra63Tuhs2*ZBk?UCeOdG6}2nDN9pew7; zMMVj!gw34VWiF7hGjSXT`RctR1}O@-dcNxU`RUKQ@#{J{SsQIIXx(MQ7@twSN|RSF zh$&j%UXaFFerDOc0JFJ&SK_b9k=^IZy+B|kTh?c$ej`{PBBJ0UjZUU7>iZCTpUf33 z=9%5h@Z;mvptEb_)>_hd(Sc8G?=2sRC9Ji72Ble8qNQbqZ{#a(`X5rzr%8_1D4x>_ zw)KkJ*6n^wM_Sv09=u)?=Wnhvxm|NFceqMB_zZr%J9mayHl}2;X^<`T^V^mc55_wB zUHQg|ZPCSqJ$$fwpeJfq7)&{3L(7lZl1UE|EeCR@RLy+UGA2fiV{A&23|L;9Se@-4 znG9;FKR3C3mG4P;tEMn{ec3(~R*aTEM5ht$*u%Q!6 z=dnB&bIy3eVq*5b1<MdH-HJ{L2HdN=sa_{Lw568Mt-XZ*f z`XjMnh3G(|Uyrp(WIT?p!Ie%DyBC3}rds7x=VI4r@dsC%8^BapNu?>TMnHX;mh_i) zS}j*4A6@!5Nm8KZ>|mbF8jiVHvY$?8IA0Y0!M&^k)cak+5AcI)?+s?d!rX_d7*NoW zfN?GK(5n0m{9>}Ep}Ky9s*=Q$@`|XXlu{)IABWBctXRVG8KwyLn5Ka$;bbH2OPj^> z2`R(sTJl-4g$fuIjAi`M=pOI&X5FB;z*;7_9=_<11&s^!%N$GSLJr7{SE|VE>?!J- z5lJN{McENstYb54AR=&<7|aJ;$jf-&EQYdq0D2MDXrSBRzgLj34id3Tp*v9q5Z?(f z{BQhE3;)$dI)gCFpF~C98*2tag>#GRujx}V>hgrz#%`m~VHoyEkn-k|$ak;RbfgVy zd}{2^;r9CMBDbtqp1lK7G)@&l{8?p$Lv(}r0VM}?!}e8ZE$Urub9` zU;{$$-?ftUFNUSdZ$;mV*I+Gm-EVLA zeLz^&^qv5)*)(xf7)-ekXP%`d??Ud}Zn#dIddsHGGfZ`*9Zq2>_Ogbs)JLhfrgVUV zvbxH4EB}*ieXV0*P=gr_jRRBEs(rrXz>|R_|0}7V)W&2LJ4;m+fV<1MO$XpFAn3!s z;j^zqZ=&5Arwq$ulwA;tO4O76T#@aP_tdQcRoZFNpj#C*fslaOS*ITHRVt7_oWike z3kF5k5eqw+A|O4GaUR@8@?rbLG2wWIIc!IKx9d<HT`hOhcblyU>qFANG=EN-`5Auwko z(D$4X3DA*sF3;FCn94%?IftP$UsU$%>l1upP>?_dYx9!!;FaS}@x28^IGD7h;{%hn z7yo;y7Lzp$OKt(CsvWarrQ2YkOVy`N=*YyBoO5mzOKKl+gk-$49p15-=EkG=J%DXkOp z=kySKw*IVWr&AR}f1p|=5|T95Zi|8CYbOp|_uBG3BtQ@TI0X{88PJ#je($NI9S|*AxeMyJ4h<+FxcSSXZtsB1tioesTDbJUaSjI-LX^)GE(k^t zE-6H^vhbHfrGX%Vr1P6hyDWgrDOKMe#@^)n(=wDr$e)y~Bog|c&M2055kOm<8YlM1 z6ptB8PBh%tZE%;5axUM5Z7xY9pd$xj?8TrhcLukc3v(noJXAc!$V4Oj3IP}-`%1DC z@wv#pB3ul;{ssd0QEL9L-QwnV-02^}8m}snLtBoLp~F1;VC7@!8|d6eBv1y8lmTfg zkRrt+OmKIeMO!doabP9BPQ9A4NpH&nOHVj0RRWtw2)Qn>vSXFX9Nc}V(K@op@%-;; zr0@Ou5A&^lXAAy=Ws?hbpW#x2$2mF8D;%cqtKb4dySb-^HOHvJya0cpV27w?Z$<>= z=7ZDRK5sPMaT#1$UE1SUj(eb=#gET}RD`3>EPvMgGe4{h0Yt$5xRcCxtyQ+FxzfAA zXG+cHMESfhXL(K@V-l0Dt1QnSjCYK9b;#u2G`d<3i?oC$-n}##3?13ehCbPX9;4<$ zHW496Rq0u_qUFN7&IG)aQ(dsdW2ngv>D!qOP>|kY_wze5M5yL6hH28uY)$qy@?< zNwhYj4Z4y0Z)?#H;+Ye{t~9(gII>cz^)ffJquZx9gz`c9xtP%QZSi%<#_S6x>N_$x zHhgm#Dm*@ikt&^!a4G?mLtvjn0ZNv>YQXvr93t^LN1ORqQ!h<7B9m>S)O1UX1YR4y zYG=}@TvNiDa&Oc#ez#I+pZ}pXb7{n-I&pw`d$zRNK`Z1FCwC+_E3Mw~3~V=%a2zy1 zM8cJzvGmD@4izUJGvy|DPi!+hIFf%RzAX|N0Fu*~u^J$|P2JF$d<}7e+F98W`e*@N zByd45---sYSi25Ego3`Z%YqtcSH1sR?doYm`~%v54c#aCS7ie-a<+J>72vkS!#c|X z`8ct4`qb~3Bxan<^eMXl0~Rb`y2!didPud8qnPHR^QgwlhOip$P?t)G@jRbkMz^yK z|GNuuPzQa7^ya73ZDSdFQG!gSX{w==a&=3Qf();wDixHv>Na6^`i2n9WDl+H1@+fxmvJH(zP0s#xC75X4dJ)WP>+ zwmPe!@i^pVusHi2Or6uaEtW$8=}p*U+0<7H*8Rm8MtZ=NFgt;dwr)I*o4{UPvfEW1 zGH9zrH)yeGehHwLz|0E0%yFOGbix5EHN~-~Idn(A`Vt78MnEej1}jMqEbL)Fy<4?5)4$UvX954H=(n3`F2!@B_!Yhq7~lykbn)L z5s>c4c;~kj{_mR3)93%objM$zG*DrifcJzGjJL9&OLWC2oX>AMeq)?|XXNb!@ca7s zi;=kBi!lFz9eymvFM`tJnFJl?2OV%}jou8ngTPU)+;qqRtI#)6hy*GIKFLgqtSW9P zD4xzxm{0A)BND(e(P5qmaGPxZCAPqwYd=7nqn?cUEr%F<#NX@@^d~z*oyxiYtt5OW zn5PXpYDm~y7T+d&>I~*#!(4ZucK53w2UOYAiU$y91;p-K(CKC<5u<~)P$<#I6i*-m zFI0clIm&NKK!pDy9w%(zpW^Y2ID9P{C-488!~;yze=Q#Qa7S5DG$s2K#7#mk5aS)4 zIHoecDc*lu6c2jo_wY31|7Lg!iZ|ne9}-weI}rjr^$Ef*xP0-;qx5_WanW2P@J~ZEkP@c^emKMEyVWZze6jYwu_N`PK62!yHhhwGwxkUozG6;a*H+!BsT|Vf<;wty{nP!oYlxAm&oYH#3DtBoD8=9e_Jp| zezeELHg&$jTwNtcN^I=tAwz3Sc30~2djLxU%Xn!K&3j7*{(=tgH)t#EB^ur=A!)z% zw>qi6l%QlpW#=07=1R(DyekXL(-{pBG8KYXDplTl?jB;hskXP$cpHkjLOlu-u5Y~% z{Wz+m#NuU!Mw1aOI-oD|7SjpdOuyUx3D&Ghy&nB2%P{Kl^~_t{>?QkaY>e3Bx9>Mp zJ;GiYFNoE-6xMg!QpvJ>vf`om5l=n(ugm#Gh{vX*{Vl6^&Qt_cRDmW`#D%jy@wyP ze8JMQq3J=nghQuD8=}5qn1~;OubsQ$vqq^g_Wp6uW9!Nids?2%uC_^9r=2{gayR?V z1Q|?y9j6#8TubRryJe;#5B`WIJ@MzvrD1&Qyzx^x=U?|(C*luDpt4T|6UwuUpu(F@ z?YB;G5v~46F~l!mfpx#Eb2+RFojd~;lmGzbpA!Q?eDAR=U(n#2Oa+a z)vx|rmtGM>XG6fyc;z+pl7YYYY~rHM9>FhkzMUg*E2soSdFggug*eK>G}Kqup2N&uHgpH&-tA9Y0?)1bjg`ThoxH8`3;W)GGF^h?ShB>am^g!&Rl zerd}>7k#s(YrOMTdc_ZK@<^FVcYqraFSjX{Tark-6mn~^cHhH$kdWmEMa=6RFZ6 zAfiI(0-*>P6j7u~7my~M5PGj7y?2n%JA~d_i0^aXb+%^K7j}cbwxIZjoKgkJ|c`ki#5>$rU_DN)C!n?QHqY{)`N@!Z_`^f?#870*)89AcHq;SPY zCnn9|9)6mv@+`xfJF(@#FRhcun1&DWQmN|9n2dEY#PH$5)`>sh^h#)dTC>0E^WPzX z-vX$AfxGh0C3pNGB=EZgKlsHh|1UDHHwHwQ(VDwgVK_jDDJT^-_D1dulm;|Y$pM%>)yPOc*mC?tyAFNz;o{|)Sj0w#K43yFZu|{5`dUh}$>~fHsB5%E^ z65yy>!!{nennN>@V#F+^{pqG1^owu~+)(=MZP&PKwItoUW}XG=9Q7r0s}}a*lhd^> z+`D!61Vu^avCusC`54q+qtvqP9)-@EA4YrzZ6C5l8hOzsNIy6jV47En2yR6!jA%ec z7SBZC2okb&GGh}34g_MamDB5U82#z(h*VM1CiWylsBHAG=?UDZqOL-BVDniSgzQ=5 z=2Irh!mEvLq)zzallU!n(~mahrSz$b@Fl)0%GP#nWULFo99{jAK)}JgQ6tCvVG{R%~RQB`? zz)}U8dlM_!eMlr~C`BC6J zlJk7m1gu8sc&PV?NT&8?DuAN1R@nUbJPh|SP}uc~pW!gyF}oiFST^4Rj7q-Mw?lfK z?o_Z<(>}*&xR1LJ`7VF5kLw_B5T>d8{;kbkk{4^GKtaE?SlA-iG?9M;T0SiA-*8D| z6c`}V^w5clwJPVls|$*10N1vrS0~C)Q31Okr@YajHevOF1*c9Jna&u6x|AS5qjapl zAV~Ia=;yy8Q%^!&XT@Md+MM%UCMqOT(e_cSa}OgvPy3!!Es&_xH|JlG|X-{WKW8s{vnrXAr~8MM-S-9TI|_TLY~J< zJ_9}aH^##{_-yBrN_@+P=z*nZP}CQTw;ii4U?q5-iS@2BN4G%)?>lSia_331Lozto zp-51=hsNHJ_Rtno<_QWv<7@x7tnoLB?x2jt>!HWU+aD;MJ(jEEL9^aG^Fe%4s!4=! zrswSTca9#(6*){SMl37eZ3d6LYO~unf$b!$neVUX!)8PGzk@;ylodgqRsr6cR?vkI zdJo>RSi=qek=S$AHS<`%51F@A79wzQm0kqKEHpn?wddxKEQoo+0&9+6&zDYj(ynI$L8lF9$7i@J$$lWUJ#N1HQ(ccx$fM7OL3-VH# z4_69vc50MoyDpJ^h|nt#@xh%ZVm7nh6reW>JCbQfX3|kISM~8q8Wd}5PTU`*8JY7+ z0SP9gy(Wb(*h8I3)gF%<&7^+6a-Q?i8YHi|7KO;v|axz@z&&js|H) zQf;q^A#4zy@KrHV>$81jh{s?ztY}MVE^o6U_Yj$?luRjnLcqp*xbB#wu80=;` zHBlRYlxfEmi8k7gT3NyiJw%vz8cHj@FBElGhcs5zb;I(|1gBVQ)S_~Os1b;hj5%v<9Cpo zGiV}IE@0nmLQ&4~x{p5I2b(0;;e{c7_Mu0+>=i}L56D#0CjH&pK#6|XvhxVB0Dg{O z2Xl%vQlSc^Dsj2sXLb64GNpc~e(4Bv>UFKDi3y|e_13XYOTK2L%mDY75P0bg6d_|M zt_u=>X>juSv00pol5Uu`8nV6}W)P-?*>4wac%Q^kH%UnM$ z$Qz(DxGb+5yy84Di@^zdF(pSX!1~_Z!x0?UzS1?wk4rNDxkjBrO`Sqv=pcI$qSJ|# zg1XW2lHGX?<8Dwxx~mjCwNE(j#hsbIS8Um{)7!v&j#O_uxU2siG-m!Y*UY4RLKnE^n?AYeYjvi;eCsjWFd%EXhOU)aZnmQ`m@l{3ycHxO5qy~P)_4KC9f zJt!SLV7hxhLg~GLeR_qJc0}rM4%>c4cg;)KvaB+?ZwEM{O91MJ-;n|TLJVZAzlIlJ zM3m9IHyT#40d&II-1Q%l_5_!bL_tk6&JFz?)NLB}pOYa0CNpz#^T%v;f$g}VXu|={ zE*=Jd3t&j-fzC3x;r3p`GVI+cqwk5I?aaNOzcKF=+RLpH&NHJareM3(>#J#TZo~#t z80JN1xt&5@ATQ^)-vI2^-Re-y_w-K$6&b6|YQu!=-kYdYU7omH*ucd_pn>gF z)N%*7yEK64z)k|!tv|09o|?nD(4m?b>dWsgu+Yi?DNK?vtUr1(AK>jWWAGh*^t=J| zbOtV|3GV=aOuhi;nkjMtfLN;m8FeCX6oz2sbwJ^?e7CfuB->fpyL7Nyz;= zPB2<|P=ASULVc`xD|n4;U`tFe2P=Rqa`2Utr23VagzbY zf&p)CHU_B84gl~?{?L+N9LQgT$FqIPn2hEnlKZbS177j34S$>JB(Oc3djtWT=HJ&W z_lNI)qrnOnuv~1-UnuZ!6T`Av!KtX`W8Fbv7jygbR7^-A15rRPF~O%7Wb0sct)YYT zp>3#IRCr<;VYu^bSmizKwpS-gBnx*fRr50eRGKpb^x1my30v(C0WgrS0~@rS^`NQ8 z1|~$4tqAHyqRP(`pH%XK!gW94nI)Bt4*ch_o=P)!j0~tFuPXgWpVMjxPd-HIbNiDcTVN3Jrk~Ki%IRybQ+X6 z+U24&&15KEJr-e2pi5 zdzL)Es*Mh}5Unt8qI%dsQmZdHgb4k-*V~l_CWRkC7TRUad-f$mg~nufGIuZm!cugP zy<)1Xs}i>y9O&+xMpP~OGrNL7*oD{#TP-}GpaQ=>8UVSeUcp@1mOB{{K|jxU^SC^I z&dy1$a9cv|7*!2`dA4{<<+o+5#y^XOW~@WJ%g1kh2R${VmU>?Ks^kOV)o_%IttEyW z$S7YWnI}P0{18K`RhK_w$$~NHgRkj}%Y!vz1*Z|8!!U-s#dEl(&O{m-%_KDwr2&>|YXiA^|qs|YmahFvE zci<-E-+whusGM$k>uNfjm?E3ywG^p!vT`75TH=rnhJpvkpbui!39ws+^wtagj4yn_Rhw_cnb+ z2)fUFLw^FmH9DmX$wfuL@dD2(oe&V;^SpEdZ_)Op{thyZ zbkvmkT0#z+My4IKuw!I))vNLO*<&dAvk6ZgZ(QoWlilHv{sFY5LbXA4*Kjb>us9T{ zN-v`JkzYak)5i=|5c)pW$?(NXO$@l{I|%FU(!TV_%j+j!d8zy3X9cvXMGh2!>bqb{ z4Acrk-CFYMJBWJUybm_19@cbhK4+GysMgYm)=m2kiWKNnk?`)5s5n7L!P@$K(I(6n zE<VPCt;fkIw` zmYEaIh)=TYNPx*p=7ABMAhu0;k#xNHeg01lqC5jNS?0N`wk(zBkqtAXiI22^5Pvx>u0aOIS{5@zP9#@)PlwGu?)r!aTWE zym?17`6O&tq#+xknr*h`F2KeHIp$mfF?)YZ55wE}ko>h^;5T1IDEx<$VhJb}ISSZp z%mM&elKyus`SpPku}^>eJ>xqxuhf5C2Y_Yvx0N>Rs67X4^_aOLV^=Y-E@EX2HPyQd zU^zc5ei()mu=x7SfEObMSbVvY`1NeSHTmK85Z@V_mkozX7jY&Ry!9^!UO&0*+r0^_ z@g!kSYXdpcfgD$7bgJ|s{oAXYlqXqlEPO$;;qAf?`6h`Wwe}g5 zkN8Bofz`=N^Rzv>Q-7MKq?K zgf;I@kE0sa=wGW-G-ga{geE_I=zRe^&?3cPCC)h@-15-t#B5jZ2i^AW;j1HMx*=@q77vD4XWel(ojZA>5r_T=!1g-qBG40o9R##JqU4Cu) z;}idInC#fLGX~ST>Xy8?0jlZipQj!49^Z+O&hx!rPU6jcAI1HrLZ5QA;a3V|17bUK zAHbLc1CASxdotRlS`sMr{JYk$Umt^~{XH@N*`YrBwVg3_KT}~HeJa1sse zjtq)Js{EJ;N_AIxFjBcV0x3bS=oPo6Y7tEL)bk3OF#H5amjBf&(uI9>%z*Xf1Kjrd z2h)I=0DR3qv?>4kh~B^eaDC^mZU1PP9>A$}Ob^)b7<{$ zTnqB}O&uw|zOoIzO{XKHs68NDIv~s>cRy4qnir8)VPNsPk@5!D-v2z!W0L_2mp)dV zAANiW^(uY9k&^l`mGW&UyDy%zA|S7SkWE{99b0Pc2~{?w9GA=O+(MC*IV{ZY<>lxb z{wZ4hMI`U42s;p|QgaJ3qNo;1S5~Z@>`cdH@ibzgHccA8RwnT4OVi8wGs(2M0J$Xp z8X(dBYP`{m7-wQNAa=0r|T`)cekGa?0?fCztdJy=H%C z_+NrG`ssgWkl_bdZN{i@TNtVEM39=gDoe!>|DY;=>FMUMP=|x=vwK>qSEgimivC52 zHvj0ba_@Yi=iaLESWv89y;=>EzF}&a(Km&~7P%-(>-sfbEcWmkzQ*~wJ5_OLk}Ojj z^4>9nE{M$Fw0agV{K)ee4(W#I7AoZf?M*gz`nBxeOBV9w<|!!@)0%QkP&7wFCR0e( zjJhtR&}+*a_KnYLmL5wi#BcE6HBZx;Q%oq^iz2eew~|KVfwquXoHg-FvpYtmV**eU7?~|umzQ|VlkXtqr!20))Ncyq#j)KPkJr7~ntEye@ow*R)Xlx(dX zp}?)ewlo`#iY2}HJZdOC&bm*U6-Qw)#76hy5@AWaTY`Q=!zk@Uhu!DXAsc0u zCf}mZ!QrhM8dCkZ(8RL7w`hwr$a?O~j0s9V@*>5|RJfro$by{z<(B&`?pw8?JY{)A z%wOG*if3kZm{izvO6F%3w&Qx}fcH4Lo7!VGi=T>+5{R?k5gR&pIqPia5CjXlH9W=A z+&tp)z0KS?mS111bVy@GyfFA^?D2WFz9wtpq?qS?qH9x@G6}i%#E|;gy|@(954jmf z!LCv+Jzf-_+iSpg1ybqq7?N?<#O&d5`sOF`w81ro0x<)xiqcq~s&F&pENWfmBh^gz z7(G`ondqvaE(|;pDC-@P)&LLqx^V<1<~nKOFdCQ`o{7DCG_d86kKEhCoUO8|K|N5t z+CpWxBYFg4w`Za3pGI4LPxW`M7aS~0)bP2n_R_ZTYJ|w}ZItu4XG$ieBXC7#Ra@C3 z$nnfhIO>JcE2>sRmT{w_C&z};*7TwlHaf|kS zY$eoImQz9Gs>kqypI5nHEgLUq!EMa=b}!euRlhlV`Hqr3BQtZlZK+;Dq$ym1G5yzmu4i*E&7gtW7ZPd@pXNLKi5im06@l+_RO z#&1!*-sR)aHHo4FiRylkXLr!a!lTO=mS%qHE>b({9*fj1oFKe)M9xj^>l(bJPs=zP zOcv?a1CnYqP8=w4YEH?tR9_i?oOIgvOZC}D6NT2-3%n8Vm_7#MEn&D@K z-VtoAgpT#JsI+VS`+oJeZ8Pd9< zAjjGmiVh&#vQLYPa^p=2KO5C3n5|(lJ3`GBKneBgLLS$@9@WZm4ZMZDq{_%trIQY1 zYEwQ>zs;_leNUcBPYHybLJ30sOfgzOKg1bL;@assp!YxX$$Dr4u^(M}!<%%kTS1{w zLJzpq5A5#(1R&o4;8fe2{4?MYJ4^>l{1wE5>*VrzH5iX?E4GE}VK$%@k%zF{t_3Cq z5wCLz;k!%U+HjWGl+;{5*8EU0CrwWtJr6CLf*9CmTOS$ZC(zGNOWY4_iDGnalD-lDt;x`Ac=H)Dm! zHiB6jcGx&L@HKzzE+4e}08*H%v7%l0L@`)_J^6Zaalcs z@Ae6#B6?^~B_qUe+g@xPPH{k|$k)}pYT);(z#$@OZ^8{&KH%eA4JBd1&y{rdPb(hc z8r*{N^eAh_%xug&tx};D4x_z(Pdm#p5Y%2$UbQn5ENm|WH924RxjzUiCG2_|dt7A4 zs@ONxyL?%RCcMS1>{Z%{#)L|P+E~M|z!t0D#^|OOcSATCOEfrFa?><2MoL+v;dc}g z+Io%>8cC0+Hh8av1oatsydvVkEOa`q&6FCw{NHRI zQg?XU)na}IXWr!7Oe&1w9S2MX_Y-t(eT4el)v!Kxd1iUq*fvcZOrjy)-T_>6t>C)4 zx#^#=oC@)Bw`7vQO6>x?JxO2P_`Oa)Om$f`lUI>lj`1d;-(?ax!of>s;nu(@N zecvMA%s4uYW~xIw@!M48Vg9~uKQGj(7}B3pT5XcP_cf$9#g~C)(Yv+8&i_N1n=)T))M{1N*DQjd1FatXX(0Ly$5<^DpZZ2Ap_))3Sd z9(1F24Qk{#d{-Ew9l;f~Wa!;Q%eX1M3+4>q8kDy6NkMEbO$8Y$deI0b4cTneARdv8&+Sa@lhhj(ti+W&gg2^&1c9Mq8QOMjkVXp*u zd2MY&ef5=yDKp8Es0W)0WqNl)x;>awxrDKbey++4HV@wf&^g*jJzjhz%y|@~aqjxw z@#UyV$A^?D?$?v{a|U#L9bXFM^T6g!PBs-gHe@qqYsUjh{Xs!ude1@vIA{e6*;vS0 z6;>5N&iyuWJCUX*R%+$7!y5;u8(aAfpz5cU?*4-Ud>IdG-nw<*C8ots@90eppFKT9 zOf|;}WT9xNA<|g_tZd#HVQwH_P48!k0zL&f$#p5mbuL_MxYXG zhUqBPGu+TYy3q3kP(R*EdoO5CYZuJ-g39GZ!|M&G*981+-7ug2kx1Yfq0ya;!5d#l zqS>9?mhMN0_ke8wkv1Jc+5JIRqJDP?mM|<6s$8$3UX_l38&zCXS@|BpPfrfEd|buT z0rGtwpOszL3rC!|+_hb=u{GM@tgZBdAa8QsT;k3@yzblWA4(!lRWmPx;}NM6s~)Lc zSNs}ky?lN>SU8|lFKSz9)^7rDI=jKoGNQLtY_#m5=i_esg5zec5JON$vlqb!yvv&M zURqeQ@S2>1u62`|_x$FX!~DF1o*HKNlup&IZD4_tPI_F+?*1uNNB+~lnJYUt;)QO? z2qR4NVohr5RO@@k>~=CLK1vVn`m_XJ=O)IQD!rtxJz}mkoVJ^kA76L)3CU3EcKfb` zN>qzOM2st=YSkyd%4?F3EB<>Ibm-6==bKGMg-hKMnsmmWX0&|IKXBv5muZ3sSuM&< zo(~|26rvv4#p$*3iU$ew);f3U<3J0CaN)pIU2b1M>r3hU?Rq3iExb=C=gAXTOFV3R z0vw2!*nCWL93q1FwiowCr6$2LrWIe8`6lBcHg%+Enw7=u45=!7#&ps)@?LDenuN8X zI-!cFl85@6tM=HwF7YVVoj2z8Wt9!1B4AZ}_I>-=ng}6!*(*eQtT8MUA^=?mi-QK~jd}>fEKG8Lx0s2xw<-V?VdUZoPq>`O}o=#wTUirmeXfM{gv7%ktED z5y5lv9rK7m0CF!63olz3YeCRs&&2k^eyo_zswULYk_e?vRoj?g!~OcMWXjcM z=a-g4v>SPw`QBm+L=2i>eazX6PHFPyrMaHouTQ|qO( ziydozTlQ)DLf~p{Xiio~jtRTAjaUqED5JV{J3}h1)JRn53$kxocv#ocgohv)s*o}n z!DX;s%CHzp$F!Z)r1Xoj6nUd5_dz4G7-&pwPQroj(45pdVoDQ=o9MzkzEt_4gGH6q z;9Iw+9l4W+#+3}f(_l~+)d4^lHeVd8y?|2OIG2wzuzvKs)Z!($#%(q{)b`=M{>=k% zF2l^q%A{pWnUMnDM{K)->B||GE)m4?3)?((SX;f;5V98|^X(Fr%x=7EJ>gJ8$-#u}&23)xp}T~(a0p&}Dh8wW zmZ&DDT|)X0q0XRO)?YeYRJu=xEgZ&<_-R?$BjssU{|C3~|7iRE$2Oj*o#TK*Aph6I z#5~hKt0_yJjpP=}VK5gS&1Dt-+C$m_Z3{0D-f@3tpiF(!XXm0dgK^7Tm)X+3CNaQg z+5tluI)0Qwl+M3+ZJ^DBspU#IGry_nQDi<#yecsy#i=`AEYWNKqzKz%F-mM^4=xYOD5 zjvx05yIqgokTel|LOtzUe$I1C+s}}Bafi)O8ZjDjiscXa2;WP-f>@`$QvGJsGnZuh!;K7r(;gdwVzk#aE&`us%c555UCAYs@GTGiZO5yvw|^6w6__j%}xnu z^_QO4vF_BCAC2)HNyXlb`|K@u{dp-|DE}5NsEsNFU>IB!`TdyX1XT^69Z z;qP5n)l0~$V@2DUYz$i6^43cmx3Sc$s*1ST9Ynoc9;H}URQ908?UM5?G51`^d{p_U z$SRaGkbzIqR^@THb`bT)8(2l3&>NsHw0*K=?H=%^`kNyYhJG9I{=*Sqw(-vRl)w>| zt8Z?;5$_6Su1&Z4bU=kboLK4C!Kh{Gs$*&@3oA>ASYO@tZQW?tSj?P$J~rqpg2$@YHXQ1_Wgkd4^bx)mdSc10AH(xX;Q zF1asCq8Jg))-&GtOhk%l#k=0Br`G!kL60mj>{uEcPw|ppzhaEP69SFf7|sJpH`&xWiBe-L)8sEUI|-5_+u@f zUrV&&YqsY-Cikav&ePVlXKvQygg4EGSSq}`Q&l`FAR^&f6~&-Rj-wx{8S|KywMhK& zcaRWcG?T^+?5dh!1g}-e+hudUZH_&b&IqQX68m;qMjmJ@uo2W>Xf_6ynCC@S*<#aA z@;XUHS%I>#bhp?^odiAU*7eZl8I!1b#w4lBc-j?Ds*5|Yj|U1}>143jAV-#_D@OtW zb2~1oS05_EXHaqu!ztyJ_o7<+y0tqJQ=>2OJIk&$(xniA&0F=?=cK00mBP7VMy=;O zwpd+nmq^|u4k?S;^bTGqLcE7w2+|%}MXV5}hm2))IZl!As;=#OzhRD*P4p;`(ZpXb zhP>of$O0>0r1C`~72UH5->ZbgzFe^qXSuo{zKSK1Hc!OWd}UgwY{)gNJhRU6BNq+X z=jItJ(&Ea;#4oj!u<)eAM|~v|@3zGA$5@!aE2el^p@xXX=olfi9hs`$u^ll<2FG?# zsT9pC_8L!P55=#9K+2Jv>kEm!k;1G`6uwTjk+nPZ8TR?2sYguuXAB7p9>y|a`l4Yt z;W;?B_Q}8+&cv#C(k@DAbL;C2Qo=h&{yF33O<5VWG@|iQUaV}-4VTHqwy9Km-HI0H zeP!qX{9ne`f;Vk=ECi8X`HkqE0@U>)avl}k`R|?6`v9UUhJ;KaK1j?=)Y!YgE znedF23ijpHIohuin_^oGRgnr_m4>E#Ki*m+jRGKAo&5%ns_hbBza++}!E<#sWt zQjA>*+Hf|YlYcQ^O+vVeO!9-<994)>m>W(>nkjk;#2{8g^>w*l$)D$r6Z%yi_kiq} zT-5P%YQUGlyy2czhMtBBoEpk(5Ii=vyb76`Cr^ zO|vnrW4FAd8-bFLaj)(0KwdO!o1iwAxlbXKuU<7u*su1{wR-8nXjki5M+6S7Ey{=a zH&#l>3<<$1#!ZCLk1)<}^}QoVlyIK631jt7dnCF7XRhE0u&`w-0P_6CV#O{yx#jS;vDQx zuPh|baaL{HwyTSHEg znLv)u%-%8b7mrVyDLk3n)mGoP!`qL_{P=RzyM*L~?8di4p_^6eQ=Ib7&<8$+=0A zbIzf=UpepHb4SMW?#!HX?z!)KgJ1b|ZK&$nRjbze|9`EuQ6s2tz?FNl3bFti8XE8% z{0E@M0BHal6B7&bA~qHl77h;fC0rsr+{>47$qBC!5K&Xm(oj=SQPDASFwxPoF;G!4 z3*2J6&Be>hOUooACde(y!Nbe_{Um5OI5@bMamn!T$hfalUFZJ8Kd8^ZRqP9zSlH-j z^uUFyXy{kbP>ldB0H9q2ulD-||DPYU3+NaZF|n|5E?oxyp!5oG0Sz7f0tWiUix?Q- zU%P?72QaQ)B)rab2lJZBQ!ILGBJS6riP#KMgipJbUGdbBTnMjGW@eO(y1B zEWCXD0)j%q(syNK<>VFasXkUy*U)^TW%%6ag|UgLnT@TTy@R8Zv)3DMA74NJfUxlQ z5s^_JK1L@cr=+H(XJlp-6_=Ejl~+_&)i*RYHMg|3wfFT83=R#CjKZg9X6NP?7MGS+ zws&^-_74t^j!(YN3k^X3-_!cr%+Ag0DmbqT7#QdnSl{P`cEJJM(63@#yv~J5ct-{6 zsr5B_?$_8vQlW{3UvL>_6uP2XN8R zz=wx^6_5Z9PneTDF8#Irbr1fsfxm3vFB|yx*Z}MM?ar>;wB-UbXZx&!Oya?kN0J4y zGf!_cT7N3OAlKfKCSFSGFX~{C2$2|7K>@~;sjn?>2%LmHNl<5Ge)Kuguw*+BpIcT2 zu-nu4WJV(zuNfm<+9Pvjs8Zyz2oa=@ewp>fp7Voip{F+6EAfYz4jP8jxl&@Pl4VuF z8<3g}xk$%1udLKr+E)Oy*BDo@%z&Y!0A}DP8+y!kU3rFyFqHtsvoXrbe2ewRfPMRi7Xdq@V!^n_ac^kzN&vnK5nEEp3^#CR7ppOFY8PpersID zblQbA#-Bv+*dD^k6ucr?d)mUB5gzQWJ1~YqVMK<-h5GY zw5o;WFk4!e5j$DS*MtNPAzBA9$fr85`<2@gjg)RiDZ0YC!e2NjZrq5F|L`2Zna!7$ z^RAJ0f#xYCKUvM5QDPpcj+rXPo`g$E zW=Bc;K`kOKy*F&0@?l}ICu@glC?iwXL+M*{ukak=L}h{{E;R=blj@gT%DN3uRuG}x z8=Jukj+&t*ghNgee^ByALg^)Ko4Cj!wU$xmw!-OSP= z!yJ|G9XVvIX5NTRO>wZ+5e<+p+x1zBKmpaCFLz51d5FYcJL+qZ>MdRUpxs^DcU>cr z;8rXC>W43MwqmW{9GWy}IEsgOYq>YN)nXp(a;{H@clM_sb|uaV(FP0zlxAPA>bx0- z%!oh(Y)lK4Sd^b$`tqUGRI=PU;t}_q7Mhx?LnU@f4vNFB0@DKhoX;w+K%8w~t%)`t z)3V~Xz&(UJ^;>8td-CBeDg#5TZyxTjG;YwV_Ef4}M?(Q70rBeFmfne_9|r8mrccd8 zBO6%-BQz}SBe0kjb@0E*P{~uO)m-^FlEal_!5DV64eocD%Hi`&p)2==Gs*3$jQZmPi`Od_ z!%Ta`a*d=zlhj8sPxDsUp7y2mr4$D*zyB~D--$1M_0WM+%6YvBP@38FBhi939G9*W zZZnzs`3$Lf&#ApDP_01Qi69p=e+8^qYfqBIZj>&Hl&PB#>iyTd%P4r}sX0S_nHpr-k3?5see%Td1+Rw1dVDHBS$Gzi+k0bbHbtv0W z?hBG?m}y&VGCN6gQU_`^$rK}cJ;vne>+pTPZbSguRv{aMDjw|YhTc6t%|w|~OUynY z9sD=83HZB8+nBY+v&^C*GZ_6ZAk}h}Wt9aQfp~8)HRN9Gx6%z8>RHo-SbVecb9USO zXk%xbD{G4aN+!GdJ1hi`L+=JEj2to0PF|>``G;J%V5eM*ib);gP%fVYyLnEoMM}Bm zyOQ0GTh{X#-CrMk@c=gCgmp@{sk@>Q@HCp)jnjB{W+*kiM4AaE0>6bbepoHRKeLXW zwS(d7tV$4v1}xC_axUSartd>Mqi19jT>gX8pW7zLDZjJ` zHmRckZ?9>q>x;r!Z*8LmaTmxjwC5O^3Cc}rZ?$2eQ-$i>Skuz&_NuYV)^vb$VNcSo7PbSw>vrQY**iA+%|IEG;L61M3{q!ehr{`weumy(Yj;i!-1^ z|4OGd{zsQZB}=q00smP80@(%+dBGLItOCc~22$ZH(}I=4(#Eh4hT__OlXuQ8-{j|U zL62@4W?!s4iee-Qnji0;cFCA^oyA*}C0ZOQJX?L+ckO=7)?~!=gm$x5Ztj5iUFD=0 zvPk)~pr}h+Bxjf^KHUsq&OKOZOYq$FsUTP7^ltuBZO$S@oLGYS6#0ue+)wd3gHWPX zt@(Jr5I>4*vxuoV7S)FRvTgel~V z+%0pW$<)l>o#Ki1C7d8&aaEFnM2}&pWb@jniTI7OqKS+YpZ0^#6+si23qid*YK5&r zbb}q;G>(SK15?UXgN6#T?_{p;jJI5i3)n#`RA%s$u^FcLL?f`>;;S#c%V9e~|HN`5 zztOzVlIy*EuOFp9dw8&C#VOgkd5M@@gZqu`$mG-qyW^={@dwNw9u xIS;xZNS8$ z3nNIo2sqc}&r)Ma!AK~AP(XzJ(`z}bm#c+IST1?1R?I7-GXbBTeR9=JAiz(9A<{_? z3}Z9JDHqJw;iQ!1#z7U`r8dzPDYsp<%Otf_t)?B56^v+wXq?E!-^@lg2Ju4IsBKr^ z@8LQx9rK(ltgb6f-fdV=m$*fCIy%nPok@f?v?9*l&qsj0GJIlLaq_Z6c~Vc|DFa{O zS~Jr_?VSuOce;_~N%5G5D3z}a!CgYGBkMQc9p^M!96t`KwvV0QmhZYl++ucuOw4uV z-mVcKEi{Yde@72DE7bm=zWA~O*Y?H(ObxH-Wj-ks_t%C^I$zVxTa+%7lX_J52}$kzy9^kEEO#GznT zdngFl5}|!DsTvM)mA*JJk-F$>kvmgcQ6|4w{4xG&Yby@@LvHJ3U6SlsJW|QZfbPe2 zW6r(ck?eEty_YMpSc!GK+VVNK#?E*&`M74DCZYf{sM(~|sa9sV)u%C=c(Wx}wJehp zb(nRQX&oD~b#T5oke5*FxMz~yv-jK8F!yKTvfX0L=!WV?A!*BcH~LBrcb^y46}c3P zsu$mrJhr#MPN(yA;@9XI#PDf?O$@=mmQPZrwMYVEM7& z{dPSF3V6Ov>RBTa1-vz-4U3_#4WwV6wl<$L+9+VFny7)74$-0(bZJj+*m*VG|O}JUU!4y0M*Y^LwrgGiEa8$C5Z>CCk+2MpF zC}AazXV79J0b(o6quE#_&1+tvQpWxblh#E{h$+{3(~oU#z*QhivjJJQ(5I=2SdhZn zO~AkJn5|iI)l=xYe_h9 z47aWsVdhiOWaN`Co@iqeU2+BlT63if7GH@`ivYD)|VAF-vm$?c# z33&2d*2h}K#gAudOIo=o<&Sl?6;6eNWq2k%=|P?ZaTgvgS>6|6n4Y~fp^R(a*T5}; zJ@?fv;-FY{6*7WiddS+_^*+%7Kj-0UT3%Isg@9iM3Kw6^BJ(2o`y zoN0YI*z!x|BM-!+wqhQuhpB!X_qck8@tus}O0-k)kz@Jf^)ixoW_2tfDivjwv@1`; zp6;}YxOy?Ve0S-~Gtg4lK@&2FuRPNJE#(u2cjB`6da`8AjxDKj-zKzHRr~S`1{euf zge~UE1h_9=Uf`yU*b=0Cmu!Ih3c^#*b0&fu3>Cd;Ywf-jJJZT+L&hM~Vm_0y#qu$~ zMlB=%=Xrx*}U&o>tQ%Oruq7LcZvvY zS!*iLmH>Y|wJb9OJC7PSiP3-Fz$>VcJ}i6VB`arR{1saS&Y1+G(m}S8y17$N6Jvr* zL2O6ig9rA3c3+sNC_03PVy6lG>TXnRW2E&_-(!8kmZ!&W6iUdQPew=kf&al|x}D8I zZ=LrvEvA|9dv48OG1cKzwM*M z_5v~Nd=g|&F)en?=OA3)rYHQcQKYJq4^%|l(mDv%0uyX;23GAPNIUGd`6ckR%?_R2 zN^4Y#{cMNckKgaRT2OrbQjFwrGZxdrOqDYEYLqzj)~Xr5|K)ZLigU{&cyU*jY*t}?&Gqvt+`29+e zJ$D$!SL}x@8Qba==+qf7Y`j`_a$H^ID<>qY&60h=K1}GD`gqpTJSA2|`GJ3|3H8^`XiHoD7rqJhHnBQL#@ZSTm} zxzsl|*UNS~so<|_EC`~?#h>vAv^yA3?GqEQq7mnD78#aqlS7AHEp?^O{j)ji{aBsc3 zLwD6HAVzUuoiCPqN~JI~rL;nKTST_4(uL|a7FIb`Fr>Z4B2DioY@`2v-@5nwf!Fig zZ26)hw^Yqr{4TzarWL97W={u~Pe?Kib4~1>gQM>hN8dIC3=OD=845A3$US354|9Vy zlfqm4X8IoZlvUlGVGLd&cj!1x4UZyteOP#CdLj{MS&A^M=eZN(!mh1URT($pZ54|v z={nMVF(!>CPUeNF9#KCSf;TB*Wff>%}DAY_dYg0bk?zYOGdvh^zw$tlVs)>G%EyFT8Z1-eKWgX zRQ=fJsx&RxH<-$U9C!;Ev$_%-zFiAG%6UIzyGeQ`yEQ-MJ1_8ZxjMd{?bupbI1n{`7+~qDkzqz!v@*<27H0JJfv{5mbMh1ZWTzaD;%~16tSjblt$TDK z!z4)2f}Z+@1I4#EdAcLi)4jctSc1)D2RTzdv^&fSDBvmU6oNS{<0xFV-)<@Z&YqTS zcyYd>&r(N57*n@izTlUg2>| z!2RU#nYd+Xl0ZA;O_hcpJI&6sc@2@zOi)Yg(Ti!zV<_E{|q z@0ASXOu3Z~D6&}~J8(mqb9>Nah#vk=*s%C!5SJfrQwQ3sJ2&M9UeKJ6>MZ6d=6%KX z){{{OH=O}XX#Jtmbgul$<*cz)duy|>vE16(TAw2(?5`?s+zpr;TyQtVoQPwmt+0-D(lb?FvSOSO;ppGMJgd)^**Stu#NyGf0upnaoKfRLOq&U6asU<=kA zLw_A<*z)u-Y#MFL0dc8{2?@xcfW}@FfKA{9TT<(l*t)=pyy+o~w~UxSTbhiY)bFZ9 z0Y{Rq)F?nI&mRSNT!n7)LhI4LZJrR@DxU#wQGkB}zLzu92`Vg*ei*fz2mSGCX}3I% zM3COP*H8dJj{;^)&=Y<+ZP52`SdB*kZ?L{h?XfJyAEA+=fNOGRbmAZ@P1LxH0zPBI zj-r93Urw9+%Qq~7?((lI|LdOrWi9{n-q2LsoR?%&&J>I1oXa3Jx_rN_742%|iC#R! z5ZyGA!?4WT@KLj3!UH1wmsoSm=mqB!DJg8EndqyEI`M&PZ2Mx0^<@qR?{u{lvg(eE z1BLn7Ij~zrX(T1Q0Xyyf(~jfbT8SE1tPKh{?`qCF7fEW&J>(A3)=GJkb5REcocA>n zKRTBltUJG)nezLW3`?AIk|F24B3jQc=av2b6?WYq)%n3mCjaOb0oz~B`v1kHV+dp9 z&&=kV2`5cp(>t28M_#2EV|}L?UJ><-2zR^1?0%kf^*SFu2#6hO`w4S zzj(%qM8_kcAPoM?!~Ydm|AGYnBhZW# zwZdlup>H9_z&HvR(EtmO`r5LS6D|ZW|76Rxa=Z9-SDKP~ zo1csZIg`_Gn%fv{w#1wiApK9NGhJkZ&80x}4=xp=fZlR7@WPBxzzqg16i}cRf()uk zzz;ruU6tL0D4^A)UgCflieRYB3qCjSlSBS?imv|s2_Ch&x}w6GV3)U8k1HRy?Tjp< zixEioCt|1vJ)UM3QF!8^B125~Lp1tzWcmZ2`B1=MdC#!KH`-$+cM5Pyy5-0KttDE7 zwi})e5-e>AbC}LQy*LJ4N=?8I_}fMPpXX57jR$RYX_`79Rz@(CeV^v9_y2FR{Mm#2 zb7T0g4w3g{K?ZM-y@{ZN=u+E6!FC?;>YrZJhc1n2EiL`CE%jIDTP(G@GG(eq*OwD> zPp%MFNs_d=F3DXPG=TV7c5<72GFR!9}IAvQZaioR=UPcCONmcdNl7hAHDe^v053XgkpEgUN(z8BHvru$GFw`W*^(2+>qdCn z(IVKQtL_2d8}Y-&iq$M!yWl@P>tJyGR8ePaEc4@Kmg8{7=kKt)(60@ZXUA_xl*9MX zXn4w2CY4WT)T|JZpVZ)YJK^k~RyuOW+SrE5?YXMIX_rLijM;QJeXxd!6_(TNr%x+c zY1a(zE3s-uH``cPU~G3lEPGHuj_Dl?o-*iQ$b(YaND8_@k;mdhLBlN+13|6AZb@D% zccW-$ShH$WL%15eKfSMXrtTzC(eX|AXP7y0*Ar-){19x7*boIITV^Ncz3Kq1ru4hj z&>|@9B&n&1R3tAFsp|F#j!t+cc|Q5@4G@V2?1)vB2W{82NMe*=rM3Rr5V4XDdatE> z;hp@un*F@1e(am2tRhd+1$~4TADa@K(tV1r_u%M#a^h2+yv*G~lA1L#+D6xYqqAOC zdxv{z82`WSR@5uiv&k?mTp=l}e;$Sva5s|tDV^wpbe4{Ha?5>HRv0T$ z!Yyys^75bWa+10V;FaLEQ5Ic${kdx#$+!FhGRB#+KZ<0Rs8$ZW(l4Em6u{cT`_J&s zpvzhrTY|)I5uAnpCt9~9K<3u@fI2Gxmg9(Q4I@0)VSA5yuw>3l-8zdtusN}r&C^Ti z$j~tjxgYl*V#%F9;9szhCFJrwo`AA(f!ZN5s1$Ug9aG1*C^!+G`LI2UTw7Z}MTY2K zvT0Dx(yo8px43*N(lG3>wS3s&#MrBR0h8u&#$&9|2Wu5#T*3RJDw0Gw8=Jxp-Rl0wsDxk<>4>f_&M&gK!AHEs>XK+~6;BlZ#R-1JrAAZ_dS1Dqt-UT(DMU_91Y zq=sZ9c?gc-Nj!vY$3_;NkRGtt#-n_)baBr6x+-P%Wc-K3x7Aru09!OQn~US94`@5!$GP<}Q@DvP=L0{|=m>$+k# zao8x}-GBN!;U9e6ci+d#(CAB{dH4>>ptbKklZoMM?zG8Fn@BrUlDeJDf&v;|7-?^v znN*d|zTU05N6yz1*ce% z(_t&j*U4HVZH87Unlh%WSYeYQ&ow7rV-O}7e0qKSI4W8^Dr5YPwOiWggc90UZsiNr zvd~e+=k7#kUqzkYAhG+CNu!m@a(GATM&K#p#+c$ZyLd2uCn0J_zS!htl4zKB4Fl9T zd)$;zb2+B~YbW(pUZcV!$@$a$7Q)0tb7TtjaJ@!1!o| zf+RE>+b20ya}pamh)9}X9Ninom$(EZeyi1+)!8b|-S72JUqn!ipk8yBk#jH!^-9CWQa6;O#T_>_ZI~Grx2V! zMPMp9X_eHTht$CRihMsYU>qz5NkRa4MC;l_SmCk(B z+4~>}@{78}3I9r!@Q-}xF2)sx3Qzy3|3DA9uJ-+TEETqDe4{VLp0tF;RdI+e2vo21YY zHHp1oICyJ+9PkhpK7Yu+U|;A*v|-n!2ZAQ~Ug#RJ8;F%HAb*c{|2ew$a}Lj(fN%4K zb_WfFYz2AAC?GZbI~Mblm_rAXP)~K`P=Mmiyx`v!+JAFr`~aB36rc~`b@j3&bkbDR@1RzKB(l1yk4sEV2Eo!KsyZ#EX3@Xiot<;jUD5nhbkVAy6>BR2A0E)QE&J{SYzQe8qZd*q zttoRl5lq%^)Wf;K-VS#L#g8p>ap#d&C33Ep*bs z3PxJ+@7MBC^Feo>32&}?Z0C1QpAPR2v61dn29)@8pR5>aIHCYua`(z=+GFPEZiLsm z#GX)gN}gp4^4`s2P(wIXM&O&Rx)F$ra80t$evSt3iG8y*3J9jyTauWa-Wm zxbx)5u=WE@avFL0VJU= zGT%A#>Kp}5XA!mD`?;GJ`sz5?4 zFf~{Dvvlbb*h#j$xMTS*>84vbzdB(Aq1SPnDau zI{OF>y|!f9eVmu3R*8Ag&k{Qi&OkI`P;G@EDnaW#Z-*K} z)A^t@RgJ6%6{8gU@ACW)0|P(Dbmvd=5ALJ=2AkxaSAT!Z(f&ji`?YudBcF-AbB-ir zhc};94;WTEC4LEPf{I?p#=yK34489~H@}3~2LSC>c*_>lGrWZHWsE9aQzqdy*v;1# zCf>N)QPc~X54>37Hr^T*GRSF2( zg$C$zwyT@QDRYP}KEr%=^%Yio1r@sG9__YjK#GkivUkYj%=WbOT+czdLM*)n6u zh4hbgvM*T33fF+oa3LYyPK^fm&WhGR730ALJTt~8@TCeDCt^_;*9A}7xyw6YHTimw zLQtxTiRIBO?9a6gqHmF}?oTLDv_tlM9E>smApRA~<< zFwjOHQBx*lrZ{{f574e_tfPPj4t#y*=-1z4TTx4R3u&3waJNU>E&W{v5)sbcP8x40 zzi!p0z;;L41Q3S|0{i(I0L(_^xCI4Rq5%3ERRW;iF)sT6MzsY`%YFXEYOmfhf$`;t zY9&E2huoZtM)HW>&BS!A$tGmp3}b|QAR28~MT<-*Ihm2BL5PYL6o0|g^>X^%MQ$yu z67z$d*kszIfDTF;bKxk>YS-AQ1=y9~MbJlRy!(fhjlWclKZTmlqwYVWYG7|r8kOWD z2AKBpn3`6Lr}sagfDCW{vyEgvtB2cRb=et9Whdf^0;40^o%U(h33+7mCmODx2fx*6 zc`K^S*ZkTzP5gDHcESK#`1-37@h4-}E_8+3<{9s8(W^bnQj|D z6(B$x$?CgZZL!5s1zm0io3?@}U{?8#Z&)URXdj#!(gof*I2=*UTSux(8wXmPL4?xA z6bnmlF{eyHdp4KytfYtSL{>|^REtVWLyInGclG0A-WgYOJ8GE)ui_quNNmBU7x`EI zVea?e#``W+eFC9LpA`pB2n&`gf+%`7|8mouqpEyJMe$pSM+wnuHQ-7hHF)`opRT5N zhh$1&tw3T5-nRCyC!&BjYZj#BrTwjYBlf2qJNjGq=PREDFy~6Lv^118MV4Ek08u;B zii4L$(6xo^z9Z@b$MD7jWWL2qtkd2I6acr)%AQ`~7=i}qXR!B?dcs|h7giHpVl1mutZuKosiE)1F0uxOgy*-De!g_bd1Lm7Bsy*7Q=Cz-xqdGXeEIQc%)vLe>l{ouPt4MLxlrnX8tHZ?CwhxF!c(|gslxq<(|o!A31kTl{TlFlAqv6(;_glG>U!H z>s!tqoh2h>t!6+`E9XK{yqZ@%lC^xua;l@SvLtM1`jnM(lYwb`dcdV1S1aGe5Rw5G z%bmmFB?xMr_3{cm3FwOnu#d0bbB`ZNa+j6!7=q9eFZYiJD(8&oC<<;a949@EPYCs$ z)+^LAU!QaAuHW5Lwc*7=VxiCOtLTO6IOSBX$fnz!!1|h`WemVXatGU=z0co|gZzvD zmG(&dj4er06Q6%EY~sKS^t;2iur-$W6FCd8`sBxf|0pc@SI9H}c}}YNO;DmIMSjtk zI^iDzA3Y~@F2w|PaH$R?d1a-&|GFM8orByN%5~O83bk-k`2&GN`T<=;2BrpAHF#U$ zueiuJgomYdtOB8B#)BoCYnueRQw`};>~rBVqS$0kj}jl!$cPku+iMo-!BTVM>#TiW zGzv##P0O_rd|(*2LCp3K6@urdd=2ya)BC8+p z#3?fn4-8X2O!!?on%fc{mdjc?fH$hN z*s#w*$j9+==gQ^~_svrfc!1HlBAuu$3>=GTf4aa*`BL^fM6L59uN`jBe+W~qWQ<<< z4TMAQv^d^24v<60Fo5n-lO-RlS)RKLqMxTC65svh7*dXah~UIO9U1m_{beBH!JlxL z9nhnLw}>xi*#s>TJM<9P{yZnr6Y^>bDF%v>FQF{LzN1_l*PuabEeI)2f_e7Je7Q2W zg96xLsPeL&yZ?f#WRdcw$#4S-pe@f^RdhSi1yeI=2JSira>sU9k)L!Vz9g08OFQWK*3Tz&oP(0;4)tDhTm;$5OY!@eIce8uv zoOQWaO*cSeq4FarC`v^GML*_5(Y%J^CNU6buz zhFUfA1T`9yQ;R{uqW9#cgBb3IHBTNkQ3OX3DN`-s500R>aWT;IJsWpmLJwC@-}=O* zb>vJ|BXc8mDCk*_+-=Q|sgE*JKgeUZv`T?6?|93=hW$eJ7t>V2}u-Xc;sZHr&?t zj#nA5J$);kr8wVW^?X}6zDUQA&B(y9^)z{FS(3W;ygLQ=sf-&LDn&&|9R_=lmxbh z)$x9o?yJK3S!&P(J?T7F&9iCH-=W!dKzOU70Qq&WH0{TM4D{slhy1c%=&Eham+!s# zqC8?ILdwF{{OWGTs!mX8WWF^7cWNtCpYub&(Rd3vIdUIxmLXn@AFYBRa2=)&`=Q%v zQrB}7bCuIkfR)~BqNj()LER6=YM0OlGV(={ouKtE8G@0c4!pks$)^Hf?L%VlDe}Y$ z$>Je~AF#8oacZbo77Sfq9d(euW*X`X=08i<^^*VLEX2PrjQuK4j`f?m2nB>*(?tRKx1f91 zv?Ec#_B!dQ*ReWnFm&$jFm$zDAAvD64?A;_L4HF%wj(Gq&^Oym0TUSaqQ&@EAHL|f z>}fDJ#6@!yIv$l3-0$YABz?QVTWwUPk8c+BmaID#{WHzMfS z!&WvZ$m%6e$D(Uik_yN9r%gQ|qKjPU6VhaELubQjVG42P5amml7#q_bUy3&G(aIZP z2pc4SMiYQtA1tDtN(79|$|q~i%G`ZOtR@Sf7Z7)!OI>_dZhuc9=gUbxks96U4+w^u z@Ey$-WTy;Ilib&BWLW%ehf*c9OWt=ceYhHr`H`Ofscm2t*!p=3_dBv}+rBGdvXz!g z!mX52apKLWk+d8|Yu;zRVG}Qm5iX&ISy7$g-fPN>l@eOyZb)4HO);d@@$#K_`y^Zp zZfa8T1L~ShuH0^^$N5KS)LlLS%=vUZ|IZ<9GI3t;eUSw{TKoyckZdf-Agh&6X5vq< zbDLy6FgOWdz21egAP6HRML6isLHbO7CNlhyG4$W2cy-Rf`#()A|H$L} z!+8euF7q!moZAZf1CPP`QCh3=gA*)G3NiLSlbo8W0UhDHXS97q=ji<47N_*rsBQhs z-}pV-h;u^U!}4jEEL{LkweL^gry|-XR zeu>gQ;iee36z`E3?OxV&h~H5u$v?%^g)X&1URhFudQ@P4h>CJz=5HKW=b1Rj%WbA% zr^tN9apdQelM2fZf7AbJ$njzdItp;R z4?T*G&Nf^8dKBRdU5t#djQCEP_i#ZNIcXh6wzW%s!^5vDQfwBLfwCd zD5q9>*{7u6GVkGqt@<5i%Qqg%yl5{1zHT9tIdT)n^dDpt-J`sY_POEe)UwtO71(HA zv&zRrR!C4WNz8q2I<<2dOqS){LIDW@!`ta+0Rkuh>^trmD&pNdz6gg76M;K2z>^$S z{bQcO#pMLiK`RI6$p)--IAu7-F&}xy8aix; zl&!sauJ9>G$?8e`{eiu=CWb*_2T%^FZ*#aAvsmLjm=nJ?mEZCC--NjM6%2iN81pi` zvbjFf1{r{z{l>}AdS+3XMGz^(+_9%0uQPpA?YZ7PxgH2M!Fc{E_x-2p!~`o1NAp&K z5XWB7*#L=D8zlIQ-m#}6-mHOInX`tHtxeV>6sFVtBQTpd5SIhp2q$g+%5PlIxm<&) z8&2@o@Sii|hVAY%zvxYb6DY?eM30w)g&!v03qOJr4<5MhBJc4>fNA%Rd;~e3rS8kb zT0aCU{*R**fuG%i1UH(*Leu|8xTKr1)^TpPAd%YjbKlu4iS7cy#;4lGpynxCRdp*WpKIXtO zt=!Z`soAx$+4scUv)9p<9uSxfBwYBh8}BFGc^RwF9kc=H>JUg723L}ELH~oL0y2vy zAhVDpM_&GpoEpH?^9iN;zQGYEQihTs8H{@t+5^AtM)|khlu^dgZc%Mu$kM!Rxc~3T13MLUO@&~Tk`kFY<0yUqeyBe``&nNW92L2SFY`f zxZtPsU=90~@BodY*LGs* zuS;)PEI8`;&6+-(4yBRNFmSn&(;}7~Ib<=rWto{HJ)I$wB;aG2Pl0VyYV7}B?xsYI zw79Zr`KOuc#w}!I(jKKgmsOIy<=w769F@lz7+hlhSi^N@?5qtG;%^sYSfwcJa2PsS zzkc-+)a_D$bHA(=T9%}Wi%r#ZbZJChLpJNPnW-1&POCGmvlM3g>z{t5q!rNr6ub{N ztMcxOC$h3g(KEZ>a*6>uI8|9}a;zYl0F zT{c;IV1h~dtkcH*#|R^}MyXoMfOL*ufW-X(i>u@7om7sH#{U)f7wAzL4f`QeWeFO6 zONssl!MvvX-_ZnA2E^OCC!uY!eXuohJ5Y+ap66-(L3>%}2PC{?gaRI+fQ@K|iu5A> zGggZOPMl@_ik5IwD#sIM+P*RtpTMz_w>E2XD`tq7ZBI&^3mgKTf)%>Ve}qo_`fqq@#!xz_y<_b5wF_6ui=h-4)r-eWe!%i`v~}H#~Txb)lBN5=sKmit~3evW7q$ z?97G^S$eg#$={AY6^*b+h)_NK5(jp$OA^;y<4fH?$jrD|bJDctkD;n?z++z6oF?UQ zi)v?w@D)U(>7=yl?R4cvPMKTooX;dWU3+#1eKT3`H_|S#tdKYTPl^Zl@Fdh=l`zeO zvZ(cINrCsL&jzHj&{RsXsb=kYv?&fk@L@^grp5BxIQ9{dqLx8}UJSU0xCuxiw9w>< zm1yYO7d?E`3Z=|*g`@>K3YX;Qubfh2OA-Y?4(1u48pKn5IJ}Ri(FjR3^Q;%c=e^o= zVEay|{TX5W?E*#)a*cVqeWC0vM`LyEnA&@8ZnT=wWa~+l!L4jB@8(y$CN~Tl6=FOw zz^=~x)qOTifrx&frWxF%W0oNH@}>zQGl$pvNXm2&62x7T6MUB(nE*V4oI z;6=QTxUJC3B(bQAHBbJ_LQY*;-#yJe>g#Ng4i)d(82gp!&{88tsteK6o`g_WsXO=+ z;knc^0t5%y2PhyN?B!biwMqWR=Ur{p1;^wj!jqLt@rPfpUh2)My;Z*Aem(pYUNeh4 zz63jEH`C}D>{GB;aBCx{1JjS!e_=^4%#;t@APrH{UNo6hP6we{5{M7#vCob&&th>W zZ28Nt=%6nbJvKZ+*M6uoNaV77xWrVrVyhzKy8I9Ip$z{_Wd1MvPZD!SIZ_kM_}L{! zhZcr3?@#T1M}#94?GtCXdm=~Q(Ed9JhmdSEG*Wxee(beXZ%)n}F(vU?eN0T; z?x(r^<&gU}eIPk8o!&gb4msTe*EdrFtW-25wxS(fke&=k1h|A5xWMAgI2!Pq{lJ1s zWpM4s9?X4WFBE{2?h9L@m)PtF6;Y5TU&&$c4_m0#*Dx5XKb^tv}TQ(cQco_v!B5jT1N za~C=VCM#wje%qXHWfODZN=6hP%o(RH3rf_Odn!=-qNC?8dZ4Y8XheaJt7S-H5#EA4 zf+AT$jx1Lq$&?1ze^DN8%y0r_*4;PWJw zq)C)n8^Tp971xS-K8OjEzk(m0B3LFd2n^S!u^or12B(SNBccf zf+P_KKZ_4Z95#T@{4v@J(f_}f(|BaqJS<$7Q$||0ed|5#t!WGc4~20YF<-0I77NLL zkL;i)yU;$B}6q#ysWj6jd+`);Cy{|T+~{Q z1o3)OPIG|d%jfZiPZYDIo0nq=8b}RRg##z4OO?5GnYfsD&^nrLjOZKaoK?1=TS_Jn zNdHRq`s2lux5(BXwG?y$FV$_Fsv@(y?8ni-0w*s7gsB+?>|6werh?dbWXQd!hCZH^ zy6bpn0==)n=EJS{RTal6q-0tA!L?#ARkN(SGaC2Uo$sS_A=FOBLLi$6CzMgdOJ zP^~4_z$1f^E!imA)SzN_YtADLV;wv3o6e8jF+jm5FgVYJh8W0)sEP6j4A_5Cf7gVS#60JmP> zL-Fbd5?TXkt#8>ZC~>ndq_|L2*~~>py|`%y7aJZcQM~+hvAaB2=Vap{G*>szczUi= zz=PMIg&mjHSVFTc_o!Nyuj4y+|!>zmVYhH2N59beueoQFd9*TXM z_vIjF+1SIPHy`Fb0fzB?+;jG-{+3&zV7SJi+P|Y z7O7)YriaYyV2((LbH0@Cvwq zBku%F6*|iUcsQ-3fBEm+7FUg(-RgYu3_Ke~ZWG<4yrD?DqBX0?&x;VUPdI1>@8hc> zIDVrd_a2k;`&wI>>6KB0IMe5oSs>^JnfC)3w$FUsF={i=i#K{qw*3|K{mEO#GXa>c zhW5cUG%OGD{t9?3M)?exxo(FN+7PlS&4hRnr47TWn^R8z_x!CKOzfyN@<}USU3`yr z$Y4yC^`TklWs3ddO8XN_e#Qzm5@6k-joJr?(0#i1SiLYM?E@h4YPUf2gnakB=8`|? z3lN0-@2}rh=8son$rU{NhC^Cpt5CC~D;*OrSJ-k@-0KD{-9* zwUmF)Fk%K%wMS&jVOD8V#jhwj1RP^=0x=jnT<|{PZ!^V2G{n;l^*^`!MAYn%YA(-l z$9SHURe@s5VM-94Vhfp;HgMGVyte4Cv}}GKd{Vd{RM=s^9~81CugI@jYOH+gEYRIm zQB(^;c;BehX~nOFGXy{6#0|($7E_3?p09G4ifhJS-{pbYp8ybQc&MT_Ik0g_1`!SR z&=Y>9+@qjg?koj~HKte~whey;7?d#qAf*uj1jWubi)FfD{2NLjKSvE&@jxSbcu*>I zjC}*3K#OQ%eOjmc3bOqQV!SHrhUUtBHtK6j540Xsa%LeUlB!JRT?tR?F2lGU_ogFzfIW_ zk+JSh9Qfb8Z9X+81K$m4*yIO@h;%M-=$NzRXQw{f~u zSnbc|oy{$JO49$qHORGTs@tR52|4otG9HO-Q-D}@?hT_~6U#CyUjwC+fxKHieCd>5 z_Meyx>%e9fHfvEv(|R!S-ym$gNKEg5IW>OO0AuT^!Z#5iK$!31JD}C|;4&Z+rxZuj7<}tO z(8}cb1oyC`J~;sLSs@OjgxR`dqUQoYe3e*Yp@a*RkQe3hPrwM@;hJ+)wEr^OC0DAs zZjTy}TXRb|yUdhx?j-|q&Ucy7KQ`&_y!YQF!W3|Z5DKMyYJE!SgGhGXdD}%Im&N`N z=YHw3T;L9xwWTEv1G2e)vO(tLx*D@uZbIeyjFIc=Lr3iEErR4PL5KCU=($WcJDXcp znz&9_T3%$SO!Z<#WNA2IB@%)nmO7fOJJ2a2fZ}$z|4K16aRT0(#nQeKiRUS-1bfiy zV)o%Y%&EuML#i~fL4VR4DA||Wq*mhOcGRWkkaZ6uEDBoBPG9#9OQjQCGcQ~BvoXKVHESFILXSKU2y-D6qGjE1OzTGl0Jr7MCSq7S7>KXZd?-p{ zPR2FH6)j-c16l`ZocOPCusAeq5XVH= zfDFdnmodeVLGUn1$?(?FuZfRJR)dcTW{Tbse6UH1gz$9V`^J7-;`RKC$;_qmLJR== z@0=v%KWM(5dwY|Q3uE^7Y&|DX*ywUCGm|qokobwClVJf;qk)|trtY<)ed6MN>KG^D zHlXP$yk>&B36R`jr zQwykVf4gm4=$6kEK^L*LqJ%~PGF@=-mR^&yxerUW@_>d@nR@k`tu6Yv1S8a1mEjOl zBBU&hl~>S3{yFN?D|Lvlsgb3)Ddmx{X<>T&HufYHt($Pgk56GQRNMiV{2fR9pHPvk z69~wuQ0iXV#m#!)YJQ;sX!oXBx!`#wL#Y9?ub`FM9P{#niAM>i^menvy9)3asC`QB zoPh~LQVoIdcT0cegy}3{{vr3A1xE#*OR+UAZvR9LTJ?mnKs&(9!|jbS(f<-aUMKa`O`r?pltz~28=T@W;1jTGXPPQ zx5v50xjb_&$-4C2^|(}MXNG4IePY&Me)r5@`<{8%=Ov(LMqtbImo}yESMm3r|99ZQ zZ+v78`wtu^xWQ>7`h$6&ne#Ztw!Bo;i#Nkt>4J(g_mD3?;Aj6pr>rLmvaZDl-hlM& zpOGAPEHkB+nr2Wxdm30BIHQE{8Fi2migEDEF=wrYT_SUn%`_6ycPLpa< z#s9&!L3NNG?~9V^sHudEpw|hBS%7K*+bjmbWFvtPsdbo%n&<7X&VozZPdo3@C0Ii^ zhm?OsWj`+=Qe;uxNv1d^FT64U?C!nktNNdj2wtSQJm9RlFYcg>%F7opW?ZMsIEP+umXAalpp#cAmkQ4yb9 zPw*_#=#tVxjV-VhkkMZj$0m?X!~7=>==!&8)3?moXi<~dtH&Rr;7GLh@K}&GD-PT7 zQevv^X7dzG-poLeHXy%obIZMV>DVe{-fXT`uD1)6LFduYW-34es~dW|2?4I1)s62u5zy}Ym$kl^cEal#VWV7h zJa`3^a_BkNb|oVk!doW8hS(EioroJWK1M4Qska}|3kU7fqLso??T_M72dG5e>UyZR zBlh)Mpo*MPTzq48Y)jCXub?eq-Z(&CT1)8tpG{bP{`}})N?d;CJYA3#{6U?;JFdUs zGyYu&-hRv%3t|9l_?h$iFL$Z_7nPKMzEHp;(gi^tAl*AZ+2GvoM91Ex>6w&`Xe5aa z6}PguneNcc=&RIR+@w!c?P2=BQBNowS$~4_MRCwk%FSteCj55fYrQq5urCNO9AGs* zRRV%|)wTRReG4VdVIfu}OWoKNan9KdUQ=w5rqWVNaSIEoluM!nK8j~e;vS3^-=jMW zJH2qNmEzkD~NR@YNT}ELF-x=7Z8v@$nksz!{qe>El^!Ge8W#QUc(JSpaQdSYltBSUjWConwrz zUG|1N<17w%;xG>asG3t3Io2UwDAgSuKw*^v-9YMbf~p3v4Tb^Mz(y?)<9(9tua?gc z4((3+n4U|0n{g!scC`jjpq2g8{cjh(^Z!d@M+%4`!hsy(?`EqM5aSd&XiuI;zv_M! zd_V|2qmPfnYm(s4%Juu$3nqq(uG-81Xm04JKXmgZc>kfoIXpt#7rMwfpKy9Pi+kfenqzkaA~dh1!&?|twr*ykN$P6!ud0T4`8R{n!&Ts&XvHww`uf4)FRaNK+bo7?21Z{T7UVkjgf$WNYHTxuQ^4TIjJ> zW<*#1S}Zj%6p!6y2g>-WN_e?=czqm*K2y642U(`x#g*S$Yu(R^Y#)O)HmcdZSFeFe zdva68Pp4Fh612vXLij?gG%0-(4Kr26ojy#908A=-X=FdK`uchbI}~NU;gp_<$2-c* zz|D;YM6`c?d;U;+=67xq^cM=<%26;)_!*5<&yj<}eUy{WZ`;o9YK3J?y9Ge1t9tle zQa$<#sswOiNkF}*{?OvenjBTq0K0pt5I7@G`BILsMU{30V9y?wi2My^y_Dr|b zqE7`DAS3A1I<-M57AN{EozVU-Fr^X$$EdMsn4W@%+j2>S#c4f+I-R%#)8%1&ulVXd z)FZz2gPg*CY<>Fb$o-Ft8k4PD&>5gQu8|l2T0=cx)davAuAei%KRbdycqIF$Lbd;! zZ1JP0ztzOMdmA%6v0@Q&bw!0mgL)O129|yII_bh$=R4c4(9YU+Qg{hc1`&6`ln`G* zYCEVUO#`3n9O+(m321HywowPaWs2uF#cZfE+gUn`O2`vRr<9zpFVzqz;@rHCdrkgU z+X{Zg`W=iGLH?KMiTzpzDN`m~C)(b8k|!kx%{?VH1T*z?n|D;;^tmPw^VNb1Q+= z;&@ED?aCq8rU_|3af`7!GybT9w5BF-+sA;+$-JOP6Z$#4?v>RFim{%AS7aL)$X^ z9?&u3OPQy1ZY6s>7YcwE)FLwz zg!PK(exvs(A8rHSQ8%l;g0!9hY46Q47C;1J;+sxxa=KeY!ui^t`Y3dF34CT_v7~bU zdyM!OyPLuK{^T0sGQcaiDh%|mU_kegWVJHOnlu^MJ;6ohl_4j_*fO&~XQ(aP$qqp1 z6C}p|z892-rgrc+HjB(@JC!K#(t|anT5=D*o3obSVqgGErdr+|rdQ&M8{2@KSuo%2 zTW8)sz1xdl_^cfKDj6tiFunf#SMKmDKR{Ia31MTx{XK$uIoyv*+N3AE%4 zu2hOBnnTQ2HzXE?sr3>uE`@c3wK#jlBxahBArdoTLAE)vD&mPPo)2n!!ZF`I5|&>k zLGfv1gr`t_;6MW8*SM;(*9&15!n;(l8T{|=v#Y#iLBTH%GmN?;^b92=vTcD{ZD7=b zlPQmIZH9W#Vp8Ud*|X~M3W=~qjKG(fiS=?(5p8bQe ziH=f^7?);b?Y|w=;n(^+kbvJtS>)&0wOwaEGc&`j8uMS|f?vfEH+&v6Be zVtEgixx;;iH!OK*nK`Do{Asan_HEraKahX!0*Wiz>OYNq>dBvBl!oTlnB{fL^LdU2 z;^bpZpjTg0vp9l>2*Eitn&4=^RSdo+r2{)9DQ+F@Qi`)5oR|(_FPW-H(0pvs2;L*xl{xcn zMZEM6`Ee{jpsjY|_z&uSGKqKp9W6?~r2D@Q-9o<)m(wl27b+Q=IqwS2!3oJpOk3c$ z1NfmrtES=&PbO=_cPFx()qSz``Y>M?Us>pt0YI$J zi0@t&OZQBwKy662G?sn8Myo!_0~+Ni!N7v{=kLPZ?x5Y~gkILtG9i0?VqRzqD^XEm zT19lxvy@0~2L)gU6>qg;J)p4CR3t*`fcZ5bnDB4%~dinnQ*A zrkwgZiq6WA!V!XMD0gYl?pleX&PaB0I7tPGOX6ETp*x z-meMwJw76+E|lSK^uQ`?YmUo*KoO7r^o7DjA;KR(JW}Ww=-wf<-}HD8Lh+~!h=u() zmU#W8SvLK_K2O;FW#CsNC0qIpqt#+82&PM))yd{xzlJxN!As<3Qy#x~s?_bW=T{hL zbl_ifP-U@QQ!A!in~JgDmQTJ28P2W%aLSsK)TLRfO)Y-Fm=BfVK<;^}so zS6%xmV#T7yTl4J%kV`F){S18knaBSINOBQ0`Bz{6cj+6yh;Lq`&i%GtdiK^cJ83R` zWz8*bWWGI9vFd=v6M@*3FjDk_fr9H%<#BOA6TX(>U;RFbpS z8p+WkIVf+O9Q(T{EZ^_M=n3Puw(`P$1#0}N$fj^Y_%G|F%mA@^2ml6d#6lVCe=9zR z*rE5e?#RGjR$e`G1dz)2SA5R_BGP{lgU8WZ&ES^}84j$xF;xyQ;UsT4#gM4ZKHhT} zuge3w?9W$`EyHnvROE8q<_#xcOb~(WNIInCs_s(Ba+%(I5R!J&{WANqBWn?s;$4wq zwg{#`;=uc;=s->DONH4pC=tvoS-8JGoiA8?C!_4G&2c_;kTboFl7C<^Z~mUO&&-@C zk&+njzdr|m{HLK0rK>?~vC=zAMF1nLxx_By?2ugffTqke6c%)I>rzK+$#$yQWvWc- zE^x}T%6wV*CL#XZytSdX&$}iu6#*Ig=Y!kz1P=xLL5N6Qf2JX`_UTXnm5^w-=(&ng z5>DBgCrC2l3fh^Bza$(QP~UV9XLPqqRFZ0HWyuJ|GL%tuo?M(eO*cfFi!O3fGkSB!6+ioH|=+9A|<}IF&vPvu0sX@mrE9> z7+TP^hmn9$pM@TSqyeZLv-gZ4JmHCQL$}nK#M(q!DDi#rfT%zhv!F$UTo`QBHMmeL z_XFccJh!YKyE{Si7FV+0j79HlsIJ}E@!+Br5tTyjjQV&SlI z{1v1fmLW=0Sl*HUbREao^xfvU9QY65$)7&^qX5QtV`?rG^S`N*5CA{?AG6Xg3=J>W zCT%}VAc46zSznh57)MV71wr@q+!d#l-%U#$0%Eco%KT4y7@o@pzpW4Z3Q{Fyj%e|Ay-hx`6)v;WGY(#?W-BaT?uCT)J*kcAc@w`T|EGl>^1 zhf^JQ<3T--agdtLMkzD81-uqAO5Sp8oOUvGbMfkoC~fi56|~cuF;;stJjQ*L(N2Wa zuV!)>eL~?}6Xp`2s`F)GuP@53#qw(I_Si-|V{qL3%RD=UL37(~ap}san=vRgL7=xp z9?g>Xu!1^6EuGd>YYAKuaACTm(shG*?t`eWqX&-fyu~94d()8OwuWX^Y?tXyJVdUs zi!{Qi&hq4w+?{IssG_wpd{M*8*F*JfuMBVvGuw2X3@w*x zhrb}5kXS8@Ui1{$vgKSpR3c%UHzR{$!dzqr;<={}NK=c#N4Pv%#>J;VVF9mc$qND( zm2EQDj(EJ~QcLrk(hA>2m#Dm{EBJ!ny5tY)yg*PG1z2S>)L0Or2)^x@sP{R{9%$CA z%g4ceXfj$Ls^Ou(M@PhAd5)gg=$n_+oj$lsCKR<4n9Xh)GLO@Gq))TErAwaN;0mwe zV7o<9YTX5W0io6!u3uG7Lv$FwwSQe1PXOL{7x)$^`kP8A?^1+|;)jUWR0PqZ&Uv?1 zd|Y*ZCKu8wFx>0Ny0GO;aYQBGWH4l*-RWxnXiCD;QlhO_*EI9BhOHsC)9ust&HEQz zOhp|5v<=!&cZdf)yA@R_Ic(lV_1EFf;$hz%HCPo&ZqyX%c5$_q&zMyKZkmNDWn7d4u%bvV!Ex-1WQ~CVG@PGJ;RJ-Hl z#P;0HW5t&OuJF`D(6pCqhyTsO9TqQJ<090fLF= z8Fzmh>dc7Q*=fepVcOX~fN6wR9bVCp8Jse7(B&%RsR}2zS$g;d!>}w~B~0pGGsWsQ zh|*oroVO1xK4hMSP3s5kwg&-_p{`%im9F*W52j^DJ7nb}tQs z&XUFf|HcFC8?wTzLQ5|x$d+e!Ng`|()a&rowNhgEb0aBpniqA7pDD*Oc)VyQ! zzM>L|PO&;I8s1NY14G{IettB>r<`n@rSq&jM!PH-V#2~=P{IEGiWCw-*)@ZenesE% zZECa)r2)qntLKG|&K(onOFe_kH)Xi)xD>E{pp~{% z38y)awTyO)2e0!#LX$LU4*MMlUk?GpP*uSyi1em+UJ?@PE&q`T^;d7`%Up8{h>L@$ij;5zBl>!#EgWu{Q~N1 z61i|VLyIHb@UWujmG`K~ARG_nGGXuheYNzQ+x+osY+s<^_sl;F872Aad>>eU{~YDg z9WkK{1eL}y$<+yzpf79kkuRyzrV)S?GxN9pTgEHhE(x15#Kz8TygF}v6P(rxdbh{E zf~sz!xls&1a8a{P9bT_dKF-QhVj7>?uLMLj31$Dx#s@z8|Amm|FKNa1zy9C({J%N` z^%wg3k4(4m_Ic7YixeRxJ6+nzJ$YJCaK?bPmC>&0DqKMQEPR0XmDx7FzQ1T;yx_Vs zbtKLw7|CtUICYufl_GDtBvWIr5OyxPiqMeAmyNEem4=k-yw}3XA1nk3Ct+tM=Tls1 z+`ZbK2h(9gDnXwP1}yvDs6|nr<|&n7$-6<#KTIOBGBD?!&dUJmD$0lk07gmK8--|m zdIeqt&uO1xfDsX$n)I0VxcWBkq<@8Tqi`1f|5}ycLKX(}yq<@jztN_I_~K-IYcGP@$6j&agfnMp^d(%J z&bg$!8h_nLy4Vg(^DO+XE76B{XqPFu z4<0PsdZ*kc>`N7x?0DK=ROc|hUvg@{ZeZUT)>0r=kmU0aNdf1he0tLRr@uFIIx{BD zTP^Lajo$ssd~Vp8obG+-cX7Pupqn18eF0$?_-Zhqq5j(BbmXZ+uBz0 z>y_cx)ElY@I>71zIvmi=>i~^ZhDByJ?-;+B`tOVt^mBIF4VT;a))#<+bKV{)1NQs{ z&>f6)|IC{Wyq_fL_OOcVlq1^O3EmTZ~Mq4@o|gkx;S4~PamK*3s69OxGNWwg+1 zM?-{&7J&cfzX6)a@a4{R_sEPh{l8X+uyF_A%TSb0hj>8hH1LY)VzMNVlIP=h?uyXc zxL;i7*DPcFVcoEED<=;(u%V0(Ftg(N%*rC!KB-Hhi`t|=iv#(%%ANLmi!23GHHGAb z^^L)LA^C-dwnNfI9W#QOJoc9SS5T(vo}if;itH*y&fnhF$#)6i8J9~9o*z-U#$-NW zxz3I=vbLsDD5l~o?@JUIBQxWRxhe$goAs%?F$LDhaG%_v3P%3Y@bPU?_LQ| z<^B_J;C~JV%=)Cs5}aUT{}p775u7F$@+;i!b>)ljM1jwpDqN`1C`9I`I`T%IQAsSk~ikLVTj{12lgO0HjQ zwzr=Z3jrk`y*~u$+I9(~sp4aTGPkP+4b~Ul$-WS%9bW1 zTt`to-!MVFr_(C>)NMlt%axA{tY$r;qE!+aeT4~hz)rf?R-nA24=&Z*pwt(& z)oE*F?6Af-AYRhV@A1wp2^a??Zd~&E$~zVS2yy9$DMSCG2_gO2(%o--{>O#@>Cd>I zDnH!9uBw}N%(fujaGs8@OI=gr8@WRsYrGP!o@F0)d{&E8M?BIhGbnQ?LI$sa>@^8c_-<5PuR$X)k4G|=SVBoi^Zw`-fZ2LIuhxi_2bd^W#9 z1kDCh0Cj<1CU*X;OP9V*t-td5d%Dla!6&$r44`Z|d8~Af*ZF5YRvpuLgYW;yNdq*KY>@RUTGCq4K0QZA$KAh~3+2Cn#E+n}r1tm;C@fAKNYZ z)OO9>DhM*lmv^|58^6-)$=JWiFYTtTw#ym+W?*c_xIrbfh;tFEZH)3VRuy_hx1H=p z>Eq-s`&Tbl*G)ao@pi*o8{(--Ri1f09Grj67`kSj`SE1&N{_<)OiO;wgI1e?aET?& z{>t(L`4~H=M{47JuG$%*sjJHOm8~a*=(|c0TGyTlzVNEtyE7H|&T35A6#dnk$*f*I z#@eZT6f1;#NkB4dOx)cjv6(|Z5mDLvk>@3two$hu9n#IR8~G4^JKdV9_&xZ;wSJtj z(nj42^z^no{tPKU>G%H@Ao63V-}lK7(?zl>(29G3zWO()5YR33xfM(0^8rU~!<_EUojr7mbkgKGcoc?vC|A3$w|m`LDTml9 zR&w$~|9V|slM?f!E2OVUl2gtubsC4>cYZ=R9lDW}AzXXBwx&rEn`7+UaBnRpGIc(0 zhU*K{*2(OyMykQIu?*#+T6`Fty;=(CID<^MBEMcJZuJLhpy|~+-_Z$vKj5Geo@Wtz z9P&1K&?uLHn#@$qwZ5c=jN6PngjdQiG8w!j_K^TQ-NVnM)Z2=ns4AB-W}_>N>mlKV zQB4)>qkcp=eOA8W(Il=&p1Yylmdar}BqwV1`j6lu&aa^1vc6I9EcNj%cc4U;uUUrh zS6ih%Q+LC*K_CGg(++b$5A`H;HT6A?{{`;AA5TKK_=W$#YaHt%0EQ0u219>7BR2(L z=;*q=CmhN86~hNISKAZUDwB=F)W+ziio`ET?(qe$ z2l%0&QmGTZhzM)T&8^r1^aIOy2G&o+GAr%YN>Axpq@MCXuIYB}ZELWHk8#s3bEA1M zt<~O+(f0j3uU;-Yr9R%xvD?~E)LhQRkHlbgkbR0Rr8&UKkAAAHcy(t3PtqV{bM0DL zr0y4}y}~7VB;RWheaofHe9TciYO9}~8{1mslZ%%+wj5Kw`gA)YSA{SvP=7hgSb(6a zWQgN5NM4mE&{-cF`!)0#J~7s%sL*ZRPezlWMAnYW9(Rjt9JJNJ*p8k@a;jULlP?z{ zWcKi%Og~dH>HtW#*JK?C-^E7)BLSLALx`+3nw@Cc>|dA~veZ+{krhzOYaGVTzRFG= zWLX)(ZV5^0cvet!`aoIUR{{6tLiKe$4`OGm72+|VtA0+KNY!}a(T=9d#w%Krt3^m> z0rsEhqS<+_439kMHp*jUX(s9LU2?g9J~?d97LRLQl3S7d2WH*h6})n zeGa_RV9JsOmHh{caew~367ZebB!VkeBrnWwbBKeUfolx7M+%{g4tl4hI(eIjpp zZ@^7IEr=X0?IJBZ!jUq#*JD_W&88PzJyJehzi&AQLs(0!a;H~S(b^KK{Z#UK=mH|R&f_jh_!%1 zq-x0RRcse}A{SM)#*=C`n=Zp$v&fw4=&NMzWmx#Po#-MYDilSL>B8kfNHc{joXv``kZcmN6`oN%ipB*+Mgp97HG<-TvOw#X3N=Q#0 zk`Hp9+*S&`uO}b0S*>CSemiq)0{C@P8fw*68U5R0DuGDhZ*nADAy-7m;+VACWO3n; zpMIPf@Z-#>m3*=tr&}@y9D8Mkl*LDbvbp3NKA(lyG~R0wZ0XvUR~x0G^_Mc1vyF2t zx`B+K8`ZP|0+x-z^yEnifgI#kI9oR5{f0`#pplR~`sSJxD~V+BiU&IH@k8GYIgn*R z7Wlz(n$%ic`QtK}b%*@DSiPjkJ{te9ru6NL{%!G&@T|K_{78BFNg<|8Do|ygZKu2oN6*IOx98X$$+5KU zHZ>iaNS901xO&aFf~n}bGr=88tG?0VVGP?8Kkcev??C;EQs1%GU?Q=BJK&HQ=ne7G z&?qvDy-&m@EAl&OS$f9F8@*OmCc7;k#4AX3@1RNQmfYB-yNzXHn*+Te2;RL}2{b0z ztrg2{rIx#?krXW0S7wPWP|C;xdzfT!e6ktf(Cba@wGEJ58&8-g&as+*5I>=y$)r8i zCioTfigQ#0I?A)Z4%|5CzFvIt4dJRr2$KB5=*G&ft2EQ79cckJUm(S3bl&ycpC9wQ zi-Ep0+vbqLT_<_D^Ps$n2etR@yWF8`vX)N#tsP7gM#+J-Q zd$9G9-(8 zSwRk42L+XH_23ele43}<%Qfe~)_J!tO|y!qRY54O+RAP5g}ShPz864^H%PHcwhY}Q z{$_?UOFlP^J)ixeEi$4&qM$ip(AIhPO7e0bR=6NCUpT5miHOQTgi2xX1cZ!J>J6)q z+`Bia5D;7v2{y2-8NGneTZDFf1>x>-le4`d=<=R|8ESi<2t-)oB6xz7#hb{V+av+G zGK}G;i#sMK&c1mC+wB7k8rFKhi5xoDcd&3UVD5()NC8Z+5AGSLFvTmCl@w8j2Akkzzz^UOk%}EMv_!ijY!?m+CR%^-Q*EIwfg5q_tk^AjHzz04ivTq^;hQWKaHPzP2J$Z&hhVQG~;x~#ai#QambL# zOWq(9p)6LuJB}KR5qX41%WSQFi!R|2lE1WegK~6?Z>m6ScANl<60!dYxahK!*^{bd z-9|k#UTYB?bP8ECSF)bG`DrmsH>M|MG^hhCCFr&<=ncc&CW$_yn92G*sOMg1#O7^s zZuPIrXU@q(i{|V}VA!TY%TNvq=p~#HdMIzeIaA&Nzs|zFP<8)l?d>;ZE(CZTCT)QgkUU zTCDPh^5$S`sB2y9vK@tCuCucI+!+Z!x`Y&c+%_FMgk!J`WNcv1x+%C8rPpd6`9Y9k z1%C5H8Gf>n0HXyE$^`{zgGDN|H@D&|$dk7h!Kq0}gw(9%3MnlU*4gRx&y6i?P41}6 zLTa|=c~-$YZ93qAB*V@XkhL2mPcNx5LpP40yn#up@@z7E z!KM>BM;n6hKme$8J!kJ%5WZaRe3rUVQ^Z>3qJ*X_M~rBLXP0pL5)W{9R?yU_rJIsH zF(r|kgwTp**r2vC-isj0xK8~_5KNYr+gk{Sc5%z_0WniB_yidSl*~{@!EjOPov>D* zFB6IfosC)f3VNCMBq`+Q4+FiS|Dg}xPH0vt?SFM^(5@}C^1U%ffDh^$AGr=YIuCSf zQ6QJUOaTS%W^^Eo0q*8~emzNP-40%3I-_A$oeESjYu!jX20AIWjUM6%ce^!x!UqbvPtNgE8qvIOMhm z=(ARi0%r{iXAQdSKuTDW)TA-X_>g|O9is&NA1C^y7dTPy7mS}Gzkhn7cz51AUr`gN z66oCh3c9nzSB4;X092fD=W+jL!HA#@;?!qIZ~*A=G)+Lz)JXdO#Sf=JiPa`1+pVn9 zHbUzOqQfD;bx@FHhtS^vQLf8eI8Wuo4QDk|XPm@T2<^k@(gF3N^mf^Gg|Oq{*>5NO z%PCa-E9Xm0+)`rffLw2rXc{5BfE8{OjfHVSl&75J6OT|;T#YbGx{o?z(|}_2z8t>b4yC?gXWX0x;iUs+V0jSi>rDF(Gd&iW)*M=iZjrg zz}INa%`iH^D{uPq7Fyw$dWL&>%E(vH->0UZEJ9a?+*c5KOJDd>TqSmODL>CS(Q6+s z$Jp&r*9X$Mzs}pe*G!l&1ru2B!#)0N;B*^&)J1zdn%OTtGFMj^f&jS2?JC@^y|=Yr zX)${HMK?rDUtbShJ1V$)Lh{nT-*3LStFCV6RzT><&6sZZu2z8Pqk=op@XEh^6E(r6 z`?CORPHJ%(?ra`$%H10d;bsq7(%hk+P zoy2UXrymv|L}6b+Z?={#Mdn{WB>W1(Fbr%hI}`!7c!&bP7be(x_C$ZDE%;nfAiQ@vm?{&PQgCjwX))CBnLpk117=(75*D%Au>-JE9X4bmt4qB4BY zNO$lu`VGBZYRJ$Hf5+lpJPdll-R`p>%he7sAynB#YB^=--2H*Nl~KUa*HZ%4j4Vg` zH(Yt0?DPrNa%{_loYSAS>_nVuzk-) z(XnuFb@@%xGs)av$GB~0Scl&$O|)j!z(2z9f3O3_sD~RNvzP8^%_Z(aPxx5F$=ww{nprB;b%znUf;piP=FH+X`K$Cn+7$tv?aL@oOK5r$$V zAtk5MDs2r?rp7tmj&t5Y;p0YrbwL&r+#F^{lMk@ zXNPG*2=ud7J>Z+^| ziv9JWI^Y)6{<4t^oelo-6%?eD7Ls~1#DKoon#2F--c)$wHTI4@eArdm9pHv)Ra*}; zh2n8c21rRmu9pq64nSCokGF>IwVNwEdngORnC53H0OZuaN9_O8&zIpYIhu~pdY<4^ zeex{^+FDSyRotyV3ZiyzGa&|RZ2hVZzH62=mLph zDKmnu(URr~4s&!$8%k9S<|Th&$;C_Yzl=`xKG@q1y?{8{V2+%DYFlcfYFf!OOYhm9 zc4Yw`#qu3u1)Y_Mz<74Y_gF61SgU#GbI|(jOix!!q*R+bW;8h7camjYCIs7X>nK`Q z2S3Q2uQ;P_;HnheR}O-vYj;{8m6o19&zzrO7gM~GoIBjfrT(JZ_8)RFNQ*IC85yOi z$y!nlSzb07)$%4!rbq_27w8*Om=8$ zT8WNbaX(0bGiCYz9+pO0|%RigxzN?hcozCKfv`7DkD`gc!A9$djsk zT$SMU(kEa*PN*KTW4U*#-B@}OH!hSprlvk4btBx7red<%;(54uck#Qha%W|s#LN2$ zr0Z&+nyRWok~>Lm4*OQzN8zxzZ{X4-=uOV=9otPbJg*4FUN=3S!oeXRD4tmh9EY%A3_V zBg#CH4X^}FCp%)Axwo?@Wl^-ssJbZZ=^A>0!9rQ?lsj*Brtl{kv)At{$+gItnUj3d zX>ZqkLa*z*2kCiiZG;>>kOIKD-rfdgkx#mf(!jMkw}w^su#pS1OZWh4eQkI{EYl(N9tg^Od-g7*h z-PBl&SQQ0XRrUry&*PI%)exOGRp%wwR8iwhn#tryCy`-Sjpn{wqo{D7Qf3!Rb2xQ~ zEgNo_C!Y05tv9igMx_yJ>8Tvn?He;*elsd7mVA2Gawp~cnC(=b)5Trkj2xI2U-BV; z$HYp0ebKdbu*A^B9b@o7YO*4ws?K)?mRMWlsiFI9_YVbRNxLgtq&lR@Fuj>P@2*hb8G7o)AT z;SzEN{NV{+5j>oZ_4UX5dW{UU*N(cyZRUt7!bet44Hf<5JW0w-Vey<%M(xujE!}?c z-VC$_i+$)|i*#I~8JNwZ(wdk5=a4 zAFf$yoN9jxwb5s#JKamM#!C&cpY)KizWr?HS==ED`%H^VH;?pPQWkSFeJb57q-ugW zFSL)huJ0jjsKp3`nI^7l|Hr5YDv&kVUW=&ha(?XAv*if~_Aon?yL90gRF84sjGiC&`3Q#&q-WbEFexWyvMruF1i0+%UXG+- z(7!HT5WS?8>5OCiX~%o5Zv3)t+0`s|&Df<{f{)ngm&(hA zU4@dQ?D&Vs?7E)l<-htzXFpsDol>gV8f!?`?iJD2rV#hYF$8|(U% zw{6JGg2*24K_Czg00I3f3;2%YNbxDeE-Mcgc1vz3+siE##i~V7ggrV;-V)tYY%_4T z*?L8#W~cORUTSk~B1sNT1U;PEWSHuN`;xx-u?I%I|B@gwiXP`GS=w9U>@^1-yM1?q zk_MtMq3a7n_DxyV(2q{Dl zb=1#Q@%;pA4%Ce#!}LLgdZ+JeQa#0|G=|%T%vW-+hP4t;DT9+?VxtnZ{=0bxn8#+b zTqB>%A~n=oBs$WF>?SInby{-gdj4%@)5qPM>F#JRJKg}^0%OYpUG9oD-H)Jhlx^;b z2Yg}b2jVINW_I0-Zan+ko;vJu{)M3;OqY1@1Zk&a(cg*ZuJaIS(Z|paZ=vS;o6i=E z7~Ur+&Z=V1GPlZieV@Bs*HCR}--4Nk1IrRB)>K2Busj*DvM!6pW?*m0Yhf_2WCDM*UXA~UIv(g)t^I`1;h;@4mCcW)Y?R-8E4IO5~KQ5vC-VNuF}+1 z@>(U@c%mg|bpy*K@r<=p6DF^Gpha)-IaQo#6sWJT^gLoPTGiZbb z$~$6NvB$U^NL@w~QHk@*JIe`f>6-QAYc`tG5W{r>sP02T6*^0q4k-Cv#sx^l%5-g2Jsc;4-Mj!b%xa6=)v(utxADSl)u!Hn@ zhrN(XAZ>ge&Li<5DHE&C8a!@qpf~wjZG$S}-b6jqn+_m=9B?2xf5WKD0Sr)9nj{1# z!y;XKQrg17$Uo|ch3tXLo5(WMmd}wdSAtFRv#I~!SHHjF&R$yN+oSpTv*Pg9v>x81 zke>bS+nd}I_*coN!qLcSgWq&N+ZsO5RBxO>D{!+hyWT%>2p@m^)cAuunVvJAuxFPg z2FgN-u_lae#zcuH02ZyLUd4cQS3;m`8p3?4Mv&Ncod7h8v=Li|xE3O-epy{%=*AFp zSaOK0PqOM;73_N7Zg0v=iOHc$cLniaHxJi83&${Z`c=fVoGf>4;U1-`r0OeKxV<-= zA_JxX{r0+WI{$PNa6?~m4M1k&w6@7lH@LI2%~@$orF^}kRmO59_XMv~Jj;OjH64zS z0OWeE0*kb1lRIePd&_gWdrv_YcF*`K+Ay~rY~|H!f8S!RYqE)J^2$g-@>n^k*?gjQ z#58a^_ZS1QoMqADSJj42K6}H7)0%T0ugJcgudDQ2eft&UK-i|oj$EM<`j#6zB*!kE zAZD3Tq=}4URDQZSZH7j@+j41fZ_$TttjkF^^=13YwT!FvYR|PO2a6pItGtbS=t`=B zhGfV+#5T7kAXq}E64&>0C<#T%`f}2ONe$!GUj-gry^2K!Nx6>QC5ZgZ2!enSJdeL^ zmWn@GluG}$T`EsLNQzWid-}|{5Kpm1)(N!%@__Bu%TmYY9Bd&$46pQ0pS^0eKjqPiWfD0 zmp*uPCTFihppO;D=H~nz2uh&dwFfN>m)I_MT3KYmydFlayQFh$yg~G`H2Fd9Az%^{&<)2y%%J2jZ2o9GTqVtr@iZnYHC~8^dd#+y(mpVdIv#@Ql*GA zX-e+_41v%@KheYp4RGsYh0j{C5m z*25a>Vg2J@bItFcU$NVFFwsVSP1WQTL<&v2%=r0~6xt}mhn?we$Yi^!PQBwl>p8Eb z`=@_J57O-EQ*lF6ButIh$l#1A;_U*~c*9JhBvvp(lXRqK>6NK9Z(MX}QCaV^1zQ}P ze@dvc2uG)~akm8#a6LmK<6h%$xp=hTazO!uS!6F$hM#gfC`tF|My`@_N*P8e$Jf?+XRpSMtU91xC-`wiEo|SyfgLEQXjL=bw+rgY; zDy791u#l&D_C}TZ*8FL)FC1^EYVu3?6O(O}Ap!DS5t6;ULJ>9>tD80*34TvAf;>1x zbe=NG;w$^w$q9i{z&sqRm|}ig5t_pXn2{vU@@2`gGOH7+y+%y)itJDtdOKjyGcPjg zWKZP+<L|yAl5y=EvWH!%K|^IQT-EWp_Xb8!(ee3v|lz7tzCv-qC;n@2U~e-0S}O zc8=O<YFTcCOZ6{jZy9E%+MxxXPe zb^o-Z>vfff@aL(_4!l7@-O~bBV-?hooEN_0uyJkUceAawmxh}mE-7DDxrE%0X%o%l zuealsyVYtJt73LavfFX zR0`KrKe53nSkcLRUXU9gWNalcw*{^1byxSEbT>>i1x8-MZY%yG0)+k0Htp0?AE(V} zuFG{A7P9hcG-DI|l0sqR_n)$QyP$M36d$9!EkpIvf-O9UeAqA_n*I>u86|p^rnkDA zr|!1~H$F<3x=<#;GXG_gwRZxGGdQ>BOK$dS=pCvS7#rXl!6?&B(_6TB4Wej*1le1j zmRV(5+19lc$;FrA@mw#{;7F3S7enlCqe2Md-CiZQ+|OC~<>T3Yx9Lg0mTwdXyFab6 z&w=fQ=*9P4AWq7dt8tZ!eycoA;5^Gb4}khaF9DtJ-k>*u?{^2T7Tmd7MR(6GqV{q( z`e3im_}FT9H3Hkd1~}+C_FZfbRw|*-`#YhI{_cR3k>_e8?UH8olPU~Iz74tvu+|z` zf6&j&&6NEpvnYEaT;nKTuGp!8m{ zGss^bn_`fBv~W^FAL^Pp02iCtb3*xvzx8=5Uf$|U0GB))$6Vt=CKE&!-O3IhxKT?n zAX|uEPo8>Ja10RWm3oVmIG;OBZSpQe*6OgZp)S-<0RC~hDlD>j3?(BPGDV_ixlmQP z(ZlYT8Dq<88FT@HbY+)oiFt!jH_IFnYo#dHZ<72jVgBR2Uqf$GxDi2itp*F4_QF82 zsBn8crSX)mAdpC?^hy>(a@Yo8gv$KH>moJ9s_%^T+zgA|MucwrRm(%qJUO0wnzJs8 zT#=#{5sA|Omk?b^$6=z~h&S*@OKo3u4~=c>cN0#8oXb9D&8=@zi}?p z?TMlHtb&;bR=*P=Ns6kf8me4;Z8r87t)m@K&P+#G|MllAn+dgEGT}mp1ZD=H3yM3c z&j_F$KdWoyhw3d=Kcjf2w_>}&<2@z+zfFRmkym$j2^trX%O{plv0IF`97TFBp~)|* z(UwwIX*FrN_&-s~vNqOWw=iAFR-urB46m~wseuT|{9sq+an2Stp{NPFng#UfaQF6! zrh59C?H;+GpTw?BuNWFWr~2SXIar4n4HXTl>A7<)z|yM62Iz@_)GrR~?RF*!EZ9%p zWMX{~;%e}U2KGXSsHZMZG4AQqKA-`E$N#+8x?u1_>5?q8Rwc zV*dZ->iT5ouHzgGBDs4>IF@|SH@1{2i7;A}o(Ki8)Y&yAd{-a@%Cf~39T-QS8?}1J zc0BHFZrJKJ$vWNq#BEBl;~@QW$d4hlDP#$a3A9?;Y5Ru#KAE#$_zr(@JXggc{Cd@U zK3uPpzOk~$Jw&|Bz85uD?4fi2X*u^B7G*~)Wf8c+&*D(7?GTK@YEA9!?VYOKU>A3e zK|ow{L$I+jQqKd|mw|JM7}#OO$JpG3wz8c?MMBC zK2aJfRCxMTW47^#Hr%#-iB{DnHDqCpgDZ|~{WvAI#)xp1OC=#Ji@1SZ$k!)RK#qR) zupiK>%|P>X3smFi%#UJ=BS2M{C!PwcYXm=-3>=1W<<8XTaDFOjpwC*-*SEI<>B3A7 zi{d;15}RqpbDaH_iiTvzccKc<^sH&AZACW7qEIgs!1};im>Sl1oH=HW@l*}Vr)c%Vp}aJgdk5I^R_PH~|dgdwqGv7C;2tBHl9pZ-!-m zL=XQn_gNqnJ4+bLiw_^&@B}Nf{f)Mv*Tu3=DT4{|bp@z#{~&eZ=?0T{0H~0pcNM>5 zT4WpIo~X=G#_yxN$-NnqY)YOR?pfnSQzDV`25YEZS5c@BUH#tQRE@`%#ODW$l@-uu zcdQgXmt^uV#RX`6ItUQ}BPcLiU)U+QrA7-FW~}(C!0ey-sCyc>&dwD&BjYg06_I)V zl(lmrBAI9YjmPwA-x`X0RY0hO3Pjns7lFY&F*UE3A0XcGEiFw&YUEKGwOA2QgLSDt z^g*coe)&1LwK;p`U8Hz(N7;=XR!YCWIvjCx-%@V3nUJqZ-@o547w zv;y12lsEB(|*WNDWrP#P}6MIKg!|3%0tr=;7^Sbhm^-sCOgG5l) z5jiXimBxU*|GNk{R~ivFO%?b#?|Cra|9z(L*mXPoD;^7aOiZ290vKU8Q0 z+#EE>8mZkx!y1)11iCC|VB%o|q0r`YPH#^s2M@`r-f0u=WFZNYF@_XMwU(ie%)~Qj zaG%yp(fxL~sPoGOraLlPoY!Y(I$w;+$RN^(Yfe%bw)1wRnle_-s>2c9w>7g)MC~;k z_hs#%uUEER^2a|OPQ0D&^OTF+#;kO_LR6ye(Fyo3%8b6N=c7XJSlX122y(tEif`+= z(K-WIdzbD?_nr1_Kfi<2n8^d;aiSo(|D&#T_0F3-lbTMQ|9;T+D(^(^5Zcs6``s?R~qEF?EAe zCSd6n@Lk%Xu9}z{YD!XThu(svwi6^6X5)r93kTyNbNtYhd8b_&CCmtBd*cfvF$lwq^9XB*(%V|5b zDmmdGtE^_hr85Ne%6s!^)_!#JbuW=*m6B$rLeFmgxj56 zfU=$_RMtE6nR+=SAa?qi8XCRyo?J0zx;Upu))2jz$?K&FW1pX3gY(@% z3+8Nx&@^&j=jYdiNC|L7;GW3d)J{-*+L(j@#4+vORN6|s(w5Gr(B-xIhxxsEg_Wi5 z&rvEBtLoX_p0`y1wZ4MUdNJ-w=`1q`r-Ik~l}qU12Ll&8xvk>h>4;i}04i9tVe}Ml zYW!>yd@~V~avv&}PH)luG$1*~Avj_M`(BKOWlE0D5_!fYz^up`S|0Ke>c)WBP!KdV z2FBq64wkINk=rOl_||!}5EIP#3i2sH0IOU=^Jf;>zn=Z~+vNOJ3ErAb%18bv?^ zsnStFdT#;(-#%z&GLxD4&HTTaS+iEMOoV&y`@YZfoU_l~`<#14>45y4S<7d!v9Zlz z?AfWp#`cpA8{5k?G3GM zOivsa71|=SNno{!t*w=fq_D8%KmCHx32S5Fs#(8W!kf&r+M{j5#>Rex{+$vg7i!AJ zX8Q+Y=QcIR2OTx19OpDmO!Sn`i@Oz7cHU^-yzPQlbW4_RSC&#wi@Q%~XsFTKJ4YN3O5fkUeS1TD`-2KY+(P}d zp?%Y%=B|=_V<3`aAi{ev$s*TRIKZqtI!ZX>>vmpV-iw2aI5?uCbyJtu4k~{eO)EYq zEh7`4RX5St(qh`O#d)xuPxh){0v5^6ma^OYTZ{0h@O$vX{$;r7m;JIFr!?3`=raQ^w=$E&5uU@+rFTh;5a;3%a zN)8Tx)>zcRWPdF|rkGQ|$*WhdTHf4V=hWoq(BGNbMQ^8=P_W+RfW5ta?)@!Y3p!|B z9F5$4Zrr$W=+Ggxhrdr59vyA_>>*cnPux7gb898!`%9l{Xl@R} zkN8AHL`q{bCdQq;`85wDB_-whNhRMCGd)@{*p)pc-za|f&6T_k4h|I`K5TFs|JI5f zmSV}>^7gK%SxMOK_KuE5ypNCI!PalXeLfxQs~$LTz^N@N*><3{ z)V81^Cx;;P;`M}RlFd)yHKXlWv*I~M;_SUwx3D=`Ls-LOGWR9n_x3@QZ`4Xa+ z?$lD5Xzug5Htm!u?pO8f)M;MpIEMLy*ZOr4Bzq!)d-d^MP-_INfkQHQHy?$No#&Yq7 z`uf#47T&z7yGI8*JiW#P-EErQsXy9&!NAfoYVEG8%@HvfdlPF6L`wd{j?^EmedCn?nMB7OVwv%)i}=M{Mr`x%Z&A$l;4H`bs6XC$ z#kMLWC@2hflX7}EF3GYgWdHrmEe$!IW_U-I{iaQubkdy?%c2g3+O?ILRwY^9+j{cT zI(>Iu)sQe;kECPw!;5oPgxtBav^46VX8t|#;zv6!C7d3%rZtjr>VMK+94OD;QJa1c z&yIdp@_5&;^sBf8w=h{%6_tdeuV#&n4b{bAM@707ChEr-TzP$CMJU6Q$8=(R%-X@B zy!x3<@k%$m!PT2L%W#1S$7>|Hxw&~aY}kX9t&BZ(>BWl|1}9F$q}a9LBpuv);DE;G z*EiIobi`Ll+U`kp=+Y>U)-@El%f+y)On8q+&g$;A>Zr@qcb`5-CCQ?qNG4f5LZjs+ zyIhGpr%Mp_X4t{xRNF}9u7ge^N>bYZMwK+r5LRewiILN+Hhvo@yY}S4n}dfYAE(Q4@1(a zKkVuf;b{Cm>(DdneMMZw7CItnZf%HAAX2n7t`}O zyRI+gk5{iK`lX!e3t@VCdW#w#80*aw?j0O-4Kvq|J-W+V@SsM3>qxkvvp1i**PT0I zmoNXqaOfPs4zd06cA3KEgK3VjuWzo32n*Yw;E2WY!TC;f8Ze_5KC^CAF)<0lrTT=} zeN>+>)^m;a zExohp7#9P7<(ZzIUKXQI8zQ9T^OyYlbj^)6+qa*quC7*NH8sV>#VQOrArzWUtnUy> z{W&dY{`~n34GlqGzdA}tN-np4+hn#=A*Ii;u12`-_U+qy_w7@QKJ*Nm?1c6KKgnQh zc!tW(o#$~(29&aozkht;c=gjY!otGoqn)XE#HBKIGp=2|%0!CfHejg49({#;5{diH zlT=hxRCvSW($v({eQLGlWs{3$MVz6k%S}X#J$v@B`q*d9QrWxrDt*e!OYCif9aX(O zJ&aN#96ld&Tj8-exS1-Rl+MPF>G;JO*Qqs`6DVu6=hZt(bQP+nWQN87+4 z=)i-mYi7)tk$2MO%iC}O0ePJ0+`FQolD5qcA3j_yZt{2=O>1&_u<^*b2M-`=8I?Z1z-? zeUFIKIow>~{>?$oGpAombp013uhOPJ{@96lBUqYh;P5OpwXN{cj<~qEqVcg&LqkJv zv()tTF_%$FKWXXdjU63PCo;!0xc7P~;X$fLYQ zk8XABK0MG-Ro*+?d6{sS9!G(C;mB}PfZf;bBLgkP^2~;=t{4P$Uh}fZp$8*r206^i zIKyj__U&JlTs~A(gdcf%(d@&MM=1_n(T{gsYwiB{vUg}mvGiSexh8T-X+^xTs*I!~ zVh1j!{k@`y`?s+%yZ&b7ygkKk!^6WZ*Z?V3AJ6HzjSa|mX6NVckJ3pjs(Lm4}gapZgZ`ik)a^>7t#m$89zmR9Uz zuAJ;_d0AQ6*5XhPo#f+D_4W0(?mjUwF^HrpGDb@mFCNqyDt!H#r}VQIC81&Ic#pZ1 zUz^_f6?3|Md-T(cxhCJf_E2hHE@pCg_!9^A&R%c6@ROfkS3W%%c=XsY#1o-8%S8SV z$*aCRZ(V|Ii^`3qo3<+}D@&gK`h;iyJ+I>dYu2pMd203O=1Pgjz&K_-pI*hq$9rD7 zB!4gI?Afz~nh9Y_Qfw=rAJbdZNSZ`XNbrw0_*Qvkx5u(g0IoCsY{;~Tme*FA7 zaId&5IoFYoS*6AaEqf1iyYRKIiZK}=p1HV7jLX6c<8CpwZ(!(2yx=} z?OKTOZ+e@X(i2RJcR#af(g@srBjH%~Tt7*>y}%Mkn!c_RV-EDc?laiSI%`txM*2-H ztDh<(q50zZAq+g?ka5}|CZ-mu7@(o0b?3#)myK<0_mAt-$=$Q(@|Smh5udX?%yDOQ zh1hbwkIV^_eX9~(k+9j~!)kh;fwY;EEbrf3B^6Sx@1~2r zv|RSIBkPLrId}KcXk96n{`c~HDnXZ*Z#f=`l!~)z92Rr*)zxr3cl_qp9lE1f43qBq z=dI;20kpAOOL*;?3%4QJ4|S{uGOo;UNv*D_DNQg{9Ud8B;UJAP1-KF9Y_EuKORjTO zjW^0~z@k#ZbROzNe!m|X8EM;6#Et!R0MEdzA}$!~5(*3xT&0P;FK+W?-~PKIyIx&e zQl56I4>&mzKR0f!#4~1_7~JCo90b zqoW_n5VYU6i_j-8{O>KczJJ8y*1}*U)I9o#yNACgR5rzB>;B^c_5a_^{pVi=kj zE_S$H`pA{Rk1Z|X%S4T&-^+GeQT_wUH2z-gK2I;)76JSqa(ADp4={u5?eQNKppgq= zYl?lx$eZke{(diDDSsJfm8h>*t#W4eAV*!W74b( z1`#a1JUl#5M+gCq%vrH{AA`a0=>UeIvJyN1oh=c=T$8#CmsxY>sAu0?wTP4R#Il(L zBZCq==IWvHt4Xm_%{V=5U~V2!uIIeJtt=|F>y&Lrr8-XRdk?vB$2$987Yp1%ytA;h zR8KHb&c7>~9T#=@`8g(+oSfX;r*Uva@R+SVbq?cw=;X2T&o`|q3Vcl>mA|fJ0F(4Y}Ho~E+)@QT7zyESk zqw5Iy>wyjP-qgMGlNuOli^+TU?!fWm$0;r&Kp0h=c=tep@6gjHxGZmBeOd7nwbgMQ zsa+YWSLSmY7#oKIF7s~OSQyvk#<>cyA;f8*H5h;9mX&F!v(zY&8ae}o?&I-9S@1Z{ zFpm#+43Hi7I54owxr2_7wev@JjolJkw{8G1mG|H%#UhKlji25hAX^icj`GO~MJ*8m zi1+3wDRX@U@AGL!M`G)}dH?>sh&6y|rdYNjgQ1-6G_Y{-;t&L?w&wSND6JkNv~?cT zL@hW_>)d6ExVaarmz)nABX;_$6&0k&pUdT3)2Qm&b!{<&IoMgl-!ieAr4fB-SgE`L zn|cJGoSRWrR>tf+{|ZSUx1c}~`L38?`1rR|iKutt^s)Mj@X?5&R0~rLHFxFKTVKAa zhU`;DooU-$zm4_|;392Uyh{kq2jzvzXEve8x@#Df$tMEn@uA4!2eJdQQbHBM%{Y1T zq*+Z$qNH7G5b)rIix*j@#UUd1^IQC@&P@4<$~{4yggrCnuDk`@iqL9{H&yGnID6S+ z)Hi0huH1X#5qPz2L7QFQm;KyaTtO5_x~+5WRZNpM#a;xucVXE9g~ZB^fBkG*#lA|i zq}Ld@dZ4Xbk?Kr*4hr^n50p_r((Yuae0*_1umk4?Bv`|zPu2xabi@D*`1tttB8M=! zgoR@+N&2Ed<=eVdOTkA#8F0JUf^*Z+^C1WPSb(g1Qx?3t$sxl+$rKK_oJ*i`Vnw*q ztz2(@e!L*Xbu8trQGBi!Zy@kLgDE@KuL}5P3XtS8sDHZW0xA#N_79t$rKFg>f4pl1 zn^$o3=NU8j!IhYfglor#$c{9x%WDD=5r$3Vb32A;fU-z!q~&{r8AOfWZ2$l_D|~pC zPVvW&YjDyS4(Bwit>f-(w&Y`HXJ@Ejn-|GsnwLkLc2+-|HFG9yF)l`5Q$ab^%~l_` z4|LVl71>umJxOoNWs3dD($CDG99B_T86wene&zx(fVvra`grDPPZ3|#19#8K_mkRE zngZUVHhzrYvw4}ot3UqOuxXPr_$eY~EV`-*i>;-hgEnb+lh_AnJVCT-A z%^-Oa&qrQ=gJ%Y~6Z-Mxr3lp9;Yk2#`?14XtDnW!x(w;&jWjeENJvN+J{4|xm$*SE zA&h__s#!W|!1kWDP4jXQ0z+oTG8Zmb5V&H?@eRDZ41k~HNC#_c74S4g3BssQSp^7p z2=TXk1hkK88*jev&161S4LuNU-%;7y-F*v05HW6u^eoT}x&AV#K(4`9w(y--=FdX? z1$_aX5Z8lEqh5t0sWaZ*+RDcubPfnpywZVi4xYoG zg=SF#U|rU=whQb!6w{KEhjt{^q&p`QrUhCd{sO$0PLjo4>@hP_QR{|1>0^UcBOfnu z5)Vgc8M|54lV?8%i(N`8RbJ8~b!4z3Lc-=tkkim!=KKWFU~j`s2!_&h^+&;j-)TGom{{ z*xgI&?Cb;+Q+D>J84JN|A>f#O?fyuqfnY3fB(|n03T%S-Mg{&+Yj#|0_SJWdO$!{{ z&^diy%R9xXds3R#J=nZ?b6jlfsfG+Xx!*poigK#}T9=lV7BhJB8G z(AU$W93bnGaPsqR5FcvKpFd}Ire)e9V2utc#~Coj#z(tQOnq2aY66A__h5?6o8mOU zGIT+P@&bqLCw)q#wzf9hCw0o_&QW!C)+QOyCz?1qf>R3W>hv?mM!dSnfk(h6#XL+?|3(F){vX{79S+FZ3DnF zYJsBX?lTNQ-C_F%w}j%s<6#lVH`K)@!6TybbGH6E+;x5Q5?Pa)?-i3m;x}ibG&g=E zCgi6;!#p2e9-iF*wtEMrjUi&Uz7M>#ea8+eB`#dJz$-0%C?g{SkD=HbBnpbrW>7?k zFHZMlQU8SCUly(tyU3Hu8w5S`mlx--yBxrA^7i!f%orbOQ)`pIu{?O@0v;1Q20Xqy zb2()r>+26=`Svrtww%zbsHo89iKb`JEW4k_lL9#^|5hB&*4p$`A^nU<5NZ6l5}ePG zme7Eb*kkfF87>DwFd;^#j|_Fi;3T%9Do{sB=*_LLIPY>{`s|fkl~V0HR6ICj7S5aZ zh{_yrf<8GLi9y6Q^R8XH9c57&woJH}*Fu8L1PNYyaK<2}6757K5w2f2Pi7=}rG#}e z3KdO6@x&u9r>~N6QtQeXjgHpOj7IvG>rW(DJx<39$p?_ZoE407+>+$dm%pVnRFQL_ z`TY)n_A(#?F^dly^X&Qg`N3&3fc-rIk#O+Bao^fJvSCQ@$hR`!ZT6n(ZFmn*R@`Cy z>gpoo?FUpIqogs-Ix}V2azo1Iudgo)1edbDbc9%AB;?b6ioAnpE>{Y?0_V)4$Qj{B0BV31lbG$Ai3b`%}aihnwx6a=pU$^>b(YA$w=pjPZ57H(vB$Fe3H%_jgCa`a7xWP)6Z{wpwPNqUKq)Gy zXxuop(sD+@{^wM7#xt2D;P$0bjGI`4{= z9v%M~PnE5EHBVpqm-Okg5i-RWZBY6h;nO92_w^q%nTm{@uXq0E^uQTxjFHT6h@(oBqqO@;_Gr{Co1) zKX~>3Lhbb93Z6vX)n)6B3zM`BkF;nPNuAB+*!kmuva$a$$vOR(wZDIGbN|&JU+~QZ zNv4kU{#J;H3gNBi%0wHWz!Z&kWeR_neBQizwQJk9ZL@y;RiU&KWD|%{Z{!&&P5?|u z$*OakNC!aTqM*v-nG?5l>((%APzpCUIpxN)bjH(T0s{j9r$T`*q;L1R-XpMp@MrL& zN}HG9zlJ0R#Nb4e_iI;4+3y3=Q3o|{2RcCEK3*1vlM1dDD#Nvfixvd~!iFKkFPF3p z`}Fy<>MEPQFZocP~fe-lpHd)wNUodjRk@ga5xa6^Sf1-wZSh#5#j)9gB{wUbZOWt`am z?%g}mtq`jy;aIexBUG4AW#H@5h9qz zBsf6ehdAJW7P@#l0^Om2(!thq8BmAz7Y1sk^2rf*!_k`C&nYJDzOnpIgjJL3AoqtZ z)ZVPTs}BdRKS@sZ1yQdNqZb8UIHbx5*NRQXgg##iA1_I|j3hwn znovsQUccTPXr9SsZf?#{LDt31KxTW0-LOGGVBg^2AQdczY5+eB9cW2ls;JO8fBxr5 zZKh|5pbothdA6mmK&~8Ds1|RupO89A54!Mo0dg^rDfcq5Axcv0%t2W(P;^nPjHqk~ zF!|s?B$9Rn@FHPM`>xt3WSH8%l(!EgR1qdiy?9k^n+w-Wn>MW_e@orIKF7veYj%{x z=*#Wexs!r05+^{rbxJl>pa`fcf)vo68RWN5wUS4^24(Qrq0U8LCq+_KIlpW;L zjtk;y`4D@I83g4}Yw%Zgc1>&>fdF5@gCW!BEU!+E!M5LUzLoF)9!7UA9EMOFc2Dq|NU~Sqj zM?ekvP%r>Q0Y8HA4Nke*xXx?B86^J`F$k_6YZ8GXkDxV|_Xg$dOw@FSud=fvwz*H| zQwzJrl~Z0m}b2FLaOW7NI3pw1_2p|BQ8)r zYSbC8`caTL56%SNv4nG-PQfi?xt0RCi4w2@>dD7-QDWu-=7CEdstyHXdG+#TB`73V z6Z-;XAGcJgBd^_eXA+$NrZ`GJQxA!~_}sK#y>NIKDt{44Ob!8^4d9(O0G%OSNusJ} ztu_Yr2fiezr75#*?Yeb|c5NDYCp$Vi1kdu|*N~)DK**~--Z>L7X**R~2y}vse<`vk zp?Fh++Md$nd+XLiKuT2zS>a_fe*Sp_iiy&c)FYZqL`!Z4WWqf|PeCnfoIagqDB(P4 zkupg-d|GQFbBwr_RC`OR%L!ybVHAT{!Eo5^$^~tuvZ(g;>)imtB*-<(c3!-Ud#p|N zyLRmwWD@nz1FNRZm_c=ykJW9!O5Bpx_S%|8>?bFX#-g_GP^0V_kU&jGA7IlC@D_n6 zPQnXnM}a9;gY6Z>^#XHpx4e5(3GQ3{nYE#ye#RkG&=4CHFPe?SSX9JmkDuQ15UO%e zRT(bm=FOYoB%Guj`bDSUDZ;ZhqkLu&|92+cCRJvhW-C@4ue0>R9lt`9;$J!Ic9 zVml_)6kI&_!X@jf_^P| zsy7HYGy>7Iqb61J*Cj&xiU+qj4RuB#*R+69Q@X#|(o4$WIK8KoeS0Ce5Q@0uZ5XO^ z^W_?7uTWjUv#$_L%)(Wxq9A!HxlN1>{lux={vYD?e+OQJYj4G!ESGkCLh%bKqB(-E zr0ch@GIhnRb(xvaXM#{z6SG4iInEOtDKBU1uE2Atue&q*^RgpI94PTkM*3T>elLdLK<8YirvKK%xR0FMMyZ*&5vuAs8!O^12!NEbaBtqoWBP0P>0W>$X zwz9CbBTx~y45B0!MjUGk^pGt=AXJOg+7zXmTGo4q2aln9!@e)6qU+ccwIJ7?c5x|% zMc~FVQJ(m`Q)YjK$u|Iwe_|_0|KWE^JNz9cZ)qQM+MUq-N41M>3~q`pmpCI(4}32@ z$#}$8u%h<;iv^SdQB|Nuv7YtIFNGja60v7S$Dgmf5vyp z{|4>;1GIjSO-fw3YLzHJEA)+N*Z(I}4FPi);nD-eXGxe?DX3P3% z)BgeM*g6x#`JOpJ*eXyHg#AEnvjBl6J#K7zRzF9r4?@_$hVGF`&VKbO94A^a=HYBe z4L+|BcR-RC<4lXBMrMN-mb0vgJT?9}?#lj-e&>4Is%5HA@YbXSW-fF0eRd4jG$LQ(8 zGNc5}(i@Qw@QJ}B0uaBPQ(LQtte}eG*RJQ&t~}Q|mm$BsUK`d(NlDS0fN}IOpZ8xz zs4r{3hcjd*Ahe5N`kAf(54VULNIq`4>?FlCNFh`ullLdjSGXKETna~1-Z*%9QX~iw zz`+9N9t+ECI|HWOf)%IeEdZ*74*<+!>GQ8n4jS?ngBw?PtHvb<&l?dQ*0jA zKLXhE>eZ{{q5&Ulw(OC4_0w1)jOfCKI%`@h6C?KVsHQY+CV|vXQXO3XdobP$7cLCi zQg>RFELqLYefnEY)T-eMSmeqSUgB9{vDw&up73KhAe*tdh8}dkfL#q#KlXGiWPbH0 zhqnPw{to+*4;OJXkTW#Z)V!`P7G!}Rd4uqbsw;lwF>E#>oq@}E4j!x$b7_aWhqgaX zjv;ah!O$?}9TA!_B)WGV%*-)hMny&a3k0h=I@F~Jke2A!bM(e4DGlIqpWkfY6p@gU zGRO9%Itx3Iur_G{OwfpyVEl3l3JR=ssR%;oU$xaLt7r(YClPGJSbwpik6q@(cq)0-D{UK7<@d)fCAX2-2qS%p2a^CQIDfwQIQ;(`GGH!h;=vx^=M93mgaC zj&Xp?pwbXex-1GGZzGp*|A4&Q*PR*VtJt~^{|H=;&$+m`-oWJukO_iDtl`de6PX?3 zGAT$td<-A?3G6Bq0c){8^5$c8fY`}#z)WzPaD`<@2_!9c(UYHV09FRIh5~c3s~7aQ z6fXkjMu$@?_NdO2!)F1pOv9T%^UyDsc#>ZWB@b0AWq`iLZRq$1-OGnO}VcWH9 zSFnylCN|Z-0cmsZ-F}VRa%#8E8sAGx|!+z`EPa}j0zCoMe&e%%g46k-Cg z=A_TSm`bKH{7vxP!)sBMva5T1hq~kl0@az`^Lhn2<$Ay5n=eyGDag1t*4vQNSJ?DG zPv**%D`d(c7fMJJ#768gI6ip53@SiXC_#lS4x*auZG2i!9+KMuNWk*LlWi0OfbF1D z@__5zw8L(!YOFKg4TZ14$jekno27$V#G`uNwzi(Hu+~D_10+A-FpAVoM8*CG zTa}?%GCQRuO}wxK6iZ>CcwqGI0WVN20cs@p^rmhzlyM6oBw`8nrt~$}1K4nUl_IiE zC-&$CP}<(&<|A&qK;J^1fL-e$J|OSq%N-FKQ7R~Axfy@={+OQg0mstYR1ovz$rCk? zWfw182wr}LNF5Qr9oyRKMBjaU4yHt~YibQ`dxhU}FB6;sY$uMI1Rf$~aYw{H6I_Ai zBd@Yjhl)q%uJlk?Cr#eo*)-iRXBE^n4bUTEhqKs7)eSh^dj&kG!QI3z>{Oz8$p)#Z z@1ic_JXnG%uK~-3`qd0&25qt~iA}F`K^T<7E?kN-e9qF1zhm2#fTf1-PlO^4iJGX? z)lk~N?4(Ihm#E_(*mk6DVmy@M8d0r~s6aAB+jkVX`DeOKj4y|<2k;sM#K#Z8Z{ECl zEjLSuPG;xdv5h}HXPVUs*nJRd6%wQ2Nx^B_cF{u}dk8ei{v8)*zi*4l6pF8i+V=e(}>dXnMY6;T9^$PovFr1!fHdSCWfWhCxmp`WDIg z^oC%F$diBR(j^iskuzKH;6^%<>k>ef5$hct9Zg&tuEpoLK8PO`1Obv9;X>R-6){!Q z(2ib4Q%=;AeJgo6ln31dP$GzI`WR?g5SJSNVPo5Bwx#acGo~!*Xly0=1;1oLAKeiO<^^q{~KISsal^Qp7KpuU7xLJv@a?V=pT-Y+`B z%K&~r2z|HYXQ>WpZ8OIvCL>ZmY8fgfT9RUul6Yw#!ZEHiuWFNS%M0}u%O3`OqN~&xHH?n8x;Eb1IGjn_p z;^S+*?HV-M?%^-*u_(c;EHWHa1<1Yue@pC);05asgrU;$C??3yCcOnWHfOmQfdk6H zBo1SbYA2D6dgRkJ;gV-I#*J@o?|`J@(teb#wfLsn6rd zK-r@Lt$2V6HxQ6Snax@(V4{{!AJx6jIr1Sl1C@9gaBT@{{6&H~YA|nsu=jzAip@mm zf@m(W#~SnsM2?2n=jWJ0WagZTJR)&?2!3P2WhjMS)zXNoQ8!3v|b=F zv)Z(0;02HyHzpph(Lt@p3<8iaLx%x@G*Wlru3V}i)-7ErJ2)}!f_JEYHK^5PLL>vy z&U2|@aa9~|H4t10;F4?**QLMl^Rp#P1Sq9~Aj+HlGIb#3VuVCL6A zHcG@Aid8wZe|QA9F7;%*}&0%(;P>8ac8HA#~4ITpg z64j01aA4;#*ZP>%w-!zu@XuF0JdDZqcE-5S^J|9Bqn4V9JosSfX&@Jh8NXZUC*!Qq zR1lDC;b3D^jF=qbAv>}MLcH@o@2Yh=6Ly2`+Ic}s5MN-{-_lx`WpiyF7|k=rRiaxS z59lM+S=-o%_THlB(_Otuz+?<~iBK&F#x)E+rH5ybzNil+Fok~QOw)^FGom2cDp2%C z?(!=4I)I~ z5tY-3rHkyAc8t`XfwRK`TxiCNh8|?dz>5I-EiN$;AKbrg$t>xZ&UZ&u;Wn3+{H6X` zR-ikZ-e$$4WzPjX;`^X|FZ%5_tGc>3q$uJ60LpsDS+rke!BPkWEe0%#>;bHn* zy}8(5gA|9BK&?!LRU-uAMlW{Nzy^&Q2T|xWxDg0HNWC*vlJR*UFF-N;hrGl z%kGum4~nyg%=hAb&y63AZFz-(?s|H99@V$8*8BFoUDw4_NDpC*NVwh5m{58-nXp_+<}NqAD?@K2G! zfG!pXI45i}mTqwOJVI>*Fxn^|I`n`n4M<_;xK1i15Qs`L-P}OiOFvSXjHAQdd*bI} zrBpdjcb_GC3ylCbR!XQq7QZKH$D)-X!yIr=5z@m``n z#ydR%>&7c2gh+B=7NiKIxBw?hT)$(_vJojAgdjAxsGwvZ$%M%~+VHVwf~>~)47H<2 zAJYlLt|Uyo|DM=;U~1S916X6oL5r3w2_@@5NtiN0ri`zjuBlmmkDD4~2MI58>v^>V z!N%<{VKHUkT{LG%5Vemw;5~TFMa!0j!->?|qbTW)Du{OmS|FORR0ItZ%k?}_D4^y* zH4q4-FK5jOl~3fc8m>L<42P77E_}b&mI!MAB=v&{VJQa4LZkO0i&E5~XGNEn_Xtxy z|A+eCV2(GxFA*bH5ZIu}LIT^{o>Cr=*|fdz2n@87;gZ))b5sV5$vm+i4(HOZJ)gzx zTGd>7bJmmd5GRXR|0u24?bHwBkO|@&-s^*Kr~4py(Ftb}6vaNvt*Oz4^M))3SVhAM zS;TPi0#UObS{CnZIdL4#dh#=n8l%Z<2LK(uyJ>v1xgKD@Bv@fdBiyJ+p2T;f1Qo36 zk{x+^`1w?#=EI#pWgRQ%IWisE$DEw zw2it&#vX#7KTV(g)cF2r{`gaftkio&wN`u-IE&>Q51)bkZ*9vv6AiH799qTjR*@{p zF8g(LO$S8KmT24$3x>lO9I8Bv&E|l?^bxk-zMcd}WditmPu3*`05Jrow+#^5r#>DZ zLxh&T%YZl8FHyLeL&9nqj7JL{p(olZz!Y7>4)HKjqVJ#>a&seEfB?+Gfx5^wLwkoo zN|Z*V)+0QlTww9DliGlAD58?S>+mkrqVI7)ASAe*f5d9W| zLy-rq7#TRP@L361snVv2u`W00v1MqaA+v~|gw1ZCiCME}6Vu+%*%^&%Q(%(o2!&f1 z^f+(^TI%It7 zRlqK3@^2z@CV+f#uf&=)A3q9HRM-0jwJ#KPCIUG8Fhs+Up$#cM%ab*SJsdd6$8-SV zM9ac74t?dL_HxMK8jM>>eMlT95?xD#E9L~TVJKS3RtL{BrljQ_O z9C&_^?Z%YyYLur+`vYVtFkuiDY@_H4W$?s_F597#Ha4E{4UjN^p2vaCnuDYbqb%|a zu?#)n*N@VyHNHR=f9c1;;=v7)j}0k%nWQhkC_kK1V0TKeDac6$@?V?hu9c0ADliT5 z&pHsFF5S;(fRthZ9+3b}T{6JC)^>KK-5+1V&CCnD$h||n8YVJyV`(Cb1?k`_OOeqO zQn4GPyS4sgWj-3urR9@dHdhCw6yW$WJ&_Ual`WtY|5>QpgqqX~8ct{ADWdoQPV5@q z%%cTnw@X7AcMzlsM4JOCRb7i*(MMDQ%7jQ5YS_brAvB|A30PC|&+pWqej-(kfEnmF>apTveVIVBR5?POm$?R zM)HkqhoT}1+QySvsYs99DCmeGKvGmeM=+5$6bEsEr0{bE-wpbR%3so<^8u;`>g39Y zbPoja)R^rnJ{Kk}+X9Bbcm&FOicVA}6KEwvC2=RH$C|;UX=1DQ!>k!n5o7i7#mEoR z9ERmEFboJN@fPeeXTC?!CRYckT}UcEuvI{nq83(KZ=lpt`1T(I3M(U|hS%!mU4}-8 z)tfB3AiOt%Ri|27?pwDz?3?6Cmn}L8Fw$-96r??)rvczEry3+zm%$3-5fm)Q z*N=(XKqwq~Q0oG}1(C<_A~d4k8YnmdOt}w5X7a3)B^A*s0v@&zWM|@yh>ispO1{y_ z_82^Sv^%I{2Z$a@wKWcTP4`O&2@!cRazbSwzz)KTqvg(IlDYfVL(+4~nM=%Dw^q{~ zv<^RmKZ+ymCpLq)v49}IyNl6=XX$ex>;HybER@G#6hWQbbel)GqW?kqZHUEC|u7 zHks2i$3Po?OFsC}(5R^i^+N31gHD{no!Fo3rGrpL?n$4DBMtyykKduQ8s)GO@(SXn zzr~}L%kYB%=?MhLUtjtNVQ~W_Z`8oIVQ+y0sK3%YMrMFo$GSg3>AU6a?G0^&)ECqi zf5c^=g_EovyRR=jqP@kc{&%vFLPahEn?`jcOmaG?X`r)r|1?TAQ4|@(dV$HL*8d{N z5CLya$=n3dO~f_=iyELMbxx8^fC^w-^8m<3*@1iC#lU03D`9;Hk@W@~AeyF`xFY-n z@v%(4^D}OCw--|JnI*q%Yn%7=>sJ#Py(zPjyUi$nIpm^!KrO+@_}mO?=0Sv^esl5# z(?|vI>}0)|vr1B}tvtr2$&!pwq%|CDZKKnpOhvH{!C!Ls|$I__0Ly2 zh*arFda0R~kOYQ^#J(74WrdJGLX=(f~PNu=r*$|$ke@mP3^T$BhYqkvnc zU^g+Lq6E-x(TWujQ1-Nv*kSsiZYF@>MQ~0c9l zDefwka=_p4OsdF0%&Zif!zo+cI}CpPmZxX2%&5tCZyVr9BuF|IaBVn;!~+q-t8nBU zo@s*(R*FVFF&NHBQzS}@#1}N5V#E!DNg#HSu->7MA3u`Ao6s?O%ZVRldYSbD{xDD; zV|xvyFNP?pi2%lF^{NO(hi78}PBZj+A5;#Z&`szuR+JTxPz3s(doQtU*nG;;oaqxj*B4$$o6 zbKA9hH@dLwsEENXGOysknw~jxMs4)xNzYksTupv{{`@$uaA<|7ACeMUel+j^eULx} z+dsR@xPwfybf@9O_!x<0hz&F;1r-h>Wx->v7O>6bIErdGrzFn6k`~uq^=QWo0L`#H zx7T8G`EEX5{dJFcHI?Hia&n0stDX}uk->xJ{8RO@)7d#9F>oQz8k$cwi3JFe-2v1l)bN4au(T`&VV$c5pTguq zi3D*X*lYo8tmL0d3XpN$TzWYd)QlZ$$Oiv1QKyHnS9X1wXn*F!SV3Gq zEGl?pMbMIHrT~!;sM=f)r?>O~mm_2Fq3sUOKU9Z<=MXVu69|hxBQg76#uOHTyXKUG z2|_-hXm|y<8Gy`1G-HJ#ADvRbd1`wh8WD9N8f;a31coxdp)`JvfIwn0`a>t$37wYqP1gK8?$V&}@c2D{?=h zwZ#9pA1Rj@OvI0AZ8vPaHJyKJtY8Hn8Eh;22zCpMgYQPn?NEZS3K}idhi%I)PhCvzIH8d$3$njn_X9}E^+->d+HfQ{YjPt zjGp#_4B4QtJ$m+Ej4V$?OBZg$#;5S5^|iLZk)NTgbqj5;M<3`k>TBvuMx- zLo+Anf{{(aky2a6H(25K7D6(`L(w4l5t~IEQ9;d;9xI4tl>1a2;TU-1b9fkl4}}0L z>aZoD!Z<(`A}TV@rFvc5=%6GyfeI~9{bWGK3i`yy_pRexfJZ1S>^ZD#EW*~U^mkX@ zP~wCq=8;WBcmAKXgsaR%I0s(#&$G+sCD8w79sXI6{@l298`0YTLqFCkdn?4|sBOVn zMJm>J7n%Rm-TxC;;DebhYtxZ z3u||#2@~%wQkwuk%t8Pl^2{J}jG$Aa6eJofTgLXMm|Un;Kut3yeYREDt|~yzjjCb9 zbP3Ntw|MsV&if@Kq{5Ri^7XR^X0j{?4J})`p%9z&?~JPID(Z&=rQr)_6Tl6%+NvGN zN09^xmdvQ2M;aO%gVBT0c~*S-^y#@MjA8qAJX{4hWA?}8d9aCod8tn=T50{i=s13& zvPdO(uPGp)j~yIig$MxDJW32JE{fP;;s6-b;f=f+O2%P=dEh7M^kG^{u;k#ABQJ?f z1ZH3%R?$!qG|$-8If3vIbN%K>qnLoNM_sDWY<>{%=pJzIj({#C7VlfPZkb_~vhprG zyb$^r2ntityt!zk6j9k=g(47qS)fPm0i2;VMR1)8wNV1$m1MX$1K(3mE@`v~KfbL` zaR*9>Fh8t>VdQLDbd@*_&^6|`{UJ+V8E1RyjKxz?I(_=v4!<_?j-WS28)^-Q8L7x= zTk&N0&}(EEcje8SJ&5m!Plr&JBnyCSgS2!#I3KdEs-@ddjRT1dNXZ9p9>jB08&hMc zwVYk2<3J0KIO=qG6d4NW_7E4NTIC%(esUHjTI@<&iGnw9d= zO2sQYi-D04o$BFg1qFtN$9yXq*&OG#PXyJtub9F%+h%A~2X!r+(Q_nt{FMt;0lK9=OKksoy^)7@@QA8Ii6NAhh#E`} zhK1!K276coG|>n9ZXlOG<_+eI(4;NI4~)imJ~{|(TtERQw-FKx?6_o|xfoEKe*XOV zHx(7bk1A`T#Gwp z>rW!7$pNO*V2XV>(=`1Mm{O3&xw=E z1+|#OF}#vMp}%7$^aa?&(c`QP92qd#&X}dZnJ_sHjLu@-4VqaHB8I`yDE z^IR|-B|IqrG8O#bBr@ZaP~(K3oLg<23>qWx!dvd{?)YmWqDb+ixmy^;NVdd4br=lO zjHAAn=k#=u_ex=RBDQSi%$Yu$DMlb3qE)I9c@)Q;S3;s9Zj1&=q4ak)(^dx5PB<2?4NM;s(`BKZ^p_nx(Spi&D9s-G?{|Q`dhPdEa{%YPFin&q zn37Qemzo>r0yPIot9%CM>06!Sus!S;BboqWKs>P=+Q|q<)Eh}XbO_UM4N1~iFar93 z6#zyH6*hbTg9M4AG~L;Om`OZJW)NWc8+49CFd%RZ{(vAAod7rx3LzbVw-jXHgWbY( zgbzJ^hz(3FHX0fl%piO|O;#fU1oPlify!n`S6L$u2{z??;bR1dM$oN8mDiJ5NGlzuS7d(Cv~co%5By=u8A) zcoUce%wmg}&%Kw1y@n@o;(4OB$-Or)Ayh%8Cp`PSCb{viJ78)UY7Ybhf&MoYbSxaN zO$&#qBFL$MDlW8lxpTiIx|ujs^n0qIl1J~xu1oBkWl+{9$8^%^Q3pkK;nJlD=yya6 z(bxp)(PV-lvXIDtd~X=kx(z!U26$m;_y8gbOmGju;Gy?02{;h5g*urA)Ci-wXg6f^ zLYk%r|1nKq5fdvZs(X6!vl>b=F&Bu8Ql(PX2p)wnK?t_N$QOph26x;k8rncS7l_da zP~q79@V7r{cZOz)4rDR|;kcUmmg9W0(53{rGy*27{se*|@7dBg>9kF0E z2?v7*%Hm`&fQNb^2WNtmhu6h06;w0#!aYAmW?GmQC!f%VYkC)|ds^M2M~`xhe4EGz z|BH8{8APzV^0~Q9s6Ahc=z+WSK~OO~_0PzTTG$ZM!?)L@PgTTC3c6+Bn(#ibNj9lv za{#3@9>Rfo2-b`SQs4j=VGjw8CZnGdhAEmBGim(*b5#2I`o!SIa@CZ+rypx>ag(PO zTKNl^m>P7>(iko6&YMZZ4mWNq9GM`05PV+f!?okn&qyP=k#8&Mkn0uw_law}Lm{Nj z%!j|9z0~>=Kp*rNNgE({>4pDrj zcIIH3B?gk~j+x5EY`Yllw zWL-u~(4t7DY1r{6=Ub)VV5}>ZG$~vS&wRDWsZ0L^g#C;_=3OIY0)Zstp4M7v>2GJp z8c;Uk&db5D7OzZ(A=}3u*A1G-`%6JU42nu~OhK{p-DH)AYq!mF?6BEr4t&JpNuq7x!QNJ?IDyI|62DCH!j&?${D94GU z&_@Ik9Jb`9C37`ur&SWxJ84Qb;0LD7t|5L9WdKc&rxB_QcK@vgC?<&NMRKE7OR{#8 zFQ2Tfz(u6xQOZR4r*|Z>2fR8B5Wpl%N*XZX6Q@nKTGYNO>DhMW?$Ojo(H*8YGA{}_ zv4u<$R#sN5LKtPX-}$x!en+{zx8j;jWPN+=EjKH zMxjUxq;_Bwz*Okr<3r&xhLy{j4k(E2<1@vOO$mL#dxFF(f%x{S_j3WeQ^FJQglIN6 zi!F}n+%u7T_X8gK%oBuzZNI;?HgX)At{aK8APF7rq1%Wew0+TSLzEd=ma*rBBjtU?Zuf+DpHHcNz@dXBsFDB=eU;#Y&5!8Qo>U3319Zk>wg}xFY6@x0ca`N*9Cx4bTb_gCf zfQE}JuRWY5eFPl77Z=P}ub;R*b+m^V{RV@3!5J7zPWZA7jW)g*bA4u&sV_t-w}V6S z=@X(;=}Q>m44(Dz1$lZdnAkBk|D>&LgKOr_r**tPeFgKqTb%=eHvo2=0oS-`FO-(0*CF(}ngmV(>YYr7EBNIIe+ zz<>dCkT7SdiC6uaJdE)6)cS__?F%4>h{O3*5uJ|kq!0~ z@YYi$CEb|Yvq8iuvkMd#2D^;W2qwAUy+_XD!l^nyy2npSF}WkOx!EK?Ku#b1fsVP} zpOp>zT`|46918j^7zG}|_DZS`wUXg&zj^V??8twv$kw8D{1Cco3#$VU*IQI-rm?~ zm;nG>%r|d(Zu3|tdWW8Yun8}tao8(=`>lIt+xb|oyP8otc6FNpOE;q1N4hix&dIy( z=gx_gELo?Mb?hlDgP7YA1646EML;`_fF?H60fzwO)KD{F1{z|AEIf>}1FO3xXoMn6 z8JNrQZoN9s?B1{;XQV}ZYefv8(>Jl)^V>KYU1Q)jMR}xxwL#yFZ2DlOIVq{gC1VM> zuh%(wjl%Y32>P?G*YP7V{Qx?6T5oKrb>tKO+_I@PRYzmpwW)fWaj_-1X}m>-T3a8+ zNniwkV2umNKHuY`D2-%dC68Q}e^xgk4pRr}I=TFbGoLH^HViq#j7c-AQ8)Q-zp$|g z7f$mYAXJfgmHLHR5ne~?-Py_038TIAjkuo6xNtaNsz_sEsfDiv)CXgk4#`AX^6S); za)(6lNo3H6yM^6uCFuTo-n&4%*QiT5DjczspLSZ-rfI_faGGiOVl|F2G-5gm zaH$Kn0SR(3P{dKs1#)`7!L`@xoW0!YfRL%d0Zg($8(`if&zNGTfYv3&1S9DbJYh1q zL*kIU2W) ztmf4zi+!=TRF8=Q*S28L(Ox=t%qIw2fSS38VZnuritW8H1!ov+2n)amF3T5jX~SRc z`)EgixbQa`e)CX%cxV-RDFN)XrY3Sx#f^J7A8A~Tl}3FQI#bnQ$Dp6Y;_k;A+f#L3 ze`#Us*2krYR(<$zXUF#KZ$T1>J9Jc*0?t^-0`jAO`abT@oCBvn*aZkz0vyE`;Ke%_ zvi}yf+D79%pZwDpv-nnWn!)e8yN0lT^6`MaKm~ZWa>){7ZLIq}?a(u`-!zYn3mdIE zoq;0?3gvY>^tw*;WkO)COhfr^gMup`$R|Hi_4n!c9gn4(UeNF8q3dfH;@KC3yL-Pb z;xjmoI>^XxDn}7;PyP&c4lzz?$3lS|X&5c~FdiizCIWmDkx?IL`nP~!i3xHLKqY|F zzQ8AOpROBC&UY(dhfc#p#@Pc3g;Qs5gccf)0uni+@=(U1{lZOMW0U^G`KoDI^N+9)<$sb>Hjr*T~2dmm)klM88@sH9;IP4 zS_&&(zkW?2i31%0U|xrLHE+mcKEI!rmjMTChR-mI(FlS~Jo3h{JG<;g$m?~AnN|jG zfWL~zCO)MOC8J#ULZWU(C&r3JsIMhSZOYmM{+Y7mzxMY12`2s{ zU!liy0}(?LP>gRAbihmq!PWBN!-stlAN5cZ2$qvQcgP|cL%7t+MP-mO)X@Y&jZfMK z54KU-yuEf8eLso|ob?bH6idfD?M`WQtvJ)9N~$1qD{X?-kyRMMi~1E(1uwjGlBG$Y zHRNJ-kYqti`RAAks{jG=Pi{HxdQ0i4+ZB?GA^`0%&^l zo(lpu#^W+OPX;u&{M3Dv#*}w2h1gyciSJ-=r<(aGz7}VtL~nSxEo=b8!Bpy@?a{!V zcc=lQbwKVg5Lx#vI1bW@3aiB!DML;8Pj(g zo8(&X7=Uqo!OXyK0Qa>NRjx&T%8996{C=`7lBKD;CO95FE0@x7sN04DGzooSTu>m; z??(_1ChUEp*0$yJO*gPP!v~uOrUD_n6bcYZNj_`|l*R^MM=0t*)7~>Q?>U$)_$0$Y zK(};`g5hN_(V61;(RE6e2|CBvvQ(`x!i&B{hPDhy9Cdux3Qk!orf5!%PK7)|{GoPS z^>EiiKyY<9^K8F+od}eWx0sgc&)}_*#qcH|0c+kD!rwA)jrLi=b1Yb2^#j<0*g~M+sk_NLGF}{Fx z46aaQR+N{QPX#T?3m(zka>LeK#A7VXGEM-zO_+4Czp0V1^kIoaZCYwZGmAXJ_hzyRvYoIwbGay z)`wp1w~$KN(}b{UF3nC;>bE)C{>FADv>pt=Jvp}wfS7NHN$asqGdB#v3dWtn*P|#Bf~l zo{W(17GFDKG*)wXsB7l`*V>uBL>Wd=d`jp;DPmA)ibWPwf-O||MJ>?=4Kl54flA2A zA~g#Wtz1ci0&Son3pJ(OBBjhF7bKLl)Xd2+3AG4Oqg;Zt#HHVv`V;yGX5ROCpXc8D zoO{l>n@7{j>c;$Ldm8%lUtf>wk2i{e#DS2?i*kJ6V%3Xz@g30sc3Zvl*v4`!xH>b@ zqL8JLCA{Io-prA{1&)6oEz4wD9iZ7`+*M)+s<_OVeS%m8kVClxJtKTV0XxG*;4V~V zv&T_6y*h;)PjK6pjk!q>B7FrvG;%WZBl!7Pp3r-iiTrxlF`ClCB&$-&7k85QB1Dq& z8P+u!N3;-Vq9iRqS#>&MfVGRj=vH(s5%-mezJe$TRcuNP-BnXt8)$ly>veB*^77-( zV!b_OS{JJ-{dnQx`&RoC3S6!-Lo3g2_vi+blc>yDOAQP~LK>c#VU`fNTH9c*jN@r?1c zrtRi%yYUiGyMEn)UDm;_y*|l2t4^sZuEi)J20lCa6h1UdYZXlY17|Jby%B zbmG!9c&E*NIhwCWAX3xcDmrr$?gZeGs<{OaWVwD9E9+HOz6WY7Bdhz^s5}-`aFg?>UWgSY+6&gG2_oO;3ME;VLSiWZOD0VR6SsMzYV!|DI&-Ox-vP(AGFK z>|m%LR%kbb!{%>+555*4&hn$_74Ae-S!SASV7JEBh2tS7)OHX507pl&8pZ0Eh7-YIN=mswq@|@x1f&F{n@tEv3kWDu64Kqdl{V;Z3F+?G z?EPP!d%gF_IrsbB`@ZMC^&R{z7i+rKTyw5D<`~a-#+Xyo2`h$j!fqCH~)+KD5%is+aR{?Z13=DKkj0+bqF~PgN zz<&oY2`&&`yCr^+NW}BZZfRM0MP*fWO>I+iOKV$u$Hz~7{R4wT!y}_(GqZE^-xd~^mRGiS zcK7xV4v&sczV{0a!1znI{?@Z|{UQMSg^r1dfr<6KUuftq;DJGadEwfvi-h7TSVne4 z^xVFei0?+dE%|`Wz@xfF^2ojyhm?_bhH3kI*M8~QKi4t8|4`5V*0I0$YYe!8fd&p9 z1_1yC4o_Ipd~p6e{`>}i%D|s8@TUy?_s9U-%k9ptf_KZsmhR5E2RS5z<*H)EQnN-( zEp~}z=+d9s-`%Nz1dF&>zqNvns-OTfs!U%SCV`V^?Nkj$7S;E0#^u{#c-&HwfYY94 zq9v_Jiq;#6iXKUXu}Z1OqSbBsgr~V5oVi|kmiXzi+uu>X=%Q&nQ*c*QO{}suV#BI_ zLpsj&nZ2zB>!%d}%@^}3mL)Kh7QzCYKMEyUD2JaDwFx=FWTUd|LmRD?~aW4l0+K%_|}{Q z48}}Zx)IVbh0SAd%llq|754@{w_W9D5%{VqoIG} zVME2PZHO$zL|q(Y0T-}tEs}uc^Nd>IJ@UFyXxu;bF{=7SQKGgFLsXT~$!w`7**2Nn zK)ER1wAv8C{+nuJZS3c{A}wZ*zoy-sUR%5~$bkY7vGOUWq$wysI^iqtnX$q^(BH zcuRWcc7!yIIwONI~LBf;?p)@^pUJeB&pjE|(% zPr0}E<_D%P<0EuMFS(07@WLo2MuTZ=4+oYjNUrhWs?gVjvB{+g*j=>=lv2OOgX|^g zc3o@>QXJ;hr|ed*F4k?0_6YrKEn4_Wij3vz6I1J!U7x2|w>$Dj_$Jw!N{_nlZ==^v zO&fOGVM>u2dtG^+#utgPu%tVdOvsxUZAoBz zrCsh`Utxjd5{}5~h<0y~y*h>4op##6_GO`}h<#BH?S6&nAfi)F^Ry^rGjvm+t<=Q( zG=hp`iLdQQ4Ji$$Mgha$ijXl(fO^SLy-}g1&e-yy&V_=)lqzJ!+k{T;v*Mk#A9v?SJPO<_ovK^ts>cIIVc4V zf(|Ce?~LUdej25{l{`9mGK4HK&Rj*_>S5>jVw-7jp@G+B&Av5Ww(hI-s#avlO#MTe!Bt%Ggs*zcrmwV5c3O_RK5lP; z5+E$O-oXjdwR1wo4zvix9#UK(2;6M*5kdi2uAxXmIQEDY%+ zPJ4xox;0d(ys!L-ot>j^Y6ugXSmq`%PMO#RVwHdSxN4|4H0IUW1Q@Wq9uTCF{c<-s~APmvAtD4<8djoFXX zHYl02kFP~4rP)0*pKwKtbD8}e3s$0VxmkGgk$c4LRD8(+gx$;};eNgohYH~WlNx`A ziBqWP%x4UxKff%ImV%>?lmxBhYBLxo_I(G}6{4fGR_M^7Cf0$8FQ7t&0mLn2C5;*XuV%dEcx; zNGuNwSnGxhyMmeOOGPe4h7zzDODU_@6 zlwT4Yj=VVXoo=k91E-UxLh2evPT&eHhhCkKw|+Nu98W+O^){L;_<$(< zgT6T1#_e4G6aoa32VcI%Nt0l$9ks%I2btS#9IZl<$cHUNQ7ddITm9xI-C^t%mprXJ z3a53%Su-Aw@jj4#|L_}wo;?{_guRecKAU-Z=z-PqG}e^3`@RT6D=es94_5lh6mJi& z@UAh;^RwesneA507-F@a%2r|V!&auY3S0c=DsQx)rj+-q0zYt2d`_$NKDv#$g*WLR zQ+Io|8U>K9B*20Y(s_o<1}s80wcAo={aNKa(ykpTbvQSv7_ZhyA-HiZNA&azJQaFv zY&kkB2ByfPWmBO$AHVd(8NQ$QCI&XIcq;ZerCbruwZvsgta~tlU)uRiN=G3y=tg;1 z>^xD}ZpbR8Y7dU1Ek9bFCT}wMY9s#ec?K}s%pW|itVba4ewbfza*DtF|t1^wdM#TeBJ#-gDb$P*Qju53_nQZuG1Nf|J{SWv02?qvDg~iKs`G8Oq*NQ z5lp?LYO6ie6Uz5VI#1dz=aV%gXy>yq7O<~+N$@Zguh_L+vX3_ja;m9A*y-`OOaeNZ zq|k%&`f12*#@eJL?AE3b+yzm;;^1@^GKJ^RHf>7pozqx*Lcx0#uy$w z>hcY9$NcgvBIuKki8m(F$wi{l#}Y=U^zwD|s@3*k(CEvrNcQR1sd!cD+jk<<#&z`! zCTE4;z7lzrY)toFP}wK?ru3ct&{?kMLe6i#$|4jpKgDn7J)c8^TsVA~2XH^Ta`si& zJ!HP1Uc%#@EA)M3Q9cdP{hB`CH)^LspCoeWWPBg0b6=)@;ZTKMnnp&30`Tt8=W|aP z5@ln@$)*x~WL*mgT~k-)PInP+W5F1d4%;J0Yb;`#`(RRfEL_Nu8T|UFDOV`)kwY6= z_np83^JIoTPf6lF3ztW>*Zkzd!l~M1I<7=uTsi1isOF-utgM}Hq}nEpDv+xc4VdVi zoYuNm_QuTBN5jAFD`c`Ip-<%e)Gn*}_LBbtq>9!`@ zYPKIC4;7N=h8!D&h89}CQKfS=Dyy^~YS~3~tgv7>JlJLq*_+0e%$XRos7wf0M_kn% z`$$z?6`_spdjn74HWsrDu-qx{HOochsv)nNLeQM4Z^5G&w=-$6%Bb{2Z(YO0epK%T zHWq^@?!%+J)&uu$zk&_U7t4nU-eo4Wu^EdC6{fFcyK}!1QoV(QYi~zBcbuj%Pj9BB zOgUAYMa~lN4lQ+(l*`lC2{-abkO5|l3BXY85JJggPG3{9cd^&HV2!RS-fO+QRQR>T zp*FEyS$~7p@Vb_4 zY~v%YLq=bn(xi+wPN1z{U#~#{K8srgDa3l_(FocBx~<_+lj54N(b3F8e%@%AtE|4r zewYxj$64_yt0nSMeMuYN%P-NdT*ysuBFNtjKdP2^VOJftPfeiDS8pI$u3|G;g1$J6 zK{7LD(~zFkn=XC79nU|%)ngqUI; zaO{|$%!d25);4aG#z%>FpANnn>v~hZF_g+i7q6g1i;`!fgl z*s|9P=qcPxMDX5wM7sh`g#yiE1rhPvWUV^-`=4~Drl*=YGE|?M8D6`nHXO?kDOa&g zL&NSUDmfEv#UZTex3O(}_uC`1z_avdlGj>iJYzn5>1ZDK`80_@J|@b7!(te!jJPT#==vA z8yP?6FGU`N3yn*9=!UkaGDJ(g;BLc)+)^e_bexRXFW9O=$_53&S36;^Q*rKa4I<2D zj*z2PcB!I?!zH>B)Rhht#Ikf^+Rsu6dAfistAzG2UK*&Pb|LQ#+X`G&DwcU&**KQo z!H?|k^kQOZ+DVLO%@Cn+&;zm(6wtf;z?(hkwuLv15Ip8A>8#H7AO*VdWc0d=hw{bA zdL(m6*#KvSRVV4pwMsX7U11Aj;rAUAI#L~TsqI50^~~EBt>xd7jUCinxoTjs?KVsx zhLgu2RoeD|Q0Yrydd?zmCqE3J;n59kVwNFOFk-u3c};>C*s&XD^mYnPJCaZySN6h)&JR~^iX+&92aJh41-9?s z*OoY{m1H8%p=eZmW{=X1~*3(RT${Y+R@!#H0Nx`xbqSXE=jD6 z_8&a3h`b726BgTQBSO==({;y3bv_7sth&)8b{K}`hX7Qf!h_v-M{UBJIFqZC{W_ye z;VnalMD5pZLgP+d(rM*l`Wsyrs@I+B$>AhUMMw89CMYitr93`0$4dNIX9L6U%a*|X z(ue_K-JuN_-ZGLgWTlTZ{Pnb=w5oH?@oTgRG0~t3!2R*-IZ+Jli1mD~1dZ~@&IATq z`cFg@6AY$Tn)`u;cZS4ErMk;J?VhF5c{g<-928;g6iXMy0O}Z@hHX6;1f!5*)%L}1 z!@iB!y#@yP8f5PPdeqe`${D85=fm?y*7x&am+m>*l7A>#(SeQf7G32H&R_tgO3cjq z6es!Wmpe8>ka*A`mj>OrJ;aA{eH@J0K5PxIh12~h3py14DCg1ER8H=ZzjDNF4k!6KJDzOi>=w|i1{iEKhXb96fy$O>D%ZH>^Gc0Whg79t>2S;suO zX3LwMT2b$Ko!2qybBhc$QH}02F`7WQh=*0y(Vc#kUfaR0Ox~yC`mHwoxi_3Np8!(d zFlUq)!yYEHrS;C&R&SNcTIV$E4@3zDZk+UgWN%5zoJG3?d^HAMi0&FZ?v+IWm+r?m z-g}{ANy`f(R z@?bntxTrJn^uZzJaOnKDMGyOiBYB4Z{lE>ktcqCwj;@uvXe>>LbpM!54O4KC`z=tw zqqXT16%q%7>$X@$t$9U9@+hFJK61@mB(e&S+T_=p6Wtc0^5)!zgm`kzunE8FmxT{; za`laB+-B6$y7>gC`#AZYqDwRF{=m(kzHwr(eEu=aJi$Qc`D^sBVqNkK~C~6ab4}Nn$|dzw^-R4s)_L zlPL2;0ZON66}r#qlWYh^$G^O0IDY#63Rah*yJKMpj8~lb#nsO8<41SzZnRUh-|hrt zCGCgY8*40P--uFaTJtZi$Mtm;7*n2-RPi5>y{S5rZ9!EQ@GTU<+N zWqpll-LlXJag)}YG;0DMZc9B1W7tKLq8c%CTkXg%!a6c;syzs`%T-FVp!A4j9Cp;F)%W<#MV9Dw-)d&z$FeY0}1E1L=^v5xL8bNwp`9| zYMGIMBnoKh1?LvNKYU5O7rKScg}m+~gu8t94Y4$pGG*8Wg1aLzPZ|_(w=fvQc?7U+ zURV>x*Ub|WM)`#gm)}@pqG|jRJmFlIiD^xZ^Li{;zDh)pWs^As%TXHE7H7CZn;4Ng;KCv z4?OwOBxWXQo&@yPCVg|;;MBWdk?G97A+{Xt?hN1*{P_X@YQQa5_(_E-vPNxHOoQBI zF79M-7n?p5$Gj>gc(Gvf-zl5wwolldusIm(Bwvo*=e%~I<1!uQ#rL;wPuL}X-5tRB zcz(kCBWs**d)YjArU09_yON`8^j-Xy(Xu-x1=nxI^g9dfhWP(1>VG1De=Bx*3PzVY zL{}4GXs#j*uvWG-M--6q9XS~S+gqE>h6k4`L5@XUjE3ZVm`=dmPuwVKQ?U@Du+`?D zfApp`p7LF2mf`){MDtR;amFyRwYWu~Si~ges0YjXPgMv)-Ty;c{C}|l`m^ajyrcgg zBbFf5r{qM-2|BZ1dw9L@XQg7#VluV0+-lV~Umxf?MS3$;wmJJInjjz7$pI{BA^*1H z8^ShowRR|$HYGzMi<`HnlQG_fi$aa~BOSnQow)XaG0d#N;vVvvZGt&(ISROE{4Jx8 zpVMI{yj6N*dtgp*U1vZUi)KcYp~c;LZ&+xuFrII4y3+}UyB94pa+)3W>H)j)?aOr$ zN{rDS=x8fwCw;wQ)YE>qdu(89Y}qJa*<`R!Q}Ao#F))DwMl``Zy1tKj>8a=;EPv3! z8d#FAZ7yVz5crls+9oVlPO9(LC-sG8Sbd^6`fuHt6dt;1(uf1jUrp(HWwnOo&g0IX@b2LPFPw!U-H|B{&S*` zt+guTo$29aX5kn;p(Vpm6J~a+gaTsNT+L9S`YgekgY>ImS_rGy`L|f1fIQo`g|PR~ z9Yq8m*vC5CGvbOK=t<=X&KviC z!!`A{O~lJ^GUNx%=@b5;TA@WQ*nEaL`~asB1Q?YSy*>ZYNX5VM9M*3{z0lzUWCsnT zsfr8JQ9x#lru4s@jr0#QnCuM+P{8~HrBiHB2$vtI4-GSILy(f7`Yn!)M8--g*xY#1 zrY3@g0w72>urL?Ai=B96fl!dVoq~366AcBlqks?;u*M2Mk-y+LtP$M&%q2!xh$XE? zaqEAX_(#l|R#wKjoR++G*u&tPPrk%qT6E;1>=3+P=Mh-}N9;wlCuf}9{OV=ZgD`VC zfMQxz0W;A})>#v8G4|=Jg*!kJon1r}DxNj1V{<1&CKxWwxBji90lWQp627B(Qf?;N zt(6wS*1~&!=>{nME8|O6DO>o67&tC$gmWAPNOCyhBMTY>!GQ-*z(?V&;WNK=_?~JH zmgM<>nciX`d|q^R^Aslw88xmc{qr@LmUaGtf5SDFpa%+IVgTvZV)a90ctv4E&FAUk z8jFo|{|X)*t;>}GDJB3tAQ^z|m0E%db4wcG^LI<~2hL$Vc*`Xn*cEza zm27SJ*D8XNGql3AQW3e36LF2@g=+}$?!8>U`e^#}a;hD{uXQ5+N07G6EeHa3RD^8G zLjf7ZYG&lmAsa6&ra=7|i2_JK^QI2li^ExN@no58vf!_e=n7#el<4_MS{B*i^BGo# z2RL91u(wLRcUTaN=`bt!$URgo7G`}o{9&aexOTcgU8i3SjGI5jTonc4y*cUXFxc=2BU%sOYD zW!3~X25hb3?#hMQ@`TC8wUScETk;|o3@$UNM0ou)G6pH7I#^a+RU;pIyYQtibyP4K za|uO$_Z8Q;&#mtAmi%Zf^cL5SYm>47Bm>rVp`3z_+7>sq%BM+rV;a8~ZoA~q@#hi~ zDz?rT`klOB(gDt5fm17tG=Mpx?4In}*@_7|_nfPkdS!r1?gyVxVpG ztBHbPc&6)x>wpARUbM>$Xtu{;OPPhfC}6OvXBhewa?I=vPUB+zDrATbu$289TfQ|6 z+H!r+mOuDz%YPBgpG*E|TmJiy@VrqQ{>{AoFIh|>*o_J6xVVUHs*Oa(DSS8hmp}x7 z+kF<`1UX|*s1^Fd@GKiuOF{T8>3siV%F#mOw*F&E>#Ez6c9ck)yfZ5~LrU%<1i#wL z$Jc2G$$Z~k{W$yaO`0VuXw=Xi=3$yV$}!jI(;2gxJ1VLmN5D^a31Mr2wU*ManHHY* z#@rbL|_20!UOz+h)!5PeN5w|VEG$56K2)znxDqoGuEOK;Ffpa7;fuPA> z`G-yXUjPT^?$9MoZ$*d+HRcu^v2&+vWm`<$ww|KjsyB$9_` z+p-cOY-(+uW8+Jt*$hp7kwu7%fpd{UV=EY&O}D{JXj~`t?A$h4HUn%Z}gk=Ougm#8$*60n}4 z0I9KIX}xox^beaC=OO&}>yLv7g^VS&@#gG_dakFRqSpPSDIVi+tIOz>U@+5IJ$Qk} z_!Tc>m|$C4yPtRS3RA_mvxfRz107jv`wo&M)s^e^Xe$6_irl~;pA`*E0^aZFaa72~ zkfJnSZC7oTRiPJ?0rTz#x?rIThISU*G&cVGhIaUY6p!5--X=Dm>M1H!0#H? zD7bC3gx>KA(FvFy{fq+Qx6r>dl1JGv$}&^Nr82tqq?LIUK6#N5ebK{YZeaLdPw)S= z;QjQw9fUCR)^Z#uv?=2cVN}n9_6w(~p}}VS{CQ{Nbv!5_#!lm9BLiqDF4PY%=w)p6 zC&{b90qaP``kh3`tOMn3hH*mtj=o{RnN6b3^i^+WKMpLF0Srsl1^LI%SX0WHZn|`2 ziMSglEM<@BP&+b^ae2I55=gmTmIZ%|7ql~5p66e`oyYt5V6}NH^CdsaFkU}7m8(j0 zE}_IOLH})Pr^0nDp^G$^IttygOdTrUD5_TNrH4oMH^GmqGgQOVRLgrn>FiQD@f(Irt6w$VzTk*>%1eC z6h53Un6_*dSKss2JBo-X7%Zz{f3Kt|fBP9hcu3(T%yOSZf1g`oG=mPwOy9l7XRtL^ zFgah^LDg0ILH$7a=j;kBSzC6l$E9&5`f2*%&FgD&v5a^;3GIVUr=s$$-lXMzG~$e* z4_=n(S?o3ik;Y>LIpVkbSnO!#GU_2rvkslHenPtT3rk| z79?>QeD5iCoWBU2Z0HX{D%`V@^C+Vn=Tbd$@TLGIemDfSb{)ERPrXl5U?$}l*EI{- z1Wws|lKQreZrh^?Cl&Cqy}UPI;FyEK1kna9aJdOewz9S;3Nzk?Y77ubHpdHnKp75{u2!W3N zFL;s7lJusfyY*l|-$qq!z)Y+|SRVQ%M7V>qH^IPc^5xL(t6sStmt{H17f;ER7;6J| zO{gMY9VtVfIn5=kny2E)>uoibW7J3U!9X4mN!fVzk(qGZIIRo8w+@H_YNJ zI5|0K?!Gp4X7BWUPjMTg7*L1&S2{!ZcZRyau!@7bWX4@6X`I^G1+Coppf5+kg#w7( z^71g)yc9C6U>MH9aN%qODf{|@(NQzo42P8DX|EI$ME&7(Ulkiqi=EpP`QRhueqySZ zGiAMSg*lY(*necN;^8N9YCrB9mJy-QF-IC9&&AHl@ZEi7%Y9G8+-GLmwzrbR4}5-1 z0+6@-EfTUy{XNv=BgA@sP5Gh-$m(6&B!i8pL-!)aKyvKog1<|`uT{_={k!1Ll!8;2 z0mzKV^upFiyg*ZBZS_ae!vC0F#`_H+r?=<_oyPztnvuRV3Xs2E81ctBQC~e>b}iyN zmvbyY_U}4F;Yl?<xST z3w5|0RTj?e$k)Edc6#`s88?rFwO=~P-_Y{Lv8w4AcaFl!o`9-pYaA(T!6Eze<|>jT zpIicdu&?JhY>;pHSz-JR_oTNN44W67ft=#Nkx>&M!2RjE=MN>Tuo7=g&%ueR4oxZ} zcYKwQotk<4UyhR*wne6DSek3QoQ?Qd1vc$Qd3ll!Bw}+41>|EvJZ!vc`^&>@a1) zg60MIjlTTg{?UqlkHi}m`(4HlaD4Dr5cYR4=4yqMnBoMPgH+kLWqcd)M|9 zoJnY5l^IC7t7yW&$>Fvo4%=KM1wG3c6^$38h%ie}`2~YQ+h*tv<+jq0r_QNNRNiP^W!5}uxF>vPgMFjEdD<+inL2Zz1c84k31-{hi=A!Om^u| zf$`Ck<2V6OL3Ue9Z76lQpa7haqO_t+sXB{83J$*zmV7DwBOAM~OS7O_(u@Z))ME%? z;ZCs~oxVqIAYk`JE&E_4OZ1k)oe}`CqT`><_^ZA((RfFmLmW$_gCZ zpQqi@Z?^VG`d4!?4F>s$49Gn{%`(o-!>Og+xiaSMBE<8t z!!uU}a8V282CofMz2U(C@=^8A({WmE7P$`_eU1X=Dq;;9Q*s*clHuum*=Zr)gqwa0 zR?TNFFrEQMVe(;n)`OrT{>e@L9fGLPp#{D}yA^pBUSIhjokm3`5{R(9k=<**6S*QBl^g;2GUwPatmeUg;QB*z3c=C-WSM!puXRp9}JqE zaz=UBCAulg9G~3aouhpmjnU~zH;&*iczF?Tvob9T9tepY6uoHx+c^O890;ZLvktAco z7mbkHT=BC}$|GQ_W?6pt6@P|{|CNyN@7;@aBUf+bBr9~jXKzxayrbX=;f8j)FOwUs zw3B4BA9^H5@cWM)^XhQCRhNWzzlVbcERx5*&F`GsOz(bj6D2N9N##v|2Nl^kWe)Cz zt2?gtTOY`V#Wgub-)xQlHc@TLRBSK(#U7U_K7h1ahLV0-=0vc6tTUBGq|KSx^POVN zwMgL95Q7oUcf=?Y)Z0aQ7a8;Z}oMttv(Dnnh`QO5R%fH35VO2D8=xZI{P`@aI%jA0sywNeZ;$i_fxD8t$7Eyu%t6B*`=qNXh!ZZ0`>>*w61% z*0`B0y}L1eD))uT!r159 z*@yq$Yk6nIRLQpF#B9E}>cKcL|f)zi0TRh4c1``{UBm zU6O;h9(89!vBSqWV_Qzh%q*+vtw>8s|LG4*DPtU2v3F~US;G>+Jz-RZ_g4*&M$%(V zA6M~`2IHpUo_xZa=4nXF(YHJx)d`3V=$OZ5o1N!_avbx{ithPb6ex>Tc(WOk7f&x9-FdpwyArf zb$l>V@sxobz1@5WabJ6yXe#6s7TwzbM*?Y+ShBuLj5NK-QO0@&z zF!CjA@8tu2a4@UoevIh#dFEhTP$)t(Aj_vpdOQTcbYMX`5&pg_db*vu|>QeTqM z=9`H_WbI_B7YjxYsDOT>d;U)acEP2L`vu~4Ea5OYziUnz^;dcB9Yo8QDB^wVlF8Yd zPS{n3X;&iersTI7-j9vnl#?a=m$7Df& z%59kxk$Ewdx`~>&P2!4EjxFSKNfHXEqk{C6I-2Zo-SZOp{2&H_bjo;?sCz4MEQh=x zLJt3!(o;j!Nv0hs_d(s$76s7hg6USHV9wuOp2oycb1Mci%^bF)fs;1}J4PRajVN}5 z8^L8dwjY_#rEI6<{D$0RI>-JhIhxVD{#ldbQ%+!=4n6d)Xg(T7-m~^V)?fb~MRmal zH|RJSC(wQ{J#Q;LbDXXLvb}2cKP=fl&-UW5L0YR^gkb(ob)V@a2S|xNW7A0FoA@7x zeB)hbZEl`o-by*(J~mdZNV3H#fm*1C>&c;jsfQ!SwTO9_RD6lF>XhJG_3+`qwzs0S zvQAbGPw1k`ULES)!xJ{6Sy>FLXJ!sw?8^{;*HOtW%OH_GPB9x}Z%v^reScAKjRhn3 z9Fn&1Byu5X52}B@cdC1_q$Z(D-s9GDiMIJ$iddhNpuzbC8eYyyBuCnOG{Q<%<&+tX zdU1zEY$c~mZQSpeFv3#mVYKCFghnn2RdpFoKDp`Fy^jurprom7mN*& z_xu>YS;X#YFT?xIz;&0|bPF9I>&h#|Z=E!!zy)#aYPyjo}MxmCM zGaV>*361dt#M{Nuqc^!#y9^4frYR=4$9IB)7NxPRTDm#Ml41J_N1XI}my`gC=MgOo!-6s90qHO;uD7 z==>Fd)a_e7tDh4{wG2R?_QeDE{v`ZG!C2E)3c@cF1r)9$0sxyIqNrhAg?Py!fUJfh z{q{4pE2npq%coDif?>|fJy>49%1-(LME=jD;pxGH>lLz>DH~JXStOV?%pX4O6ciwn zB9RPh6J{`pq1#*5mwY+}GDFe+Z($?+hhTV0cTn6wmYY?!jpJ=_k!#36O<8aGa!bL2 zoaq3qXoP!qi!`0Hh*^)?UUx7pWT0GIswme&NB_vJV4*zv7+Xr(q)V~iKP&?4Vn!7h zD^bef>vpB*wZ8bMBLfAP8`w*qiOA~nWF(f~&e61_OtOi|)t1lImf)Mf<{2knpS1ui zWaif)tpTeMgC%db-?75%MqxU$wghCY$%L#S_y=K0SZ6}r`h`(D1@o|p8oMJq70sfK zzMxTW_}fe{okeiu2b1;dvx#e{a#d-ujA_i1D%<&{YGwy(cIm25`EGmpJg_f#+Tn`zE(SK!##dSXQE!&a%;IjAxnZCSia@LCqMyKB!hC)y{BE& zl8QPhE(^xy@lRLW7oYP{*|GS|B1F6$Ifx#L<51@T(yZ5jFcNG z4Oi8TzIa(i>vRW}N)q{#y)qw6H@?7WvFny}-aef-Uq#t~VJ9*;}w9Z&%M^*R(_pbFZ}>lJgSaam_6 z%W9u8IXsASZ%ZhGNz6}NJz6b_rl&?4GT@8_P zcwi+D$GOfZ?DRYBWwl54j5y8TffP>;`**eY&s#u(UVRE03AQUF40ItMO1CtF_V%lF ztXgLss;Ah3pG;l&U#_mBG zNxWtHw8jJp^r=Zqjb4baT*`Lb+bJIh^U3RQxaKct6LUn;IIJN zawKA3jquod9X~eqW{h?w9=~8fTH-!EN%VG(aU(nY>Vy~=R{MI~*!#5rM{noE6Z6co zqVS1Lwd1M$uHhCIO=m7kTD`y6d8a-fO3{5_i?P~ocERy@dw<04WayjyG{HD6FsO!f z&y@iEgpM3ANn2A9Ph=#)Zj3j zuVPTvwY+KhgqWPM)lIuI!LZtqNzjoFO9k7D-uT=ZAs^Jc7aTNuJrrTpW7W;OTQD2IU_hE^#%nn;K5OVA?Ux~wH*GL zO)joy1|f0|Y_$${O}8Ro26}u!9tG%+AL9VvNBj%1lRs{I%%Wp^_7rw@VO6fo8b1Hl z0>1wN^bg5W@lJm5wSPOeY*m)ssd*>wU`K7fEG&ij(ANiTL#e>J=fBNZ^2-_r@-P-= z`{&(y4+#f^LKeY|KX`iKGsLv?yI@|oLTVj>jUjK2{s-s9P3JcEVe!9(*ZzPI7)djj zDI$j#@Ldy5pHbNAcRp=ooohdVocY_r_Dmb}p}`bGNGc}K3M#|HAG$)2Vnnc!yI{lQ z7z_RI_u2Nqg+8EV0Nx;*$Wl&Jn4INjMLG}=JMUAZ6dW5iBByl5lw2n&{0%;!)~7uE zsz`8KtJ+Jq`PSH!ycwG%ex<9reAbCb0|vT~i9No~z$s^;SOk>F^45L9xETh2=Q zVcG5CKBBwYa(IdwLf2Gps=#5pqJ$yyo|nC{C&KNARR&DqR&3i>)b2koDsCqFx~5K} zcTiYclTcPNku=x?D!RZQ^XA9d=qLHxv}YNh;hRL^LE#=Vh02 z_Ht0MVq9K^;Y*8^%4;FX&9Qx49q92v53V>#oBkSzh8YqSCYBtNIj|vzY@Xqsb%WUTuyLX3oBfiA6LwD${;QQaW zkbYMButA*^BSap^l@H1cQ$JpFu37r|F=l ze&@Qoqcbo(G#Xr#T5qOkcVAdzM|h-E|5*~#q*wh3ck~Xla+?j>1yPvzNkH% z5KrVncI0OH4N$?~_dgldxL`=40CV#;f9=WMt&a0nTI`m*B*}6#1B)rEJAuCr3~vJ7 zJW0gN#PQ4wi4J&YTJx9-j=X8zV4%yO#oMPi8%xkv1hWp*)8Q167Q$;oGn9hs5=3+#9cR zRZLI3Im1qFzJVS`ldzQN{!Xj2P z7Q$Y+j?nP>lo^94y_!e_2x9P&lh=MR5DRfX1pGg0AQ%DJ+ZZ{Z8vb0meLXnmo@wcz zH77k8V!O4G4>6q9S84S8R1-2Ua;m~;%_z5#I zupI4e8mt2g#A!uZ@I3;}+z9X%IvQbQ!z0jDk~H|)2K-HP|278)U!)&4Z#0YoR+m5| zsGzeSb-tcE8W(;XV?M&KsS;^3eTJ0tJ<2$=tsL}TM0N6L|cMoABX z0>s_>er;WrFdBatoxh$jqL19bri0b4u7gvZq_DDvD=1|LNI^DEgOBU1n*VntakDn; z2P9{iF(sX4kU5tcd-Aj~N`1gIRl>r=I8qN`!T7WX!R>Z=H)`n)eI`O-X7h=5M6an& zPYO$6gG~5nF!9CM;AL)-5n$_t6Z7$**<5{@BJd4$Y?rmmkG>~vW39#fR8Mo9b z`fW>R>y^r~mSxyA?KBRyEwF~js6@qy;Oq2O*7)rVvE^B)YF!s+w7>SLH0p);UMnCk zX}mne(#L1jY-MD}zTU;8YvCE+u3s8EGVM<}lKRJ_RLzKJw?{fEon8dfDVCh~Cx@|S zH;-xe{#x+az4kAwJ+wp5RK3`ex1b0gkQOTrSVX>*)hC9n3@@=I{ahG1D>4FZFQ;^j zf24_Q!Uy5?&d|~9(rLj%*BGP(k_3F(A5>=|6^#>mIs2+N+MS6;@qSw4rD>*T<^zV6 zLCzX>Kw@~tk?+_L06OsOCM~dbv!bxx^SU7*Yp0~ z65aJ|*M-C=Ny_DgQRDDr?!~B&ObnYx8i&FARGq9GLK~PhRu38st1g>g>7HNn z4ncb)aP0QJi$@Dd7T*FHe|jfJbne|-Bc}PGeyO+YDPIg(`RLH`+8&BCe&Z3NDfp42 zbUp?B`+}yQlhS{cHUHzG-#gnI65@H%Zi9ZY?&o`8a^v&vJy65oKhF}PO-`8}w8r{I z2kooff^0rGQ{g$%1_|7vdoS`Jc;lp$1CZU%nu*3|UqLspY|tI%tNXZWHq@?v{pJ^} z)1GXkxrK&i^MHOn3Lu6n>!w$xg?!xR2gTqL3JBb+kPMS&BtWikKc&5UHx0=yRz#b~ zq-sepxnw?B!Izz1gl83X6eJmVMsIGyl%9NXl{ok5lJ_%Ok1)!?vJEeV1EpHbrkK3j>3z`W%ia^V7!h1x|zF2xr)W-2ZOgHc z8%0l`{A_1d{dsS09$CPdkHK~N)Iwl<&cMj%uNM11wt9~>u*#%1&Nq7m=9 zE+zm|X~nP^-mSwkOzE=|81j1LpH=+hZ-HlZ-iy8-Dx#^=R$+J9CPY4bX{1e@UA&<7 zr=TF)ZXxDj-Tk0Iv*}v{=Mv`r>+)1JZ0d5sZFQFk4W4@*;!~@%!XLUs4e?zl zekyQt@uH8&U}tP=*7#=HcEDyJ_JxfNKFpi4wBD!p$YmaFCfWn9uKuijQw zzodE7r%f@3b=o3yRVdLeQQZ(98#bd0Zqg@6;mVien6p7wY0A2t5jHDwfN3fv6sDP~ zB1WtEHLoJ%u<5{EqX6b|qrzn9$wJg?>$|OO%G;N*(X&;;{M`48B>&MWJHs>|K^VaP zc_x^2_FlAIjwQNuI1Zb@*uqB~Svs>yMNtJO&}H~(A>Pm6{2a3WCAqQiax2Izh%TiZ z;5L8=C2oIe_`)3iF>N^r;-+9rpWXZ7+rmH>5=XN2)PGrT(HC^d(FD$(aY6UebjB$D{0Oos|rOk zWIFDSJ+wFFLs(HF&3s>W4h^jsS8V+B-82C&4&?+*RuQ>`x1G1bfJ+64zypnexbWo9 zBY~P#iHl;oR{42j3bOA5nFjA%*wILDjnHjw?95b1pSrP0(7>BS?r5(NI=+n3iLiMA1sQh)9%YOiBrwHHRxX+4rzm2b!))uDQnXMGDgJ)m;1n_OlY zd?I7bY#QATY%rbt#>Rj4i&oEqfW9&0C}uWj7+yI z+0a;w50{st=$dq*;v3vJwG>mLd+j!lcSUQLQ#%%~Q;v?`s-Og|Z7^{rvrSV2gRPAn zey6*REwX7GV+6K-`ZrX@9A!v)_8Lj~5WDz^DCV@>0*PW#6YZNm@+ueh@ch*Eyu;w0 z4%czFoVvItJj?fFOPb2q=9%{57`EseBPwl}K?J-@qaSc}!K z(Bn5PIhlNNL5ZaHsZ-!!kMDMrmP{eCv=eSe#d^`V1n(+hmw&<Y(dPwQh877ss@UJTEvx(%zHik(8~Xz!o#QpHC%p zK{4|CO{Qb>a=}F^3~g%|1YEga2MX57+{mYBWn-rToqpdc25e%J`>s-Aj{tO=bNGGv zW?QWlc(1K42-l{N6Nqa(c zlmdr-Jc7bzLT52uE1ibpj^21GZsvk~Fm-+9Dm0%GlEn{o^U_}ehqN7>rPbXc2 z3=CkXas3I{BOSHdbZw}GT(y5q>kXOCYkW{`)vhpO0F>Z>h(8S%T%b~j)sL6NcR`XF z{US(f`&{{`QbOcu=nt3cPkQZ~#OO5Y^%}?u`u`GFn`z-fCorJ}ZK<)#7cK!fISyY*ORhx==Ws|0&H;w-5(sv| z=iLEdbA;;b6}1d|8i^`3rNyKq4EB>e6!!2t^5{##x+^7yrNU7JMSGuQII?-PE(zh4y7Y;dMWCgph`3n>vvtx@-7O`E970rfdvHFeid#kG&; z5~MXgHdvpr!&9kbscCH4MV+0K6qYQT-$hB^jV{DJ4YM1ZDhC9e>TZrOm_CD#nwpjS zzP9+OOX1n*6g$hbvJAt|O>>f576-)Ol0CY7)W$o#nVXyj!$oD~`3to8xZCHWO^4<; z>-#Q-O1F4YZBbHt7hPQm1j<~isZK3yexK0-@LNt)QwB=G+vZ^sf#8eg0_dndgc&#^ z)b%Frh`#WH$B71`=u3~$C+0*BA;CRj>cbw;3FxTS-YFfan7Wb`mB5ne=NuUAhDU9%S0yV~FPq16Bqms#ftQs1! z8g-xxeJAg3zd#+=#0Q3Ec;Dq}`T8x-rFoYXcY#~oK)8=Y7qm{ZGMA+BmXq<5QdPYI zAl}KS1K8|vuRmz{J|sOR|BY6HQ4h1)inxRn)E7(AnB64m7PEY6^o}+=$7d$F#QE+E zf&iaF%0Mdj1^ShI4|n%=^w^qIakl>|ZmzMxC7VIQnvs(u4xN0f*KDV9bK$4-c^6lQ z=2Y!k%ralSjL=T}f=%rZYyAW@)6RD(az?4y{=@A2iALea?6y9&kEs3D2nLl_BhLcL z?qB!_(|jOozqAYx%`XaIzxYfY^r;_t>L)wZ#~duIVVXp~`F&IH1^|wbE+)GpGg~|z zt|2zo0cdgsRD_d@L0_(oraut$QsMX_4q{l3(>^weV?(0qy0mw_*J%jpE_CE22&X@1 zrJVoBOH*eyYnYL_B@I$O-4reS{4gYb4M+P~CXrp@KoN8uOmMWycqJ#Od~F_XjXOHc zf!pS)JC{1`Al6BSc3kh*FJF!iEU%2lo2==E#dD7>?)ol7=dL*-ss%`k$S-uhytgMt z7Qc2G0HgWU%@YQBTj7grsd_+ONV;^Wf*T2)xvS7sCzsG#%JkD_8(QY&b398e zY;A3(skt7AcgvP!dAsTF>Yze|Jr2+U7y>dA_gRzq5vHRyJqK__Jv5_)k4E{qhLgc3Xt;ZP~a_M;H#_e}acZMcD^?D#lw)BY< z9n&^$DZkplsCHi$R4^Fgg>!4HGzZH}H(ONoUS`6brvA_+qh6rTx&`+xzipop?aBCE zTLHs;oRFbnH<3bd@Vyf`Fuxm|&u9(DW56VvbPt*}2exF9{rQ{jXdYNuTin_@zko@Z zZjSLz0+-J%bw0i@6evkj`%KOOPE){lPSYQ38z&4;nQ4Uu85mgd4?M-jEb3S1q?d8N z!NG`S&_a#Zs_13a?Fs*4)6oe{Bnpe zx~#eYmF&xZB?% zm{({rsw2qS0h8rW0o75O-{C6XF9H_kFeC%Y9mNbHA7Dk>ZDFxdCKU@_!zU;rm_Ql7 zzf&Bom^W2aj!$l&J#+`HVuass-?&z?5J0tPLqxo-GE8&NQE&y^<^D3WM6 z#zb01y$yiilCQ;A$a^Ek)UOaqzx=Jcq1HYCh8XoF%15oXO-VOnN1o|@f&Pe=Pt-?` zWs)ZEl&_ME0=^mV^1h2v`MT~Ws}B4O(K{8VMN!G_Dbu1V9sFP`;%2eDXnJZ^PE%{nmoupC{u*l(d)-nUcH_z8UJ)T5*W+;G zZA@#duD2!ml7yVFL9D4Koqz2`fuq^J=J128>z3~F8VL6r;lXm&uNIV(VqptBU zQK1@=%PoIkP!sxk>cafZPeSYLzYI%%d6hrp>y-NaQ6x`pQ+y9LVG(%b{YoI>a)VEB zjUo21efRMQY zy8Y71eJ86JQ@m3DZkVoLWyk|*0wT!T^Ad!(Q+CR1;+WQ%?ZEVhj<|KjE{hExtH^yP z7wOy~cw}kPPPbaIv_8x!+LgXk>Ly6pY@ddui3mEM;&VPl?NWC+v*bv`mArk1#A07@ z2QR35PobbNcOcICo+!pg{&#MV=E(TxB9h~VRJPMAJ6h7_h}+5%uc+C-e17>!`^dxv zZ#AFy0X@jbb3?yF3HpY$9=u*4eK8z;V`UX?)(+r%j#Ft%1#AT2!{>7*(Nn>JW=N}G^98a2V4 zyJVpFn_PwqXQ+vw&WElJ^>vSmbTkQqcqsMB?BdjX866^RU#3H#p4Zz#<9F#^sEqN5nU> zZx7N63vPQU;51fQuCPgZA%+I}`&6{MygbNo>$u20eNY8RA~U5iuP z%iRG*;M=O4b|;={G9nhyyd6dzZ##^23IW=e&sOI$pQ{7)wl)*>ySFM@A%pRRA%k#= zlG0z}F80R!8>fzBXx}Ml1?6>8+=uT_VrhIuL{mw-%xo$KJ6bDDj^3WNNX%R>MY~S% z`$ZZJ>ftc~#Dj00uBfdNW{NhDh-aJ-t-y*R9F%hKmz*n?N}iHnGPHhXSbknNbVxo3 zhvEiLRaD(DGcgZzDT%5kO@W13G_%bJ-S`ONi9cCaf0JPVjX85dBif-zn2b($-?sFQ zEdT{oyuOoYk`qOyX04xrLNu{fv!o^Ex!}($!Y&L}9jW!ZJ22%lQEwAxgwGnFc+CKb zF6XwCxY{dU)bT)cU<8ZS*;%^nc=R2rSFPI!2C7Q`y7n61B>zF z&rd{EU1#+qNy`HGUj#R--QL+;s<}vsa0QqKbynUUg==ZrBKp1r<$^X3L~lKD=C8@l z_oU}{j{kP@^%(@NzRR5q|4wz1tp=UJY!h}!4Z9<=DxjnNQbOooDs}q(cA4hG13@bp zV(;`EbXSGzfYkWUmMqn(4Z`8l@TH0?s9tDgQRuY8ZH!K1>8IXkxOlg3jn{Q(C7i7( z<{t%68d4`#GL8mIX{ObPRjQTr{g=RPiA|>YyB1?*-Au(%&Cc)P6MR@X0ys7>k*9IS z6Z$JGQCO@eTW$CV5T8@G^FLXE8_J}c+2*))cO7V8$_c_P<4NO zjs`~Tp3r?{z*2kasoBjvYWT_}CV9@O4Ngmnom*e#lIe%5aX;9EJrG@(F4bp=GQE84 zMZfK{noSuL$;4)=;pAdH)p<)d%v(mr*dWdPkYu=P&G9qrYbHi!0t|^Ec>o!uS(J%7g0GTRs)Co}?>ZGK2ov|qc)|wHA!FwYS>YBnL?|3hm zYK%ELc&n(nV)1O=a1`HH2veo1ywRLnjyB~c58{Ns18x+)ndHlx4Eq%d%g~7!1Fg+7 zMF6{d(}@Nsn;#i~+0swJ*D)Sw!s~_G%NIy2K}>Kdb(bc15gG!Zncqk8KNQFuW{=Ap5_3EZAO%8o((}qhjs!x#h?Erg+phQe+f1YHNm`>z;y@N7 zX#&^)wK)gskIGJm!K0wB5ac2;h?-k8}J@p2Pob?5vzsA1p zQkFGJq6oUyB9^c9Sw+&0#JZMYzi0O{L*^6Eds+d66K)gc*a|cvFL!2E4jE)smM!`C zU`;fu3=zX~3~=pix$~8XX?K?cU+rI)g$4Dw&f`{LaW>XGHzKGDjNl!# z!Xa=Kxz)6^gxZ){q+y3)q7lL*tF^xbIrf?lNK;1zVDivr*Ye$i?wq8)7AY z8V?HFxc4=ZESodw$?MJi;;L+27N-oTDgW9$I6mIfa9OZRG3Gc zDSX-pb(F%!`0v?h^g`iT6kaDgb2q%50?Dk=Z_WczEeexsB-@aGToRhoWna8!7kt3 zh3*n4mg*RkuU?z~3fWkPuhXa6{m&UyhuP(j<%Iu0?FQzzU96Ula-UZ9?MxE-bQJTj zt*^Fy^e^!R>C9*ahDcELh|Yu=)3jU3ZA-S3YB1FRA(Ki5ZmDxLie7F zg`TOND@-+{Z%PN(6CK_Mg%=T6CUnK@1HXS2n)bu{5=3+_lrOW5H<-7oB1X3 z|2O0PTPZJY)&swd*N&1CZ6+zHgB?aSb6p<>u$aBm3ig`kyZy)3s%MXP^c#|@Hq{9= zialN+e^Jv)M<&cK_MyrFvGQhEC16eHf-EA&4TQTwp@q~nVb}TZ8^HwyUuq0L^%nb- zFl;)%!H&W=A2G&3mw;+j>j^=C#n6$71ERNX58BJ^!-_QORT1&N4Tv@(PrI$5#cu?H zFWH#BPjZ&^ReBCu54f`zhlpH9z$NKK=Fvw-yy(&53yu}8&S7PYBV6|%k%PkySAO5W z?2i$L3ITh8vJGAU4Scly>&{l>!5+QO^I;@sq1Nsb+*QzX#d3NCUMca+bl`UC&R57D zS9cE={MAw=X#A-F6bXjg{~X}(H_LpqpXv{HSWR2U!>cunzCz5}+o0JA1N~?`IXA?RyTEq&J?_@%9aL)vV;R0FL#^rrbPcHsy9P!>3V$qN`C_rpGclHBRsuaNR&V1e5&yMfUIG5_fE-k0gd^iXHYd((g3&rTPqnexFqSNoY>d!u!_x*(E-Yvn0uGCER>9g^iv3!Y6% z>tP9?e$={1XJ^3=O9pYqpOD;&XoR7e>}|}uPeOyB+e!1u&wHMHg}nAKz)gKWy?PCf zRLG@zHTB5>XLqJ?qj~#KuQ2F-1x};xnCadrP5A7+z>dzbpXN9m>64AAIV45F2da^O zm)Je*PU9B>H+$-S={*7GVgWu84TEmt=72kID#;Q1Nb9ZHFq%L5E95Dhsp=37bl`7U zsZZ3VlvUet#QEGeg8~)$aO6&MWbs%7e0OTNA;aj$PfwjM-(E$a3-ec_jPQq-uA>Nm zgaxZBkgzxpV(nv5Al&fxj)Q+;2eGEGpqvc@`kuyb_|M>bN_}vSqmju$&iCVL$9D$) zEPQZSBajdHu)k|k#r!B{>zijc+_Q5&HGpQ3OaTh+Ea3*=m zNjfi}0nha~A;wmKZ>6&oGq>sZS4b(I>GZ{9&ypwQ#cUPayQkLeKqVRT`=qHqSV{hF z`9PljUjg#Jg%p1VXKZS>eh|t2seJbHij$ASOCSb$hDc<eM!3lLPG+_0XQT4<7KrNP;W@B z{%+C!(UCAXDL)`_+ipBQIQce6LEskfJ$^$)HqWqzHi3@Te)ay(xF34oAX-WL&!x+V zlp&m)?J47dQU81(3Hu)jazTDf&VKUu|KAj7FtVV*1cft6lD5sOMo2BUwa(f6COFB% zv^9l*#`Yz(edlrnRd+$N6_mNAjLdhhNZ|`W$`|Ji?b+l)^HO)%TF@8E{{cXu!7oMk zFN(f?G`z`2F{Aj_Uv}#MJ;X|Zk^@Wc0ZeSq+wxuP)JFLB=Ii|mRKgsU&h(+!`0vqc z3fT{aKG|*=%@+@N>Bgu;7H75n8mKdTLZ}r8NK@@Y6GCApcCpF+Rb%v%OFsXYT z1?F8qcOeO;KbBhB+6XrhO}`)z0iNq2ERJ!5?&k?bK8J>I9Ew}79M;G_l1U)4l>Vp$ z!p|*i>gdE8pZORqdNcS56uIX)zivGo+m8^cop`3H+Gk{ksAf^nEhu{>65ltzkndmd zzGTqqTFba+&7mrQhR5J&MJ0=?gXUlmFw_eH?Bh@o(*zeM#Q)^}2MgRqI&9L9NeOIKJB5OU)f zSEbk&sy9T8A3fVFDM0WBO zD`Ur|wp+=-ysMl!@NfTdkkB`%>w9kVlSlF+lSPjTNFP=!{l3J1^6^g?cQ0>_G-cR} z-+6G-Dfg{=6G6kImwV+72 z(Oe$*@bF($>wzODq5I~hlVblD~sN5siRiyAmy_M8MS8O77$-4@9 zGX_R3xfYIR5U=^GedHo{=!ln*ZsX5O8q z+-@0Hv;5d0)wB^HsR2xa=%b%$;W*$bVW>SQbGhGPlD-sXT$;khnd&tvk1svJj46gx zSnQ71)=QeHl|r|@h|hXtMmKQbn9N6+%*_lQGIy*9X02*ct<7O~E`DZs@Mgb?F{lby z6a}`7hE7K2BPq~vvBR1(@F&Lj?T=~plh5Rt=U}a#$9fcsg}PoWwCs> z?#&>fad*2vEKyMcaf!y)3KXJ^vdN!c|1#lO+bM8a!>p9%n3@-OyMjF)AqhWtZGD)Rl#mGHS)x&T(be0z^q4T1b>xltM`}{v`x%`M z+@q=NHIk5d;)|gYE~Zzh1!;XWp0BBx6)T~vvC#F86-EUsVbk}GW;C|*Xh5$ z#)F_J4@=p8+_c|e$yHCabnl~6)@falF}*ePB?Ba-P+G`UmoN2~(^tJZ1D7gPUAZQA z09lxs#PSg+-u=!rpkJWm7mjzreJA|r^{b3O+mc|BYe%Mwwl4?EwO>u|ATx;+bK@tugU)SyC$qI*WGxFf z9~_>xKZhG-0!k~Kpm*ZRe_^Sgbko1*+DUk8JuJdcjQKt&)bUr)6CHP*bWHYcQn>IY zhUTgbWv+!Gk@p9<0ZX;9&ZD*JIkOLZCIhGDt~Z;h1|{l_w!F%oQ*D}u=~>2pI$K&D zxiI8k*K!d$bgA`4=eXBc_(-^LkMN3Ppj*tPoI>YM8`#u=r>^yrTy!3I_Tq(448;{p za|xudU&>%^TzC`00BckHTMCPK;RbrXkD|ghL zuRA%7t}OCJ2T5vBn4uxwqbt>ZVjQ1m6Ae$d*Fp3yFPXkugy?LHU@U61HpD4?%nqrS;8u4IvprP44j%!v=?hk#j+|h&JP%|34_OYZ zbfHYdzl>oG0Axq{IgggKd7b}N%&@^9Jqd_R4tsLBKgJ<2-~1t}P}~?s*-8V!#Qq({ zvp@c|Qfp8SmjmhL4YYhv1q*tdssbpR&S-6n;-a53k+tkx=~LQwVJ%F zb5DBeXm#UYvJoc8D8JW|-tPLB5m6qEs6a{Nur6QwgZzj8o{r3);AI?IQzb#}T@UCW zw4reR$Amj7Z2ul&2{C#13tfT3bx=Dwr5H>?i^xzd7eKOY19d^AD#YNn-d(Mo*%;OG z2~XzSG~Td*^+bmoYw&lVKyvcM&xQbhqbw`kJR~3f2ld1;rj?{O5wBDi;t|<*j19|% znMFm=_Xy3hay$gO;Az8_#H6wPYF%=8xK$IWs=K7gfeD*pj`a-NA%IEnD|P(ev6iQ9 z>oN)7xp+B8fV@HN&ncv6ow?s4DA%mNjY^R!x94X)_GBQ`silesNX{|0x%HP(kJ z&({Yy_F=4tct_Tvt7D;d2eS$eVNSo`e^K1|7h+KVi2s$iPJfGC`qweMWZWM+zyDsz z=5_DAx%Z<*`8$M{eDVLI%y$HcBw4WSuDAmR3E|mk)LUa_ zbVV@G2OtgmEyK=fA>|aR*I1B+EIFmy)ulS-rVPU_UYW0mDU1Do9I$C;5 z`hW#6VERHp`izZGd3j7_xj&{x>QnStf36ih=V3ckk%PGH?7N_1T|e?s3bh$?b+cZ| zK&Yog%er8~fja8HsRqN87H=175@-u&?sd@qn_Nr<2t zWC2wYvFc!(0w_jM zBBFLQ(`x$01xZa;g^BX@Sk{DP@OdlEcR@Y3ei- z9s!gV-kfdOceSM2zZ!ZVws5$a#^QIswW3t|-u!DdlVMKKi;F?7muz%=8>$Y#*ZtJN~yB#d;k~L8pBFbJHEZZ{36ApVERuSh1a@m1i?9nuW$86EnRC&zTTLMEVyu ztid@J%eat))AF98Mlk|yAEv-}h&62}B`*>{#rHyMrR%d8z5vw;CFO5Ls-Go9{go6o z=^*aH&&ru7Z~r!k1NE-UGmgMkQ($Ex{J8VnnSJfyuaKO%v2>F3rN$LWv@_7Jy^;?3 zM(O=;?dG3NDt_zy|8ebx+}(4d)TBkLeLa;DcJXX;&RRW7SFt2IH5vj*D*$qfaHfWc zwQ6JqXSb?b@I{+O$!X={UKMb_bI;}sYhSCG`f>^a{e^FXY-FX1EoPP4>Cp-u z;@DMkZlz*OiL7qY&QcC%f3*YbkrYf_N#CC ztx}HijbDd*WYv!6?|H$G|7LCfcb7CKn)&}m7v&#aSZS;?+nD#LHgLZsTu~q1qeRdiJz{-V|J@nRUzB#GQLb>0w*=7|t>c;)C&e@du! z>|+m9*D&Y?(WW10v~Z^LcJjQw&)i)h5{%0T=g1$(MYX-pX8<70!|%0_pFTErY1MU> zKrK5Ox*}yAF{d~{g|s{F@piV^w&9$`@zP9*D4+6T%Y*Kes^l)2<@n*qh}y)q`=0kg zX@hQ@@riotGqN7v^A}#%e_G?>A;JbIsQk?1|3^7pZ?1vCg1hp>!G67hQ)2#Nm63C` zt#V*mEq%L^t|xO)SWO-gZ_@16R*{j?{R+v*A}xL~5=hidT4$b=Wzy~L%6{>^a{*&G zYL1U#$@+>s6W;L(wtmVlAKLaw%Scv4Ys+3;NH=i}j}7n(k9jd?f7-cn)8K>u&>WYK z1;%qtSIK9L#>u>mXNKrHO|mdlXni1$Ocii00xMW@YBObz3QsKBrf8{070EupX|=hk zhO_C$5MVE!mYl0(Jt%dv#&O?!Clg>l*quMP}0dEg#B1DBsRA}O)8U{M`w^Epg%oW;_slmLSwC|Jq(E{ z;km3>)JeQ|W4@7~7T*?L;?A?$W{2$IXHNJ51e$g8tUW7YYp!Mf2Vi`I^*jGfy8a8W zK{pAgb}uviDFE9aMlPd1^k+HT&Me|NALrU>R6RbW_Z*b;eDWt%4ztMbcMDY5r>oAA zdV6s{Z8qA%cyfF0G<&+>@D?JDzA&mmHkd`qq}DoVux>~p_kBZFnR0>2bNjt+*VtzM zSlOb$C+ctPN!JoeI3i19`p%M8EeK0<)a~&uuz8vEd+Cus$wQNTBBwlizVbD>jMh-} zWv>%5=G2gLA5Yh$+`R19bvHgI!0*dH%HtkdQcxT%hWxQ^7CE{go=dj6mOh-apBJ89 zI2RjH>HX1>umV9f$1T-kr}*3?ClGoy{n=zQ?{u*D>2ZphG3?E>Y~k({%l#X-_61DY z=|^8&)c<0sNFjJ`tO)jSUdETR8^K`8V2ns)5?fFyEq0gAC@3v3exp{?UN__!LyNv! z2*tK(*iz{nYE;bfY>;?&V$iwfQ@+qg-N$fmv)J)$dpRfSq0~;I2ol$dFqt=84K598 zmj)(wO{l3i1{|5Gl-;H-86+9BEthrZu8ny;n@T%n^A$28F1kBbyiy=;7Pa?jS!&ZU zHG8L&%Aa1=x^=zJ$6z$iH7-KllWVVq<^<-Pqym^j#&0g+B9rk}%#?kC(pB1$CKJn< zxy59{y~b{RYwJoduTa3dtCydW-n{s9O*^WdOneGetosW~a}_@bC{`^}B75SK6U z%tk8RT>2=r^nMYYF%2?_Hw_)>jONdrFEB18`kS}<^D}MS;Ay|o&C@1x;USY3MBwe* zdYGs9c|{4+`KIS!Qh@M}3Hi_bPDt2eR3n+f#3tS z^zvfN9__~sT)gY=ze0v@qF~_#NRvne-f<6Bi;GKgqW)|uVF>OOv&5ZFUaeQgd?ZP* z>xS&77SdYhhzik+w{d7;bG4^F+K1MLNtQ@Mq-fO*g-G}J9rn@I)5V^B5%`ot=Am19 zpiM46*Vwl9(M|ne?cOU%eU1yNK4CCNj3%Y)vG&+ea6KDX<9iYD`9Fq-Iu?>+`f2*Al|2=wLr97je@dq$QRzgVThh>4(!6+udG zd_NXaxoX8*ehDTXm?$58s0dmQZY{8 z7OK2%EOy)N1-2xn#uEyxO@$ul&gnv9sIqJiH#ZR_8~#AUQro~6jXL71qNj_+lh!^` zWJbVx5|R{dT8iN@@invu@HuU%h0tevHi{$h@`DuB^3jdOirzP_pAdauUT|eRlT+O= zRIhg=tMK(FQJnxIhK2lk<~$r@rJA*m+Ft8e?WN8MhNQBF#6=p7b#;A?^@X>whUpn; zDp0fxD@mK}40Ek&H*AUBmV(8Lx=Z$Hs!a($%>-dHbg)iYNi%WPKe;<7?;~vpB)+q` zVnrm{Hin^#*OotfKl5d_S>vtsEiN7gf5KBd$3F|p?PYlH6m0C4&P5FdO-%I19xaqf zrg1Jy+4as`YzqyGen~yk3q}_90YQpyGHRN9OL7-FAIyt6SKXl$Or6i7pxnqQrPAPa z_aD~75-z9>@eNL~nOD7T<4@>Hn3D>B`T!Sb$^l8H;iC0E#ywk{xttc#!mbdM-lK#x z-*m?yGLlhibZy~i$T+q36FWv!^8M|k_B|=~zS-S@Hff@nSYOdX-KQeQ&%dLdPPOwO zk>wYXY2(akH@qq&vKh`QA7x6|eqw{1-LrL*cn^tTu$ZNuNLM7&hWk`c*!Q<3DVy8HM^1MCWN(Q-gqt$^vYvjrCLAT^A)lpY55gWGvA&N z(=SR%iuGE*Xu*nfC@-J)Nsh0hm5Ff-x}ji@7Is0jiTKG=GM5d?=s2WsQeRMr=~=L9 zd>;139GEc!zJYX#+6{J?n#nib2EaB$GyPr$b$6(pLRMju-e6c+b)Pcar|kZ%uasAm zEHq9b{lJk*lc=M&{}X5q)*e``YbUzcix?wZcq_9QOXudyXa7mHuoK0Y^rcUKcWppj zwd7f1+mf)d7l!}4R8a@9(}JYo%vyEdE_3+T6b-SUr?P@r%?L(X!NG#ryRd*YVnB(e+-#1T}j-_D|`OBi5LAIQN zA=S3Ig$ts3+>m4(@tF_j4^e+z< zJG^mHxNz^iS$wL{n6VYVVmC7mKZmOS5?QfC$R%(GoXPZfF>pufok(q3hv#N!)Va5B z=C|xJ{Jes1wDw;_R=(;J#zL-1Ph8o|%5~qc(VPbO=aD;%Sg=dAQLg6$LZm0?R&g6A z!ye_t5}10~GB6&<59_@G?mvmM$8EMebIlXCy5A3 zFJ|&NhE6b1R%BY~dF6{4@c;c~MM8b?`(M0>ov%WV#9t8GL2@5ZQlGo=4b*(X0)Sa3kq)tj!a69)J#hrcYK1z zfz2$2NoTui&NZkxe$G-Sf`}$bVWvxiS-}Zh-@z=7k~>N8$2R72T~@Y;$GJfx3|pRz zMov6w=8~m77Nz!rxm}hr3AHJA7%i{S!u3MVL+j*^J@5t|_v2Ji>D`*M(vn3PMH<~( z4@%h6o&`RC^K?-wnlXtYsII;{Pwx7 zv|M8eP&xm?Yx1E_=czJIy`IknzrpZcyr(12W3&lsq{%(&Gm!MzW1=Pe@po*BEC)M@ z<+Ri*@C&K*-rT+Ss6wW&pU>s_^=06<$iQIs+%C?20~X7BIeQe9(c4QrP1}PEfH; z?SzYv%tr)vY{P{#aPHq2*0&Ft43&8O+Wo-?6^+*%51*ctf-FD?lW&txqv&^)P`mSp zZ5mKA9+!t#n#RFf(txjbzSV-}(xAA2QPYfM7I#*T2@pr(mwc9`?&BM&`@-US!j?z& z*$i$R6ir0uyAN>yWJqU~gRzz~TxS`%a0Xc?Cv=PjCI%ugmjf>NjiB)fwiR~EbbFnk zQ&<#VAvi>h&{ekWn6HrI*?>C1Sua4_N8PZk_sQR$)thbOSg|-`V(pI7IQlUU0aEJv zdmH8&cl0RMSBPf{C||uQyVQlF_GQ~zwJnm5tEo?Z?X$?(p2pc{r*YtK2)h#1p)lg2d>Qzv}BFB|*Zi4KB-!5781 zinC#`2N7u0TN8zh72oo>jbE?($R6V@ z?y|8AqBeBXkcsA0egRi0&5^$F*-@b+kjbo*muYMGT#R{p=w`$ z{j+Bu=HFD{2m6b0zIK&=z%E924MH&|y)8NpT|4#75d#utwNli)ohr=kTvVJG&As5f zcD3w;`Ui9Jemh+w*COps`=+&Iq2Nt7rCGtyOdsej<~ATF9Pfdmgs6V`RsMD|kiz(1 zI+@YslVbk$5b6%g`Ukfz>94+O50i6#Ex4O0Krg(C!I==VwFQx%5Zdh2El(} z0;6~$lvtw|q25#)2;J?kkauPgpk99H8$w5Ee9_O*)F64_YWWJm(~J}P`^jqmYbVQ= zG3CO7^EJ5DIii_M1Vsx5lB!*4jp~jkKisNVPyEGy<^Egln`!@F@$Vj82p?%e)hb$< z#t-wa)&%MTb6!8!$WX&sHG3L6Vg)h~)!)uQV&=0K%Bj}Q$$h5pUNj+8G{#X6RB(B| zOIHP{ikjs0e6#Jze$B!WPPKXRAkSj%Oo*A!y>)P-1yX8{Ac*1Gv$gliTTz1KL|Ht! zMWjMi%#~ugvd2tL-0ANiKL<+&8)q2E%^@_vt$5rTfif)OWj?*3VdxX1XqwTUmD$Yg zofGYK;zOZ7bOsCD4K+#d<9Ar{pO^5TsFoGtR5dOVBllGBdue!zdi4}nsgTaKqXm^T z`bISuK_r#OcxiSQyq)WKD1(bcK{$m#GH)_b&kmmK#K_bB=uOY#RT=&!N(md zFZ=M}R$haXLK=VZwZM$z_4J*M9_Wh5!M8|`0V7z!=;a@uOZdf`igtyB4BhTB{LPdzc^%{P z5oaoL*w-qwwf&U;{h5y`p@g_e8s9(j@I+MYt;_yPY6nT8%g6~GANA0xV%naFcTg1n>eIKUx(@i7Up zNVNMIKas1d4SX$GbjCz0#70Dw==lIw2FwhBz)pp;g5r{QwCO*;H zKwrK@U%&`Hy6RMi?=U5iU*2^G#`w^cvaoo7b@S+xzxF|J@ZmIQjqf3>4y8aFYwCDG z{%e&`YbWm0?<*t!8;Mf_Cfnh)`>BQcW9vQHU%N{>5LYae z;xS0lP7^(3qAQDeo-gGM4y&}0uWIn&f21=^Tr77_Qn{{D0%nl<(q{CfHyOdUt>7A$ z)1SJTj_gZd-nrXFP(|N^O@($@yg-`H2Ur|fzBv-fHcKpH-A|kqaLN5<^1aexbY zruNxjII?RJqYVtA^?98F$-S9W)I?0us!ljxc_2NhH1l&?oM&D`mc?}JWY{wUgG5>) zFu-1nt{cH$&dAQoh)4}-oqbaG@xC8vkYQVos=!)vtX3DWrr5z(c#@FIGdahnIz zntY446^miKg`_{Xb2G2(vWpa{!eo*d>Cja1}FDe(#PR#W>0woc;~!hV~usyEv);u^eTo2%VaT)O6la_q)4UKA=S z=FWG>N36!)IdD*XcDIb33k}?iKT#t9^JS#ud+6;(d;k1x>XA1>5M3K_6{FnO&6H@I zZMNnTYie~vUps%1!eFy(Z38UlNQ@4Ww3^Hu-*bX-nk|lW8%t4+oG={qA>JUoL|W?8 zNs&4M9kd(tdHUbE1DI|-i#nM-IqU7Y#)=vyOB?iiw=}XVgN7ciNqpKOy7n@G2g|Az zo6CJ{QBaPw+(UCn!_YKSkg8X&BaMV*eRH*niXVgW(eY*Ks|ZHSV?|&1h>W=!2Nj2_ zRjbX0KGTIj+j>PQXih|3J%0`|Sj%6}xi3+n80tERs!ueudS*zCGjFdFs9jL`vcADT zHUSdI{N@U#Q@b?pXKaVgU1*#_JF+hH*V8}cUA{k_hT~+Jt5TE}cq8`FwYgol_iam4O|@$-z9keF zDc?Wy3%E_`7^!JUd8xQPhq+nlf#(UI-LaK_d@1U|5NNGAra7|#Trggnvqk|$--tl86*S0kfdi7 zy#HjZK_UO44&leX>t3gO+ty!e;NJJCY`W=Fgo8r7*Qs#| z%!=(~AAegx7u)iN`zmez9f#Rmnm3O=Dz^!XUZiz?HWVIfbGJvlG`|?Oe|Kl`(KS_^ zdIi@KJrW#O651c`6&L}jHKq2 zrrA@GJI(rv+#V%2aXmTXI?~uoSswj=?VVRtQ`^4Ag8_n4MWlluCDMBj5Kt*1f*^*f zNDmNN0-=b~i}bJ|7!{CS58Xd$V50zvt^S%P$;C3#dJhl`8>zI_TL0 z=1}W)rwIHWN6#6sZb-kHFC&bl)HAb{Ux?eZ7Rcoa@t_!p<-=QdCL2bJ-bhbjqhz$*u`s zjm6ha>mGVlHPfyl8=G3kzrgmCHCX#OJAfFys}4j2+RzStt$E}WUq37jb2N6F7q;jY zKBEH^iX`c}XFi>e`mq1Gc0K9F-tDT>6_8+4GG{pgu`i3uzeTtB{Iv1yyu>r2=DiNh zds4T({EhT6XDgJH8x3!4x-fE_y)d^#P3`zwKjuL=KTF+6C1Q(wdNs8*#PTM4#ID5y zZ>}!gc|F5(v@1RB>voKPf@XbsJVakC+R1ksj@8-pq@$Xvr|oKog=u(P<{sVgI}V5j zhD|v%QCiH+?QZSv+nu6)iQ{j@N(Qn?A zcF3*47`(qG-CgM^zVHl`My-HV=)4=@`nOK7^;$AE$H7l(`-E>teG7} zn#v_9b4pWs&>c(Ppc`_IlJCOXHT|xmxZ9$C0_sH?FRTaG-bG7Pdt7l&a&YdV8|YZ0 zTd#{Xze8ysE~-;5b*^+Dm+v_Tebpf~c{!f;4EX7Vi}#j*Ju6}A&0>IdpxU8g?SF?| z?#je_z8lCEkz3o#x^=x38-Q3!SLH(&`A*QZsgv>3|9qp%W!9?RiO|orT5UKHNbcHQ zTbMuPLN!?y)ifB=eeC-!ce}}RP)iC>k;iaybfiZZw13q!H%Y%;Z<#mhEy-uAiW^Q<(UnD)i}CIY zRpHI&5K5b(hF+D+Ex2XrfxO+6TFDaSd@=gk2Y#{~oZw_*06$Yx$C|b6(2P!qqk8;8 zQ(H(M2-<4~TPo#CmPNipeZ}Ujn!4pJk1Q;#t!?Q@y&HQ^i@6K9GB9-N)c^o0>tFsV zctrI!aAB1EMrt~RU+Vf!K=F4l(tZrbKWSP}ICm!U2RvW6^)kQLEiNG#aCAu~pvwr}YEb8cGHtD&fjQig;rgLSIjWGZ^ zh>GVTFES$70yj8;%9ubI5u~=Z2&~HiisQ+w*KH%9!YuNt5R_<`YL-&S3!a-hk4g*e z>}FTT*+cM4EiZ~^{hpk-kQ}V?IiY?A-JW-5SeuA7V;e$a3uEk`?$ibe;1Ml5(G72^_E8@K zUHv29Y^&VnA(GruT$EAnUcHV+m#R#XH?!I5_dvLNGL5gIM0DCU>cb2xR+<9;)>BgT z1QJb0yDAr84Or`E8>XZKtNryDqfpJ)Rir_vewL0#H$Au)+Fof=n?6tzabHPfmb)P< z$A4En#nF-*8$nQ_Cw@ye8{JqKg>sA^)QFROqtB*ih!~nuiNge7SE=PFI=n2o2KlCO z`FSOrXTpSkuNDC{Y-%}hwk3~d0v_$XuWFQiFRC3S>)iEt=92YZ0-wHFb4zR|A+*fu zsy{xOMN)vCXt~D{K=`?zCT*nYtY1KO!1o%kMk2Lz1=rso$&-NAW8@nT%9(k zt8wm~7R?77`L@VP?%}R&;p8aJ;#jvgq0W+z2t9XWlhQ!F(+>bgEjKodJ=DoF^4A>Y z_V0V_nz?XQI9xdXzN6f7mEjvT)yvIK`i2!XLYdBvi&aR2o3aLdk$!Iqo^}Hzp}?@* z)AhrYQT!+ImOpf1yB5w}*s@%JTapr)Vifrm8;yUUmrARj;M*<~z6+oSHu|}D5j;d< ztBqj(O~|+aEyy+Bp=-8nE_9 zI8@@VyeHzWS9zgvDd$b~)|bVKAx$-Mzs@aggY-bfyiQI-pd72fH$p>_`=>=t7JbJc ze_x;Ksr$Bgb1Oh2_G zrD_owSZ%8Zk-z!-W?In)ydF*UO`i6t|M2%rO&=c$U7`@Az3Y--W;SY&^+4$*gh#GE&exY*YQ4|C6`;{~ANylis1NoF}M% zGOrtv-1d~R-*bk`kh$c~c3Yg6g*d+GEL}{tZ`-*PhZ-)vsufwxGp)O~QKg5=&uZVz z*6lmd)1MNeGPzfWCUGNXUd<&r-l|F%AU4*!Eu{F^^@TX4f)=e#Aj2zTT`}+TUO12^ zO!q1fR0%64qSryJ)uo;CJ2*f9ae?64nazW^aja9HxiNj+o3XI)*g$wjH?k$qmNz>~ z+uGQXlsV3Ek2j`wVzY+;xn>~pQ80S)q7#I7sk@Qa6_hRhOS8~mo|O$;>muUfgK>iN zQoZOjTHGLd=?A519yS5y6Mx-G)%2my#8s|En|y$I8zml!8Bj~iw(MCFLmvtOc};0r zu9DCPK${kIUNbni=ImsJtIhVTy||oz94P{j>e~k4UibbgVJttRwk^7whq0W8kqu@x zF6y)|N_vWtyP2NahnEK1ch^ZOvG;z8GazATp2U;R@J{werY84nU zxBK$rBy+Q7Q?^>-P>QxxK96J3>@~Np9UOG5-Lagke`{zO2r4xXAD!E= zg58s?#&$MOA7n@$w()p7>aQ{t#=Z+`*qft*PY$7&foUbio3_1sd`Hw+``oQL zU_+~pFo5a!=J;mi6C1_ygXNl-Ew>C#8Y_i}vx{X7T;L~_;6z2$eG2`l&x548pZ`{$ z#}nj)xzjEZ;EH3gq_ks^GKTX;ceAK%hLRX-q$5g>$nW1nqwamdr$3Ztf^6n*_YDXDO05DHoX z~wDQ($*Y|^bNgIST0lyey+`i?shh}gU;+d!<_yse^!i+~nF+TzA%>EDkZ4$D+ zDjoAYunq{EmAdkXt@LwR@-I}wa4p3I(;cm*d|T_#G}OpLVhq-App32CH@w07DSwc5 z;9ZN9w;@SJoyKL9)dwz!yHe`(K^48Ay@xHyeJmLZ&>M3L`8n-q>({t8G8h5r#~aBT zgsEkZ7ziaB9BE5$7FP6MUvdl2T|;rl2t8| zcnDqqnW``30ZdB`F-JXS{!G3^=I#=MP%;@Idjoq$Vn86WNzzB1VGbs>kixKrJrTY0 zD*V2|I6LQ8^d4J~189orY|kEB)__7gS1wb;@w@M$ILBk>zG0!R>TfY4W^qYF#AtHP zm&!v|4XkOy6A~$#}C&kFQ-at2c`NLwoj>j zhVs>{)f<*rf2=)fYL5RDt(^1pg4g16d&l6fU%!trYQOu=UK*U4iKQ&3DqOSXxRxbj z&Ql$o%G4$Xfhm$*RW$?EfQfJB2N`V1 z#s!@vtLpj2#WEZU9tfopUmnrbMfnRc)QN1I453$ml_L*t7kFT4`P74oG#C;D>oSDW zbbw+)S75v;&BmTE#(9K-)rYz)hX|7C2gNI!)BFS9cQvA!Gj`wdSUtVNI2#zAXb(gF z>52Xd$@YJG_rFrOVC(jsu4ia`ppfMU{N=rhEh(I8{uBq2e^Qw0XoyDQ^g#P4)|eZm zu&VCcGAg6>o*G`JmdGr&BssX`6xt!n_I2H`;;7u}%cmHMS?ds@kf?IorV|c-G;&rY zHFw($3j!B0k3U=N=SSGOc{YoUOA-8;)mMf%Tb*{DOnoK9pDW04mHDlvXvI4t3XUvl zEn=-}iI|Vi{HIDUbEF@7bw=N}eU8edZziQk;iX@zF=kX!(yasIQjMyv(pQUj2ded? z`KS&sLoDq6R>MkV!n{y>7bg3>O%7TLUJ0JdajHpn1ZT`vQl1Y zyPkO{e;rxI6DQTb_>DC;SqeWau>tmLnBkfWF$GyYF13bd?hFR0WUygK=UPYf4(-dB zKwJ*ACcL9C^_drNw6BNal8Lvcbm8@+XP(zGKw-fds(iPY*=AYbViiY^egcdFCJ(Z# zE*|GQE7pBsQ98ua_>kyO<~*1>-U`V3pNOeDMm(gZ+CU z)c*_hnsfZp+N4B^Td`9xjggo>W2Au^RgyzW^r7ci?II$HVN5gMs8f}(CKISoUvK<= zPCa2f#oKAl_HxjLYqraW{HEVtz{jy<$5FFkV?Y{)bexp~G? zuk1ch2+Zr`@^{+RNj}oBeD&d11*B5)OARud{((Qdc4os~)_x^Hua&FReI2VEI zwfaG`OSb20HGHQ(SEE1X!(EeF=!n(|)2Xj{FWu&;H~NQ&g#$ z4i_)K{?KS$PHs^#f20GhFRiB(FD`u#f{;lL251Y=xc$p8tbdkU|Ihfp4i@{*oc(9c M{+-_d=;!2r0puKf{{R30 literal 0 HcmV?d00001 diff --git a/Nurse Stress Prediction/Images/X_plot.jpg b/Nurse Stress Prediction/Images/X_plot.jpg new file mode 100644 index 0000000000000000000000000000000000000000..94b2669ff1925ac3213ba55054390fd7bf520cf0 GIT binary patch literal 63802 zcmeEv1z1&SyY?a^1w^`$mQ)%9H>k8oDIFpp-Cb@3=|%xXO1isKy1S%P8VPCGd;iP% z&Uen}%$zeb-}j&Suj?PY7O)rlU3YqF9uk^mAC5?~1a0}#`| zeE8j)94V4ZflL8i0(1f`W{Sa^(stD)??s@b3UB z{*~)DZi}N4DCwiq*%ETUjQoH>f3LWSNO@?Ff#;c>HzpP_2`L#lBNH>rO;%n$egQ!t z;rkCHB&DQfWK|wNQB_md&@?bKdTwlDYG&`?=;Z9;>gMyx*Uvv7FevKvo9LL>x9{Ro zQq$5iGPAOCN=nPhD=Mq1YnoeH+uA!iySj%*M#sh{K21(7E-kNoUR_(?*xWz(dU$kv za(Z_D?YfWvlz&{-e_q)S*M$#W7cwd;3M%@y>q0_y1~(LZ)GIe`qg@wQLf5w?pyPgt zL3l6nLva%(J&*Dp(KEXtEMf-UMaKPam-f?@{k{wH{!>@>pBMID*EI!PML_}|9tu7H z0Zz_YQoOMK-u}J^fA@jE`@r9Q;IHWeY;X4a`tvh3ip<=ca*nf!#>$k%iX@lx8Cz}R zOOd6zJ2LK;(*%k*TYfNyOe!G&V~X^bR*VAYQ5wmr3@pkYV+_jnLvXnzB>=}mwRkgX zktFr^_sa(*E)A4Q+}F$n>Edj1nw+@adK7zWvD@8ML~~X%Sj@jCsv=fV6ZXZt?u%56 z%PTu;Ro3oJ0O=*_HFPszJSB()__eJ-tL=QeIAh*KmHcM0R_LRR1ye3MS0d#0fq1r? z13h8oqZ8=+=t`x-9^wnrJNH)an5#RIJ&fwK$$iU!!n`Q~Xok1C9S0VgPFV-$AD(d> z30)(z7ko5;!S#(J3e=#xTt)hu$;q{sl0TQoY}bYz_+lA`o_jPT&){^ zGV@_${buL&nPEo=09XCgGx1=&MOj|*;9PLJE6_l7>V0Pm5AizB;Mfi7NY3bG{JePu zeXB$kZYgK1s6pA{kDV}#kMvb-fP-6Mt2`4P<`#K>+<~@CW?NMYN8V6EUxJsP;=L%m zzL2ZbW_^vVcz6wgxY>>_#}OjM9|vsBd1V=mI%$N%1R(;CgeNGc`g51K&|OC4!_N4& zq#edDIMc6W2lQ@-*RbP7e|l=yIG26YXCSrD>~~4aZuOxqh{IVS$WhmcA9Jdu_?Q=I ztZhk-LrrZ+OJUqF2;09(p`<=IyOzZZwx+1a>1>>8T(5s>za;sND!ujYjd6Ty5~V6H z0!(aj%y;y-owX`n0K25QLaW|^(j^H3u%16>P(#Ud36?0`qX~A9dmF#0HgW#S={N=L zd7ZP<uL*dra=C+_CQeEjyp=7)Vde^4R+!B2lV+uLy zNR%I?3~QlF*4`vzFd8L2hHdZHl4feVoU{PcglH8M$xDfycuw~qt~v9=9>jI-V}g8S&J$SASPpQx~CzonBz>DYr`$cGhF77uiBwC zqCe^|{ieF?EdgbAJS8PH9<4V9?ZItrt5~zaOYJAst+9$OnsfXS2li`SwMllYCoO}- z6Rj+0M2;5=$qp#J14q0_+4-j};(I%-PUq>TL9W+2iy0Kywke5Oy&@Xcg4XKnm$MvZ zX{0=vm2SfF9m%EKujFdKdUepBd{g<;M=ZNX3g~FbuQf(4>G$bd1rljvw~NeF$McOG z_KPLe$D)@}QT%4?E3^BaPH8HbFLI&3%U>xETW<4Sotu-G8oIa3Ll-&ijVrp2GJ5#j zl~+y%XL}-KADx8fBb_TxC%YHt$iPFaWtyccM+NVkGqg3eDnsaMiEmBP>QjC>yWNY# z5Kv(hE@G)4x4Rm5$Aux$lvprT`OCHqkysbQxmsj*T*BwQ(?Y_lLt6Yj?gXTB=TAFL zg^hdfg!sTB!w!+QY%qQ6?kz@UVu-Yd%4S>Gi7`a*Of#irS#mBkmU@2~e-bn2pg|Y; z=>API)E7j20HKn^pWcYpVv?@yTJxGDmzP%7?laDg_3~HP8W~70N5AfWvl1;vXm}!m zXMMkra4*{T#LuF@!#M5ZNkpH!BXQxgRBjO&Tc*ip2*6b8$$HCt9B}v^0g#x!pp-M$ zfhq@>abQF}D6fb-UDtcIYxHm}1`?{^zKn;rG36Nc!7)cH#<_!dB&0;zDP|L?1IrC2 zysvA?lxs;6aujNGsppuw5!b3Z@=5o;HDSaIT}N5QNoYk$k##KX( z`PMHxA(8#J`%I=?k{;9!(&z*$`Cr^dA*r%cWE$}%<;S4i_vTS2co4o{(l?93`+_Dq zBJxCG>YCvT)bREym~#8Ume{^b$=6n=7q_&s+sdBFpvo4NmV7|Hjk?=}E|`obJLIAB z;nZ(Q%aZ@3w<-`d^lC(%LQ%XG)+VN&ZJX*IZmxU23!B0yA7zdE_X=v1abt5qSe&xMHNvw>f0LY5@!qY!SoHha7i|?@R5s zXF?rK?Mj<6>)$BVJ<1VR!@S0FOPw+TB3qg!j=!hS>TRIilWq3?^kSYeJ`WB++z zvJ9$b=!T53^1cKi7f(r8emP;h{RC+iV?A0BRxalWhS$$?zS{C0Z76zW5#FZ8!} z+P~N)RPAcZ&(6KpH(l(LxO{w$RtXD4eI~8P8mU_Itz38km}`*ns$G;#atpWcKo22zUem0B zyt!WX&!na|oMuQ-#$*%A!xvdNcRfH1;$9Xp?ZVsLHlLP$P?5R!s`xwzIK(5~99h4M zKUQx3IP?qqj;_hLqHK&(WCVubr8z|Mbvp@xrb3q9sps~J;(?U4DR-AQkJrOAlv8rO zK$-)24=Duj^sMoaK>Os?+No~rl>SivtC}vcVp5_9wcQIZcfCzevh*lVZI7VaWuw@$ zt_a}y9oop$>uVGuA8UCMZzq-~qCRBy)rbuS+_Q6?Gang~N^D^a{6`S`6olG6$-j1PI4+6lX z%=hN$bdSPYz2bQ8fR7h4wKAu9*7)f-)k$boh6e#87p}0NxLFgKM3|_aPwS;+Of9w;OlLU zyqNe^cb+Si(PhyKDcbhqF+B6SlYr9UCRw=nGH>RQ<#lY6j5^bWD3&E-?M01Ibh6GX z_KBhrdP5!>DK37lPe-ghx|S4ouSSYIB0RJ#NRB>1AzD3&-7`l3SRN4Sa8HJ)^%Bzq zGux?lhPYWJoB7(Oc8^0p(ZX7^bV)2})b@P~Qqe)Me3 z@q0GHgXk*D9M6^|_qLyz6Xas0{io4hcy;Z=Lsr;}~wy*a!^b-imM0yIG{ zXibQ5?r8PKd5#``&BFQI9gZ)_>Y|^Rd_;(p?zl96O=6+Xxs4-pT2r$H>Aie;b!bR$ z>gj6BRjWuLJ>unP5U_H3!xnm9&7%ERfn_X|9t|D*Gg+3pTn4Zk` z;K^w2|ET}iFiM7s1w}=5pSsd^DgTc2-r>2jxN}B50+`}@8YTZxm<79hBFn~XE|n|D zQiLLVw#z-UD`y(T7OAAtFmwnopg=bkvfy694{af(=W8>M(Ip!eFGKpu5s+^D<99fZm#i=C(B#%;4L6yakKfdWfj8Jh?aNC z)NIN1v4$x0Bbx~St-K(&TnjRqmrGTm^ljvL{^d#3Ohs6H?HP+a*aB1jZ+yD7@!t8p z*u8K-n%s2j>vkDvK6Y}Jwcx|BT6x2wdi~V{miq>RXMqb}<03EJ7Xyxb(kt>wYY05! zFT+0vLaPkhKh74%Pf#sxVb5}YT?~y$&WlytI7xY6m3>jwsqzI4eNo*&vDAN&W8md; zKdF5=GLD9(mCAPvJ2&YRZN2OK=i?3P0q5aM@#2d8&-4DA2Jci!Zy3hhkxAoVE57n* zjFyGsg;ji_3*Y#xj<}II$Jl5WP92M`41)zL%Sx0x)EdqC2-Wi)jWEp+I4h>Q1bQQNdXpfGPZ76zTRrMuXdmb6`OP0- zj6=4Cpa>u}&Wr2xy!LpDC=mP9M9z(4D=gbZU1$ED+w+8y3-8!oz4=95#$qs1;CS zFD4{b#CWGcLu<(ptVF%*i{~s6e&I~EqaDY`BW`U&puN- z5&?*4osoZS^w-54D!3$D%vavG=3EV%V+%;Fs*90+_L`ErRqJVom0&V%u*}3~@`+#s zP|jr_hr_wb7n+6@eDyi1Q&)#bl%2h5SrUbdvv!opA?$u%3~AkQXmTWF2kb~yQQbX@ zugS%`d-Z%`iNR@n*Un&!{dvsX?U)$eFmy+h#_r587@OXOwfsJ`6>?Sk)J?^iI4+i3 zcZR_t_qvEXF+T&|+X~#dR4Wq{ttM*G(tXcjCCXx5zqfDUecT;m&N=X6EJEn9;! z7CSAdKN+pfB`s~ebSmLyI8d`2tbU4$DBknwRWY?-so7_ABC0RSweLe zs?S7rq3Bq;yh00vz;TPvHf>(~`n0TKazbjbMHGvuIK$PGY2A8b1VGJ?0FL^g(SV&A zT#%Y#oX=bVKS1AG@a|-$JXYlKTR#*j??*;g#XfG5Qev%(h~CY2{Gd5wZX<3DmHwMgo5Urk2N$kr1BOB#J@FBK*5MW>XP;@E&}+V_5cBV#ArN? z1J(sHPh!8OxB12P6ktCK!1HNbe=-EwL*{}rc?siez&>BD z&n3<2^;aW+AI})tjIywMPUN6)34p^kFd5h9r{n(g5d~2AH5zp2U~UR@0afo(o@USM z^bXuthX4TpbO>O{1SR>W!-jtQgsr5%&;0Lu{&#Qre{zJr;V%C8)OOuG@y9Xx*a3%L zey9#wpta%VnID3ap4!ajTMWv%h zTv(IyQ{s-6OgR^eiMQ52l~vKx?zsYRLZmTkg?31zYi^d1I5Ti z&)HBtq^>c+9s&FqX?{F!F)Flg$94GWBeW5~k3kaheN-Go7ys$VKYhpqiGSMbn)MLl)s1h54i205o$pk@QHAr5QHP|xkw^_ zAhib@2;lBFu-JgKyg2XIxJ_b-08(PSgjs(q@LL_BdbiNeC1~G$zZi80-w|lWlU5*?zYaU|6%VB0_mg+K@MW7hz_pcPe zzqKXm*MN3Ok2h`;8GuTwRc>m5T@PGVvK%aq<`6|NWUXzfW_NRP_NjviKke7=!EfE0 zU+zcIgK2r<*u#+!K$P=h;l-6{=z4m=O9U`hIXD4XpgCiHL5={5bSmLNn!tKiN)W*E zvyCl&Z{pIwP6q+#KSlt2C19*X?z(LJOQGvPOy&jX!v zwCMx#Efbd{;IujE0q6VLCNBA)g*=ljJzP@|WQ)s0m!;SHb`e9_&n z`FT>L{tGFP#I*Z{_;by^7*W{(@skD_U8^Vwt08=!8ho3t)4Q8A5zBH*YCQ zGa@C4nU4Uv7`oZU`mZ|YKsOxK?AMo8%KP?>y+C<(Pxx_wgVLB^5j!ASHX#Ek7po*+k8& zB~n7)8S!W8@mB!DVul3(ledpqbL6N;t!iYAJI#)CMKv_lWyVoe66wu>Agv=I(u<(h zs(mM4^IQaA)c1mTUAkD{OMH72KYyw;TAM+nF9Sj3mW<~z4&KAYsQ!cfr6{H+(S3Cp zEIojjEAqDXiX(kKV5Ovf-Vx+riDu}pRC~L7=$#V-*G=`NCMS$cGXzj(Bf2pa8(8Ma zM4@3-aKPDQ?&!^&kgkZto=f`dF*2s$$IfINvo#Sp1aM;)0|9(`f&dP~Rx8;HEz2ob ztS#1Lb~45GyZvvxIixGP{NY_*!ookI;h()0g!-%9wHyduVrGI|(}qi#!2N22zH<4# zCf+9rQ#=$d?Y2>p@J-o};jX2OxoSG9DDgD z)EwTV3OVQB{6|L>f>0J!kfWvFg6J2GDZ5tyk>sQ+Vr!Ecqpzn6&C(ZP#tPO1<~23i zc-ym&zKr+xJ1Q%$8U^^Vimf>4%-+2}Kr}NXMlF*)(?a4eqO|CWNe(;C=h2+DyldF3 zalei3Jg0zr7Of@zS^1^uQa**^D5nU;-C~2x=1#P1TSwt`RVK27)T@#@{whP_N3?1w zN@A2${e>AW*6rtgbET{jrqE0+&oD{tyk;KG)7N7Sj(4P(9Su%hJABsm`X&PAw-uqy z!W^ijdqv$;+N~X@>IJv(bY3|XK2Grx3isdZ!FzSXl+H!f{r&rZXO67OH<_Kq#5WF# z1b5;F#vE#UAVjB{u1B-?&IQI8v8`<)P#;cdQ+h|{+KxoI!TF{qgqHNq@LZ(e&4mac z&6yWzXy~_#x=5e(u2L8W^DRzoP+Mnf)%wEAH_KP%ad1VH6)um8s;#^C!{L3prMeXk zjZ@Qym%Om68<#gE2-TuYeyyATk$rr>id5EVeg)Me;|Bd0@~a1Mpq=h*^T$LAF#3vb z{rKmvlX1g-Z18{KHLl$W2qVEl&ePmo7=<~A5x*bhznS`eD<%G!{U|>I>mB(D(~P}ZV5*Kees{H{l8pBC`k|n z4*!t{`)lw03m`bP#NNzutD6b}7|>zeMF6sj2te~_YJb7;LIV#YDkNZliSfmUUSu2A(}WB+m7^AFke>2-RO z6}k3VeYXUVoMmXgQZD!zJ`8)W=_QIBwBSKk8An}coNgX5Uy$x-_|W;fIgf739jVIR zGeg19GxV1s*O3YupNw;qxuiy|vUL&PFT>UnvcfnI7z;R$1A2a-wi8?nn8Rx=*A+-@ zqBb>svLdl=p?xvvE<&YwhD0>_>!eqFLxSEW^e`FMX*%?djP7n z4F$N!*pTX2C5RDt-s4qvy%3imRArX_7acl)nvl^qj-~mHV}-**YrydN9YX#kCIVqp zEC{3U!4@FK-Jt6GhNHgU^UFs63wrKF^ZN8PeB-BslTUNK989_o*X*P80bt@e6T^hkbo8I~N2u1#n zT=v(E&;n<@y`*CpEPZ;bCO>JCfk2!n`xTuuQ7m+Tf^x@+%63PGh!9D3;E}o9`@kvq z!9s6j!Q>3lJs&bf0H{>i^kl7gm#npMmj>QZURC{=jmZi-T(CB(k7?m{E&C(e@$#(X zs~mTl_chG2vuDjT{W4uC<*#z<*3dALdN(~GQe!shY7%kGpJGYIwQr(1KmzGOQ2|In z(qDs!@fR5P*98QNq|GGQ$fFGT*6Yw3Xf%d`0eYst#ruoWn_yB1b>JIlq$cuhtO3=L z<*`B4F{rBk{llMzpVrqq~>QA@8p^lB2*`RGRm7#alCF5z6;a*Ej^8Y-(TtCGvr z@_Kn$O^DweZ*@iEB^f1kO19}7#VGspxc%}-rVp;plqaRwirMVawGUW)!&P`vnCF`KO6g(o#n0dRm2Ci}&z@r^$81&fI(%DaRvi{kV$8sk(^dOf(x{6< zW@RB{EFAyTS##XcQuv@ptF$y&;r-6FHqOKm0;Z08a+qrLxGo*Khrj@(=<)kh-7Wqp z_y9V=rVHypk@;w18(BE2S#FF4p=;?AARWFefe7wg%4=Avdx>eI4gJ9!Z| z)ik#2E|V1R7vN3MPkB)-UYzoYBKIH69hi5nC>(uFmLc`NZ>30xhI&m51yxNb*CqJD zn8%Yvb5V$TQEg4|{rfW9Gpmu;+;*jFZhN{$a!^XhMtb-$H=@gn*IEmBF*{P zmkvt1UWH|i1_njGU5p3-GF3PYkN;wVlJ;9XIfs19Vh^4+7gLgSX)|`-yMJSP(Np_e z;~{jvMN>&Fn`rgbvBrd2&Y2ceP%71D3& z^}p1lfAziJQ+N>Eus5!xnd=>66@!Xz<>O!SQ?>6IEFY)||6WR~su1*O9%D;txET~V zBBsi7DcU-$y^lsVGPP+g{l+S2P6ve)DJf5Z^IGGC2jTO+%*-D)#7IoC3ap-%Rz$6Cx-3)% z%5||95GhG1%Pe4JXP8gjtuP{2&DVeNtmECW)|=Sp_8~jWWKEY@DEETWjq*(6;!7p; zvo&VBkXo}*w{C=--$D;>FBnAs1)VPV1?2d3?e4yF+naB`;l^lrMcsXUTLhr}{*2sq zmVnFmO^WuZId#R_8F^(U{|-M$Lq`~C((jwpmI+RbUw!dr=SHO|{~9d*MR{7qiwwon z)O8(DU!%AAF;M=|*FO}#K*b_P??9OkEFP(YPWb7ZUzU8>;`h10IuSi68LEA&6UBkr z(6bRZYi$9OvvWXLtGjq_vQ9Fvhv z{Cls(SNePCz640$!bHz-H_o>`4?Qk4Ckf)k_Efk~eK43-pQ8=6j$NIvo-I~FMhRUMXC?P=$W zV#&BnJr`W?>(;1Hea|H8V}}d)K=|qL!HCti(|jq}Zj#&fk-DR4N{FdIg;NR2*YdI4 zN2G2*2@{0pQSs1WJ-0@B(TK$kL;R|m_mz-NPxY4r%W5Vlv3tn94WyA)3^L5*G06-r zgDIt+1r`x$QE2Xl%cB!Yzn7vELfgODGrxt6;wR;JXK1s~2`2dCXXKBSBn+*- z5pyD6u22sSoUO^8B@PbGRC|hMs}Z-N1#h1CaM{^H_CZ1l>_I{+;rz3Hp`}&X;dr6X z2CQSA@veE!#MHO;#&g|b++H+h=;+8KM6@`B?Yw;Lg{uI>O&9W4Kc;5c^I^?mR(b&z zX)-mohD{%d6ttwPOi8^31B1^W9-zN3Xa%iq&UH`8z0Y3q#%N!QQNzj+l@Y-*iiRbo zo5iY<*yw0A&c>9rN1x0;l`gy_{h+15hhMhB-Q$H^N!^jDVW*OBexS|O8DO?Z$ede4~o zAVppe+#f6-t5hbp;TkrXsl>LQNFpSH?56hC3<^pvuOMx3<7iklteW|Cyz88GT;ucU z`7f?69Tpc8YD=wU!L9J??=3Lzm}R;zpwVxaE;ARfptvjVQ~RerjM$9pPcUFBIFidv z3w&oE;?-(stDv86c^zXI=Oz$6*zGaEa$gnjC$&|HOrX_rWc+AMa| zhg5V?qA%aI2--ZFNo=JS9)I*co3nHYioNMJiZ8}_31JwNxOGPS+$7|sv-2mZhM9{& z^bZ|$^4H}Ea@!ZUOXB^|KcH3bUPl0(?#-aP0}7+B&Y8z`0-eSTBJrNVJC#s_4uw)! ziUJq)v~9S>6M0n}C$LhXaYQAhP*ogEakHr3p3B z<(6>3#S2V~uUZfQCEwtLz&`5o;+F>KM!OOM2%C6>2U|@#ja|KI(Qma$BOn$>vpZGt z!aQiJjz(Zggy@5OeC)^q^Va7A^8^WM+3bxntkF}4&kZyt$?+zW9sEb?s-oB>)SdFss2sU$fxTXlGUYb*t%`L|eIX61U&sX^cgY=R z-Uu_n7X=I&z{DJ{|0gi=-~Nq%7aaX|9HAfTnD&Wa5j+BC0OspR17nZ-4XVakkPcF- zo}}}Y`R@ED@(OTqXUI|SnAFmP$EReGOKcYjY>RX0SsGoRXSGbD499)CQ}9{_zfU2GGOZF~WE5TE3( zzI%(3*c4QG-o$!^gw_O zIW($wJ_>#CCQeF%_%rG!ke#D_(A8gz?j@PrfTe>|N7I!jGNS;7L!uT9cG*(WH>`F2 zD|o7m;hXXf`s4ZWZ!1#*6K;c6*x2T~Q*V4g-8ZvPwvaCgE?I~bF0ZTrV@#}P&1h^_ zB{`J_JAdoOAATy|^SLJ=Tl-#J{zowmqrlQ~*D|f5#{1?%gr!TmSa-{yPgBm``jk$6 z9&wRrg{{_fC!-(3%O`ZU@!Vdw@R%dF)J&4GlugdHr=rZ1H!7^5q|G|KSVl_gG-Nah zYNH}ti!j}-9nBcu4BZ(^?A4hmDf$HmvZs&ORD*!tn!PXn?z}uY>r)N~A3xB!S}Miy zQ6WbOqD~bzaUhTp#avUKo6>W*tpt~zZvu?(n8&o&9$JU<_?Um}pLE~UDdiaxIUs#I! zNvUz^TLEYF#$2>giSH9~r@FNfc41uJN`v!l>N1S^`7YMqSE1*yM&afoOQ5@|MBzTLBO~>>7It-$xmS&vrbV4}>lVhm9PgVTXI zu9Pkr)z8EYz$hpn_pSQ11`nw$ID1P+EDCfLU^OXRve$DI+3?nWRDhLL7HlpDn?h$G z-Nm{4r5XNvLv0$D(w_JFDS8wzx9q0-y`|G;Ed*|op`%$G=5tWAo9Ao=rwycR3OlyO z?Anr5-zIXDd}3kYw6>;O-tThnChgwy;HyJrb{$4oHG)mb*9`GLjn)1<&}(NiQoI`} zys7YJhfn6Auu+STPtnWMeVF;cCHt3iqk*?=?;I&wyAHJi0T@uQrg@gP><@Q;73I)aZx@3fWPT_A|(NH#Sa{7WP6b^v%iD@u*1&-!7@n~h{tpL3OX)TbxFWC zzlLtGA8qgv!Fe8X?KOjDyGIc}@ZtYaDgAx${GXD*x1ax-rVw))iU1fc)K3ENEn&*Yn>4kl za;xB?S?3IfM;03*9FVCx`ji>tyOtq%XYCo~x$jP0Z@gYS4t(9M#V!R$mIXZu8@XL= zQc-owla0N@cWD0%wET-uk!uO$M|c&<}Xw-i;nOJ?q_UOkZYfNo?Td^ zU=+mg9o&Coj3x8b{*{&2_-9*c!O^+|0Z-9vro*c|3|`)^$_)Hp4fS}a_wE@~{QEvdYC95W&Pa*ETY`^h`$ z?#KzB2_nX|fVT3mRD0^koPLYNuqR=6Bxh~34cQH{=~J(I)Ni4*sC2l+6=dg3nb~hv z^3QKvYj|&qC55#{ymuB*3*R4bVn{>-fcZfY38qFul>-0lNzFdw0m2hWoD#ODUdYnD znCK!ewH(*rG)3j%?fj*u))Mu@Wo2d2T$fvFT?n<2)E3W zpmgS*lPpg7I5j6{r7+swtuQ!1RStq`TyZ3yc{SZ(=D(Iu-EkttRCS?cl5rZCp;fcWKWvReb38m(%P_oL z&fT}#a|549iQd@cIL}O0^_Q-^&|7?^tyq5pQZDzI6?{fL!pYiNZr_c*#Lc zVLP|ij|}}J<|u9I*!el{oBI3|ClZTF@{A<%h)w}nX(38n92+>85yG)|FRW zxycQi$%n(KwUk7P9j~<4kgK?`!P2bE~(P+=nd1*Y!-lP+6mBH@HveU!Ra5eo!kZa@}ID={7&17DotQ{ za6T(GDevhAu)?EQt0f18+||6Ex7~}*a79uO)o{U3MdVJN-t4?toN7)CxK8LuS_p4N zcMoN8XKkc+F{8p9s^LMsYckF`+pGG0ztXG18Re+N%=d&wRbZt`f>^ylZBHryPt9N9*f9pwxyMGiAY?}~cpH$!+eLzub@X+#OEdInf|h#L{L zeMz!SyKi7=WdyB|qUVW5jjYzVcNM9hqLIiy-=*V;9}UiorW8?VL#7eqSkH{<$Q&t# zde8^;chU$zeUdpmwj6Md{?UA6Zb||Q;nHQbBu*2F7W(iZvvh;kqNBvm&@1E(T_Rsj z)X^cKA^@{S=(&A$GH%pwxgo2+ts8g4Om`I@0YpaC_lGeU!4s+o}>jMx@Li@LIAHp{>I!xH4byT&>D(YG`xo1 znO~J#_6s#**{pb+p|DKX?9GWtow@#OtU4uEvtn97Bs&`!b_G#+A(hmf`a1T!yx7F96--atjgZiz2@~_jk^9J)#+{(1HooSxyYTR1hzK*;em`t+7B+M zsGO<}EufD6v?m~yf|q8PMa|W2sN~(=yyY3J$gmJl8nFc*yfOht-%%|%#CAnh{!|y| zc~qyXQ$JQpXo!*$@A-MbBa^N)*QaIF%1YI4YWB{oleM`;!(uky2P+tSY@b9e;;^i& zqMSyh;XcSmIJEL+iQB&n&$*V98N64jO(@_@3!zF62RL0nDkgif$>yZUWMw);>Dg5- zHIclas1Tu|q}uuN<-<>8vY@1D*WWS}qUjHJHTxQVvCalYzN1eQv2VGKbHZyI=d*22 z6+z_F4t^v2Lrh@ef2*3wTJgbVJkD~g8_*@ymB1N{z+BBag(}6W4(=3YKGtBwiSSy` z57<3S#`(omh959U!BQ0z?A@Jbna~N4f={j^e+J@ z-G5Yi*FQtT-kQ>CSGfIwSEM)Qwp6<1e={-eABFb6is;ElsV|0fvE|Ti_S&E?t3&qQ zt`U?;r zM&f~Cx9}$PkU$Fz^ZPp_7d~fdYAQb4skmEOrGpK$8v+6;3+)cmWyo_=GVhtBG0qeT z!tey!90)EY2d`eoiK{wO(4kv*LI4GheRCjY7;fAqa|9v7jr^^~(}N^%@`x{OSP zHP#n=rQ*ni!ZZ9bn)5w>aM3Bko_wo;d#65WGjqW{WFuCC*zTrG7Vl{3KZ`vQ6j>(R z1p{(t@CWF`E66#JWer(LHPt)5S_4)_BgSNOiRrjMXU%7W^_=F8LC9KSF#_;*FN6zd zulZOR)D2m2>d$`e%bM$~9nEg4jtKGT6gd=`5Z9guCjhP>3BX=)K@L-76*If&a#S7Z zbA-(eLRAM~=Ucg(;m61l8W(y?IUy7cf%SV z!VN2`RE^kMuxSOc6N2nME_w0R$*0bm6{#y^_FQ#7cbuA?K07;@@ijDhCIsXbb%OsJ z3|h9SrewV_)H$br%CuqBYEeLm?T!>qnaN{zOD~PDucLsoa7r~53BV?{0dM@d|KlOr z#8wl{^er8EHn4QT=Y+>@mTYO+;Y3>W(aN95y^Y*B&=JR6x@vf*EVg3A>cuF|*i2+y z$g?Q!D)qNWU)O|ohHIu+P(t@PBbRgxluNKJ(`MH9Qo8uwOq58hJ;IedptBq*MCBqA zN%T@}TWMgz*P@^hy#da5eDQj=Gern8sZTc7sF=B-^;i)N;#;P+hXDL7%QlQPK1)W) zFi1?LuSBL_=em-?(zSE@i+GLcZ-bqZxkrHms(51O ze(z_X0aFBRn$MbG`k18nA!I?37H(!{+_xW_BRf*=z)Y=p*(s$-SBMLUF?1|um zFnVwo zNAnHnhF&ZLC(P8so56ID<}?Nh*x&6K{ZEGyk`x$TB5=QP&Jr*PF_nH>WS%b6e+Y!b z{P{T6a4}(!p7wxC%f=1t>0Ji#(}3)EaLP*{>xYT7{|~WbA+7-E0pJ5~03(gK*_L_K zDHywGF(6wzkVE2vivN*S|1}I6>tvkREg?R}`8Yynsw;GFfHaZ<6+c>p@*3Wvu5t3I zm3uvZkIK;HjfI{&PKw9PtHe=Dw}h>2s^`I_5%KKI$Jjaw4@n(#?wU`+sa&0glDLf( zuHC&x@b!*6ZrUJv(a-9Ve^S}hbq2E+$T7iL=l`IXLu~y=&@+~)LYVh9Xq##?mpTn- zA-KFrcxexIBBolfQz?JzRFxc{<9Lee1pOcnLJ1C{zyc6WylFhg%8Hmfv?DK!vYodf6XU-G~C76SDOMhAwpDLG-YizykCP zkO%ES*aI+@s3c{z<~}Of zrQioX>T2tb`k?Tu(=jAL)bI3DG2@STPJZw&f#xJ|VE$|Zp(6T?Y(4qR(-cqj(9SpY?@9=HzP$p5URf1APf-H!ie3R^W-00KC; ziL~Wu0yz*?)6x!awLT+$N?jBE7ChvJjtkyN&Wqfyph<)kjJNAi-|Qa$-0m-~9>5tM zHh!I!M&By2hEM9iTxWe;A@~l?GzWA2n*^t%GthOW`s-C+iFTWHmKxC})&;@GqU-uc zYutZMh-CGvG^~kvnf0j*lnb@qYv}Vp2X1vs?zRZ!9%(5lo*PZ^y{*T=_Azr>dV$yV z)uU11k;_^f@YRyDMXh>_x_^h)Tu#W5O>R79>QW|&PVk9AAiuW&FMYwSv@m(MXxHSu z-RW|9j%_%lrb*PaZkx@-z_EBS(aWc(62aGzP((4&XZfT^G zH?82GDxzyh5Pd$M2sMn^Jm=XyT;wUnbNR6^J&7?^0Km)m7i>!+d&Qvh|vJgg9^xe}gnL1VZ>Y7k9Wf zJsbuu&IYdI!<0x34tTIrH7bBsqCvDHA|G)5^i2Q8bvno{m>2eWq0Qi$%I6s27l+{L zZ}Nb((!b#tYIsYKGaBCA^CQTGsO9&cU@sh#Yn1CU-fT|RTAW{fZ(4e7O>hNV`?T%f z$JOd~<;N__lE~-#JOzXJD={ccMK1j*@ys?F7kT$iV5m~Cb11l^r$AO7&8fVID3~5W z+V~;~tWu@I2^8?4gAbtdnLjPe=@!%kntMiC<`3~{PB#AW1pm#4VDSKBas(>P(Q(o_ zwwji%`?4PXhFeA`A+f+S4T z3ch@u#f0ezTt#f8lThp`QoQqWV^l60dmu1EKsF7>CW#X^=IL|uhD z>5M^(9Rj%?+;#U4V_BLny3@Hu?)^!S;;p@pwp0D0{fEF%?^`OeSLM=H8L7pD zTv}_fx3QCAg=j5136a(vl(aJgzBpRmX-%YwnSbI~Tt7-Yti?sgo$m2YJ7I;mU&#$$ zj7oUm7^RGsa5>1IS1 z`%MD>S6*EQ0Dr<(7`M>MAiArBt()bS+Vrg{s)F2{P)X5em~z=K=`Tb&U&8MtUw>sq zYLSS}H@q1)7o8$S8CQ^L{49zpYeFSYKRlUT(gcO;7ZbQTyo~*}TDY~fx}%ynGqXhO zB%7i~XM4p_9Z{VN5`P_$ey!Jn%iaYc*V9_AZxVkXh`+!^f5sr&Bw*D1nZlnG23>hD z0p04>1NHsSjhF5c@CEo2|7Fkv#y5X{5c^HwueJu)d>(>UL82WU1@CqZ{05%NqZk13 zoEprBv+>Z7uihDKqyl0!e)!{9MbE3y-=_DYbC@9WBDn`@6By7#B*pKJpPIt919|r& zu&R+=y~G1YCuZaJ4G^@YUsu_bJ=M5dQ(NAMQ<(pM*n11GDEqW+d=Lde6lp|4DUlFK z=^>;OI)JT2k$Pl-BNKyeULD3AE9)q(Bv3o2fi5&%ZDkw}`nI6n#Lg;v7)6#~Mp z`1WyqHIOZz`8Hd|+P~Vk9_+e;J$$I~A!?5lS9e=pGeA=(qcDKe)3QS-O)XpCWt7e_ zd6_^_E`eQlaDbL&#R8W#s92U(SAQEd{=###ii3g!lG!6vP$gfj(b~CC01zc97g5zA@droLcOGG*f(XosBX7=n@v#=FrW!SmYgvg# zTUz!8wV97=fO-3+QVUj_{;Yn#km%g?z6hPns-3WTgBJiB8IXvSSfdJ>81~s3e7ULr zx|yx3%;Lr67h>nzEF-T#;N`a<+6bd0q~D;jq{ggU#T5SpC{UfemO~fUL}WY@_*m3S z6LsIe>#E`H>KlwD*k-q}$qudSxv~UfU+`5R3F@=ILZF<`-NC=OtdD)r*_j69A#m+w z!XA)~v@D2GK~R83lewM(@qifSvOlD$p#>)EVr9&!g{9Wc;a!^342ziZVu7-tX30P% z3iB)WAq&v$MP{Tk99o6gp!@6uT%(8)qyt&oRWWx3*qaxNNPNU2L#-_=kd9OWyb!ZY z6e9m`dz+vEw0!nOa(8zPjL^vq;wrIYV(jlvlq{Tr!vBxT@sH<%g8H9x_u$Tq+If`%I6W^f)$*W)s^AWn% zT3XM)>P>W<$zj&|L1EYB^yTrlL#Zo1G!L9J>ILUjM%OYqeE0Xk)lohQ!XPl3f#T=| zs9HwBb=zcV@|4kg+zr>94?CP`laT2Z`)VIdQx zIIC|YZB5)6%$&&D+h-j;X5!b9+&S3Q$!zObVDswl+OSCM+@u20d11SkQ5tv!8yhD% z2EgD13nb0jN^Zu2nsr@JzM=lbR}%|#3Ei!=%{bjOuhKRqMCy6K;7)l#Vzt+=S2!Yg z6}q>jC0dMau?$ISAYOyTJ}?;>No``(ZsM7gs&S0WOlA{4k(66W9BrP4qs4_AIM+-x zbS?GYPu}3#7lULbdO)VPqA*7W7HsZ>X69H^EX|QzpdqYgig|Hv$c=Z@=%rtth22cC z18LYT$KUi4yOjT~|Lg}fC7_R1x~c?_j{pE+er5&Nq?m?stnx|8L?It~ zh^C5|Yx%umazE)Ov5wB(Eb^|jEwVJ>`$`H7CWD=0xf``1pO!W~wTd?5A7 zG(Jj0`wk`g7KWnfp%9^{0<5e#t?hAa*rD@4*Dvt4Xor^pj&Kg0vf zz80dff1LRc<1c`dfzF1JgO}EFns2QV!JXj7g}7MHZDa-NJrBA}%MahO(|+aoKh&vW zQ5KA9z%?QY^(jml{Lk74t(>S{Msdr=nNkLjKv8l;@|+UXz9R z36UMxCfeN_VPdN-r|n#ND4ICXWJ-ORdB`>1_f{(Om05<5i}`k@?}M)N{4m0to@;o5 zwVYk|-d0ZCraC7<1txx`DvjWG8Z*T>UuDI;8e^BHV@52)`=ur#=jc_Z2A8-f0*#04#D$A{fg}iR_C+f_RrTFWDtn@*AabBZx)3g*_lN+?n>mF3 z;7((lt-MFg+J-M-%Qzf**|$&);FtVebx;Pr*tx(caZ|}?y-HU;~ZO;1%1`C%J*eD3U++E5r;zzp!BD6cANEuJQna zEk4t<5>yKyVaRHtr~`SL(~dQ%CvYw2c=yQrIW8yzy^A`K;hLKaSvQR#lY+brqt&wMD>UAj^g?xy@ z41NRsChyhyc-`}(MRV_zsm9co#irmv#XfONhpJj{9);?OI=K-?p+8Dqn9aBDZS9Tl znOeyN1(J9mBnh-wfAR0%%{}+ta|a*~l7hUrR_ox_gJXuAOtuLksv6J5w3MTm&=Lz^ zQr{eXh0xyLxemzNrQeb1si@Ghj<}pgP`e-92t#lV`O4lBlbwo9R`h*sT2P~!4-yL} zH8b>RvmC_IHka!&#^A?MGZk`LIG;gn?0*`4ez$bL@c8eNU^#PP(6m5BLv7{D?A^|l zdh@qp2(_#@!#Ig9?GL#7<#JGg;i4A2?)9{-zi)5RfP$jK)U)o2#hw#J+R%3;0f+{; z3{aVWObJho1nA3;_*xKEu-2KVZxc^t?D6(}3J!_`a39my{vE*$C18T=GQ1CGAj}1= z>26qo$tM)zdhrbSH&wIWt7oSlPYFK$KPKx+Fzb+Y^sY@DSyiBQz&cTeTl$;*3rYUn z{wd`>XV-B@;@$j7X7Cq|6&@%(|A=E1emr~h&X@sN6%4jcG6D+RzBd7}It)Qy^}V6` zn<Lk>!lTV zc9EmmaQF-8h*t~%7Oet_+`^jo+#QL>Gz{e{dg9ZeJLWR?w&X6L%-^BRUnlhZkn8%L5wazy+4Dt;xA7v&WRdNHL?=;e%a19c^hs|jrckZ7 zw2sd!mhmEmY@)X7pj$YCgipXaN#B|vuuV&_O;FJlM>fIg{#u+rZC?K9^?%aznDYb$ z>rX)6v4%uQy(8k{9-$PsB12t9|NT% zemmasQxk>8%0R9w53066f^??wAggAXORI38PePN>u-ugAcB_Xv)R7*|$x`J2`?ZzU zo~rV0u}pxjzHywor(j>-B1MQf-KBkcG@Hb#<+8Nwf=;VNhL4#U8A?|k<*Q5V;1cLO zcpGDxr+xT1N+;pVytyn{xPV$a?~qgwqoz3bV`_hUXs}RaG`2t|A0Hn^`do``(i2-+ z$KuaMlX1qFLR zqq(Pf!g~FIMOLEtVcn~@XYB9>^m`UiAs`%0HX{yZMw>r;$4c$n9zC*`1-)8>`wB3j zEtaD{3_l;({Q=X+=S@}~(m?VQU3H!zYz=z!f))g#uCvH@lCmib<2n4{fq+5J&PAPvCZR;ssNdGs76T49 zA-xeob;e#dBAPz?2Kvj6Zgw&on3DP-?;vxw5hpIA?PbPtBb|4wIpt^%U4~HKiqT^e z8Wt9s&npjDQBEx0FIUet(YO&_Le42C3t4{a7s<-wkq}pvA(XbjGjzZ$$)TQnoilNU zf2VIfhFtgUz3d^$f%r9X{wFAfkzAnz>VxrJSfMnopYw{#4+Sq}o>$iQHEs21bGAjT zs^m&q7-22WF6kBZ@#^n$;7K#W^L*h|By?S++i*nqaxHF|87mynU}_E)4F^Wuu6N%J zQp-3BzK~)+hfA06mha`;i0P_ZXej7Zer;;KRvFJfA@IJ;hpLSTWj$Nh2QNPbWQ-6de^53D>`c2fKyWh0!sP5}dTFo<#p89v@tF+7>H?_rS&zyKl3O|@?ByJMk}_m3G4u5b4799j zx7kU#mc9Oza9y|lvVU@xe?Qwld;Cw1zWD}*`g77L4DHrXpi$y`?DDi?OTW#5z7iot+Jv@D?^gJI0~%28im4}SmAl2zy$N8lKxAy!j}%+Q@;xxHL#%@$ zY5j@G@_kpa6?A_G$lbvah{B@br1TGZJlqyDvF#5crNuODvM(b>*XR`@g+hK&9_yn zC+Xf@O_moWK>cn<-|qAW&w)ex!Q>b#>>rJp=|C6#{pbJw_&o{XL~i;NDdG1I{tF-f zQ=MSnHwXS%V!RW;&Hoa<8i1y{q5kOpb1BS68tOaS-OJ)gs5z1&gTkBm5#kk6DhBV7hzsPMdS(SEGltGGd`J=EzRx8e@WMq-n|=|Q0t+XNu_j7 zwegy>I8~XBLKr-(XCXm}##;p5pPZlMzyq$)14S5VDKwxur@SsM^IfZm(rDX-ObTP1o2$j-CNm#!E2@(j?vU z6i7(_R8U~6c3*CA=-#Eac}A~wm*WYt^JFqypXg9Cr507KwktfW{5xYegC6n*23#3p z>3Ni!r-eWN{F*+Ad71T-S54H#&(`Ya%$>6+>BFaRTpDLSJR>tV)Ex_hQ79M`d?a}m z?5|#Y`$7r2&`Y z+=Suk{=Pv8M|pgcoLs=)$2G$^9IR*43`m{d<#{EaP>^Mxm=hkHukyYkdlRQ&8URm! zKXByy2nCiTegNM}Xi#(p;|ny4TQmDU9cZ$e5c1xij2zJrORQLjY2L{Q{0Mr662C%7 zmKS|`m67y|Zrk~9p64LE;UbgV>smF3Uf86d`uBqdq@UNhj{i5;xjwAlIC_1=0E+zp zB<`|@1913zAi>|Y1U-j4>Qd&ia-A+RRs>idQ6)aH!MrlQuaF*v8o)%+O@77(B)GHi z0ro3_n0u2di}S32(C;h6R_Q}S_cBWtqDEhQFMFRn2AEllg};VsKgq7Xd;eF%IZJZZ zk431W-Nq}4`7l`pb;Cs0g5r8Ae_?{+6af_tAA7DuJ2fd!X~$ZUtHVPub(KAL zFV1L7EF;Tbt`9x9e`_Zww5RWWj{m1R#q*bJ0x4L?czSbf%9;A}!WfK2ed@>g#8$M0fl^XLr%n+$w=U8epH$PWbmnKvBSRTKfSl4HY z?#3ubVCq6}a3sT89^RaqtCwNwJ*A29F}l6HkHjd{k7u*4Ssl@#7XA#G&&00N*gKS< z816QaMc(x&X&!qfVf#!phhnHpAG+I<0@#23&tXT8j}rFr_}!nxdMs0)&gv3OnLj^s ziqY7TN}kQO+?Jxot9n$K-;NacMq$Ot7Ef|6{_CHUAWJbBM< zL8q_N;nK*__Fil~=|Qj4Cs0lqsQvO&j5x3kU%pZ6~wHQe$E;XFZ>}0`?KZ)t8K3G|GmuzDt4#BSLHk3L$#8^ z!!BP)N8J!p91~H87{13i1hD?638g-rI*^=EwR>N<_7&`gE7p5Cq-vlWBZWceGU(LIIWh@0sM8=bXfn|Sn4Zcoxi}a3mRAc`u_-oB(Vh-D9FH2A+ zf3Z`zKrl?6kiy>@47atk>ShkHXf6?!bVYr9oAU+wnZmi~OOF>T53GBSfOzSBQIx%u!Ce`2sW?qSjxA&!1pe)rjFK346*cUeqc@#6<6V&JXBw9?*jN7t2rVjU)T#%#=Sb*R7 z4*i6KsVmK{N0v^AZ9;*+I~Lui_hk>pwlx`e7B39p|xjk*JTGkyk)>-8QL|58Uy86!83+gZd|z|EHSUPM_32H@hZNOA)%x7l17Corj59goYVt zg*(t8g$rZW*@B7Im>-0$w;#O;T|Kr3Ibd|?5HPX6Pb!8enm_!sl|IuaiQ)_Q;ZORt z6kUE=0rOwLj`96D>mclB{APA5QKzI$p3_}hpo!&sg%&4Ctqa(=h(<(p#m;5K@r|I9 zMlVU=H$bleh%kkKvP7iXJe~RnN2;*3_9M5_2OxT7`3i}pOcMZQE#C_O$oq_#e`u}# ztql#E%-ehhJu4bf&s*=CoG9qb6+gB}n%*s)ga8Ze6L`&MJKq-I{25S=NHwb4r z_u21lT6fon6zSv?wp4GGBCf0l6|u2J5ylzuA;^VW&+|p3%8G)-oY$~#M+crKZjM?@ z@3|@+#^Ww2y3GMD760mAAOoEFem3FBs8Z0_*9UYJbWa-lelQE_l->HL3>i-mZ~65T z-Fcg=e`acBebnRXVb0)<=`$3^p=FFE4pHMkGBoz?0TGDP7A}7iJ^V&0 zP?VOb=a-c#&JJFY#S@cF6h~iMRGLfm3Rm+VK0mZ(lR=w5E_I=({Xiipzye#I9v9F_ zd~ZU%P5M#Cd9#+Hh_vQ!*$ghgcLq&mIRsUe7sTp8qe@zN78{x5gY&5X+7i*X8KJm3_Jf+h3?=jR`DQq!-)XM(+bdpcs7Cg1t?iJuu@`n`aTevnr9V z#W};D{?O!gGjS8@UNQOhXIyjz@KNs3@8^G8K0iMzR0P6^{~4z!`QzC}X8mmYk<2}m z?L+QYHy=|RGTCy>_%-Y8xdJY<)tAbe^`OZk28XM;!2~&!|25XJlyTth-8ct2%RWRz zA${-h{S`vE42I882>Mu%+w)A(-biWZs;A=x)C}8=q{mW}5xU2*Y4$4j%{z^6mF;{Ma;M3zK{s}nyM}NPFG!sN*z?B9F z{56KCyYl?gZ&#gJ@i!!1OJzlK*uDnApbd!yH^_iSs*pL{(vUgO9Bvh(=l%wZ%~|N| zWudb!f+X*h*{mnMdHRrcBz^nKOe=(alX4R825T6!&*_%fD#=MGpz!(0^p?VP;zx!D z%OZ|jZRm2eG}P~s@QUiZ)ndfhfBp!c1vNmBjE2B9b??35)7D~v6vwB281Y4U?j#&C zMblL#XlBu&9*1>1JG&%$ggn+eX|xGXcg>u9n^Bu#A&>N|zzAwj56E2F>491!`5`Mz zk3yyFjfZa_%#rEXV&Se>!(jS%&8o&ih2TV~Z`G+ECJn zhfv3%Pp$1)kDN$ok6w;PGZUdm7TOn{#`J<@bXC4qi=+<}cXYcFV>8#@Jv0&z9YnxN zE5?T59c=|4iX#{0D|)Bg;BA8R5+71<8b~tF+>)fWXy9++=se;twm%}!J)04-Wcx)j zvdG;7y90Hv&zkw=^dV=(1k>%c3~J?0mm!Igs}yS>08;akUKpQ!9)zG-8C=&gW4bZ~ z>Vf0GL~{6Vod4?$Ij7_Llh+LIdYST#nd>&-p(a5C;mS%FhKwwq{7Ox)mQd+8o|AoF zIX0zj22TUcqFNURj7CU1u62#d5Xqhk7-H{~NzKv7%_V-wd46iG;Y`Y&48Q)iVLlT= zu>7@Rkyn~V6Gw@VDKYoudR(Qa2L6K<4FNuo<>cr~q@Rr(K2^kMAgb>idxRR-$TGDC z2)8ci>akq&cBij<$y;zd5|Wwpu#-K*gln?bs)cvTYels9r5>h}ptiX(NXK<6Z;Qak zLztE)B%(bZ^x$$$%B6bTnt?!gAiT=5zc`xf3d5TTdu&k!1pTJe-J6q+L)*smoxYPy zO<96{G%SXex~p8D(KGEb>Fr)o;BcIOeYcA-c*B39Fd?DzOUs)+q|_#24fCJm>UH)^ z{=dc5`ynmD^7$1&wC?vnEYU)@?mn~|MG6)~?cn7CF7dqhw^$MR9q>7(q~ljhAO~`I zcr#;|)wq%kPR!qd zps)Q&6yg(&#HGLxrL-GWvw84ge#hf#Hl>u8Z_jhb%i{7U8zz#dheaZ z?q%z|<#~&_Iseh2uVnAAYQ2PNFG@oBftymP*JT9Hbb8t1F7Mh#DejWh!-qDzmxl*M z%}wd0&!&=dQ)xFZh@D87D6>pFp^nn{pkvJ{O3I4%Qsb3Homs6F^;vDU<4O7Ro4h0s zLtokZWO{7E%P#ST1qH5H%Sk{kINh_8(>;D?hCasNSZ!GlI4(jky*S*0wP|el*pM{F z&&x>F{RZYky#vK&uecd~Sv(BWnBGnm+AdY&w)u~3d&d*0g_!7Tlk@6?!56IIq>G*X zTwDBg_v7@f+OEqteM!Ruh7;}OkI=JULdshAnn$L*i4+R+L+7p9BuyT>5ezL~@sVg! zT&T5w`GI?EB6-gCL1snTqQ9Yozq(POQeRMGUu(`eiAFYw*XQu4y&~;MEnx}xDANbt zk+H=$-jvc7!?uDQA`{qyc5k8*^Q9zQf+ZZLeIPuG7xhk?w72Y`*1W=AgRC?qazpy* zeh{k=irsMJ@O8QsE?+pU#b;tZg9HaAe3aSZ?d9Q!%&2kZ+=ZscjDF194AKJjyVqce zbY4$B+f=ns6k}hx;dwA!;X0kyjVHI(w!OqM@TgThQTnFqc?#MyGn~~~BUQx9un2q< zm$4QnvF>UTE0W}Qnv|SM1|th$K6Q_08S$Rn=pm`^wJK==Q_s}ww}*uf?)1`JFg1I7 z_Wpndsk2|2dAGjNn75mHLLGp*+Hc(ZK*cr)5P!QYv1;T1eRxQ zQp~~(YOe+rtldh^4wted&hzcbOQ)Jd9;CmIRk<$lRtHBoc?;EJd(C{h=FU+UsCg-W zg*-K2IuYAT{%Ou42ky-Z(z*WHWsfzlZn%6r=24TgahjQv4wB)*v zs*!S*Mfd3)@IPVt#ElYkyHz!p(oioOmyVh)7Sl90q;+b{xKHw4G=1pAr8cUnvH$$3 zl;dUJPjY7WEF8?=n%NVyFRGR8zS$1*B;!F&G~D~}wvMSTZOMPayjQV=a!VkIDmqCP zRk6n`3J?rNP5Td)s+!bAI_5HUt9a`A;u1AfjacnNgTn57nGGP`6hozc{}o~=(f*O6 zyPw}kAx^$KSQbzYS(2>HKmc{!^#^(4e?yJ`vryyP@Z+C{6w|c`fUK#lkmDYc(t;@u zF_ruDMo*qUqb`%ni#rA}^XiIC&%^<3ULLwc12Clo`3LImC6upl1YOQKTx=Y_M!jW!C$- zsx2l(*yp8VMXyvcb@!$JQI|xnd_i*GgBfFf8UG?J^nn`NXxW`txGs(kub|gbA~pmf zdwWmmujVc2@2FHo&kfx1dd6U$G#{j-z;X1ZO9Zq2-f^g|v*7$&hK{@x-Itje_urhg z@DB%FBU8!|cIBT2<$9m7!R<}S>PkahRy`E4GTzWoUE7|?qh70bp%gKo_150WKGP}O zw;+$fH>Qiq5th{EcvY;B($gS5jlnAojXZiL=%cCIj?KWc$QyaN&b*Fx+d?^X@8~m) zV{SmKrUGDX7WoFc<+tVm+ISP|+dKNVWa5-?D#OHan(#n~=reON4gJ)jAFTEpB{Vu5EAkym&E5o}03LeDC+WJrldu^tqpp#`!V2~g zntx9Et%^d9GTGWIt!w~?fo@f^3hE#?iA-Y%(lifW=e#ns_UP|jKrWYysV@LPL-3D~ zY^*fzTX1+^uazXSE@g`CvTUHa?|2|O7Iv2W=e`^}R4;;Aa7PtonKUw;QgkU(ESARv1C zWZ(F_Y9)Q&d`J2o+47t}9^P~R=YjLRb?@ts0(sM(0VIln;8HR;t(#Im;xGJ{fqS}I z@F!pYvpfYV*65bo@(VKb7^WH8ur3WT^usUEK=!cD((#!s1Wk7Riq03g?sn|Y6>=`# zxPrM%pZfgzdy494V_U`2UJknDm8H6OPqSYw%S;zul(qYLyRv#`e6&qRd&kX0OiId#8fOCx`Pd%=8hR4ngr$x z{x$kYjS|+)rT)pW`+4m&E*XedoH{+<_6R=xc9(w}ixFRdVY>V8(XTko>wB&hIEfJP z{q%wFbR~68PkKFYb>PiP9n=*aRQV>sP)@`Sfz~mNa|zEBAC4(aeqVVv0oua8ftP`Q z?D@Chh*EEulX;t(%xscm(%Ft5CduEsD&U3~E2iS%T05BFsC5=T{OkOHzqT7IbAJcr za)6No-z{MO`&HycMa?bG#bfigcGh5G<@w)MlwXm(XUMtqBIsk*RXD3g;SuG*(|Fi0 zt?6SCkgxU4X7NW9(;YCMK=|xUF2%)v?1=)>^bJc=n!ojza zLxZHy#TJ+xWP?mnLgz=o!4H<9DZ3k!@7Ab!;TW{tW)t^a&1$VkCYVzbiy_a5Q#E42 z$yqoXVvg)`IfnZutP#c$I7^SKC#kF$lZ~{pG(?%Ss@fa`HYxCGJM=u#UeMVZ0Y2$Q z+|k<`k8Ob)wyXaUfbr*)$bXMe7{b^3k6xDokprEFAcN*L0wVLLmO$p_{$vZ-?>qUG z$Nyxz*ffV!gx16LXQAX_shlAM8P2d4b~EZMs>YS%k7k1M)7e~CxJf-079)F)_#G`X zZe_(Ar6p;GndaQrE5M8Qb7QQyHC=O)$;Dql_wAE2q(=WM+>t&1z0>&9iU?Q>~dpQD<8xjROzKHMW;K)_p zG`uufw&PudB7Vc?3F=j;e(UYrwf;BE)&!B=u#Z06?7;jIF!kv__KHLK=;w-V&fPQ* zOH4~wf3hx4)2i&x`1%Q9fyEHcHclGOHb=W*`T5Xh80(0W_Ry1q`-$+Y&|Ft*E`7lb z6W(exE)?bHPv$UJh?xMvx@b^DeEYdxpO5~WF^;z>J{KBqNLo_GOx#+ioGh@fxY!q5o~sm0<#Fg=*fXBbj0oO+-+4>%Q9}yd)f@aT=i5M>djS*s z00lm}ce5DSF~u+PifzLJin|p2!zGt4PeuioM?Jdv5P11;LgTtxvX`7aPU8 zy#E#QzKG_ieGQDzY|j*+84|+|95=lziChVQZp%NU-HS?o`Wi`1lAqUIBoXtmYXv9d z#SPT+mEkwJu8dLK+s2GZHk3@(oVR7BqB7j2orX|6dmrzMzVF|>5?v=+IYu;|>`xe;z(JUOcR@Es691Omcw_1@st@19{+M)S0 z4LokKolMEjDjD`i?kF^vj1Lj_8A zi3qbujjSB~f~X*Ri3|!9xWaGilkW9z;G=$p;KIRhCe1KW@&WbNy)kfdCPZcfkr(^2 z0*p<~rEA&6Qlw|1OTbj3gE6C~6syx%0Wnlpxw=z0vv#doKWH-EeG~38wsY z1*qis3`ml2NWH%$Bp?1hK@xIw4`r|SfIrV=p@R=meNff?j3Gf~_{qVBhWdawz6ZNw zfEy;t6^u4<^VGaZw(f0$&h1I~#dm8!bwzh*t#$n^OD;eD$q^|yIU?0RI3moh`AXgF z?o2CNPWIIBmJmS_{-%9R1AV?5F$7ER~?d7Bcd1{|pWEuN`Kxy{yh5~h6k+5I!NvUqi0(RVD z^?)Ou09&-ol`EJd2!1-ja*gdvuB>ocV0slf5H+Zj) zqIcXe5)Kl0c2uN}8W{SF0q*u;?L8>WXHalIug$m*9_INbl8JV_chXb?O%SaWgjI2FLZNR)!ssJ;|e!J`g!DTPF*1;!Gy|MpHD0QSclCGf8 ze@XHzMr?EA;xy${0FF*`Bnlau5B&LJy@PkDd|5)UyMeWzC2`k{t8QWzYHXFH;g<7l z4&L~V%5Zk5&edT~Gn^yg;>yvO#VY{f;Q%KVM~UiWI1xWPnW;dWWHH5|M8B!1EYFh1 zjT94`;EM9hxOsG5$>G7!-#s5zJ^jD+WGvFPzqvPTNTl9wHCTZTLi4Dbw%8~WZV}?V^VL* zvesSd5A|3%rLUf!YdoSqCW5&H?jBV%PF4KRI$D2O#|lwh3F5!#J8vr1q$~ltq^vGV z1bf|lh}4?0xG`}qQUFF&OMN)kPX*BAp0&MMX}iGq5B<89z0hptOHdpFt1Si7MqGHx zCq%Vr0-`+=d=Y2fb|iPXQt_+RmM(axrRGtX~U{grbT^H&XpJhl9kr;i!ft+ zkCVikdzH{gxzBH2iN~tN)H-F9Df%NFMH9@I>NdKwO}$|I75@21l8PQ^etrg?e97U{ zP|Mm*7`u@#wFRx9cJ!?=5v&)iEOoGTv^UlzQq~@G1F!)Nn%;~`L8OMq`DvLuXVNRZ ze6Zyo=B-{_AY_xa8)yuWD=qPH{NkGYFo+r!i!a=uUC-Ub-JSulEJR-KSC;8JlD!m9 zmD80qRS3J&DC}Q{|B{+<%JhoDh3@%`4CJ<5L=lf`my3F*}O9wX{JUPu|XfK(bXblhqS~BO8k8P3Z6~9)_Y@XtV%q;#>R>FBUo^hgo@YsI7u3Y zJ6hUGq1gQTucx{6hbnF}ycJrp*r@k?O=bBcad;Z#zQ%* zWvHF;{V-K7kqy_1s{0ZA-V5&b@52m$cD@?D2S`6KaDAS&jXE+a=AlDv%}2O9d?~#d zYp1Mu$R}diMB`aNa%O* z@Xhs!te9c2563=Y;;NXtx1NN=#0E-P_YofN4iuXdZ!T6r0P4snHq2 zO}-}e5EvLo45IFd71KS44O66qMpn@bu3bf4aMWT# zFC*CMMPD})3_zufS3)X2I6hXf za3Y_Ga=~7E9qV3I*)bWQrVyE{c*_1MNKcoL~Q%~y!T z|HZ{BT04qEX>ZlL3>D zH>?aKeEiId0wu5nzxbo*H!b@uDxBWWCF7g4{mUG>R2WPdi3K>5Zn*4EWyhznTYC@w z#DFK5OMoidLS^@*l2V z+%Pk%9NVGliw8HY5A*&(2lA){+9=0Vjd-u+WDU>Yvrg5NK782Kw-F>2 z;{66+oiPY-8Z7*@a?@@i2z^(Gew#K!J%e2M_axUe8hm z*;%AcvoD29ohEHJKFzz(-X$tm--m0*EgvYhI|(F@gwovCMQY!gn~!-5&mO12)$@+Y zu@^N{M7ebzB6-Xav=y{2!MS_`%pSYO$dXC{2H9OkvWoWvPo6#SCEa7Fe{pDt{uSbp ziS(%Ja~TNL+9LupD|iKFF)Q%KOv-WAJ&vtxk#3#{4+p0%BA1%Tn|`P{gwm8^DDMJw z8q9>w+Fa|me#q{0lil$qQ=DJCa#7?|5OGzI@>}1^A_`ZL6pAS=-+fn~C(k7Epqos4 z>4+f`)3qc-bwe%?9~7aw@_Wr0Z7*K4L5gv6eiu7hs5M zB8#<`qkG)bnSj0xQHG0Rnj;nWK>kE(9bBuj#_&+|E7G?iCCIgOoYNCy?7y`F&LH8>ii0x2vb40c(xU~?WGr=W9 z2RtCNV0c(p#cV$?J5^+}pt%b&T-r<_xw@z-l48XW1Y&}f9z60o$ZvP_5I!xpCtUh=AD0S zQzzfb?(B3n$Pq8Cq2<)IA3SCV5GD9ucGUmu>0?F*XX}0ITha99mtQW3$Bx{_ich;lxp4lP zPc2FC_ZN3h=T>~@Qhb4rn4jj1qrZwSnyRKS^vu+Ag6IENkN7WzR)2r;VtpG9NV}v+ z<>9w}v-RrLC$|1D^Ad=LYaROKAF?0cWIr5Mn5H%`7M{}hNVS54Z$9=M$7QbrP3wsE zK>6rkF=~&h6eKARPvr?PGSJ9+Y8jaI_w6c*oj^rv_WNZ&+DwDmf*%}lnSIbxN?P(- zVfU>r$y<5*%ROvOCJ!Iqm6JR_%>SoVuzm&l{LyC^7!=nD+&mf0N0`tae^t#!7(NqnI3JNKAyp+vBDJngSnBd(eDwC1H_m}Gm3zjQgKuMm+CG(aDJQP;f(=U~1L_30!WW1uw z(r^u{A&6lHC*TvL&1yR=7BuA&1Pl(AcID;dZMO58_#0kLV}W3;p+mqwrNFEY)Mm>dT(NqNz(V&Ly|9xkse*+_LYDeXPr7>Fug^!vn1VWttKYvE6Ze| zBMZInB+19!C~oUt^NDupaF9EPeQtPIS|>$ySfk0xYFP}NZl_FW63eEzEcrI{ugx%J4sEU}W8E5Pqiv~;SBP`RE27>1;k5eMNqY0X0>+FLzB`lB%=e`q$d%{!Jk2E0 zFZ*cd(SqZPd-LgXqu)z;*ZG%fN|D$fJeclkX}}iz7j9pGyJtm6v0uAPb(KIktF_@} zc(}hbRD3O?JOHsXThYUDA>L)FqsfuJ$c@oi(I$2Kx`m9&m>!sb`ukn;j~?}n$|*l| z>ih84l`~PUXytyEHDg)P6+@kaD|tX_TpoN_SB&UQh#yEOII|kOlsmxHge3GM>P9Ey z&(+8X%1t(mLNnz!zcLegfL7wc;2DCI8L!bq!baF+97pEFP+nHxSi)^QSrXYfq%Dg! zJil@Wjp9AW%lJLo?)#mlR)*VTA`0D^eWH$zH8>Z_Lc&w-KJeFwlx%n^heort`y8V; zlEGLQiNwfLZ>b^Mu93OhcX(b~JrIl3IS%#Zi3*3@|eE<=^i9C?(8J>R5(`XW52N$ zCd!?@Da{3;Kj`j*`=ueRo4(IXS_nm(h$LGIe|o z1bz{7QA2&uHA(xE`a}Ylg*91w*~meuD9z4O-c!D)BkoC}2s}d;RlPPl*>cDFx{3)_ zEiT5ai?V5K@j8(^pAh;^+3`CySRQ4E>JYo2#M~!6GXa46y|~IyH5vN3mye1tmwnMG zZNXnfrm`goLr!>1cbb~^IEmEzGkbBvD<%&3m(0FHxorOl6k{vK>4!u(UgKKy=H9I+ z8k`t2FPQ9UogCFJUKpnv%S zy#q7oZ>o12hl6c*=hXT=gB8oAO30K{V)9i#3r*EQ-|0RnpJzm&_A6nknkW-43OT|C zHwo^ie&rTJ{;m<}B*wHI`^RT5FLACcM874zNkvTpnNR+v%*f!eZsM1zx!AXBBM*Za zuB+zoXO!nMxf|L#6Wb%~md`%>OuC)fm%VL_2~(JCm9|v;AVLweuG&PB<`wx|?-4ft zLzl{}=u1*kMOvgr-WM}d(o_wDLZ#CS7B6-;-1L8Njfo01m|+^ljT-M`_)M|yxrJb! zei!x#;dK{{Hj_kURFuzV>g0RvlZv!!x59G1SS_Xb)R+W!(IwirS4> z=i_FZ6(J$#z~d-m9fQl@h;ew(HLRt2p$HQGZWQS+w3rsCwmf|tO2J~Y|5l(u%gm7^ zGUmrdB^sOCMZV|hGn8b}OK~>;h8>Z8rr9kQT!monnVVF{*SFwuSs{+4vuKD=b~qs0!$3W*qmcC zxvu&BCjGE%Ho75M@Ru(K4Hoz|P%Brp&CGIzN{MPc)kgDrcm7Ujb!R?T{FDE$y=#qT1KYxA8)k|r zEs>Dhs;Jg0${^8rwJQikwIwP_i>ioF@2JOURdf)Kv>x#e((#OHNkUSOD)A~NiV;%v zY(=%y&|=zq&5wKU+)}6cVpZRsxIqUq`Yp-+m`p!Oke_t*YI{Ze5nMTD>^o&D! zh##s$sQRGG6vNC}ZThKu#=6m|H}y?B#e(CMn%MmBTY-VioJZimGQC^Efnl=|*4K~U zco+B-nTkkv$F?r41XgT4`Z(7-Ayqe16tdbx5zb5BChpYR1BT$pm$hMTz+1qRTy6pW zI{n>qj$N?K6vb&yvkE&$cDPpJ4c{o|a}{=a>I4osIq&6MwbT4cw)V^H9lEx&ho5V_opE)T4E zBDV8^vV(oZEx_l0(qj3C5Jee2{B;r(YUwMZt;6mQ9D~C{BVqZ$;bHCNS@EA6#QzA! zezfTBPb^Y+2|OcmlWh&JS#lEXUrev8OePvOJ)Y>Am)nJv*mrMsP=oX;*dyJ2dF+-~ zD|ZdH9(z_a_YA4rLB8z%!xPN+_>uZRej>zL!F^i&Oi@UL{ z4>zq~97@@VdQR|?2hF{Yc+i1>V#tiV9|ynoG%8%E8}Hu~a><;Q6(K8PaxHoBpBJtI zrqeQhRi{4BFQ#*1!D1T{+y2`BI_ZsMQ$zM{cJ}z(*;2oVx2HtL5(evlc;teNwNw2H zfOf!yJkB=xq1gu$+IuDYsNj8%WT+3Nf;bp+cFAog8I%BBm7$YA3j5KeDNCWz1`b2^ zkIFPc=dutk?eN}$@Y-#dm;j5*BNYZ$`?EH32Hy2R`kols4laNWl>46wnhTAOcIG%r zeuq*lg)wy3(cwya8lQ{}(DU|5$&r(3m<8{)0SEMvc!Pl7gOM&4UV8OOfyEE{H2Hpu zL<`G^%>%)%VDvgOY#AdS<+|uT73sX^zbW-3@q4%%{zrRc@tD=Dx}67#!zeX$P2Uo1ja6YyBWUA~d2;2bCtJic<~45Y(8h8Ns$4%*Qa1KnRJK{`qRgPot`=>li_JyhbGw2& zf?YR?Agiahm^Xqe1pe|DFNn;-*PjVWh>(bG4(*oNftZdelGv;ybV$;Z_JIzwOh4mS z%Fc1&4lkemG5|ft%^h@yWKz&=-Lv;=KjT`LV>>GB3};GlYuZ3)Sqw$LS~Jbe>lDN2 zC3LnLs9=WIkCm@59}Eu=x+ZG< z&>^3&23l%VSJjgtX2Au;ypok$;7P^Elz zHR&%cags6Z?w40{-P#xTU5I9fI}(AYA5l^!-X? zK8tZK>+}nZ*_^-ajwa;lsNbcksk`q%LE|k!yHvufa$1g&?{u)hr!(9I{>`@=qok0q zEG?C=4nXRzOr9EOksLcM^tAhyd*U8$>8o&WoHBz3NqoU9!b$B$b04g7q7Lb4Tw6+Y zHU&Q3nr9T3c8221CQA9UE{8Opp&X)rZ+!Yk)5-?8eY+)ot1sr3!W8@8$lmE#apF#lB% zG~Lc#0;1f16A~5FGO>~S7ztP#oDSt&lgzLqb$<9PaIO$M z=7uMJj!rGF2LWl_-7eice*6g>@?1Hpx=?#iOIVY#|8^}sQ!S$18K+=-451=#lKdS* zc83vi)N57Ck%k-F(6@`+KY1~hY4ot@c*6-KDkbPBC(c>&ko?H=|CGM^_x%1JHFqDa zo7M9CLWD6AaAks|nA@m=-iek`YZ)*D0Nu?1YN+0Tv@PP3SAnE(b47nXl5bQTL|?vx zzShnXrs@^OYs`DH54;O`$&WY5Kfy`jALc&OiR(e6^ydjxdc9`VL&PSn?=KA-e!jGY z6)Z*`3j^yoWd%^3((^9tO_lbEsd8{Qp5{-`jGide6%ecjUq{v?3?vY*rBCgamwID* zd*BNN-Uob#2|YcT3cKX|Z9_T|rwcu|5cQV5B5R%9lzLUg_<;Dg6U1t3&Ir&xZ2{FB z^4Kt2;5vG?m8hnl7$fG`>nKtAD(;xwkoPn2QHJ_R-Iv?v$;$Fkup)E zj3shY4}7W9qDXJ3*rBOq8)ri(^rl|9X)|vXKscv-G=^yfKrFix1```Up6$alvv<^! zlE%EA(Hhg<_u)!iz3ofSo2#t|KfPP$8HT`QwHCMT@`>0BxR*w=gwY0Q(^opwtjzwJ xeKf>D_<-Y#xZoE9C6k literal 0 HcmV?d00001 diff --git a/Nurse Stress Prediction/Images/actual_vs_prediction.png b/Nurse Stress Prediction/Images/actual_vs_prediction.png new file mode 100644 index 0000000000000000000000000000000000000000..c0b2223f1331b5f6351cd5aa769e999518856a59 GIT binary patch literal 68481 zcmbTe1yojR_b>W_3Q~%MG#G?}v~(#dD57+COLw<)iwH;y2!fPIOE*dh64D*gNcWk` zy}$kK|2XH~d&Ygo*n6X_cdaMpGv_bn+CkFK#qqGou~8@#-jl}F+wGh^Lr4hA;1#+DYGEIcgicdos#v$L}0 zXJs}2=K>Z>8za^c?27?#6D+I8Dz+%pWgX-nv@DSi#waut>dC|V@=l2>V~$Sp{R0>q zdy+0vi`BOt6JKb`*S=7xxpF~%<-()tm?Q6NSzf{D+|u#4s&77KI4}Cl>pc3e_j}`< zai42N8bWV#M*X65_Uvv<|C;#O$Y%ac$)Khhf#^m2EB|~dNaNBe?mhhHqkjpbJSgx# zpEf%7x@Z6V?jcJMn#GNOJ~mHqtqA|QQRGuyuY~`6FECJ@;N0kczc~Avbdvs`FW!i4 zLh=0b#VZxGe?PMAPIh+oD_X4AwAZ<~N_tEKE>ZQ?7+UJJgnH9HdCRWnKejh^b!cfT znOzTq_DKW$P3{*BxT}fApS!0iN)ggV(qh%r)UOcEIrb z;5*kIOW`IYAVA@|yHY4;itJh<;h+8Lo4=!0ii?GX6>j1G6yl)H7mH9@LnBP5(O+k# zB`hm9_o0dk86zX(tCW<8JhifEn3HcxN=kadvQ4tf((T##`5QbuBnJlvSsy<(9PTV5 z1HMIsU3Gf6%DLolXHiq%w|p^OP+E2*N;|@u$!==HXMI~P9~wJ$Vdv=K#2^3v!jVK$}!4V4$o7! ztbP-_r9P~H%QP+fn==#_J_|Uk1d3BTpKp(471!5)e@<d!GmM=uB{qNdGCtzg8=cgnlh7M}F;<+E~`o+d772WBuUmlpMIa+%F`!_W; zQUOpYn#Ae(}t6pwZ z|9&s`3Ni78cOD!S@7`VWX+PZGzk8_inzm}Y_bF=0)QKmLXUt0X3yGH7mDjXW$d=%v zKaIIlpI0^>yt_KGd?GpFdFGBw#&Q1i^mJoqr@7Ai+~&CJ`gI{84NHod>FJGO(}Jmw zIr%RO3RtVEtC6)Gb(#s=pEx`Hz`4xJ$w?@eDOvyO`h&@Z1x!{}R=ec^yqn_TO>b_? zK`znRuw`!@bDRjv*Qi9lm%hrAxr<1dDs_9^U`LE0bHrsj0_wV1| z9Uh?ZJVrz9&qRpCQ;Fl5&QoyynwsxS*qrpaoMyYwwXwbZ5EdEvqi%Z)v&*2dlN)+n zOBe;aVFzik>EIr!l?xO2emw@qNAf>v-|=A#M1}0;HZo3IG&uGq)Oj<_2!N5`}efR zCwmi4lirx|7n=9hCn6YPv1eZb?bWFv|Era&ofR zY8eC_A-!bX7yD(@Jy$p4t5+CNxGxek+ual_(0 z6c?X?XST+18Wq<&*^YS}t(O1(#uN#MzcJu44~{NR$2fOi5US5nHk5+r`H_mNlT#g} z`Cq?&?QeC96q@uicBF{Vtk)b_6xq+&@KHO@UNO(JjFZHWl9Hknb|cl%(b=DklEPh6 z%Tv_*_U5*7xmD_}Bb;AItfCJeo`+oc$?d>qWvB?V+I7$3z~?$r315;SRksgH3nwND zpPW2+tkO~7JzhcWDZf81*~`Gdi}DHzsh>X+xbCf8kWPuKfLpZbb95vLkUV+OL$ePNiss<}*xf7GHYCe4S43CkC2`Q>&<1RS%_V#b@ z8o&N(@G!sj)CINUec-$`pPHZFwP(xlvTv}R^mX&=88`IR(G#SEL^J2hyV=90q?fv`nH^oBhHfLJl z+(@gdhYk;`B1av9s1fp+xOfqIT!iz^f|M;~pYwfY@kq7MG=6r&s?%HSt24~#|sg!U(9FjD-56_Xq zP_j@2>+S3Bue-l76&MlG>Up|FlcQe)m{5j-7Rhg_6~BIbz(J)su8$8-2*L89dm-u9 zPc?7gRG5zL5egsm@WqQ4>8p3$nBkA>r;s(7QGozYmNjbOOKE9oq6>$R*ojd{mND%; zLU6(b)aH;;$}bJW-?LxQy_{wv#U+Ow)YTI&UcC6dRD_oHp&&%rbUSM;QKiEw0UaG3 z#-LV>n{!dEHwz)d^S(8`sRlp(Seb13G|#hBbT8#9r^0b_q2rB4xY>I3UU6-Ed;1Ry z5dnb_Z8h@Wo10fqO@(@`p_;9v@p=Z+O+oxx6Q6W^N~`fE0_NXhToc}(JXbwZHv9HF zWdNj<>FMT>&Vlx?U$0!he%+;(Ff}!GcrZSm-~J=&8l=xANEq9tdAB<^Q`fh8NrhaB zQP(o1QpOke;^N{O#>U1bjegf-(p*F}G&ZIWvG;E5n;o7Ekn-8QM_to&o+H+qh*A7u ztKj1D<<(dHhVJfyo&(*X&jzrt3(2m&_+cW;nVtb9rh_J0BT&SP+!=|mtsC)pE~0c7 zzo&+2wtxH9>!At7`Nz<_QL?jGP^un&c$k3SX0Ey-r*UulPj_jLQSr% zg~M?;htk#6wK_d^UNwc{=_{M<8xavPuGc1=v<0>79vs)va_jQ>cvCwTLVSELaT<4` zdo$~dK$jv5{|2DOlXc$19G74heMD0~EuUIe%w4T67_%SL0G7})RAgj5VqT{6t2bl# z>+Uw6%l0j=Lzgnx2eDWd4ZBl#Dy7#U0Vbpv`Vwb2y1e#FM6kICJ<*0|FZO1HIMl-K zIIR@6ZuCB7y?;@sw={vA%jC^?{I~c$Rj9faV_$x`7ZlVSGI|{bF>|@OxmgWrIHI8d zY6SrLp@gb$Ryh03=d$oc)LUNb8^XsM4}AUnQono|PTTt_-S~vifP?IC`DF{!{fydDbd zlF;cFyI*N|KY5Px31BnGLZT$$zcLA2dM&uQswLR4whd{ILhPP@GGsb@`5I*f!KC~3 zH66fc9;@ShYf2FhO4Rp4J@HZNRw}36A)`%zH$2#%jM4o~O30m^oyAJ(M^UTD)A3N~ zJ8=yO+~y65e74fc%7F;TnQe=7T1ay27#7yv-|DGS@)OnRbIr@nHs0QPP4{#IZg!KO zpS;MhvmsZdX!6&uAXtMbV3GCjpG3v?SDr!|M_}Xk@6t&1*azS_H9zlfT2OuUvfu_v z({+`r`o6H<-Nd^xuW9!W4pNm0G|NwRN08$34w3=?Am_X-$HH5vO8&Ch=TScEPqiv> zzjk)^pVn405O;KUV`}dUp`F#RcK&{L;r#hUjlr?%(<|+&Nrn+ZyQIk8Y%j{d88%_y zaG#Genp|BSn?7u*G6Il{kUm&|u<@eXDN2fpibWHq;q@OsGD3wd`Kf5?Ko09IGg6O> zXb&buUmVx-@k~4q=3;@37LU|$4ZS`T+#9uh{PbxfY`{jJoK&h&ck-=Ux9Wg@ZZ4)r z=t2U!#mYL!QgE9Y;iDI?haL{v-FRfX^XrFrLjTIl%(-{Mfo50_QX=N7$E_Oi#A*lq zU3QlIIE}ir_twVV3OaL$g;QdcsD`DBM@$3z5Uce#iGPMqN=X?C=W4nw^5#Ae0_%3> zvbwP`DyWk!0Kj@`Jv~Dt#$ZX=0n$Es@`TrE)RaD{>h6jLLJc?hBb`9@^@`F`MYZJ2Dc6Bx&!?V7?geTy zl@bW3CHNx~Wj(`zlJK0H$8ubdh=_<(UGe74n-3N^pisb2N=zuY@~eJJbR-K=fZ%fn zr9DyOK0J7rt6G7P*kN_pAnJtT0jG5)5cBj2Q+kKuVs4&|b=OXaW3`(@@}Tq}N3+oG zmn`a@rlw~4*Im0!$f=E&MM66hc+O>ACh!jkP|FY+fcZ_qAp>0m4JG>E!4Avd-5+D5 zuu8o#Rr^47rhl7aC-x5*IAp2`av#(dw1)FQHv9`A}yh0=TQ5#XGgVHi`t$gq1Gqs zeV7M`y1spDfP##M0)+fxJKpdmzv=n2b>L{*%Y&CuYzE)nTxAF}+t*Z6RoogvKl7*o zt;M8d_`Q9iHHk$G5Rf^Ej>yb5De&WS-T~G<`MA0#l^M1R=I9xp;eU60)fXdIyNQ)=@P0eg_)6t zMv_MRLnL)9PYF6sB4XsF>6w{y=Di+SvFyyNYo86;HvlERU|{QLYpY`_sCo(byMAzR zFl`rsnNGjIG87vB$P^>2QBYLW?MZtyOkM@K@?QFm$ML54{?XCR>(|kE#+`0L_z&DN zyV-5WW6a8$zRE$*qW<<{2Ll#5?nfyrEhPrGGrI7;nnBsSjI87=bc65f4F&@+k~dU6hn?P=Ah+X)O~ldQuUO zDu){*mNf^NJzs#&w!*FOP;a?RuNrnI=beO;5D`r#IgZyuXk{c_E6IkPBtQ_Zg)2xN zKzw>?^5q#pKl6j}rfJoB1O^9l9J)hbTrtLiijt;i0Z0VhYjLcyY~0|DLS`%Wmd)wPYI9Km{uL!GL`|`9>{ocJl!$XD$RGcQhdJo`d>Ca4NwbDQ@FVrfx zkf7khquo_Ra7^cRhuS!74_S$#I#Z<;!1qyQUEMuvz|gDwcxM*z-NhP}4h=tk6!jd9 z!})!Zl8rCwnoGLnLD5V311g+_wF<-qq#d!=jE<3zE_ z1N02^hShbX;sLlDG}F)v?*_tG=2X+u`qnm@1y96OV<85L1iOCQE3sD7#@ZZ7`X5Kt z0Clbaymm~VVSsx)eoc!CL@MOuLY`tybFuM{;`Vd+u&QZ59~wG4^Lp4xsj2g~w%F!* z8DNh~L;eUO4-w^Q1Gr0Bd15U%B#n)mK(^jlPSjXAIu6Eg@Om7Vmr{DsWj;&r2c|n+ z*h<|9S}BsjzI~HGgk=C4mt&aK{DFzo1N$2KQZ{OXLqI^V0s80E?uezhl@*)B)29fw zy6=NA1vI(!qe2cFXirhYM4-n|2{?c{DO_h>Hs;@zB!HAmY(I2ZwmLYup^%}^9+;Wk zp_fX|wWUDBHBeZs`W2M!r%EHt#@N`{FgC$yyGIX7GVKz0a#nIMk@N!2vJ0;8bn zH+HGn(95&az1m@Wu`qJKo#nw9xO)?n|DMzbn4tSL0OGhkzdn#H<^FF|&R5)cs zM7|K2(|~@;0fBT{3?k_dvd=VRp?WZE@Bz2Lk%E&nlbK+FKvks7h%Nj2`c7_4H98&s z`p^TzcoQ9M9C1_6RM6GMMR)9r{m*jin@GMWww$0QCMJF{Q6q%>5fPGdlnUT<1q`is z4%tEWiHwXyu&p(q?uOP@OmI~ehl&_9ou)1%3cIVW?+w7rK^ABLbYrzzG6<)DQ1s%c z!-%&u1m{uV6z;4)_NDSKim3@BV+-ZEN8cUP9UZCi+H3H?Lhoy{6^+ z!uQuRkbl4T!AFO+Sscit(C0XD9yVvJOG-)#OBQnF|3dcP%k+IiLvaBRKUiOeE2!}C zQSVM4VBzB0S^e>W{+h$%*x$cxwpWJaD1P*Rcy^(j%isz6xpQRy^6+eIn4{z8X`}vo z}%CsD@_~@|RZNNlOcB{kvE9U?5F8eS*v^Te^ zgzOM*ajC=_G6l*DPzxOCuPZimiTbbqvw2x~-}^>)cXsTpo(3)%hd+9{RL}We546w! z(;X~698=1W|7Y*BO%ft#c_5E_tQ8`D1EO)njwV0&U)HIO3uMTEgais|r%AM^!POrh zF3)$TSe}TLOoD{o0A<*&#$mSY3g~cfzJ@9k@^Jn&@7e7b7L8!Yg(To|i8(lwrYGpV z0fk-%pl(}7huQA%@40qsV8S|p&Mv)BS^f(=A_ect6}}QkWVvc(m!O=|BahEjE=(KZ z@H{)=fmCtfZ#ITdHm}3q)R1r9au{IKKIwgK#tTFj@fyQQ5hWcQIq@S~(4p5V7N`*d zcmMuo0?iYpTnQ=v{Hh9uxZ5FDI<`5~+twrqMSr=SItOsnNK%5-j-)97 z&peiZh=dTI2@DBvAX*ns6y@c$LG8PE`Eo0ywC_OXMq!meB4;ykcXV`=e9MN$q?r4n zZyb+;8)TcQIHTnI=H|>m6ocS7H|Xgx3aWR>|70G1`)`X5+!@lh*gzXTfByU=WMW>> zWsXly*eynR`}+GqYnld})eK&c_1Y*OA{M~6nPykc@`h2b>_rvxPnV5Oy zu9e7lwI;bGfF6{GU}TOcHntDM{2YC@YTKhX-X79uJ^$H8eDAKzSlB34?r1HUTL=eU}An9>C(_ARoVc`EmnB zX&mbbxDBxga46JH@7+Ve228E5M*uNQEiJtYlK6|kd@4=1%}1eB0#`2!ZR20PqpU4! zSjnk_@lV5o48`oslz#|kE5F%9i|QA<+ixW3VE&mWN%-hM8TWsENWmu}I!{AG6Ey;6 zS$wpF%q^lYk7SU+f`fxUfgJ+SkpiwnoK0yZC8ORN5G#F=^DJ_9%o)R~6^~NnW+t zLP5%HMtX^o*DF@j<;jABppa0iY&Q8xKG2M|&Q3pkQMHzvjEo<9I6xk12Kx09m;ueb zlcq2~KR^1~2!<3l0)z`F7HEcnt}zV=q;G8t0vu87i|Lg6Ot=6yu>rWQ9$EfbsFxnP z+|=|?UP;N+lNy}WfjqSUh>GiMY|`rv{+DUO!5W__>K1N%#xv#%+@Mn3D}hepKUq7l z?e^-=!gC<@gB3;Ke~D^%aRR7kiGc)&>)~9c1KNP`1H;0a54INA9oN)X9T4>qoVuG# zOiwA^QG?)&jg7qlW4y-4M~3VJ#6L0OH>(}2D#E{Df`0) z*bvu2+JPPc-E{Yrk+RE(83gc6)APh03?#DAao{CEARuFbAoWOJpLX172G7aK>4laj zq)kwEFa>|N-Q=~Iy(lXyYqj|Ox@58-8TbH?pFF8IN^$pxV|No!A9!_-bam674on&T ztHmaRS{LeijNAZy4JIim0cz?1>(dM(<(4H35}zj{}76wWwkyl)(afB@a#;v!bk zbj~P!*a~M6;lGoRJ6gB~)qNmbxZ+o2iq6233ngVoXRX>m2Ot^>yAZddiNq-K3o3z9 znTqIaxevNcfmcWc9PWU);DhMskQlhi^API~CR@H*IkqJJg|855Aj)ber&bb*A@h)^qO*b^gaWEF^yPA5Bqoi3K)v_YB8s;Y&6 zNq`|iLg~;p5&o;30lPPqQ&S58^0mD>LNY!+4&^ge2L*}a0)qf$H zNIAqM0B7aZ+qZv&8BW8FI;asjwnJaO@aL?SK|%$)?bGmXZapAqq~QVb*7yq7_4A6k z%HGf?QP{Pwrmi2Qvt{UjpZ2!|8~@UZwv`iFVFU1q*fu&6$&;A)%Je| z0weO!s{`c;0Rhm~G6V98KYrNOX+q4c$o4tJE&mRl7t%KZEFW5;ZUcG%vE31c0{Qvc z69Qz3P+qEeEnu4Wlv!#aeL(T1`SsvhP^`i!IIUMu(zpPL8(;(CP_N0r?0O4^d%Vs(!#K?&KnwHB%%E^h>qH>iR z9`O#21EL^*{P?lB;0(kYM3F<9Y(R-dx{WX$09jf8*=`;ruE0>y)0kxF@w;Kck z($RHj;`#(R{f>G$eqmuD7@q7<_>d+av*BVa6msvxM9MqLpHL_^*Ilz*^$LQJtIQ2R zfPtJ537#EqUBtmTCruN0*6n%f6F}{95o|vv5HB{M){&dFLS+sEw?PMd$S{vu=qNzi zW)SoRePV3Z(+_iz`$GT+peltSKHka+S>sry8u0nQKMU`(FlyH3-@2c%QfzE-9-a1t!OJgIyR zJAai`GZcvm0IkhHj)P!d&`<~zh3DuYUb;vK;Poju>J6~U2m%34Y&Kec1&4&?JPOIz zVKHaWh=c_Cr%!Bx5cC*jdEF4Uo1?bf#zn(Nd+QOfJth<4E-w54ixJRv11KRFRV_fH zJBMQn-`4-Par3!3#0>zT0O(^vc(dS6pB&Opxw`|PLX~0^!)tNz1uY%jb+`ot6I>|{ z99bIjD)cQNh!Tn%�A;0~G*Yb;mJ#ml1sEM+4dxN-Z?J=)gcn2i6`rXd@A&REU>X zVMF&iDhdq+(H1t0c8>y=XBObGHy|?5IMGl*j(jBP8~-TCZSC!iFp6LhqLI!wZ*Om; z$q@YQo>famaI_GNy{*|2PK5*Z3#55i03jrSYwzB@LqX>pl&3l{&wY_*+6a-;dp0&4Nb?vp5MJ>--o!*9zW+U4 z-5aOSJbFV|m>P7XmSAG0P?r>_a{>^i0Z_%X!D%mtj-8T%9q8CZ)O}q&J?r1IPY}Zq zqv-n)Tn3~<7ckIcNy#PvUnTbSTuA>ACFt|(Ra=)pVg9_CdR^+4z| zexH${GxseTT1`pWw7q23TPgoler0l|0T2N?O$QftA4$5PCF=CPe}cGthIXEy0Xt3k zks!Hs)b7VKWU6`*LWWkAwWo(nNR(FX45%RqSkrw+0bEox6qu&r08`Nci{6Izzg)b- zu6QmSP{|u1sj$EJehr$`E(tiUJ%m(;))%|`v)GsrIxvC}K@q71kjc#Zj^5B>A+awZ zA+Z4=!Q)~MJqFN+R3CWdCY(f8ZD`0@?8}ZCH+Ob&((a7sLfW=I=`^wd;C2H|IxL0^ z7zJ=lq^OQqRN}!5TcPfTTZ}C+FyR4b1gK&SgjDzYyZeX*GLWm{bNzuo>5fOo^&sxP zXa!BpaA-?}jP#2t{-37x{JicD0%$0lLb;D86$|@gfx$Vt_vLz4tBPIxYSWC zEjDrg%8CEyW_G^R_s7_Rzqe$3TNVVq-2PkLdLHtJIx%d|YZ>7u$ppv7i1Yq$zm%8F zv$7-n6XRLY1fslOupXjvZSQdWM?C5aexo?Z2Y);J9^5Y!3bd+A7FaSuorPI^+?`Vv zc`bjp^FO&mHRx=F;2cWX>RKd>zc(A87wR3J4I!VbmDQ)+w|7bY1zXL1 zX`g^I!vtmRyx&XPvsW{~Q^_* z3jCQ=BEDtgS+t65SgQwLaMFSeB}kNiK7aS7N6IC9;leQb@pN-{i8I^+8#;HkqA34} zI7ffIBax`864uc3?Al*nV`%;}mtP9f*INlg!gaRdB>x&kAf;rgte%?u)!*Mt5gqgf zvbE~U(dt1EqzP;3xvFS>66QbL@guhm9i%94$UfbuKYRh-RmG~1_4}=AI9F!>DB4Dx zC-oWA$2SkGxb-UAnRA-`+i=^W8R4=vvs$Ve-@O4bozde)7^qB+efB#7qu!^KW4N)f zz>zqWrkbQ{r>AT;_hHB~*Z{jNI9PVlkfo*m4QewHxJ?fX0s zfo9RW+?Zx_UmBTQ26T+_CdU&oTR-iE#g8i2_gZEm^s-$Bp&OU6W`xjkvj#>-Ho~gC zJai|ifJE`zW{>}i#OF-+^-b7eA-<5AHtKWb8d~kr%rytWFblj6LJ8=DE3dVf(<2fg?EQ znThz*SqWm{5w}Z6Eb}V%mAkS%lZP+bj!$;#tGmlIP^e?eE$6C|CERiQv><(@6v@^V zjY0>3l#ACl`ny7uX?pfO7A0MS|thZnsI&Vri11lk3x zOvF>#*Njppg&C{qy^{^OTA(#xbG;H5=G?I2smpFzU_IzqqDso8x&%uoX8A+if2{y- z=xVgzuMypMiU}Un!uSaR-P~s*K}O%QtFmOnVPR~YcFpoc{iJx38tZv~gj<)WY9E%8 znuYYbpNW<3EPZ?I+d={XQ^?H1u0}BWsN! zeh>2HXWR_QcHP;?LoU(jY3O4NJTkmH+}%M%f`*zA-@e!FP@_0fTXf_kcY@cDbWUI< ztoC_&u9$aQ9|7g*{-vT)64>U|o}r)ANqHw@QG+|h5^Cl;4WH#uUiczXZNw(I5gkp3 zZJso^0+`M-KCby3rX!YlA3fjE3)Dw3@56!wV>8S-H@wde(3mzigE1y*3h(CfMSF97;86d)f9j$2a`*6s#8H`8{{)UN|EK5wz3jW?cKbM`o5?+X(f7MlqOA9LtnMKVB9qSW+dO6W&YPhc>1T$ml#-y zXBIy=4(rp%4REoH?Hs?3;@ut6;2w%Cd6*eJS=P9NB`FoQG&eb*+#<8k4ygwnCANF1 zo~Lr=m4;%-r+xIqWQT~(-GjP@4KWcB8*`rRW&Qm_Ve5n2luzz7)!Z&i_cS_be?H++ zzi1xc{{5un`g&d%I%?GFk?W|Zy;9UJ->-!C@XwRu8=8H z=%@-fG|x^)%oy*_IFVCVlpdT=30jY2{AwEvs$;McOoQQ``&I=xRND86qwjV?V; z5e@^Yju2Kv)U}#wxFF7xr(p6njNfY5!mVU0?VQ>VWs^wzqKvz<-ws!Xn%adnR5JXF z%1wyOiySmn!q5%4c7{;DuIlG2fI+bktDzdw@p^t;pcVT;0Ji!&>g>Gmqn*gOpEL;t z)nB=lG%KolJUb`Cr`Bsf`rSJ>^jtLAe1Xb}`+zts!a$BAmYI1^TG_aqR@6jhEA;hU zs#?=04l1j2CuFDNihZX?9-k#71r{>NoY%G6&7|~ZzwG;JkTvI7lA1Tpbj3(8Q!de@ zv`;!bh~J783UDy(GU)2)1!;%(&`m{N;loJ+iAtgGD|W^?=7|WJ3PA$L67LRaxiaJ1 zwhS4?dke1Fb$lF#okAao6!^|K>H76gx6Ah z(-Q{hUvNkSwsAq0Z0L=0YJRzL!Ih(A6m{iFiN^xRQ}&}2$Y@BBlvcB5_(1%-7oqB39^Hn6lRwwJTZ2(l#*?tZ+I5wI( zSQoMsvaF|N*)wxPUZ&w0j^kXHo=Gz}&N2`Qpubu14%;*7F-W#qK@T=B+{${T=Xpn< z_Sxo1&H2%z2c!b#ZMVziy%;R!#)NSuExS1723_~xl%ySoJS?SG;+J~oeYt5MQf}aI>0#8e-kGhQ zT9=`YoDY`SNN@xI`FGupwhhuZA2YK~7n9Sc;a7b2!z74&r4%F*u|*wC*`0wt3VOie zU;zzcA3_KB45CXykHR*~IxJ&dU7grj+s>2c9z2{nL$}QYlY$sXXdLb2RB3(dQd;G% zB*`qnB2ne?#sote%;j&UcooC;{a)9Lr2$fL9`C@!H?u1|ZHC_^O~zx)$|?J_C}UP8 zWAIB@@-~Qm$;+=4UuT$HTf|Tn%~O29vVdDyTK6OBpf@B34b|+BygEdAme}1~Y)*ng zW!q9)L8Cw$8J6aiEMm6Z`k3xoAW3C?vrYh%rrzKb|r9pxZy;^AU*V<3ld5H=F zlk514t5e?{UYXj&G1P#&k9f53E^Hl`h=BMnBJWBe8dZA2d~Y!0+`fkvItPmpRn!b+ zXnSK=(dEfbg%5zU69l4VLs?G;v_!O0o?eK~HMhVNz35iMjN$otyx;*}d!r90?iI_o z_IfJ|HvD<#2R+?UPz-zN%}og3uIVcPOk~qPq|W7yPje*0$QWh`kGbwTsXr55$Z~^< zr&D-w(XgDzHNxMbT`O!m%|v}~&SUh%{q2L1R7D)zq#Ddd!<9#Q4bJm**9WIKZqov3 zv$rEu&G>5CJ^e!V3b&Zyw{}9mDl0w9%9SE}&$QW#rcxQ_P|q{IXkzg5b!9X# z>JurY8wqITSRT!UEuc`Gr!|2jmcLAQR-=AlGtKSO-6fOKnjloNzhq@+d#7PJ%Tz~5 zyS<{(UA{^{6b?QLv8@wV@N{_);RCDqma(B6UEG{s+w z^!SlDY!0%O{2An}uW_y`eG%jCGN16}|AM8@a5jb?W*{zSwSGAOHZP6)LB>_yWOZLg zzIC3}dIip?ZiARVtXmi8UIJrYeq*%=Wy|VB>3BdhV+BD$erQt;(@hzTg|`$X00O8! zYaPaN8b$KjjwD8N3gVP6oeSceG+I#4w2Y`Ps!eG+<8HNTyUiE9r4pVH;+vJHO74Nx zee8kW&1!&EIH0}rbz4zED=|y5P! zu+rz?wnt>%8RDAkua^Y$KU0LwG=`VqY zrVT^evaQ^{9RnLNyPj%YGv0nv;ijQ@qynO0fr-#1@;<7lNk`p)x9GMnewN%9n`@)L zeHwe2c{yg%^Du8SJ0ICgl*o9CxO%Mn;X4dX1U-F3y3_Bm!k?no_uF2At1oXuIf_Yv zzxIJdG`U2yeRoK>6Swn5tCid4-Xk-?DC4uF5wDw<@9WjZ=4}es!wW$HhF_PD#^ZiF zax7Hk%HrJ0b-TnKAe!O-tCdcJp}! z3m3~Zb}g|VOw{_PsHh3%hh-?Lc^s>4ZE@|?bc_><#y?;VJqwkr_ABl$T)h*4o_{!2 z(z5rBz$P~Qpqw6~{Ht*uf1E#>oTFZA#fn&MnNq~Zyxre@(}d+NE!1xYKZo1NrCJ|= zMK|;qNV93p&yZFUDpTtr_(lTPm25sJF5dMi>xBnl2fi5}q?J_yc$AWit%p?oum{~M z3i|s+Sql^GmaisAhaRj+=X`Yw??&_A*Iu$Xri|B5k10=9It^^9Gp>wOS`)mv7*5xJmUNZ+@m-UH%RCSD z>iWhWGjUiH$Kazox;b7f>)?B_6VB1O8R=;z; z>3#w-?SmeosA1!^)y?cTo($6pITw=E-6$<7tn)sXF2p7yoO88iB3Si;f9KB-29h#L z-qJxKAC>?@Y&29HT~~BHvu|C}*0$%F=F!$&49T&up|d7k7!5DJX*FMns$9&fTrE}W zC)V9}qODsxl8WsmSv<*IO~@2~70*$vn3U8}ZC#ogs7S>SSW)j3r$}SBJEVT|E3W;? z+qjp+TU2jG7Y!I$?3#XA}8s9=^gxd83AVk{xG$smW}!`uEJwx%$SM1GdXe;OC8c*&sT4{1;!$=OZ=XW8<0?;jEM2;&y=6ao^;EXJLOKfY)oaD~<2lfU6 z?02#_E5Yn6MXHT`3ECOM`|qAgDw2IuQ?a5zHB943e~{hSXInxG)gf28x%^0C&f`9qDbFl)! zJSksote&27*{hwLjP4x~gsN)(aL`*I$P zuO_PzklRbHAKRby{>vQd7m24?$$r1P&8GG0IVUp>Gxa}a`gnHwi}6{-x{dhU zbbGysxSekK%fLQ@KE^)&T1*jA>$T&>-#fkJ-Lld468c1g*UGA{9uRl^P%**7j;^bB zTDJd;s)N8np|nm2O-szhjNVKS#~l^ZjZ+#o7s{j9zC;bjsdwBKf0ReC5VlDBIeJxQ z2t(^^IB=##h2ua24Max=yY@t%a0}6!%t=i4LduDqw@Mz#B?hMlaFTu2_PpVs)z(bm znN-?-I<7_H=h>A&Bgr#cA|j>N?I-9~7F&PYgktH9iD1b-@BCUgK)lf2yQIa(zaKnT zTYRTM6W6nHvJg8s{aDxg*;9oI6H#4R54z-o)$`BQO{f#EA4z9*h_K)=E}a`Kbqh?c zIYH-6`r33KGi)HCn&~Q>u=hN!MR}jLrPO6|>b!pnChdJKksvxRz->fr0 zYodp#ZHY6V0y*!Zl_;zl?d*Um+QR6l( z(R?xfAFfp|PGH_0->#%KN|d*nXckPAyxmd|@EQRsg@X$g%a*gPpq+L5wIsRnbO?Kq z#3c6`(hk4Oxm4k~+WnZaR=#gZf~f*qiSdV=K}IBhrYfZa)-RA=8lTgBSIv3i`B1l) zCUW0FYAbx$*>#59-W0c`Q)JpJri8h)oYlTmK!c>3vJ@NY6seHqD^3-UyUkeyj(slB zfxu!8WTE_IM7m>Gr~3N+Qt2G&DJh29RF9R|7}J|-VMSy2xvs=1zFgub4rf^IdT8rM z!6M$Im!f4ukYZWs)y7=PG9|Xo+6**}7KTf|a=XM9$F6CtS5# zoM5>-EZRW=-`aa*Q!zF3xnFK?OUc9mvq?3q@@=*6na`8zeEI+f&|`ed3HC>Qo_#WK5CKZ*%=P@#!K#J!Evw`OalmZH{h zULJq5)F6BjE8jomvm-O?o9VBWF<{rN{V`4ANGdI-8!9=A*3}537l_8ZJ*m_aA5LGE zxY{4j@;=&zF8}Nh<=;JwS)%$@{qxH`953{=&M)*=-f&s*>vevvk);A^OO}u3}P2wv} zZf9oRaVKegjcrZabKv6`|K!DknZ(+>%(o?5H$Wk3;H*utvXgs^8IA9BSVs8v(+ZJ9 z*xR>p7g2vYB8}!cF3TO#lE_bY&lo%DZAUK>%&vZN&?h=mt8|+FEyw#>Iq-W#%R5U< zk(|}^FVC^Gq>>xdA2B({uuEY3L@B0Pd}n%Ranm~e%p$PGyWH*A`39bmNbMlDTJcKA z!qN%HlmqUuTP4FKKVtj0oTnxUn3iwEJg!6HL9Q&@TlYFmI=9WT*U$@ETK@fUr@2xl zh%*1ggKf*O*}+()hv=v~VU{CXP8kEB$T@lqQSWJVGxK>9#s-_$rYk-MX>W**0S&ca zq&(vym1(kHwPbduB0{?Cb#A=>P2HzC#20sW?z*Z`F7`UG`Ba9PG7Bw+>xXdM0ZCtQ zw_OI{qD8Mu#Hkw*Q+UR7p2CN`ae73eB%S_MmLl2t_!3^VfVLsr5y_etp{jny zQU{f+v)noMPv@V0E4Y^&8P)RImM>bB=GHCtn>V|1Pcn#R4hwem93?HB)p6ZHr zklgKNDD`BsY6s3AB=Vb%Pp}@hnQF{A4Z~}HBUvlG^PyxO5pA}Wo_Qre>RduL7d(FnOgHD-Q{{MYDxzPngoFO=dueDwZm zI=G9Qqpt}aI^VZ}dongb(}Jf(^QryxFByr}w3qTZDXTundTb9Qo$6 zjpa;?+y&0wrRIf^*~FMvO5SSolzl4Pn5bke7lH#~o2t!0<5<_a=gf9pkpx}x^A83c z3p2K4@Ztxe)9W?=?VT$-LEnQ{5!1=-{A8a2zC>dsUg_EZT9pJgun+bHy6<58=`ShS* zVe6@s?r}k@)oO=32=Q-*xVqt$y5?_#MY>E~-tS|n(7QSsP1np^usj43bN5th=FDPL zlKOY|vo1Hy&%{kgO%7CGcB(ov4*c(>Om?<{7f#mb%X^#4}F%uc$ zL&x7d<=sK;&#!}u9`;Y##`zw%_Rd9^$kaQ=?203C=)LYrvkmpX2({ zgjod;M(d}wmt4wjDh-PSrm?#!-2tQ!Zn@W#P#xB5a)EJ9V*BD||G{BV?D7HCGscEY z&P<{5GCK;QNLAbniOEc+5gymhH=#Zd-ymMsfxu01GA5Ly7#dkUV(jTL7l9OT-zR0e z%>s_wjZq=X5sgo^CMFiu?IG>1=kuBN37@Ve2K}h^BKuGW!pfWeTUL+6MV!j{#3xRx zV~b2`M<^~|_qwlfj^cl@ca~9EZrh_r1O)^nL`sk@L8QC8L!?8xLs~*mN$FNXT0%lf zQc@9+kd_8XDG6zTJKudaXM4{7j&Z--G47Z94u{+QKF_<>^Q@S2uDRx#zYm70l%w7o z12SmfD)$q(!kLzH8${n>j8HPm%sZFIE5C$7Qn-3^c56yv?l4t}>O1gVam9Z3gMrQR zXGafn0l4w&r6g>=*b*=lt7mAPv@a98$Y7p=Fm&@nn6s_9`ZMWxBOFS^U_gf;rM$*8h-yJ<@_Yi!M?_Y&66Yjk&`tlp=VR11Qu zW#fFUuJqpM^2FVTtxCRIeMh$%s=9tPec;f({VLRvys16kJP;?O@2zN4>HnYgnJig6#hYo*)_^Jc|zpVCi1Yzx)tvP4H4Jv~c9p0#LqnNhey^=@NBuV{c< z@0%an^?DO$wzYmr@T&ytvb>x3!QLdB9J|{W+paIc%KM{Z0Ct40AfavVReI@5XV2|r zSYIum#7H0kS+FwGX|(Ld`ODd|V4K?a{PYO{yz5fEL``9Z$i6ah@u{yxsI|F8mo35g za*V)LcN@)3&O))}(j`7Mms5qi`I6NXw+}tJMWhp$xMDGw?A?FXi*R2b-9tAn`h?cd z^`5P?IQ(O=i$n@)_0x788PtRxj^$W8-gWM~)r%S3n=kbd4lIm>vy@QpCunVHyRA5n zAHO^p=GZqG(mL6*NN%iS$2&N4A|jdin}(yEAt9o>e?-|_oYt7r!-yy5jrfpZJA^Ntw5#&BNsn@HQW z&A#U%x*xY0r?hvyXLq0WWmS}AH?N_FP3DGK`NH&^t8T&39V2c;Q@A-WU@*B_Vsi_s z=1D0hj^Q(bN9H@+0K6#{xnqD)lZMM z96KqocZy^;|2S2)AU?^(ih2FFr{wb5`IIL%qH2hn))^A^)x4$fDSV?>%e|eLt$C{b zRtSg4iq`kpG25BLHBL=(6^Zz#VeS@kr-6IvyAf-ltJgAY<)grlZIi&Q8&+~{9l~HF zBE$nn*KcI>6WTf07)bi2IZ5~tW*-z-zT8Qy&^hEAszExaEM`NCU~N|5XOCZ}t;!b` zEt}WJwprEi3XWOS8X~zR?ao<%gLt&4-#$Zh8$+K-c-Cd&Fxc#E!}ob@yxN@Ki21h= zfdj1Fhj7)EBkl7d_w^gv{CGWIkFhvrSXda<+>RVgyFOZ!2zT{?bxH?tuv`XHFx$;zk1be&-I`Dc|5rn(wCZ7 zZK}2Dpxj~Wea=bzlEr2X8qzoO1^uf^=#*Qh(}&Ur9kBR(Abl&$u~gV}wL8oZkR_>A}U(mU>#^A^Nc%9kFKJ^~dLnUEoN~F7|lFY*~KS_n;2k z$fjSH>&trOlyj04S8{u+Tck?o(2(w5AzMxuHGxap>#_L!x0y@MSN&V;6!apK?|mGy z%ow!(1dgqD(oJvG^0$^lIhlp+^gl}~^jaoRW!GGxze^xdpgsXhRK2|NBN}RuqCZQ8 z!uGHlZG*`URTt6Tzsw)S)9bUCi~NcG%7ArrEMd$VS;3U6htoEh_{-7FWDai9saWA; zQ@KD-mto>;`h3ohukn-X<$E-j`PX!ew8bw8PZJeaFT7^?{f_k#`1_0mZbuZ`b48;% z^fdj9`6$j@=_J|R>%v!KCB1YOV4ml++#sQurq`UjXO(9E%%gm=*yVcit!9nbW)Y?KN%|{i1UN7m29kjx>Co^$Dflgxly7B zYZIDlaPOnv2}f}ZBbs%PP<-W-rEGmBmr+xw?2X5^um8QntKpb;hqB;fc&AtqUuMV~ zhumTd8J;~7)6Ko=B3Ji%1@by3N>^-ezdiGj;(h0t=eod>%Q*L6`A`hd?QMfT7_z~TC0Nl zzkHL1Y@VK$1<}he6~@oICU0I{c)9MkrpkS*KldQoshl@1vsvqCvF|NJ+l0QJub2$M zQ+3WQR4d328r7}3cV0J(HnSP|dHULtInf&XqcKKAJi|5VNfF{~i0Ar1=!_Lvq~k<^ zD`nxcq$Hr@k=EC;lg&7uo-!?ArA>WE5n#1VGNSGzWpt9PPQtLA-v|AkbMt|okkd;3 zU?5j{zfvvpP12)kwj^B^Oyxrdh4zL!2BSrZ!javvBoIvGAN&MU#w#v1l&R|LW0kU1 zNfK~LwY7dMM?$?^?V~T5ff6WPmkeoNhYkDO1>-v$HbhOs>u1 zkhkaGX`6O=XO=Xg%~Hlxl~0n=XJHI$^0d#&Z6{Y`BBeddF`cS$XEs7Vhv)>^igB-} z@$k6VLvWaM_jqur67!>na>aDE_vqiYBqj@Qk&16JaU&vP_yT}_UqHEbsI4;ofVC5Cf;EV2_X||Ch0W700daHuo3(MIx7H_OC z*?6a`VCs0@Ll5g|IJ5e7-ef>WwpQoUxPgo?UvMk-jjcW9vqz5&rk@Os=P5ODC<$~v z;eQztW3>6%le#44If*O(${MHp``%Z-F;3H~mnOeC;e85%9WNs8`I&jm8QjOa>(6WI zTAZ<-FFO8qBWbhT7@T;D2m^%%d^gcuP9W+V%4}*o{eD4IzfnnkHcgK8lg^#gJaTPM z6bOnLze|fcqwjXb=(jKKquNFAOZd-K?9a9B^>AEaAsh1&ev9cVass>UoA2`_+f*{; zB5bO(Mj6>mPXaCQYgw>V%DQI6vxk(kpEiz>Sti74ky3Fu?S%_Tdno>%YW-lO0G{uM zAB%hseNr}7ml|uRkip4l+5b3)*6)>?18h&MHBOf9CRgQj_SGS03iK_nV44V@PCSB8 zKF12&lJ@S!;aKpYYyNm#S{G}xnM@eu0Z}?LeP{g>Y8XQvI88e;G$ScEij5m7&%b$; zJ-)j4@#br4CAZ#ZqTAOLRK9DxI9tZMuTW(V(OQ;%BF0s_@`Kq-Z!51LLgP?5OoS0C z*Je?S#C>3uWQrTc&BiV2UhdZ62ltw%q>1idxB8g0gla{S>{i=5`BO$cmEZd-aRB{I zZl({$)``WLBtEc&Ykgr_aM<>=s{Q_5%Uldf-G-IG_T~9~M{!(ZNzqc;cIC<)@amWDMp8djaU2j6NV?HB8J3vlKUQU| z7Q>OQxbCaShflJqukYIxqFc0->P~h~UuxIMWaY$!*`>mifQjoad&#dL;C{*Idv5tI(gZxy7;$kH!G5Dj_*yn(ijeo z=g(|#IX;^WBHMzsRU>h>!us6XoBWoTd^TpWVuN;bK`nMYwf1BE?Jc(=z$yDZtcf)_ zO*Pg)_xYpUsF(V?Be>)ht&img%RW@MJi7bWw!b}hczsPdwg`E?-;;5>)(;tcBg8Jg zJP&&c{GPKm1<vj@6Q9d0Zr^kTV`IX;%Ofb!JOn{Em}m~yJuPRQ1iJn zt~grGH|v4)An>4bk~)tJDSV-hHq?)>OnWHaGFD$CAW_G{!N=J+V|m=u((AIvW1GB# zIb!jJKeT(pGituzhJUf2BQ7o__nXP1V0$jhhP{>08#w(je@j?MX-8E#r|Oc3X0O z6WrrT+H>9bhc|O!Jat~TS8ivo1?Q1N=rQ)%9xgH1`DkzK>;3cmD%K7AU!9d;5!Y28 zS*SEjkE)Y7IXb@B(KXL5cc1qY3Yzb%E6q*zr+aud)0t}OeD-7lWsKy}vvOs^iZ9#E zt<;(`4kdB!J~qt4J_TdD{$=K@ug^A6ruE(0SA4mc3wAzc&GRc@Kj=&#V)uM?i|G{C!z>sba2dq>oDLE$XpPU4@#(v$C0=%y)+6 zjC==vVRG7{I{LBAU-9V+JXUPZb@P_?Ow~TF^p++&5a201=&Ky}NZSDZbQCOJmlis?S z7OiExcU9WJL!*TKRc-(sn>MMW;Eu4H>TP?!&nqn#-CVd{)hbJ+ zP#o6X3?Z-5x9gYm9n*9?V>fG+rw#3SqpiBta(}+$q#1ao{3W)K-+sTG@`x^eq9OsD z#GEA7w35DW&I59nX72bkvb3+5_k6fI=}Sonanvt;OQL!hKR*`q; zu~km%sKm>Mh@@Q2)K6_9WKz!}_)Xjx3kus*h0H(e?liG1mvJ%Ge~OJ?8t{0Ts4-mo zk%3tY@@wckFkWnG<648j;;%VZ1=)wUu-e)OM@XGHZG+8uek={OybrwUCzw^C7)1N3 z*|CJ*bXbm&iyO9lZSPPkB_n+$C$U)3$@Lg%|JNp$LaBqN38l0jsm%bt%J~~V*<`K{ z_3bs0Z@w4uBO-wfkJ^rc(=Ij7_8m|RW9*d~9Z{>3GLPq(ve!PAw%8%vrC3@wDdvrO z)`)(;XZvf^T*T^KO;QG0^CCw(?FqfOh5DZMwr#HNS2(@VRe1wy26;A*46n#=Pz&)1t?!VU-R!@(blNgd2~{OX^`F@2ess+zZSPMoHaPDoGBwAGC()~0R> z7+7L47F$2Tdfl*8)I!4);o>D=w^XDeBXbCPR-TRc1$?^#ks^r@ zjE;zL{^qGr^N=MBl=<5kt$;J@stxK1HhwuoJSZqMhK z6pEW>kQV6`&C>7T%bWfn2qNJsD&-t^7hpW;@ z**9foo{hP&J9iM4D~P8Mh^m-y{Vr}>wj^{s7l54I^{oI)a_SfDpU>EOxJy!$ zVjt(5%zHcNZB!&2Cz-oRT~WR_b@N-+M_oNQF7Zl=L+o?B+xc|&_|6xr?t58wq}UTz zNSd@ved~@I2C)p@f4&?-?eNt|7q|aA+q-SoD@+UWc^%1La~m{6A>_p6u8PgbR_j4? zt5f_+hdXDUeoKQdy1VzcMh)#iIC4};H2J8K8a>eKatiFkYn^M8&z1+u*UnvyKnHJk zebLQ6(hg4)e+XHF<^0rLd}{8YUwr+k>eM4Swj*AqR&-RhEKIILY<9ZAW$Gn%kAzXR z*v_=tuKP4iP*NXm3|lfcMp;LgfB04A;cRVVOyH1aJ8qR1gtxQj;Sk)uC@}TGBRB0sL@1Ak&G3_HXBg+E#T`GLKx@rV;%mU^^yGsIeLq_ju z^-_@|h{+o6wC^vnxVf2dr^*gTzcG)%EL*%qk6ZBRa3*od{D-o^>x$Ots^X`|p#v$2 zhfEN8vuzY*e7x^>z8_1F-95}L?6>x%)#K?U1~Y2VL-%d?nU#&)vnYu*3-7$m)F{yN zIjr1MrFY>>yVs4|cBD(Hw||$k3$t^Ct=qQSgGIz?jsNa$1QCI;Qk_jNU)&U-a~0XO zI^Hb94?=tj54&-Beq({RZ6Nc+QC^FY(RVrBiaO{Y+&QC0 z&7hACVF<4BZ`YhAc$O?XkwhWBQi*Pt!@VO^N$$-sOXaVMN*>6ri7!425oDwZuNI1m z4EWnL^^H5mjOe@HlDf)<&4IOA;s=ZAkK^8N^@b%MZif{6VvRX2 zSz*Z_jv$pSwA1F@94jzYy#2=w5D{2mRolAsEEda@9j0u$2G7l1Kd#`IOod6QER)1b6Hj_ zKRdNK`(&12y4UF%Y`z$6|Dl1Zbx9&ci(I8G7kL-i60sJ^y^{7|jY{#FyWZf_8o%d4 z_eZ2mcNWowdkSRiF>HlKUhYKiOw1{0-?mPRVXg~G*VR)PGdUu#7f9*WPMp@Nq-*yv zDB>!VD8AWKzJN`yt$AlMac?SOsyzGH&N20`Xi~h-B#HqJeR$+@M+u&r&O&p$I_BDL z>^)3zbfn+&dvir1^J+ETZ>AbN(j;RU{Z&s9@J`2n>|5mKdz|UU{CVP$SI&~%N2J=O zSqAWOS#$~ISJCwkbJeLO(csIFI7IbISHAAN&r&ADPkOr~N;*w_YURXq#oGXO ziN=m9?he%CB)t#6RzpS->$UOKKKedO|~Ne43+iZgXfQqcvB2*e(ktf42=%yRMd9P z<^OcOF=`faPM@N9JyCOr2`5I^ZYU%H?3x7#-x0MltOy=*bm!SzK#yR3XKNY9ScKc% z$?Y8EVhY>e{WpVGjhOO3eh>-Ju}{bPP*K;&kySiO>hq*it|MjAl$V{O8#kP+PFH_y zr!BLJ|B0W7bHUh8gjh3!<*n1ifBqYPcRdmg<%VQ>XH&4B|eQJhBIO=pJ zk?5^rvYl<_qr{}@{BrTJfJAvY`>-x+^{r=EUfv(Sp-C_9Q)N9X%cfV-jmDS&1A>F(sTX`gGL%>w8Ol1@Gn0bB9 zO8pD|dvKF}f2jXjZP~o1obTpzoMu>BKwt^M|vpR+KhBSs!b$JlF_a_i`}}R=)*t8C>6 zm)kDJo&~*nD&mwiI5vWud+Z+C_7whTWzFw3zt`3y`P*GHr%n%(@R=4Oj_Rmo$(6KG^fVkIsWrVlk&R4kO0uAyw0e zq!GpNH+F?OI^3#&%+M6A@s+bTKLR|J9#n2UJbC`~IKQ7b;-~Qw!IuHT8+wgAu^A`i znQ$oTgm9JI!4Auh%1XiKVP90{?7SEa8*@uLvme;5Y7qT8a&X-`5MLOokI*vea+4)&{lbuxqt-*gEl( z{ef;aPque0uDRrUsUJ;#)}3T@?wj29c|!aZ<5U(-aZ?4u$gm1@!*;2VcA6NLUX>!z!9eRtn0k{_R~^@ zj{BNbWni_N&*#0e5qgIoIo?ZF1@T%DX>@O#H5a*iH3wv7MzztNGT(_zw6ZF|62ML( zvv06h2!0@Pw#F7VQhiflIi}3qnn>Z3nU0?}pN>OROd3@(9}Op2I~=Qc|1ESl{*9*h zAbM;H7zyIJHzQ(My0P~82TF+AI;kMmXmn+H8>?4hjk=q4@Mg+=2TgY&F3aMK-I$NZ z-Odt=2d-}1QkL;l3No5iRWj6LOf|)@4}=LP8%xH1F0za9m3mZuMOrA+jS7iqTk_^qb&agMwsd;m{ZSBQy_Wd~ zi)&r~D*-3%va4aARd}^lT1)2nwDA!4A%&Uu{_BT0U+=&E+!>&wz4nUPr9A*otypJ} zWT9A1LG05T#kAjFZZ2RD{QfXGA#H4VxvP)>Eu!zUhf)_FpV)cDr(Xu7T4{=H%U*Q0 zw$_~fl>0>q8y%rhyLvTI)n+>m<Yqjzj_Dw) zh0f*d+dWHHKWH|^*%Mus`?bcWp@9ndNcm-%p3P2Z)1qxsF?|q65+lB~ZVEmg}ppla7#M<5LqayLxiZ|BfAsdH4oHs-3~ZbC z$UTlwd#h^N!#GOH^4$g!fY`TwZ`%`c9jrELF71m#nH6k<{45?LIg4Lx6Fj}Ew%huZ z7FX~cZC{0a)Q6bHRkAC;=Ym$GMbf`8S4o5wwZ(?Ur9S1uSLNrhL}&Cvc#&Nz+An8X z|CBYFeXXCuA-E35>n_FpT(=zbUGYlU|E=6)-C{Ps|Ip^UKc6d^ZCzwz$k52l+$AI_ zItw$slX{!p?R0%r#7WasclL1z6<5@D?^?>9RvypN$O=r|WgTGGOEP({X~joL@H6Z8Ci>xyS=gIsNBH%=tAcoy@MD{%;c5XmmiX2&u85UC`^H3e zMU0w$@u@*7!E&$-){GxJ8Ana04f)9@KDvHuxnglt$Ll^?hfi;o5S=rsL22Vv6OFP0GBD3!&}b-zj*y{7L`@o|+x5zH9tO|9RvMpWV{I z8V%JzLWk92mobcMt9BC;u<ubD=(Kl_T1<@)*U$&I1;GgGQ-*j!OQe8EAF z!&+jSHfhXXr?#Z>A-n|AZtM>y z4^Y{!k4lWB*{xB1(cq)CRrx9eam`2+oQ=(e6K?J!cdH)$V9EGEzdV@tV-gMP!&#n- zN|4>1x>e;o!UxnJ#L{e??ahZVP>ysogyOVg*50|Jqhuvkz7H)5U1t<7MI?xDt}#vZjO(C+ z+%PdCUGu3SF&#Q(A0toEDOJ@s^s5Xyc_s3GK7t$!5d{zKy?vpZ7nh`OsV+^WwZD!x znlcgI@#@`Qi7R8UZ`<=)zH6tBsd&gpLG>l=3xkU*e(Jz<*keQjJ6yG}f8|c1>tuXu zkI!|Bc#@9FMgY#5Lvt!KCdPT<;l^Bh_*Xg&#rK?opWxB5zNlY&i<9()_!eo5m zNIH!~^`#+M2;EoLmkL>ZJ(8z%TxNrJ* z*}FcG7dbxeN;+BCRWNE#f1>y&mq&Hh==7vLLWKe1KRKc?aZLHq0`R%)Ou*?J%kw|VZPh}pG$9t&0)&K0o zhrtO8P{dg(-j)IoC!5?RI5S*CXkv+t1Cdx1`B-B+=l{WJWuS17UR0<_r15S&}i@ zcr-sWB(~K?v_z)4D3YP(YiT)nGzH$x_th!T9<0zLWN93>XvI=Xxwa&zb3aoJOj{*= zRI!fCFT053Pvgc@BN1rUj|IQE5%N$LXN8HN?XrA)+x3K2(o?fBsB|*36}A6rW4=`G zRtr|Sb}FG(#&eAzGdG?|ntCKIGiZQWmf=iUlq_uW4uTDwa12jbCd}9YXaGWF(F~1< zNOi_?sjE3*$}3a^+4UMB6dIJGg<`MKq>Ji!x@Lpd%pY~&kgZm(XXbq~t?1y4l#5Mu+$T>Fpl#AbES6=9Pw&FvxN5WGLMN`U6 zk&)%FA1ZJ$;5~)jF;o{`osAU4ea6{OJe5P0Pnjw0*`iV?B@>@juaSSs{3YOaP{%+t z{WIJUoA~D2v{XpQcqOsy(bVJF6&lZ&`!DHaUG|bcg6@A5w@&q4l64^z$2ATkGk~;9 z>eSLh?N^Y9O~x}!#;iMCf!B}aAJ=Fm21xdkwV5&U7LbQ*s#7ksUWOum=ji^5E04a* zpDBsbjAc_9$MjW>NzA(dS#9;sS1Bg3ge~b3t6%$Eh#d=jE3Jj z7Ge7<)QglV0nG;LnHq;}ST;Ap{Ez3wVySV4agcmegXIrJv9EiIXWAwP&L8h2L`LkD47``eOq9B=t?swcE zqkK+sDZfQj=L*%3R_0p`OmyVMRzhdb3{?~{(JQEvI3Y|m3O4cRB51N(;$&WOM-0zz z+XT|X%XZ*XuH5+|RlFrh>+@BN={cs&jZjfES=DB;s#g5Q*jsK+pD7qmcf9k(Gc=yx z8@@NmP#>b*PfE~w_0(KPwH1qrQlfAL8Flij1e0VYnq;&FDi0bO^tiedA!dxaleB(d zraFdT2BLJmE{SN32r68E%zj*<9Py!6e8S-m{aRgtNI1+7TFB%N#jw$B%w9x7-Rx*6 z@(;#ca!H4v3JLQ9-qOwI>T^-T>g4?Lx#Mona^>|k4y64U5l?72blR`i^&HQkM!qW` zI7hs^?hZ7rv!sA)!iza=n{k1XZa z5JR!v+|o%||B^@k>~ns2+sNlGDwy` zCakb5Qr&lbc6|Zv^^!$}u{MWJ%P&XUfxD6U4AXh;DQ>ys!V7l>F{B2yt42dq^1s?B z7|Cp8i5POJbzGkl-q?zdcY02;JnXAR@$8;>VhBY6223$>)hwb*4ERrK)NWqm$%jkP zl>C&Eg_5@!2}834O5)3LS-rCIH2me~B4Au@d*vtk_tCO=!$t;9E#7v^4)T)Fr+(AJ>(E>B{1;wv8b1|0H zrg_6yWEiUS1vkvMBobHrDKs*P_C}M0)$j5vwF9 z0Y|Jx&K>uNiijOeqxtHCEzmSaV+V645DKLV{LBla*CH z@E6e7O0b~}rsvN@LB_+tML{BB%FV)j0y<%Zj^KMyok&n;Y`+@QXTxDx6!~E^=~It; z4_rZmiGdaHU`sk;OH!r)6Z8d4`+_VEWHl_0{EVQYvsC8JIc(bBYR@tI~l0+U|t?r&8L5m}^Xs;DqPm4CHT=#Y5H1~T9`!mx8tor5lPa0wHOLGwr6 zM7$ZE!wRc;CidQPe~CI9m<}Kn8E%MyO+aOY(srE-j1c*bSyULds5nTI8PfU3x~_@x zNJ!8f@u9~j9|dud{R*ytdWybwy<;wNaP_TI81t3au^7ukzG|0QD4;Dp;8fPb+Sj(^26=Na$~&Nn^9uroY0Ih zV4!*SL$6RH4O`JafG|X(-2lAc;kMb!d|(WANXVWZD4>9>2~uVVtj~d-Z+oaiVlw>U zt1^>JLmjV;KpJY6iG^qCz)8cQ zctEWZFl#Y}s)1$%cd8-#{Yr4|f56n}6J_Klm=oHIFdwfN5;5mep6&>>J?iaRw4|wU5LB6a<(xLDv^xx=|{)ilX|cG9iDJ>5_W3^7O7c z+fei@Ds8Nk7D~p_j;{ql5HtCwCCnLNCaFq@b2X^l z_31ZY0&52qbRQM+EEXRM4Nd5#75#9!io)IW0}v3PPC-}W`SbSUdvs()-x+V&*m3JN zDtt=9&Hz^I>{VhEuz)jeu&1hDm*o3>Pd(9Jqn~(Gwlf6p6nab|aO)|3d{X+H8NB+F ze5urxz}M=+G)T{LHBt#q)#xWdZ)8+xynx@d<`-zK`^1ie$SdHcdt zm_T7sJU`xvVMXY_qs28pFdU5-ug9TdDNilaYV8ihE#BcG9L-aHC8_6 z&N!t^K&Q9-$l><*g|+7s%v|0QMoc=s?0K zbRn+Q$F9{cIjsfKF62g+)X^aZ=EBCX#_~Ptj((QE(~yEE1V8t!K-OqCjSNrQCS(u; z)XI5|LfKyqtZb3FuP-RndQWIR5&}uE*TQ$rh3J9T*^2v2P1QN^vhD z{SnAf4U80b8{&Uf*<*2EP-+5kJQ462^Dj3MxuRj6?dBTyPiY-b_38eq*%T5_eS2?@ z0Nq5V=!wkR0lo$>#kVH;|NXF3(rRh5s(`|KPkPQSqY910& zSJ<@u^O7N$Y<$h9K-Zw+PxB45Eg&64Q%bzE>Zd|Ll~49J+5laJgfuob286Z`!=$noJ`bRig>_!qtaVv7 z+5Y|sf%iu6|MXpYxRCq-hiI#i^mpE1#Dk0_*B9J@T;CA!NGxxgYz&!`i~~B`UnjP$k?(*avtrE_|V<1U%J78Xvk6@C+fNeUM_KtX>$#5gTq$CJf3(!x0qT;CPqhHkl zJXkK<4_*vN!=E9OdzTy?0-pD;Plp4PvNiySE#PS6>A3%!wFDIuYtuGk4XFseN=vgZ z?)j%?Tw*h4tW6j^JjXg{Pk~?Y8?eYVi-~$gBlrI4OezT|S>$*nJK_nnD`bcNh#>L+ zk3r|H!9Oo3dF9ouSQ$dVek>($ms*sM?;a#(509pv2o;{fHb96VoczpP8 zxVeV^3HS-6?E(H4Mk4V~*=Eey$dj3wneQF`qipRzi`I`-Bc4=}l9o0BY?-Wzij0AQ zLG~!OQ*XdC2U7eY{gqt)k9^wgal*GlE0~ zkeB&T`q$0C+z1BtvNrVo4NXX1MiNA%jSmR<3$2N1Vb34YM2L&N_Ge+1r-Q)OQ}`2Y6W=ad9;COL*>R#@7S_$WX;@c$hzU z%fJ*O|3H7$uxiA{U{&0{>bO|9D(p^i*4a?qkgs*s=6Cr7A#}MXer9xZX0hGQ7QK8N zKS$jjS<`V?ZgxBOx@_(W9$+E;>$8Eu*CGT=nJGX}j+dKk0|5RUDm4-@ zcyhFO49WIQiRu6T1yXT9>MS;ll2HH{{{q_ikD2qcYCw(@fhIEq0v7+Q|78Wka$ z1JY(43W|ypMNWUHxb^ZaGk|jOJ6$u1cyaCTd;GBjC(WFVfPyyyT+%myI#E&1yB~bZ zIRv2|%90#;RT2yF2Fb&02YvcAzC8-^=tCCM3?@)-HLhv zw4{PqgC%7+^s?*h8ogc$$gVj8s0 z=~s#CpV+Z4zH0r>DRA*`Br36Iq<{a*DK7tmW4}KZ{a+;ck#;r zrW}+5V6W(%t~>D#ef#!pb=m*;*vpg(M*d%)jLVb>4AxdwR%Zv_Orxw1x8}Tny08c2 zz%|I_Iy!T<&l5q!CJyKd*`j&WzkejE9>P(h#}9NBH(;*WKsM2y>Ymp^dZ2#zH*4m9 z^$PqXBBA*EW~7#YDYG45!Kx}NE2m6UR8;H%LW>v&@8WveHGviYGg}n{ZP*Av4!id7 zcLJCvc>wq#BDr;O-v+usi|>SewKYHvnHU+>00IxtVGVWlERf{-)ze|)r4)W1`R=j7yEu@pIZ1z5ZIn3zmJQLDzff?`q6x~L9^$C$o`wQhyVezHal0nceL zbllyL2*T`Vsh%{ka=LhhO8Rw_12T`v%oN8)9U1b+Ir?|Cb~k`#+QU_Q@jM|_@9-x9 z(o_pCH$FN2^=k&8s3e{tU%VLyRE6M~)8O6RLXSc4i-Ab-`D+nYubF9gRn>| zfl}yucC>6`W%U)hvlQ-B@tAxRe72L+^pQ&X;*rMDyssP}GO#X-oa?9vZU=zzPz5B* z4`8Vt@1~y@0Zgs^KX0$50sOffz(#8N%Pxw+DSv0_bO5l-8Q%kgl!>PEGw;10gP)@_ zE^b&+{D!_6C44Nqx3_2SP+CyX4@3+HS=Ec{u5=4{w16U1-91O>v98`;hqKzoMnmAe zs{;)sv*n_FzP^sep9FwVJfhE7bjovve+rUE0YcRc_`$?~4i~3>l#3cmX@y;x=5Ig~V~R`lbg6vz1FwoWu`%;rls=BH{>&TF z`0gC}#O8pSZf7UIxFr7F%FfP?Qy|21?7e+TIZS?Na)1nfS$F!r_S>%FLVV+d?)u#m zcvf?bD`_pfJ9qDL|MPZYt;$Xw8{-dvCi*aC0)d!y14d(XMtJ#?Q?Jvlw(C9T!l%FPS4dp+ z91%?p9xaQ3QwyqYt#j^cpB=de4<5+HB9N>?z+F7;ltU>X)e8d{NF>Ue}O1gh$Vk=X#4@FJwaEh zOA)+H7*T~qMe#HU;Sc{Fe`hSAm<|b;|N1->0$G>twaSP^#;*aG#%Bnq7w|77Vt zmi~anG>2ewBG^cU?d|Q{=iCmHM1#v0N=jP=1WrXSzXG9wYYYMw^!UT{(nOw8${P?o z(_d%*t^>&maUUe`mbgmp3GKbRySw*4=WJSBTsAP~Dr--T&X1Eo5n%oyaKZ2pUVqo- z3eewGU^T_J&8bRAJb&%GuaoxV_y_;eOVj@{QyLdy6*wO@BM}f1+5)kRgwrY-K|)7} zlT?@9P^s{XXRDmUUha*Eh(K6Ih%T}L+@%+&+)C5W*bg){3mX~)HQ6qP!B=T`5%4`A znwN={RqN5CM@8Q+E@ns=ConwXPlF4ipbH7#dS29lCiji2hP8g39S~E>AaX32zh8_H z3L5xPOpa+JpEPjN)TN|AuayF9Q1A2!pv{6%ul`+zs5cDR^Y4UB(QR`fQp^`62QY)S zn+v{O0^lzuAt9lg+ZR`GVxw)H{J^|V7Vs!xXJ-e}Q7)`4R}sKs^FPcmFsy*5R)82` zh^dEQ>q1VU1AbVfni5}(PoxcuTFFj?l1G?pkbyfk2NpiofV3(sD2VA>4%6|!s22r) z2XhnnP~r%cE0UCy^ksP$VNS52WBz@Me}o_&@Kh&&UvkxRCd&YioNQ z)KOO8pNY)@fM(~SGch^EMX4sC@jk)deh51GC5+oTQzY4HH;BZ&7>Xd(s{`YI3 zNx}G5P*C6k#^dP{PgDQ-*+G-`$BW;J=0W2%{Tfgp5%Q|M+pr~0aPy|kTx(z**h>%Y z-^UL-ym)dnrgan#bMxH4M&V8;J;G2PF4p4#d+rev1H)IKk(>VKas=Cn_f}y^$%x~V zT~eX#kN5~n{)tZzsfpr7%A~L`w1EC0yYp4gly! z72Jj!rhV}(nhvy)oWn&KMHJuZ;x4Ye3`ODj``^upvQ8KG*fByun^W~bWGGom7dbmL zH2^o4*LvA!Osqd9Q`)TIyN6FfR=-u@hP747dQ7QF`= zB7Es*n(T463;JMC_~7&Z#FRp+UO3fL=omP z06tmd5aSFOnGgSKRRBUc@5f-?TRUJ10E)Z~m~6+RO=r2_Joz7s z4KR_`zzNLFfAeBUir;j9=DoYrLw5EAP<*&oFIrqQALg=38h=%fJ$7*R(fQiiS~kYT zQ1Dj;ljH;{HhSv^z@jSh#|yX-vb40UuC)jGwd3_cx56UA@X3+6 z1oA~K8Pw3P4k}_|Pr>#V%7#3b|N4jqLwlaW#H~L5UtE24TvT1xwu*u%pnxKcv?8E% zg9y?g-67r0(4itocXz|k-5^rZIdpd;ox^;4?)UY6pXcKbf5@EK=j>W*UDvhFUUg+< za)7lOHjLHE0rk9zp8t(#?vOkJVAuV^24EL9cJ}IekKM_#dQe0fejcwIh%|9Y2&?_@~m3X~fLlRC5Q1iWw+`Io;p9SR3F7l5-7 zKscoFdt7ZIE71a$9ApiW<%8~n+MGZBBap#{_(uTOu>;6Ur0YlrH88;!0F68(>Vluq*pp zt^o}f9Qf~eVu5*g1H?$Y^N-kc% z`1LU|*qQ^?SdpOv1&&dY}&#Q}-&?<*5dHB9livl1?{?q*nqwjkII-v>pJ6BLy z^PkB|OZ%Bu`}g@aKY>fUZdS;UF_sdrzyM}}C`Z!kvRCH>_$dMsvcH!K*0p)Omy-)e zZgVdC^-TaO$8Ro=*N!jsu>W0IdtkjISqO8WhxBxJ`wRYSqI>}Fat>@aQQ*ISdMK$V zP4jnwy$jsKnFaMYn*g+rj)(wdf9T+Vk6`^jpoDG_z1R#!s1nqC26VTJ>sqvmBEWzE z-t7R6ke!G1e;@UI(iB~*2Owp40LKLb!3Qg-1Ul!u5)7Ii1x%n3#N>ak^yYk=-@OVd z89h5feZslu{o~t~7|4M~8h|35mgYh!ad4-H@gOlt@bptpoGm*!ti_JJnyf`lG5~ z8*5y>;#+AcXay4!vn+&?254C&Z06(t+=v~3hD7{u7m4%PZ00WGX;@r_qG+($s$34l z+)q9#hj1@kgYK%B4~z z*v_QJy=NE;p5_3)gvvGc%5N5`l1U6bS2?oH7u1I3%gOA8i@t`!*t1`2@KkB=Un=I# zfxd9pDV2~&Sk8-#dW=SA5OPsv=P6g&nTIyofnjop$f@}rs*AoM-lIK#@=)>t4rlXi)F0YT1+ou0$d;udiQ(DtAt2t z#Y>=~QnFz+vWrY*5pEVH)V@8`e{V$`zfj z1v=_zXBz5mm#=LF43C*}} zYx0@IM^G6o@%ZU%vZ(nRevYPN8AFqr>epJNd(piJo|^4M9j}rzs4^)R{J?4P)Y5f8 z1mU)H*diibA{pEW?nb!wDF(vsMN7D9a$7Mw~E3I?N23VZXh3K}koX~%l70D1LMZ92Q@7M?9z1!e+x z-Y)Em{jrO4(Ju$;i`QfqR%mC`JkfL|+X?4wrqJQ@p0F8&7RIb~XydJi6jT#xeLJ6> zR}JHzE#L+#*U+?v*v!OpKoPN^wt^65gD1Ob>`4;AuOoi$f%~W<%%4ua*td|9^VP3` zu;$RsAY2NfHArFCEim~e#6jNS!u+CF2}(&nN)&Ns-lfFHxkL-&a!Gn3mSv}G}c z;O(1*>z}rT%2wG>Ww6eQP!SEY4hv0orm^n*3z0vKXVzMDf*X6r7`bj1&VM$;GMlCu zQp+nP5emM{Rg!M2mQ^}`@@4p8Y+fbzy83fGJV&onpwsKts*97eFLOt#G(cx_5eJr0 zV~dDBw0(`yO}T)~>dPk6KV&tK>+`iQ9;S;h9v{6i7?xa&IkOk?sSp8XvzFXg}e5wURGvnR<}|)(9V_?F|fEM$xE#txp&^XF8par z^QUQ=I+eMq;1Z!_W>ST)hswFFh7Y#rVC>2gu8vu`L>KJ!cWt;L>LDJa$Jz@zM$Q z;`uW1YY9P*7DD+&Un_I0Q8r@ih6ETcghGxx)bciDyqh6)du&m_2s}IH?V$Ri^S)fu z*+nQB!F17{ghGPX0uiUD3;cQpW6$cg@cO1Jy2&nophYJyQX?N~%J2JtUuA20l-E~$ zf)p%YEr~ zsnI`Gd$!0@xv2IIz4-ZVJ)CueLRFGy`>*2_VXQ4rzzp7|+&>e@zlC4!d+-x| zVRCvopJU11^h6ucTqk$bB08`R7kW7WwyKa@La5~zcnMVfl_^nx2(R}xfx zFQ&#NX!4{fPbt|eb?$_)p>ouV{?Y8)(xRXGqm{tMDm7_NL#5VC{0LWvND*RO9WCdN z+!=}BB|^INr1%wR1045KW1qp;L*+-LdM4x;f7epwM- ztia}E%z-LvMCY@@F3zVg`%|@2w{KQhWRK0aPYx7NR)k{_T8|oEe9@29z=Vct@bAI2 zxe{A?zpOxldHXl+Nw*xcho;}_`pI1vUCcMVM#hnA8j6@%v>>g>f{Iifv3k9|w{nHb z6_q|0kyQfgXi+h@AYDM~G;WBZ@bjX_!%yXbuLS&D7-kJAw)C7k`(3~|oj!MaUZ=dj zexRBIG0l~~SsBc+bt&QnX7ltGZmk;>oj%vUVSCht>l})5{pnK2?|mO5;u1Q6AQ33c1>ZZP!6lLEtPU>HH5{qCVx=6{%D|QhezF^!t zN^L`%Pt39P99139<+fCckyl(nV6kqZWwRmX!KPnO9Bn+9-xE+dzFZ)RMYxZwA$D&s znpuO-@9C2Q`!2Gtyb;Gkq_Aqkx~CxzFOk!2!N(^<(`Lyf1W$yQbrCB1n^h|WoFWuDs>@yx7OyP#vPeW{rXEkYneK{ z8Zm;1P&Qb>Qb{mN7-T?MVaW9wqsqUeFI{tS)D_rOZh~A7;xJd{!kjp5+)W4vFK+5^ z{18D5e_S~_a5)+84;-R&E&MzrA4McvPm|@lv^;eV-BC|!xqtNT%Yl|IS=hb+`vd;m zFK}z%4zIHa5ytszPEBi0L;0wP+k9oWn+-MXJd8Lm3KUn}jpgR4>$!tuI{)`h?4DV2{bC^UmqCb9ZKq05D zEqV!5UB*~Rq&QhH({i=_#_?dDZ&Tl$Kh>RIhxb>-_j4jQcDSs5*ZIzG<88d*1DvT` zBebXOesrun_eb50Aa}&|B=uD)gno!I@8;rcUmpl)d(6jO93*aK;1gADu&fc)H~Cyy zpnX2sd7#=&OSgF=BleIik>pMxEvh~S<v{EUe(^>Dh-f8-Wa{fwCr?DH1#q$E5Gj&o*JQF_5fYZK2ke@>jIhl?K#`ERa6> zQw4MYf1ZgHcW#acdx6NEml-nhIyVU?5I>Q`bu%5QH&p^n(c^M0mXP1Q7C`TC_FzyG zBdXSl`Q?FcW`h5$$N~R(ZKRAciwQIv^5{T27V)I<>#hMZ*KtX1~M8DBb1@M89?|V z_-|stqvv(*{U#&@F(LW3>6zpIweYKya27Bcuz7_U;oh9_ADJc~4VXAtIn7X<_J--gbR z$_V1-SpVr?Y;kD zL>`IwIz|8TLGPcE)7A=r#29gTN5?8;4jNE6sf`5x&d*RhpzQA=F1iHtu>Vp#x@3{p zjx0R)B_B6*uL`1(WC1dwv40P#_=Ch0i~nQKw)(i>{aCFdfRD1CZ&U-@ODAy#Y@vew zL=K{V<>2>rzdu7B#vs`&AOiui$^PFI+24~F zQv|%4Nu3w(YT0#DBT3h2APawP^W6g3OG6+v=l>I~VzPijqXVQruf!QZVn|~WFjH-( z{hc8o@w3&QS9x4R=G>3_30aJS05cl&1O0zL_m=sXv^WoR-4L#Ie894A_q-_?1IqFV zFd9Vv!H7R95bloE@yrKm&i1&5HLTil<{z;jCr9K7?;meeOu}dXm3%`md%Q8Ig1CjB zf`z{W3d#;6Q+IUW+bU&2fAcuJA>VnwT>~v@9I)k%ztCy(fOHn~AG&^+v5mlSAIo&J zM*}ELn~$Wao#q^`0F(4zLK8@00vz){GC~Z4h6CW5cYt`J97@WEq({5RyfkNOtV0cx z{tihc4#+Zi$;YRKluTF#c{7nhBVf#7NM;aJZY8n#dH26;i;PXp7|0LQvh8?&1xU{m zKY^Rpytu#3Z7M3F@85~-%?2X-cDf%av!4Cmj~sf!{^j@X9E$u$Vh}Q4C`Ngjt$+7_ z_LBEUq`;&)U4lghR^LD0|Cxa#_UZdqAaURXALLKzD;ywBNgmg8Dk3+82>7iJ>+T&4 z!SR1S2LJp|B2vtTEwyZXL_o@vk>8y=KSsziT@#Q^ydMFtRNX0UG#*GYf;_aXu=rq& zw9vv^VR9Wteqm8Ln7=uAfCi&`@1OgaM=6Fy>p}4E-0`tcG%cPYzjG%-HNek-EaGvh z^UE(7bbZX=YIcXCN@ip;lD&f`@yOedCu+`vetFkYv|>_)r7{rffgV}p=?Labk^g+p zf{F+F6J~Qpq&~TH(8MTHP?)AN!3tWyh+TI?HlRvM$@KCIl>#Ndk8ukK39;_JPvYc! z_EN%6UVz)exNplE@-VE@$Vi|<=%L1E$Zk(57Z>mw5%+;ECw6awjOiD0P}zs`L@I=16AZOC)uOHhZ5S))a_Cmj`#at)SY!$mB|L{RD+lmy zPVh9|wRAn=O4_J={6P`Uq9So-Qr6s^D0g;^ue{wWgx<9mNs4R@$#o=53ozZ1-g$5C zLZDq2S9|AW_gqzZ&+gNVWe9iWWsq5u^O-}1kT^b7ZRD7aifm9f1aaV8+}K8l7rJW- zd5GQ>>s|4E$miGqWO4`r>-2OK4e$4q%rGo_MRI0V#KW`wSLr|VNW~g5b0=c%qMR3m zEIpNi%V6D- z!1R|v=R@LU@nU!H9Cp5b;BA8Wc7Tb;C+nvgX4rc|>3wv^<+0{<)UcPcm5tUNyMtBH zB%g*e=N24$vr-b}e4i&e$z4=u`-f}#xzuNUUvMa4eanX$PQ@Og^y3*B$xCLmVBHQY z(R$SQ$vgJErDk8J$f+LS%!*rx$;E(q*DWJ_>6c)`r$6A0|M3n>VbWv+Y_K3VHt`uc z#o_W4OB8bMQ8QRA-+!4Re~E5*G3&bCXC_TobAGhoY}cUYWLxj_Rnum1w(a)nxk0uB8EOx2yG6r z60w&O&E%RFq`vsbDM>;5b?RHUg&D%i*D_H3q|@ey(({K4u;e6X*?r?#Cq6t^i1_G% z@?_?h(RjStpDFu}T^2J~esD>7=}MO(MOJ@D^q-&jY3Coh{(5HQ=X4t__2RtVIM-xu z_twa7SfZrZG>7lJ)6hSXvRh(_n4Vav$$sU^Jt>zU^u7~L?_fqsF@c0#KaVbLdHKy` z|0||nMUuNJMro{raf92v8-1(>Jjn#=27~kW>b8nvpR8wT3h63XCukzu?JWcO|+bb^mktc=Y0U8)o&+Z0Pox5Xc5?X6dJ>u;04dkk5; zVuon>azI&6?oRi88J^H*e8{ZfomInE1hq2TOi+@tBWFY)y(6~DKt3TyyqKrtBo))v{zcJYX&4arfeO>jf3_bne0E!JeDL{ z$K3wI^d%5W-*v<6Gf%~qY}_=*)#3-;aW~>Y!fFMKU9GSn=<=tdyZ+?EoioM<9G_$h z<1HZgrE#r%dMXsuF*7nWuSuj{zCWU94K6jzo@CidOkS5$Hgo<~p5&m9Y72kl+4v~Q zyY9XuX9koi>zaCGN5{+tC8jaxV%$@kuZeeaWNOstWap2qvI&h5RcJ4^okFClyJtg= z+Zu$RW~r60+)~ZHnWfFu*Yg82O_17UtJJHx!ZwQ>IkcKuD-#n{UYH{GP;jVETKM86&en~iu44UUIXVa-4iNxS@D6q|k5KI)n21Qc6`JLt6WBZEY z33$W#@^!i@Zh28@^ow4O4O-C~5^ByH*5A!mEbJucgnfSy&F5f6%i{hy37ckj;u|b} z-rD5z>`H0*u3{(_3CVPaah&l2vn#y8cx%nxC{M%4plXbVIn6C*X-3$cK6OaLi`({V zKxA6F`Gd90uaBHE@Pm$f>R5o2DFxQ*p@tg^JO}d~d-`y$hO2PsV@Dc;JVyR^M^mC3 z{bYqgBG3IAc`pvG$0UP0e||7iomR>e@3{TSu!A@arOxg%l zkM=G`XFk-TSBAwIB0hKX5a^yQwkO^(V56%2tmaf)7_e#keaez3FTR6doq1~?FQ6$q z#J4h?*d{c2Y^GK>Bg&)-MZd`W9%f#c`?LnNE_D{huKCu*NM4QY*yNBA=Ru-W%k2+r zZVzRIOeAFsuSG4Y+yRSTGE6;GnAbegX?<8>Ma7LXT%w&i;3H)~A6Bb_kr#czHQGV? z=PUx0$0xConL617h2k!SeMESTP7ihuyaQG}ti3!|f3G71@)J@%mc9Q<#8d_4cE&6% zzZoFXd2W;_u=1mLD!IYTcBAS-zG*x^*fd*px~&U~BtEqrrOoF1h{3Rh!d3hXvGvx4 z{Bwg#MYRZhGh&hQ?T+Ob&uSYn#n1&W)pTA)W54e3!e=#j7_xo$$1!cywZ?ebVLtY# zeiN^1y}qz1Pn{lE1#?DdiHeV-ya{yZIkDsOOgMZ&S77Zqv<*rViseL={gsz#cpaa-pGB!4H ziEv6{Jdqrl4s4a+qACwT{m5r=rrw@@9+&>hl>NnH(waj*|J=d6@tuu9v-9(^+ERx( z?AFA_R_A0kx8BF{4U;$+vm8DOB|Nj9=prT1-_qyXm#3qS1GmHdidxJAgea%sP4$~e zaI^#xk=zhc^Wcd$&+Jj1o=kIAz3go~IMNO5mk=ncFA=G64#q<@{V**bz;QFeEA%a> z!_$$oi@iWHaIwkib=$@`2omyVDPDZcc)s6}?2cmI+NJ;8*c0u#W8Nh^dVy7f_nIYo zHD?PRxFK?L@u}A>!vkRrcaW4xV7^LDRwTU?4mYRd^kob=%9!yGASkJMn^bhu_lH(r zv;Gx-aKm2EeU1c7u_HBNO1B5r^3N@3;*=6+JD?DI3az`^91Sh$-_}$cwoL33Yp@RD zGYL?Rd9(t&u1ALJJxom;?+4nCM!^IX+FJR7lBw;6f03hCjSUwP?xoZ9@6?Lux7;%y zfbPdEu~@KI@$|egZJRN*IsNlG(xEfyR?dw9w4s?)BFP!~J6HJ(!{)CQ94| zq21`;g>6=bDNntw`*?*lrc6njY;Wn|YpeeC$t!i#i&M#e@?W&BJMcLav>uc=+&nPP-Hc}` zaP&d=c<#}!;9~p;P0<=T`6Zj1NaAbBnT$18ZcsTOkhUV?e5uB-^yFbnh;FIJmtL#U zUCf_S&yPV~0vvLQ-_KfSn?_ZXqFvmQ#9Jo4@;P>N_=eA%>oMayH|mrZI+>+QVeQ~$;d7;aZDmS-(pMxrQINP0cH{?Et)Dq?)74OJZKFcqu zPf~jehlNf2bIfBEk_n93oWclRw|Z)`MJ&3$^1cY0hO!ULWlaPL-9`o_jP*9Hx(Tx1 zTQ@IflvA-uF)Jc)(`mZh95MN4<~AUvVsh12_qkBljdM1GkBzrV3cM`v9d!-EkpXN9 zm%X~d-I>Ye{uk%Z_bje-rzLSp$tpsZXaC^xy(TrM;VE!MsP^m{KStfD!rY6!vm@5> z72|Stz=tf=0n*Ap9JD`I-53_lTS^CcLH<_Y)$I$tb24>&`I7vYAjY}zqf(?di{U)* z&z2LEFzE=K%BG?=)g(LCFRc&~eO|!Hq4f5~p}yYtkCxPIMNa$suRQ3|>~-l%oP{w? zww%P+Fv)=LTPVklVPAq(c6U27mq#t=!R0; zH*32+GUjDCSu(vm|GZnva^Y#RdDm<`5!QRP`-Y`s)XX<;bZaO`5S+YG-g)>s~iLid#pnLHqSv3>#g#vj9)PyedFMsl@SJ^ zcHbhY+BE(WdR5s6p4Y70Ez;V3R}=(`eFQjK427Q@{r_YQb^5R=d0sf# zNa2*4<2s7EYA$73j76ekv3Z=NsAaTyR!BDm`6e)Dt=k?fb6Ev-jq0=II64sO*uMwd$@iI zep>P1ECHRUuu=5=s~2kaBaQtpI11bI9y2iJ3h~!C;&6koa{%WJP3GtCIJC-IF5cro zq>0JQnVLK26`pNtM>kR=%=N0ug)+4O$VqBuJ?gk^d&J-p{?lywI*Iy<&d)%vNsds@ zY}(tMtH}BOm!%*JdhEdjOJ)A%!lY+cyG1Elg-rU(2||A61|>tW`)anPb}w7uy=}fb zUr|sCSl?Z*=vEIFfn!4smANB<+B^9amP0-O4guGx7_6hee=OnAxdbQaK)P zk6M|)$5AT^K|8;d>s^5@D9e@$Gru8~up6y}*7w;}8Swx}Z#pzHF-Vf;Le3t11@D3S z6zMm-ef*?rnIgQ`>Ej#KHU*x-_x>jgY};dXnHyw+3?{u>2}=sm4* z9S50am~*u7kJPiwJ+6osw7L&)+%nRN&ANQ6>{(`cb`7aew#VUNDert)A&{ZJ{(8jw z*F_(%P5Y)|tzldDgSNm*s`m9y40}9_1rHGNKhx#^c1GpOS))D)B} z@YSbv+?E?2i{QVNQxJil$FISL{nsONWieeFq6wXRBW433D)M25aG%L$k=XU^sfy|G z`UBFAk#z!;HtQh^Lj

bf3E#I(p4OY&E;PYht$dmJoZD(;us9_bztW@9ua~u6*AT z!r2L>z&9t6uPr4Be`!{rIdSm##IZ7HGnLgW%~XCP|0p1%TRQ!*u9$$NZefX)rx7g=Nn8y0OSv*EJ%>3 z2F^i|$G*SN(|4k}T79eJ{oYYNyok@h##ICVUQG|J}vvXpD}eFyr=JJ8sMGEfN!zQS;G=9*xV(ecyZaX z(v@Fn?oMOjNHtb&_)wbjw77&n>qCiU+;dy9LftD!?@(BVMX&4)#;d_WfMz7(DxXo{ z%$7!l$k6D$PH6}XF$$Q3Ez5NmA^eOf+7pQoIrChZ$=967P9opIjCyp3znnW`)B{L=NgAe~lzsXwaVgg(~-FvyF=K zRDS)06b%6e6B3<*+O;@2*ORgCy<2{^0NfQ1;|FAFFiAjfeSkj-GUraj&5iF;F0*DV zYKjOF3YZRQ<)IUNSNbjx#*3=9NG6)hS_JQw!cyCqth3YGEHKscz+T<7&GtRzb-sua z=QfBc!(|B}eUZpi+q?C{r38)AC_&|f>MkkNvEte<8tK}4*k9GbYhaNWQ!?+U>(+IC z2;zdV3nB_71jJSS&LrKO!%3)Z67yW`x}KK?pEzK1%#l-W$uj&P!82L^6J-#TUkh_8 zL=E_`j4P>I{k<`ngUD^ityAFTlOM0}e5(L3-%E>6JW%v`4U}zy(#J?US!Gnk%c%}|9v*ut?YR;u#&n`WoToyJp7nGi< zh3cbsO~?Jf0V7JCI?nPV>HU-VkGHW$}l3@+$jtYvMVyxiDI*0Qfd2%Br( ze{48@Q(-JU>cyBsbgeu6*~qk8kPpW?f_xg#q`h%0R7W&eZ66x#rl+=6E}C5u_-Y%p z`Hg+|`K=1E*h^1-rje?tvs9#}JMPq~PbLhr;1s^XUCWA`e5+cLS-D>S}C{q=pMur=DXziMCMbw_$z=DhFB+Sr?ofiVyQ zi2XJy!>$k$Sti@bF>_xSdizfFimPGi_kd)!(zRqOJ%P&f_L+0D;$?gpPb=AE(+cjz zx8+arZ&d5P+Vqjm&i$Egn93(*NF35|A?Vbp#FvZEpA^Pu*x6i;9o;fH|1}Qt!FSI>;|pcyt7s{C$PwUsf+?k#wvrlggl5gSqsTVzvn zRFrv{67ZogoJhC*5elUNARzY|)m-5>YPKHpvkul{=w&}4df|=bj{-^Og(9MthZpht zk{(5I9@Zu_3)%bOLAXg94>!YIH?z>y`CH>gjE(5_5^`*BAEN;>C?mL6#2l0f>+xfO zu$#?Jn=Id%q@!l*t3Kd)S7=;~MTYB9mt7`^BMI^7(9pi~1NJCfOxS)`>bxFsm%nj( zo)jkNUTkOUka2ww4Gy-P`el>tT$pONqY_3CyFsA-ELA^BPCw+P@0k{4s8ohlflzK6 zwX^iL1~X>pt$@OTCa0)zpJ_`2OU8yR*J)R3&}cr(a*F{2p0d)p5+Ewo+4-+Cdo(T1D}dE|&2x19TlFE_P|Bd#I{;B_GwAZP}uR>t$y6%&t$i(czr-~(qHeH>!DLUdLmY9=uxhsXg!K?kcJ0?`J{qe_-T>15- zkvYS|C-(1eRJXo9;})rYK>oO@QLxstB|}0sRgNUm(yvDX4K|!zN4UUoi#g1V+if@O zSb?^g?+Ei{^>em@pXAjHk03YhUav?^J;V45ynS`G?B!X-xoQVRsnjlsphA7?k0NYu ziN{$)y*MEjir2ryN)G6Q6zr<_YUl}`D@*f-&TwDv#L&cSY;AhT{>JQ8-Zq|RGdA`8ll>IV8cwHMCigYcSf_6<*b>&R_m7N$%}lgT%@)YfNVqj zPufsQuorPg_qq~22F&_l^B+lg;xtKb1HSb{FwzZFjeqowA>}uWhzZ)smImQ25>(bx z(yfqwn~KEtu!=3#)J%s{(06^iSSrNzWyv6N;k}=D`ZO5CyC+~%u{b398!S*?AXmZA zb$qf|i~h$yK5NtQaMrgnXjStrTYzOvuXhwbVQJ#wiNA4tC|%e0l+*N4E|VJl10t2W zq>vw|nj$44KVo<~EAAW!v|j8VbweVY4V3)Ph^DnX8a}2HGhb7+n%!QG5^Ur61qQsJ z$Iqx?j4OgZH8PEF4&oQ2{$=b{DIjMy(fqV-OPkN-N)djXJI;;OsZMD4kU}rET-JqP ziA)IRv)8j?;r&S4{YF7`MYXKU=iw#e54)bDb(I{9A^ljX?hj=6G`u1Kqh_$B(fjz7 zDWNKSQRI_S6J@HY?u)WG>Y0Lq!)~}+$m5iUA-QVbz72BnI~)AD@@mzrH!&%op<4M$ z#n^Se2dy|K!}s(?J*-WlGsz7(=pOBz(Zb@@PdjA6#3Iqk*h1k+*&+#e?=hfTEPc zH+)(1Q)*?T@uc=#>QB91sxE&9H2-AOQ>dZla_%O86uQ44y)#2Fs=8;7Csk?`Y7!Bz z*I!l%zADHb@}FSO8&gerjXhDxY|80Au~1lhP>iJ9-Z%y$aYr36+37VSjfdh7)hsFcr`6#4 z)q5TYMIP$8-FCX}OLHuu;uI};eXnvua^RWg+)u=Sy^3HiutU|yWEiPQ*S<}!Y_A$@9C7wP zI(QYd%y^b}|IQAOK+@Kgo^5|oYK@IHuAF2Febv2X!voUtor;MIG|paEJ?%A+XYS*6 zy$UkJeBFb!!$hKGP}}fLZ8@CLKXhZ{HKj0%26xBGBW}tjNlT|EBCT(*at3Y)+s9X@tD|}a63KAzE9hr6O?d6R>7(uYa#wy_=n8T>fspv#c zmI*?F54)o?_WkK?Fxt0T6QuLi?7PyUq1z7GogI(;%#Q2NjAQv-uEu0^1OVT^|Cv>a zeP;Qo%4aKWm7;}`Jm$(Q5zgRj$|@_!F3lt19+9H#47|`5N45>aXPSpbGQ3v0dklK2~1M9#J|QoAlF`U&O&;R+XK4R z#z=a*Hpi(mqewo+XM7^mhfrz1VGUE=y@dzX2=bMm9C5KYoJ?vP`HlF>u`FFX4UR3y zrb1C}POaM*TGk!76-NZ)TSpolB%3`CKaH^UA8ojOp_Msk~6qH_1n?*#v;*FVOjobhb@mtBoAxt1ZqWNERCrQb6phY#Jgjh z-xW|v72Y?B^5tgf2KuI7z2TL^0{Tjov*HXjEd5WNR)26}j`|`?ZOQw&NnI9#80lAg zrNuXvlA`9_wUbojbgt{H2rpiv)Q;&@&pC|zg zr^+X2T1g3&V6|3FFV?iMFwK#~vS>+Z2`^^m+z)XGwdZrlRC=~i3EkTbYr_+Fc~gIw zhh49KiLWpq%bhTb+lQ@0EjZZZGSTle8HWSE&Zw(j%Bx;W7-}}yjmLf57*JZI%6b;) zBZO7QP%l)ze8fu$cRbC?N|w`)D!;+dvK@Li*KAQam5#sM$Axn86N+A+^$nCr!m;xA z`^?w&M*5kQQGf;zn?_{MiPFrmNJvl5xFe$p=Q~;e1aft3lbW+poQdZ;=2m+>N=d7< za~>$2ISruW4xkZFCQT!S>b-jHt8^Zyv0IDAe;x}lNF(K;Rq~tgsRq?iI**tef%qG6 zyP!6jf&PZ#7|vo9teLQ5M>B6+k|$}l;q-webtZc!1RqV8woKnQo7n~Z?HBw9c zqC}BV&{rWAjdodH_h6eNjN}5HX5G6X$_d};N+Y;QS1P?(OEf@A*vdsysP2K0uE5j5 z6jcb0S>(#yITj$Zlo8ZWa!nZ>ID#}m^P7u9WR9hbOvu#I&wB&&USS}MU>^ET_G|Wd z@6GOh3YJ;mil|=@qp~AnQu`e<1ryPu*oyo{d0x~F2ICVEs0Mz2OEIU3YA&s9Iy>&0 z-x9;Nk=JyzMerkGeK$W96;GWB61jZI7nn*QNSdsew;O2$sd6z14-)t7ccKW^uo>Pa za}>Tq#qL;$If%reAday?DO2oqrouG54{WV28%EU30VuCuvvAQ zQLrl(S>#&0d|EVu=b?GEnr$vzGKAYpLV&k~Z+f=4e|0_my58Q^!bkuO z$M~89x5H&?Tcv?}e)>!@+Yf?IWd<-MBalqsh#Z9?nfIlhP-d1qAqkxLNk<_* zE8yOf6}GPuM{*rl1p+IjC%;2ot3A`0j<>hg07&vT4Qbmzzjcu~t#x?+@kzF`CUSjy zeqMxr@k-)n+g0E43-vF&pBevZ&WNOX%3K>948pxvIm+sg#}|`4^Ko%;W@>;nNsX_! zGj{tHx66E`oJp<&FQ|=NtI{Sfq;MN%=AYI}fgWDGB|tM!-liF2jiG;5{N<{V;WSj? zm_6Tg{j}~F)pYufc~m-6JhapBN6e19tNbM6UqfpFs~Y z6N;vWcU#k8_hb)+Z70rdA5PijAEyQM?fbL;rpz^ zSSd1Dv#$0-rsN(M7ZpzCbo^_N>hCc-v=S~w-axcR+5m^)U)7gB)GLzFu}iR#moIGE zik<{7X3U|{j&$?};$g{Y`>Lp15Or?kxSi(W(zZLW+q?0hlX9DWIKJrFv=iVm)ehc_ z#vRvZR^VLtxVpJUs2t}yIW#AU&bYr4< z$UGH3w0#DsEnK~`Dmf^R_zCSO`e)808POqXFD$=GGqbKWw{?}1p**}2^W5&T0Me^t za~)wklPJ9@M;;znCYSC0SJK^kL^z_Q!h(6UiZ2+53%^-84{U}}iI1YK?|}UXtu!CC zgRkMb?o=BK1a;d}X96eLFfPvC{xDvJNX4P8< zhoFSl2XB&&1sY5alF9%Bg1Fhj=uJ|f;P0!40R3N^yBtcje!8L|b8qz*UBnklBOB2S zki`iSxXn+WSUOhTnCiKt#KhMs7FX!YSk+I2sTEzy#n3_OGv8Za=R_9Z1lZ$lU zm9vU5(+vdo7f!`gWPo=kgc%4XdT|yag~MZqJu#g!lR2wO0vg(_AXRNkLyM$S{o=Xy z8*0XQhFOKx6Vk`^3=JLOfwDGv3xR=8h@mPR zee#}0dTjMUzTpR=g^@GL>iN;@0=bW?L}lDoE*@Q>I6#{eUS@{+wQg(Wx@vLj%XlSo zXY#J{^OcQHWsx`3ul`K8C3!)~sen6coa`9W;;(p(K)xONqs9xoPfy3g({QO{TL$00 zRGka(m+n5uhd0C%i<_tqJT!BW;xZJeLm&2GeAAIR@3O=ey)EWx6hO-7Xs0-nw;5lg zz;IKq^j#H&ze@l=PSZ-NoQqhJHi|H2G4)eSE(OXCnuyue&wC{NIl=_DRKr=GXOkQb zITeI%0Lh*?vK(ltJwMYQ@85r$I+Jg|0iQhKh`4(#n{xtVT5;Vvf5RP;&KpqvK*-H# z=j#KZgqCAv{VwzOek#!>!#^mr8U~pmltj;6Wl#m+#j-%USZYB0{z4;{&zkG(+XH(;;!(DhKy`PemlS9P-vLU_DbEOjXkg(n9k<;0L4Za{V@drYt=qd*CHxZGCCG?g<|E zL7SV2tX5OckyjF1WMT@w%FJ^7OP4=c{)cYm?|3~#s6vcY$Lt6_Ikny9rcK+;dVc4{F!((gR$ zhRNpi4X4z*!gt?Vi{8xUYpdi|)gT=Ar3^23j;QrA+Cl)70x2cVi8Hcsgbn3fCM{o- zWfDX;_65Yu+jw*CgOdij9y6BVNbj8suS2+z4z=@S0QS+#BX{(AkZ=~FS#9GSp5lSv z!F>3c#%+)>fBL8`C9S1mhtm@vOLhKqMFbp@JC)uJi#W_CoZyi4XdvKlp&b_HPI2>u zpM)_E#jF|oIDV#%^QV!*`fy!XUryP7tlu+?n;V%e2Qo;C-cl6I+W_id-+c+UAKk7G z1V>~{T)*6NXlffAcXF)e^f(#@H;%hEDmvvccsBQC@tx;nE`M!KYw8XAO0@;rJ9Gn` z$QfQyWQAD!EHJ>@;IU;=mxR^J8W@-z^w11GC1-1;t||^wERoEg4~d*vV&q6*f2o7G zbahh=Wop~r3LpHL%2)ed$Fg9!Ak~xXzJqU+GfG&SM9p`dMp{MBAVhSH12rC(*f9HGAkv-*Ug^HS}m+O_r6!++pMkd69SlE zml0a%ZhrG6fn3KCNGHKCmpHq*+9Gt@q7kZo4%I~u|I{lYCjBPO^D37k2&4NQNwm?! zT;4(bT~ol%&daLWiMPk&~? zll(BCtIRxDVOhuc@BM6A8hR>o*0Wrj|*^+12`;A*#jJ11O1U|BNR?=e$hP%jM^;+5`k(-_aZzw{x=3Xh=DUhdFY{RO6n*Ry4M)hPKnDzCAwK z)X>?g6%Q{GW_*I4W#DyR7uvd9Se_B}L1xtKne|n~5#MOPs zdfGj{+cOpDHp!IIq`mqWUPyFHQA*Z<6U=M{aV-|w1dk30{^RpXlRnezwTpIOM`oNj zk+hvg#Fazu5Q4`%p+3tcdfAp{)oCk+I`ecdgiuKf=hC8cpa*sG&~^I(8pgO!`Kopd z$-(*F_f(mQ>N&@R%fNnLtMm4JkJEFfmT@3vo`7KFox@BxC&)1Y3fsvJt-#PuD*S21 z22k`zq1(S1d$ha^6q@D%pFLSkFJ=r-*A+yxNaQqt_waUyQq-*XNdt@}ptF`z$lVig z6kt~{iQD+~f~^HmTx9{Igqo21$?Kl+K@ft;K5nP@oXdS-OpdXclJC?qTZ}@tJ4e5}Ekt+nCsD`j?Bx!7 zIl)+_>6x5TYO!4EQ*vgJpru{rr@SUUO)aC!!)+9_ePzpb+~DPd43NBEy z>U=Mz_(}6r{;%CA$d0Y(&QwK?sjTI<@=W}Nh9s<+khKi0ZkK=#!XYw}bvmic`)(u^ z3Pn?^+{Ecoe|ARuxi_jRP@iv>)wD44V6;(>1ehl#@wd`MtT0nNMd2Xk`T$r3GodIJ z_f*~{^%gDm>9o8c`@zE%hnW#M?y{>cY9obfj%bInUxh*XwBMDrDM7pfa!5rTGjROH zVg{xzeIA~DhEVV)30^vi28B)Rfz)oSV6FF?LzKBPBmN54+gmJ9%mqk{prbvuX0LEN zV7Q{9m&YAN6(N5f?!>LXC4XV{1cRztfS5;lV~{LMR5r12CN^X|r%D0C3oCWzc`Os9 zIEh;#sbGAsh(@tSdG611^Uk!dSO+h9c=XO{x#BC&N$M^)!)-(ELktrMX1!s3B}yZ=|*Sw=#e*lF3p=J5OC5Fwhc!c>zW^DO~5*MmJneh(`?V;znyu4 zo6v^&@IevhB-9Bt-pj=dV|J!E)t|1NKk~~`8>(0al$SpTi8_C4j5WWV#HT@V?ZH<} z`TEQTnlo)F-f%9cehyxJnyB-U7=jk-G_2`Z+q^zwyK-pgPMUqb4qGf*~ZtauoTO3D;aJXigrMD)ITWz_P9G$e6 z3-cpc2^*G|NtTi!RpdW)4UC0Bfi8LI5^p-D^GU{ev$+)=_Aqx%g@jzoJEgG0ExRdOaAzzg z*0^Jqpd5C}2>Pr%uL{07n;(pOZqzxzF|gXADP(o)d76EqJC;sgWwYvLP4R`L@>2ce z*;#sSS9|Ntrz2a#j;Af#eS0Qt{4+1K6Ham-n{{G0*(un4w50}X*9fwc9YZ1vJzJQ4 zKV>ZQ7zBfc?st(7uXcGjHx+;8dpm!x^}hH9*O6(aE&r>>R)!NEOwB&lBwi9ee5Vqk zkcFG0qmhhKH^y0-gnC*TY1+qygb!ckRtx11sf$dOT`MkppRH5vPDb>MVQ)BeWvxay zsCQjKP0&2k&-blN&vUTne7%wa5+W_Y=>QFODHY{>TF)@@$uW)zb<$Elj-3265T#*7)&e(*1F$`&W;Z6@)rJd zk{2)%{t&F6ClXF{SiH56KAe$FTM;QLooaA*)MKsCL68Mz3GAV44}KRVqvHZhd@A&N zqdui}*ME+iIB{L9PO)|Eie&U&K*JIdqT7lY$>vr;EPBE=Lqr6&X?qUzSU6Jea@h zc;MzXgOto#sZ$+;qanFw1SVj&C_{1b`c}?O%a*{!F6L((X!z>DEA}hKWUd?Y6LhCx z1u%X3n`Fh9eeKN^jblhIC0g9nVp0=2HR$p61OjPLmZIa)VffuD9hD&-@ZGxwFtacd zJMD4C&fR))JjRWz)l276nNI_kkd(G)`MsQn+hWah_ozB{Jgy|!zC4%j^Z40a_k78! znF(`a&=?*$UN;w>BG&a>)omg0ju&f@<2kMcs)mLDbk?zq#X+y#V$N6=6p~%rvWfUI zDC#UF26>a8N4PN$p?&QDg-u@-SfFWJTdQ`6oSFC-2+Dtq_~kUQDRB1gxpaGPUrmu{ zSS@*5Zj$5YXxPa>;#sb2dWHW!_827uZO~+=cb!y{+c1nRQ=g5TSwhCCYeVVPQl~z0 z+<0&oN@V)a+-!Y{`!s7l=^)IA=SzLxu*@qIEjn7H?ahP5VEo%9*}fB^ltMmfTvc(N zPfn1YJ-WAjQ*7Ad4b#i~UjGDw=6iSXiloL~EQ}9&rib#JM`A7$AY2R8k3!|T-mO`T zd=L17R9IwZ-W(Hk9_5UUqO1PQ^nCb0%_0=koxI@ZsCGNr(1j-4X_w@Q^ZM?-NpR%H zq_rg;MMGFaeyT-T;>m;~n+dNH^T~!%$%_3C>;n4u59Qsk)~fV_l*8(X=3q1BIU|mk zwt&VWZpJJR+;TZAO0AvWw`Y*UEWDbdRM9&Y#K<<3Wh5TQXBy_i9WF^641$;^*gt!Z zk^9A))3*m!7d7#sksWO0!}A}8xqn7&&OF+ODa9162ur1zMqnTz=+qR;rq};;L})EW zldoR4bS2hQsdwZ3Y?anuf_Yp@tz~=GnK$Ou&gM+76f>k}1dQtT)mA!K2hGM1ps8~j z2^)C4|1(90Z`?UaES~JIYpzafT#t<$_MVTwH88Nviu!xgs&dfqp^9>NY#hY#+95yo za%Kf_afFa<6Xh9`4xEhwSL>mH(0Um(*Kpe7iXse$x>dKA-+Q}{JI^PM2-z~dqG+a$ z{NnbBeGW@iuebt%j2O9%XJWmUR-@U$c#Z34D-;R0c_1CR_Om}j3MaxKP?B>&z7%Yp z&rr+vfZK;SUqBIL=+{Jdd@rNRbE0FEy{+V3$EWF<(_U2DbuB&aDm2!M9^Y7iqW3z*yifU(!`7TY*wch4bb* zuJ=sH>GbUatiq4Iw%U2Lk1r=)x=E9#c5w5+VU4?wyuThvDw8dP*i@`yj7H1-UhnnO z8Z=8kdj$N#LR32aQo#jrU-9Z+E+N2B*AMf5;rc8UlCnKV-_NRbymh8%N7r}jndZTX zKXoW|lE)vbA76bxCDyYPGTwRgO!v47c4wqmB;xPCw50AE`KU;=v~V4 z!lWVF%Q;FXjj@hveJiN@qi| z>Rf5R$-r%e@`;)Biskx9r>h6%&j-yh4fHq2;)J$w2^4GIB+N`qBIaJZJKgK4nor+i z-s%eM*woU5O}XkgKDsIEud_MvfboW^miBAGRPg}fPFTM_b3LmiM`(BFpze{_G5a(w zF^O*;<>&n2{PqisfwQYA`g7NnuA7s8?E{oJ47@YVNxoaW;)H1t*30!PO|~al$gOgbyH{j+tB6{r&jq`IvRDe%xjz^h>(Oky?A`XttB&~ zi-z($R~aZ3E_^%Lf%_)-D7s?!c0$$s_gNZkb^C}I|UAk(L3bg%Tw;NHg>)wP!J1-x>POPb8tPl{_!1I^b4=#0&- zB(iH0b!mr#GY;dAk|gI=^TmXugherWS@(Tj*pCc;FOH@N8mfSr+0v<6CDh(EQ`Vjc z!pKODO~c9@DlBunxa3qxx${hK4oxJwf!ERzX-$OK^zlaRZxb&{`#g|S{;<^J&&kk8 zFS4%Qht#J@yZBZ7&=2U>$8gpwbV4`>EDbk5!0QuGZi=Onj&XSh1aE7@7la zv}JYAGutbj#*JTi%UM{+7}fdywHbgJ>b>$Jf+AxEyj$>HYdF zp(g_5(ar)BAANdR7a3VIi2RI{*!hd_jDHk;c#Db~ZSSXYnSRu)o*y7* zCKLSi@QjTE3o>R-jC&T0wM04G)86BXAw5cpn_g%Q&ei6Pzs^-!UPB)TnZ8iHA*nbbU$o)awObF13l>KC%ZB zU9#?`jV`YiLM&a_kukIT_Wm(i0_uP5zPRUtNtF&qyM+!q3hmLC*`$zdeDa@mv(Xlk zo4WQr94hL+`!XG^k${G0@CBMF_wl>5eTos%yMNT}UK0mtaQ*i&25hNWD!d8a`h!;e z8zi}Y3YN*!)7pD!t;A7lI38~?Ndh$M@MYU-3c`2~2|X1Ucv(Itdq!@l&$4H|0s?K* z7<(Gkqi273r1Vn6~1RFPE24k+YCSgsA$h2M&>CrZkDsyE_oeB1J!bF_hEV zxy3kp`fn3@v1-Pz)1BNBY#JLd(#5Iac+6j*kScZg%0r=txAOYqm=8i-S?0)&!)u-& zD}%wAVdCh5k&{STc?W_XFm2BM#J+`+Qxlh~2vxqcVpJm5d96Wisb$Go() zi6dLa?CxgzVyvwTjeb4!!a)s2!_>Q$o5zt4OWc1UELjO3*MnIImrXtEg9>eTh90}y zb?=vtxTZe_@-#h{3fUXyse;2@V_D1~iP93uD_&c&t}_{&%Ioyr_$hzEHG$y_CtV{) z38m-(wTkgdbnZC%bF==0+`GtUv_ptzqVpH84?^H{FIx}MbXZJZYh&qYjCs5cc4&1c zTjy{!(FT(Ep7yD}?m&OJT~t^Sg3*{US~2lNrh9zX_cl6G z&}yyzI7D3K&Mya*nH0*Mz~K#;afHgmBOJ5EZo=`rP>eFNW$@bMaG~PnYaMK7Gvyf$ z`<}n#)25>m(nm^W`)fxUi#@}o)*ASP_dn%m4>veJFluxi3 z!};>h_2h^)Tbl{rYIDwKJfUDlybL!yjq}O)~~P-amY~yR~(aJMr+X z4$uUUw-;nAo%#V*gM?-b;!bNH1cWhp(UX2iTMW<4h>OQZH{nb(=+%Q%R(@##DY@CH zQ=B9;X;7IBxn=1X99_*<;~!`uUhw({70@mbe|cgmxxXUqFj6xBF%1HLLaf|MpKjH) zEmftzDaL-(v2Ez5pfch z{JRht2Jc0~=0Jv_mKJeToFGzuk9IfaSZhu!kL+??#{Q#-wqYJwrq?gkm0&3-*Xn7R zPub>*g?sP$<$RcHXRH!FH8?vi$FJV3ovP#kf0AqF^lJZ(^CyK?bB-h$gc;RX@k~_t z^qf9$RWXK%NIQ;D*+M$)H6!U^{$$tekqWza9c77j2s2F&BMA~*1tz(D*4!8`mgxg8 zsdu#h=|O6fL_2CwaiNxIoLJAH%u$1qEbt$V4Q?WOjM1AUh(R`UYzdZx-gd|9O%Qv4TMq;QPOb9 zqE)EprGrHxK?uUP1Ojfu`A;WMC{}R5$2G$%LIT5<1}sa`P!Voc|3d{$o^{|7vE$D) zK|BTLB%6QyD15iZAKC|wTb|FzuDHBOt<&^fGFYzkTWLM}ZBoQ@6xwmyR!KIs1Tu(l zQ|eDlCjL^O@r}#hzIB8PgkugPGBVK5?)Q6ELD}W0uttOe?An zVu=}L;FUu|e~<(a5dNjNo%{FK#_AKCY-`~kC)*&t(M0(dLKROB0zt5>XBXpy_nBG| zoIJQ0umF- z?{t~?@8RAj&816RK=&&IGdEo89Vyvf3}j^Q+~r_`SU^EF3Bt_54PhZD{B5G#hX8*S z6;}>-n2Fa%C3g^{^8B5B2N78#5EseX{f#=)Gi^e3XBU2Tw~DUOmC zzVF4^q5v9Jh&VOa6GWB;a>q}k*I)iva?Q%@FdhBY1G77s6kt>aRByyn@fX4j4dD?f zUNR|xG`Qc&fuJ7r)av2g7!Xe(?Pa`tLu_-WvGlX&2NNGsguEU5QDY|dv`zQpFpS%i z9S92u#o8YT{K0_P@56`wl=(w5)KGrIVx+GXHG(}v&OkZ5()dpYeOg2hdqCsljKJ%? z433@YrTvbmP!Tgl;1GYr;EZxs|8?|o$r`?wtaX*9Ia~^%KktZVgpb7Ie=aOvZfN{I zvvp1?k`YB=>Cpra=90o>4x^_JiUd$?97Xi!$XlM#VKW^X8LD3#wK2~L{!B=pXIVd3 zw~+IgHG?bcL)Y>{Ij`R>WUGG5o-y&+_ZrnPf#X1XPBuLG)KhFx2*O;)K;vHnpiC6_5*sl(Cbfx(4C1h*q?-Z5YJy|`VLi6f-RVe6(HolxBsBV{SPp?|HF^< zitD5R3l(_yzp*C%2L#3c!N>I{e^bmjH8PdIjg+HuX}~O)1r(7g=!EyjfdT!s-5TQ; z_Eatd$wHLBrXVm30)tn|H^06{b=BX3gd^5%5|oqv2+Li14307YqS^ruh4)zOObI~Q z0>gIINB(^h%(DGwKQJ}{GwjXK&=BP}RaMmlJRbiww#a($J)q7$_+`Bp)W=Uh`VqG|3J?~$MzKHVOeLKh&VCn!^uu|u17ASOf2MPLPxs-{ zGhkz)v_w<{j$kv2X8l(r>CgW@!5f$~5hbO)DQ(o$!`PQ0O~r9}Bgnxq*_+qZ{6YFp zs^AHEEg+h*XJ;)?Jxe0MZYCW{sz&NS2riUB$bxgZe)sO(%f7z}g3Kj+7>tGKf(~d9 zfF1RG^$g$mRx+d>g#v;kp?Z!^xf2M(&jNDKd>0EK0fm?UpaHnSz6K8>V|DOMQRy~d zhgOVu?BUkt``z7MD4c)uN1gGoiA6}gGL(|20gLJS-k)b29P(>*^ZUZ)U;Hb-_8*v( z|AR65zjeqV&^T3sI})4-`u9-`e{}xdh(2bpVNMy0NtCm*9j(9ytKGY21&g-dn`es^ zdEs`v-L$poaS8a!yQzm;`;vB)LTpVWwy zz6WU~`Mf+b2P~$p^@YLi1nHxKgayq3#dO*spm_rL8?wWypbVOqK&D5&&W60Ktk~~) z`=1?DY6;;>7{xFIKN+f!oAloX!LRv;6J>KKBQAmF7?UQHw; zH9}tsZ!RCeF^x@3E`WsSp;J6vz;7~jxr11JMKOQ5`qd~rD>IV|ncdK?)CG!^*dp8&UEL#(Dt5 zeJ58OCBJ|j%uNFo#@i^f2w0RRu*0f}-y}ft8Vz;zFsT5hU;MmaR5uYg7=(w*^+I!* z1-JYuJsD9Ek{KnB4gi-n!yDa<15#K6=(nmWi6+&Du)SuaMCcovo4Z>*b{(_sRRxOb-hA1MUhc26Gpxh0n0=FlcHz zo|l4omKo*h1>>nz5vu2)C^`)FcLODkDRr;tO<{>^W!9apJ^-i??MX$X&u4HRq0&ax zVS#i7hzuyu^ztG_)oIU5g4fhmm_84*+HOEdV~jpgfdi+l;m6fW9$WZP|P=eS$sV|^$d*}P?YTg)ks71d87jB-W?bgC_wQS zMK+jK9>wAYO^{LLqpwOzw1XeYxr31v$w=u*9`sq!&dtruq2%7yY(|dO@Gihh(jIIq z{yNLxVU#dQ+@8ER0E(PI2r@^n6BJj0#&;_i<1itEp3m0gMUS-CHl_6wpOC&<^zP*l zceMcRVpfrbvN-{y>)eY?0S-pVJ)Yy|_ER0Suw%OlYO4Slwg3gv<|44oX7EQ>3fNNn z-oC!n5Je$b^!isfhwJ8CupF$EN>+-^MpZI%Dz+?Eh_@4@W&kGE z1=KS+2l`wJ6FauYfWk1V4`!v~vk0wwNt4 z*3tpd=E<*L(-RYGYTzR3VMIIiVqIrG95}587N=r+SzcBJg@uFeR}7jqN1#~JQGt=GC;<2^#F<0Q&8Bu3ZR@dcvxn@ z=R;Y2d_ed?(Tmn}N~Ge_I_@*9>YADYdu5=jEZYIktv??B!fH3Wec78>{$rGaB0+lW|aPm1#D_akjs%sb79I>QF z=l(k17}TFfx4>1H40cyj#LNN4)?5Ufm1)pJ?K!>s{Q!ypq`P9|%R}6DP#_4Y2cy7Y zGk{{dgPrImdhGeezNTjVy&D9PAUJi%x&yA)3Bav$C=Yn7_64753&Rc&Z-ZENHd{S3 z0N%A4LEM&v@u*>Lo~Ds~k9PgA4H~-qy;XyCVk?CQv<5=Dw?ob=r~uL1d21#GMS!87 zv&y1KzBMqDa{(UP2`KLjMFC$VZs(&+y4)CW%KqJ1*-{-nRN!d>NlQ2y*QE2`mYm+c=rQ#5CC{6k*4Hcwg$2B)2BcdP}6N# za4C}WItuho&^@;M_tZU$Gcq&PaJX`GL;<#!V;TqS+Ba~avnY}oE(1;-fOxF3=H zBG*SfJkU3Pb-EqJHu3e|OYrt41AMp~%;zX0?uP$=qfv38FBmwDgF_V{^Nrp&XJ_Zq z>G&5Ydu$pAfSNiwF?Ifo8Had^#X$-=j0Fe%G(vznS_7UB2dL|!($?yl*d%a_1IK?a z#n8K*%bL>vXL?4cDE_@Eh&JdT{PQ?+S^t+l-rA#OSorMdYyJs6vaF=y&FmX`UjGF$ C3BI5J literal 0 HcmV?d00001 diff --git a/Nurse Stress Prediction/Images/correlation_heatmap.jpg b/Nurse Stress Prediction/Images/correlation_heatmap.jpg new file mode 100644 index 0000000000000000000000000000000000000000..87b84d8491002da8b204ba2fbba15ec0bf520732 GIT binary patch literal 51614 zcmeFYXH-;Mvo_iYhzf!rNCp)YBudV-s3Z{)Bu5ni$vKBsP?BT>BukPEl9SLPIp>@+ zl5^}{eJ8$q@3Y$VuIYF96Y?-XNzE6ym*lSpMc`>WeV;aG&i{a;~&g-81aR3>e$z@ zv2Mc75o2K!V`1uH^e`9}E}-^|;6Hw_&SB%=p2xdz@e)3mP;v!!4htLm91b=vE)EWu z?GC<&;Sl4J+~ATpe^v1X-c4&#?zf>y7Z~mr)RHOnY%%h@wDG)n=^8l&CDpClOw4y! zc=`AR1cihjJd~7@mXUq*Oj$)$O-1t`I{iAhuXW@s0CAAzw;*1I<(+*kV&rxI$ADW-t zNTIlgZOwvI&eYg-vABzJL9Q}BL;d-jsXkxtQTStb(>kiWDC&1%JDpng`rX&=e@^VI z;3RUp*S*(8IQ(;Tyw`ZNI=)h?>jfL<;-=&!2WC7c!DiMtPiE}o0a3lw*B4*M3^bQ~ zEC0}b%KLh^a@wuwLh3qR;PAOb`&kT(Xyo;vOLb%Bxt~Kp1+_NZ&FvBlA%Zhn;Q{(F z^HbVix2EdlrPYVpBUNL*#F`$k#`=E38Tr<7QBXvSE#2I9d$`ESwysd&_137KQ{Q@I z5RpgCmlC2^gI!>I7sYQl=~7HPmyr8v8^p zGL@HesO;CcT#s*6@WEMUkf$eJMOFgZqD8ZcsQC+ta~>JTWAnP0uijwTh^yy@pOc=` zuHFkwa@wu8%sR?CtlOSyBONSaFIFIHf61qf=QOscbYU!X=(_Da+JyZ4Hgw4h@fTf& zVUsBCi&S^>ilnYPYSUP8V>LG@SkECZYnu2xDer%0>-Wvu&|8A4CC;4Ne3;N_eu%;7 zh5naBAJt0piH3=o6>@XZA>w0;+NAiJjq~Sao3I1a_~zimlO`V2+hV0Dv-q*D%Lz{5 z5@iJsd?SK}9AB|1XAo-NrHkvvOEyWoVrCaiOM7ld=-thx^~-Fk;g2R?Se=`>vfvQ6 zu}nnSMV4utJyz#FOUbcczED;WA=*6e)2cJHn>@0+@!ZYhBZ*FUW~qV*ZXcWnVz$J z-k6n-mEgFPOVEWJ&h=`61`O;9ipzH9r~J64iFS*tRcK+3%=Vi4aESQJVG)DK2!zZRB@sO)wR+9QS^CrHm+%Mw~Vh03Z(*L-f{=L8)e{9r97F!&|dG73JY z&UEDZ#VNM_>X=4sDsH{Wm|Wy_77jTQ>+V;Bd9kzASJl2&RTm*uz1y$aE;2}My%BI* z{?5JKb@N+TBmO6d-c4xW{rW&q;>+8oDib-ZJX%qz$|2dTmp{*64H8g$pznxtZSvMO zr_VPD`&n~cG2YvB6Az7y4HfoZCk-2vQwq-Yz7f%3XmmMW;bCUR**0OueIdGNmtb+A3iPWJE8_jI@+nisiX1x^{RzdI}e*F zgoEZNg$_OwdJoOQ-&x-B6tvGM5Vj1G4(#RT-(YZMe)`=;IWG87caNJ&@{zZxuU*xY zu$I*q^--q4H)7O;Sl8z=X1^`Ui8vmKOjBr*a`7E}dK57oXH z$GIq&puLS=fh*E}6wZwhh7I^@Lt`K!}-aqW3 zY=F6#=k}AAhU#dxhikRJoeL#Y=@0NEN|V!$suN+2CGt6WCGb?NsvuI?Q^MO{AYy_v zsGgORwo*;&9xkck|F;*}5(Y-TPrc6bL$ydDW8@q!`${ zviiimyDL*i)J#YHk4!k4^1WJ_{L|JM7=yEx^CRFh?AuIe0^u^~d<(>j_@Onca6(~k ziMkw)GI7rmMh>hXJO8_huMaZd|LHuYEhs;;V@8b5*q*xLRv0CIRcFH|zjY>^vc;)U7atS`rj3D34Psza z@Zx=a%BjLr3@mXq@$_VBPWsnU;)PXo;gU9Gj*hIZ!nyUI zFH*p0wmTjijO8C6$3hTQ?F+_%jc0jPwC~B9(50)8han)uJGgWL(bYb6xYc(OSLIWt z6ZFG>4jQuutnnbG>ZHdkkV}h}r$?{IM5k^nuSrYN zdFdeH5Cx6@#dkh(>EIVXgHt2D&`S?Ms?Wcf)q{@b{Ka)rkFGO1%^grv_Dj&g>#Uo{ z=zmF&7hxoK>;>evY^RohFxEqKt^X2Dww2x_t+<1LZ6rw}7B|hC2N>9!%*b=Hx^wF9 zPG}p*YB8|ax)@m3LK7Md2eNy=iGs8dQ+*Jx`+c2;{fOaB<~*X)`-c#M1HSq5*S2vY zmUiYKC~-Swg=B+XLnmm*e;NZT{;z-keY$uO$ISm>6(8mP{FH01oEGGElp+Q%!mAry zPA{2qh8t@m)OCXI=a_R!KpoqJRaxltc4#1sQZ%2FPA!V0DPU=_b9|2?kNQ+g2?P85 zeh3YnZU5f}*-(4p?oE&4D!MdDXUl`qGz?4vKmQbUrWn5sUSVL-c!N>;{Tcb}&|p7u z`3Bf$L@ZFa-v(f{>nFWyE)ir4$kEX#G!6%Ha~Bb)GRPOG#BKoz?z7fQR)ngkI>2B} zFoN#FmNJVMXamgyF&qDF%k>T|$TJFgbOi$gk6+9Mw8%}NE+DqEp_atm8}7yqVqgB< zw3O4^h<2}4xq@|GwGRjjlc_z@Y7FeV&)Ghd@mZc+0$Vo?wlt7_ga>*>uc;Gkoct|H zdXP`Zvb7~+q7t28>mBdg?AI*jdgU_x7*!$~#{vV}JVgX59B6M^yn^Rs>o(;o>dK)D zGBL1jsZ9t2J3D57AN4`4e~@b8zoWMvr~r8iAP&*U#^AqyUIX`Y6XkOJcdPZFBjAe? z`)R}bS*&4O@(Tk~V>NxYykldPB}+r8Kb5WA34P@fL~A8URV8uBX5du% z6LZu&7}(Q246G+iEzX(mW7f#<;nxwSvNWoi-k}`~%+uXfMnj_ZI(@F2&-~Cgl*m?% zSB4XVOifJ>?`mwrE|=(F^A5q|qhsGL(wS$`!*%o#?n+^qU9MH;7LeHnpU`G*PC$&k zzwY=vuHOO*1<_xlT?F*_XL?l zReeHa5p#aIxB59!dI?53Vr|&-IX$|`2D~TMLf4NY1PJ24Z&?wte$5x|{|3+JkDn#F ztY!Q|i`{TXHcD}~n~}I(B1HJ=x394D6;sBKqA` z3{0{`7hiXOy9|2R20y*P1bqnmcCBK?O?vbdV&lWWdosR~+=jJP+}v+P?Gp@s_*^Jl zey7_d@zdr0GKK-`PV-7R>D^w<8Dg&4!$JNfbg>Bb@X00vn}g6e(bcP@dfEEtKA7`E zI~R>g3M&#Qq+W$FM@NXK5)d`MwQZ_U^=D31T%DxCz(NHcVqkeB7})Z$>7ybyK0u&_ zA8;PG!1nJ9Mz|Xi9bMUjv$i9rfcNo(UPww>+v285Y5ApibJaT2Frzxeg-Fx~WhQhe z3^bld&^1{xO8#_K*?Rr{6wdkTDPg-tl}Y`u)u8Eqn8VeYc&)}^UCl^dY+a{6pp#4 z<=wn?)D@#`-jwI^>~jM3Csi$H{m9$P+h3m}h@UL8$*P%SVDr@07?@59q@bL&jzoD` zz*mbAEh{W;aK}Z#4M|DTfLhX`E2IQr3b3a)UT3i9vs>zOYiidCV|(@pJ}3GjNusAI zX%pG2b1%H*@TM`$@PzP7#Nb?k7@6jhVnLySR#lr5WzBM=ijqe(-}5WquSnp9NRr=U zm&o2L#K7`_yHBA@&*1Zj)Z5=c?CB3k&*}}`TW%j^PH!M6YFVhGZeBW4l!b@nd9U4T zy`w`Vz`UaJwif5Pe`s#HI!*_H=k4VM!oH&(yK6U-zwk$~!s2rmi0Q&eMG(T?@A`(% zWtk@K(Dx%(SM<;X1C^P1h-L)vA^DkzJ)Vaie9OQ#?=dS%%HyVW^t`aNWNVO8mwNwI zY+H*zGUp-hQz^pBj}M}_#&YY%TECV}gd|<^@JYLzio>f?o4O)JFKB#d$X-=;%wA@x zy+q3re~aPqA99e=2-^hW&+7ULEy^Hxc@r)1FUTY+QAl~)v|jdjd$l$FD^y3A^g zyk$NGeix2lblFwxlNWnRoBjr|cmo3ik<@|7+G@ZS5vm@(o(Og5#JerR(X)D-Ep+dR zW$>|}^ZMUiUW4<&X!dP0TSB7y`*>=dG0yZ9cJdTJ%8lJ$~XgXQLkAXEu z8)0BCaDb_@QS%%UQ}8`~9E|R9DO6`n5aO}eVGWVeXCx8X%kyd+>}#8gw`#%(x;86I z*w1u{h<)!chgxndSA52TEzhttUgDh0E9N>;I%&R_OWFgQ^zMV1?jp|S*9^)XM2J-8 z_rw~cAM|{@wN5%vYPwl=Oj{Fw5PT$qy0hS%ID!~yS)3Esi}K#x9m_*ObOTT7)*%H? zWFcxj!FFS3H&~=gq)Zrko4ekA zrK3Kyft3Z>kL`6dU`w-kkz@5_acUDK+GGMr9}Hk%BM#`qbrNSS7qfBe;2)VilCooD zuR{Mvrd;=zDQExFlpFG=6+tAlOkHF1Yq1s^35MkKK>~BzsavS8Ickb2pZzv(p9*{4 zZ6y+swvL}*Rh=EhFAq?=+r(=W7Iyu`G1awE94<0Xu7z_9KZru;KD(&K1t-RyEZf)` z>xUQbAPb7cV#Oy82Bw0MNb6nOsV{4Tjh~YbwF9`LFkL=7OOelr+0qM6pF zomR|hHO`xSmjbPz8Tum7z*&`-L=Y>Execq2sfOEFD*RDb+ZJ^~89j(p>S<{=Q3!3s zkSb)4tKf=((GSt@4Y=f+r3+YXuZ1k((Yh-2 z=y*$08_Z*1`bVy9BL|x$c_?@Elt63(1~%DYYC=-WUy_XPjlO za$#}M!iIjydkgx_M+I*>_Qm8G)JLi_N?g^c#_fC?FL~&&lF6r8Dts@y%qX7vQ!+VAc->i{ZaV*zP&ho)$VPPP*nkc#Jpaj<4Ha@rwCMW`~kT&7I&)J!N6?K z@|}zUhq#uETTT9)gX7(sk%L5JU5wlhXwEf=9w?pjo^*J%*D3HaF`wjUy|*xx;Lad15{ z&l9-io}vkKC}P2=eS&Vi+TqpGR_ADEdIRrQ*~JG8jdMq#zVJ`E>2wA!pA~Vgv@pnG z7Z!w?r|kOC5(;+JaA}g$865P&v^y+qtbgCxKAIzYV;E7ks3!iRZ6Ubb9c|oU zD{}9KaVi(*Lk@@FABA@DVNfMm=Z7ucQiot`s}0T9kFDxug_O9!?i7l+B&Hb*B(76$ zvbLU@H$|0Mbnz7gKQ>BJ&Ao9gZ#cDYnB@yN)i=;`Pz`V+-5pw4F-s_)ea@4UC=BcY zpY_pD3L3XN{Yqe(B5R?PLVIhKFa6^H$i8^x+5I=hVG1|V1!Z65bF@s%nt@?2334~R z^u=>yvA>|KJd&i2K;NcZVHlY&U8P+UdgargwoI!afy?fGhsne-a!HU=Tg|2YJyL?Yk%@4AMd_wB>wTmH_k6|)VMJ{5 zTEsygNN;ZJvdiP&=67LVm|=1QadCk=5eI^e=!oo9->3!^Z(!<6zpyL?{DgAa%!nL) z!?6`PM_xOH;|pbIS8c>{RC3@|=sr6JraMG`a%(vgLA|G!VRySs&haJ3?XX)-xC}($ z$Np0aJg1st)HMwU#EBbgJ2fDb_+E50#HaKj`>lm}{f@6}OR)3Uv0cu}Gn*B`)`oRr zT6-Ca>~k$lVKOVHS{CqWb(FCIci?#jF6--+mdvHLfhi7f8V|lWgOGRUrRxz^7I03X zxxN^?GPSGCh4P|>!h1$GGAMb%Ser$t5b{xfrnkj2ASy=enGX4z<(qF^X!5k%2LFKX>8pNH+eAJH7DlYC4(%Dq zN|LHM?_x=kKK??lar0gNnU-nqi!-cq!w)4_e)u!zbUptw zq}t!SjA)KcMhsmIgcs zaJi_JO9_V%JP*E_jS%+yc7$Rc*&tPveCm0YRi^qtni$v+C1US<#)=GLAs=lGPR>0O zg%`Q)n#{>n1ixmT&CCPoWHbL9R3(i{$W$3a9G@RY41w@4ykGgqW3%0Q+#k%6_)}0% zP0(z}Re+8yH)XE;WpwuDwmDZnpYZVeGv|5!mDT>wLU^+BKS{Yv`*)>Jd5D39d_WA9 zG(mnYtW4WT$&=vEijt)DfJfNb^>4N5(;wR8LJIc=>*w+4w|d;pbCb0MXX*n6mQ-yW z%UXUEQn5{jM7wYT{c1AHXQ@KZiPyn^awaWH6jmpG_o5^CO26L+LT5fFsP%vohrmhv zJ7P!yO)-#nbeZIAqrL-7l(ViYy-{bai zh4)*mlqHHmml}MJTL$51Beq-rv4&~{*}%RqeX}pr+lc5IabN2INVaJmVh;w~=l2i6 zkdX907U)e5&g_OB(vPZl9iMVmMN zEW)m@0a(DhXQ!Oufim4hY}>1;0_E;F zM7zlXU8G9adv@vWf+qc^R*SVkXcBR}T@21-B1(sTtP2AZ=TAHaY2SyO7?$b)5&Za= zslWd><+pXiCFvSzz5X#JGk3qtR^Wszqv2aeBVZS*K`+!{bQc2P8OkDvhXg+%GRP?Rq4 z*&DXyas2IxNXuDrbGjA1wbQ$*vt*;9?KC+)aKzX?U&~;8KI#o8Vs(WGea@sajY4a& zvSv=nFc`(yi|7_^146~Xw(Sr<Dk`GC z!I#POkHGxIfLa~?#Lp|REwn-$2T1^Q9dsXaWf zYc;JNsIb3S%SXltKWBeN%voOJ-|=XNIDf=V(DG-jhl-SbMfF! z9K8a>&;^|Zd>^tj=~3@uq3S&No?M?Ple}&9fsWp%v2G+f2@ib^pm>{^X9`<<9Xw7Y z5xsx5|H{l+2c}({uXecs!txFX1VkNY!Q|{R)a?bf0CCt4w)tstu;Dl8fTsQ5FZGL9 zA0Ck@>~U%M*nwu<`6*6u4cn?s`|-xglUWaXM7uOJf>_%hQ|p|IC?L^I3=_LVUkBW# z+KtRb1TnezbuXw|4aBZ4^A2hT+gP^w62KDyyOhLd6KmR>kCJk?zy*O!UALEk%aUiK z=&hIV)pRJpWGA;|Ws;C$D>n*71a3DO!rMkZh!Q}Q>mpMGUT1J}vKO!3$>(H}VgG!8 z=h4!oEa7nFVg#|V%XYNgskig>vBf4f&Z`-gm5<6VdwF>U(5R)l&16cxG^t_l;ngZF zsj0G$W*}*1@RWThW9x0>f1i+uJt(4x#*bH)?MXg$hJk?)0nz=-Fya3Qt7avy*9=Ne zeL$CFY>qn+aB1E3stiMv5ss)?Jtu`(w!YAGfDKlOq-~5q5J1bdwX}X7KKoY2TFK`s z8$w*>ILSi(S!^{a?4dt@n6z>rmZ6~_j4(9@_G8--<@pi>Kfo1An9Qyw4WguzO$%G zBYSwY>v`GL4(zduZ({B*Q1JJ8I@dPOjaJ63vr;nuv^Df!%8PVeozO-X&Jq={CKqH#tW2o$X%z|@Tc~PbpW(nF><1G}%G?!B@eRp5Xw0G>Y>~>3+lvFEt zyKZ*fQ&!iQA%In8O}(IrFGY+v+@|kd-ij*Ti{iwpW<3AKUUL!* zOrxME)IY7E-kOWn>n`5$;58Akv^2)SR#0m_CSA^JJsMq!6u;?fJm}!{*v?ed`+7k3 zqHn7Rq27(RZLj84a_>*J?8C3T#!nw@u>3M6Gq}qrVMugM+|VPpD$XmkxsglZW7De6 z(0=-He*N@vvVVBa;bkr8fxy&0VCJ1ky!HTco(K3*JrcySROZmwvm^4PqrI{hl4e@R zs@*@E&67UrkQi{h2@{C;E>=!kZGtZ+gDj((Xgr!T7KGQ6UJY&{6CW^HFIyIu4_IM+ zB1_^f#Hl%n8_D|S)5A-7sYWpj1l-`7o(~Z*qCmY?5%v1m z{x_#K;8I|G2x8-2pemAL%Fs3DjUY{b7FR7HOWH_=D=ge@ElOO+1!TRWkJc_Q=Oqi8 zHzrx8P^%LtX|nRB;YC*`Pn8SkUi{g2t|G%=$557^VO?l+j>RLn==~E5FYB+ZtVtEc z-iP&-ug){i1}%!{->gr%cGiiVm9tDqWtC-F)m2&5=}xaG*OSPvDnEO{wq z>yA30q+4J7=F!@7Mf8qgpgcI#Pk(|lV9$S?-!79WNtTxS)7;(B^jp(`V>|<5irMWN zY{s?tf_;ygbb-uDxmO%berMD<; z*7rF^qwOz8Z$nJ*Eed`FTT(UM@#nkOYp?$vX7vPqi9u>>aK zMP{i~D?nnr`6qjpXj*pVvf%vX`cgxCQq{@C^jLL^d<%xM*w)hBn+jZv)E`(DK3?r} zurls6VSV~&@fKNTR*ubx@nJTpwX9VTqk2C}SZ=@@K}w3BKh?}1UvoHlXxMx4{ZDqG zu)FQjpPrc{WWV8QvVFQTDp0nU4?S2IY!Z{SJ17m&)EduQ6^!T9Bog%ql8^ zIInE0GM4U`279E3Ey;FK^sHRq1UNsG}+=5bXdX~P$LJso){dI!Viv-kVhS*{v zYD`b!RYcyU=*v9-p=9_Ud6K!vZ=+vXliwPt^58+?1ebci^S9wODhlWe{^K&A$-f#) zjb0^}2p?~m=2PiG&Quw0+woLJ8 zvQsUsoF47tSBx)IhA1hqgYF`PZz=UId}W@{Zb>e&^fhOpFSH-Lu(|q!0Cz403_?d)Rydij5yAEZ1+8AirG{WcWwn21xBuN=vgoYkYgFS0!5JxC zmy5`?3~lGDXkNq%3u#*?oL8W1Zo0lX|8Qh5KqLdExuf#G$?UXs{E1+4gs1cbOTo_ zIY{P!&=7FGW;3~%%-84CFlfq^~W2GzyIJdPSUGL-X4(LO;sx-lx5Z;#z+ndjT~ z&p|b%!a}?X5)%Jbl{cd+LIl!68Mg-nvM;civnwPpNx#*ydqrTbYRF{iMzgE2r%Ep3 z{?WOjGS(&7Z=-}-W17FzVR1!*y+3k0!ql7cdZ{dS*b`E$1nVc2+bZi5soQ+j$=ceD z1=>2PujIK2teOOuUbn!m2HC1BD>^(%lGl<)=J&Wa13X8nsoZ30hZ5wH`F`*{2IZBr zo{<}|nZq5(yBPdR&2%^s4gUh)Hfs>lZI1@$DQnUn($Uf-nkJ< zc1_*SeA;F{4mDY#=`X}EEEH`cFBw;#Jc;8kuq&GOtR!}di77poywYbZI)44REX92D z``x_--=-Pm<)ml+juP!Zax~pR)qAfT1P=--D-G$B;8VU_Fq(8vVde#GPn)77S^xQ% z)u@XW1-_qo*rdqHS=<^P>%*3433&qMs+Gwf;eIuJP4OUZL1vfRcK3>nyI>QUuK)WB zxgi@JtP_TE73K?CTBgRIhe>1{=W$`o$Dj7Tf0;DdnfTuA%RVhj-yYSXB-*%yGoSeE z`}d_ZqaIl$&(c^to=bftU{i57(eB_Ff0oyXNH@j6uH#RgoOprUC&oY4ZD{dArh>n; zw{j#u%W`dm&r4w{1G0xv8~Yj-)2|<1xfceHW(rGn4(zdu8AuiGO&Ha+yncVpNt&`ekQ* zBvS?ND9cBsVfj)r%V(fhK%Nz<22hE#oC?ctuI%HP^J)anOQWzltkE!xPnz&OozQue z{(ZbXR8|R@`R$zg_zydvkYP)jYiYUg!&`8A*sTOltSD|iJj|spmoIw#hCkQkZ(q)H zVz<64ez@BtxY{MOSd@`rH#?9cZm3r_@XCL@mhT(6;<5KrCY*KsfDj41I6`4-mAt&P z>dLT1hx4-3wpZ@LS-kyCh@bq#9lO*!gqVN+M@@Xt+}ISkbJs*~e;>eC#_&KFc(lJy=*V*ePW?$5F~3sBl4(i_fCtb zixK>DHqWZ#)!LgBpEV5bg>_~<3}bG>S)%o}I&a-!*dsU6^z}G8qjG*F%k6`$Rj9L^ z&C}zz)@4JKO_YtM9RAD!476`c4|$8>#}@_u1z&&Z`}?3D9(cmpPgkpnpWXQthq!Jr z$3v-8`S>kYfRW(OM(a3LchW~JT7LYcY<2Fps>Z(Ep^`msHRJ4-IJ>_ZoF;esOJ_Hh zxkbni==odaHN&}Eg*GmP`%?Z-h%JC6(LwejiYZfFWf&r2ZDro?xYrmm(EFIANs=l0 z`xjny6tVP~+9d`kv)-wg!$3Vs93araXprQOtd{1-HDO@i5;5c$u_th~CoAnpBs&oo$U5WxVjF)a01X%m==DUN|(^WC<~&XN=sVtpe@T zE&#k)IX)SFw9oR$I^GI#f5{(BM;h zheapeOvjXC=xTr#bamB&VD5X5&LN6*T>$bbLmYAHL1NOskNUab&2^`)04YdJ1g7Y} ze?)M`OGK#8!GRt?G~sxVv_Uqa+3*yq0hwEO;4@I4`rrmPpS}F(V&XHB274CqHksB9 zLWx@LfZ*>cL`RQN00I%?vqWJB1FNG}MNmhO93C|dqRgY%?`)HFePR8FlRP|_R&d-W5!cLi+ccRqkSeMI~=j95NZKSsCj=DbwYLW~Go zg2qg+k(UtwVft-EHz{e_|7g5rJPO2j?hvZ^ z47T8Q_U|icoZgN#PSW0}u6jMXNE2#OfoE1e*M4%iCg$YV|3Qzh=a5Q@mdsLE00m8f zwoEF-_9#yZ=)=XpAS{s6(B=vaC62c&7(8N`w6i=$BLQE$fUjaBDWEZ97#Ip$0TPiG z-aY+fQ<(N|)=7zXMz;%TDE%D}eBBv%))tI`9i2}^ITTy0+qJ9}Hwu)QAPt`*m$PK) z%;FL!tvlTjX%Dklo7_*u+tbJmZHrZr2OdDb;fIMw=aDFf;59TSgxG|iiE&-;OeQT0 zhLU9Y=tO{Wb)lCato$<={S+<-C_e2v6Qqdr*|fTdXwrYT)~`((0R1A`3#bh59cg726!97=l+QMPEERWK_b|5@uJm~cg#C!$?3uyyI2 zn86|B;0QoJkWjx%OI|Dd91m#LBvnm)|Hn%obVjpN$29v>rx!qRyfMdRc-s;cVPl_W`s74|H zW_IzfCv|Lgs8ctl1>L6XPdOVO$25-V zs#wnQEZ@yPm%X@OcNzgkX&b3OU-V@rzbCDZDbx<)U zS7SH*#qt02CC}ziCwsRo|30jIGv@3APt$9`(=hvpiGn~>Vbx@y|{Aw+MB_Rb@jAY;ip+@fMrM|)Z zA^c1ymXkqO^>1R$OLJC!#QbfA5GQH}fLd3cPxEkuO zuDF0#GdXpin?1v!pA7OD9uiaAKnW$kj;t|^NEufD7DP5WIKjYn*Xh>1j;Hx@_$Z#R zvU}j&)Yn^LysL91_a*#_82Wu~V-jIjj~RAz$rT2+;1NQpS@rE&TK9|ucj>2tx<5v@ zhCjF}$4JQxw24Gwc|4cu`MNj1l##BxJQ~^qg2pA(n=b)-ldqB!8;~b>?xEK!@$Np zXX8C8L3=?^JiW}tzGL1|WY>cHQYIk{w60cG^SZcVvk#(hv5ERpRD4xuI90@;)c0$w z^Q~wpEru_`dj}cpN`ott&j&sE{7D+E8H^kRJDujY0~}MMR5Y$>;MR;~rtHi|c}UQ_ zdf$XIH#8U~cPh)KUwX>ee8p%!4*1+z{@vq26Fzn$1afmlWzH59P4dDS+EH4-k0t`A+}&_K-hMiJHKK2jbxde|?(|+n zi`DGo1>0ix+R9DBdhiPvevZ5uS8S*Kanmp2ziE9%Vo+B|Q@*l)Ma$QC>J;~oQL zEq1OLfw@wjte9@hF{haD@MvidZ?&cl9hyC+cW_#VI@>AL5PR+CBJF!W2AdEeCOp3A zOs!#ECkJ-j)&?^jj*gtKsR7I1^A=u|hY=AF3I6O&5LIH&=N;@@Q>7Ncx-REzz)dOI z$v8PoIW9O&0Au-*mZLRp{Pkz0`v;AY)LaqPj>W3xdz9>NzhlGnD^}%)eeV~>SRCx{ zx~}F$ZoE>HorWJ%gIF)$H6P6sR#Ev=6c5PNj(&gB9s^6=QBi~#-4&hw%cj5Kww5G2 zNMAVLf8gL@zaC&^9y!SU!+bu9HE@LXu5+VUR{Y1OALOztW_KTokm*%ZN6j^}OLo$wGTX~tJnUdrAg?y4&kQD)Yyttmp^&&S_d zdp5}!HdYo&g(DO8_zIrFC$IgVvY9${?oNlq_qK`yH0orLj0xieDiX4?dSBynp8e*B z{QvHvOl9r%^`g1Pm$IehdH}{1`~3PREjjM`KHtuP7VP}TyBY(0x&4EVTnhMCwgv6? znuW-U`{Udv8gt#{<$QBEdB@s5$SD-@rTU&{G~6ZjqnSrf-~0KtWj1@6)s(*gaAd+k z;vB|CZZH-JOSrI~uCo#%XUta}A2kv=E5TUbhGaB?S>64XAhh0bD>BKzC?|L8Ye*B# z2gbX(jr<`JlrPg6f=wFx=1scVbUaQESyqXn!n2LURfJ$M}lZ(1tqt9 z@G@afugWhkeaozMKhr3k*O+f$KPQ;}b~bW~S=y!&(2+QPu} zhn)BhfoXZhSP)OG=wh}!f}r>Nmm%~u9OjT?AJO^wQsMcfbhBsc_A;~H6Gp{XWlb8A zEO}m23e^$V@N`*}gg;x5(?bqUB^hUfc4wxsv_exkS0C9&QIWQk-v#FuDdF)(lhQN- zeGSC6R5Gnqjf7Zp41;O@i~W(VRT@muaRmmk&xQ6W;7MecC)y?_F4vC6kRlSeD5yeU7sF||B`u5 z!#(JvCof6EZF&2Slrqhkc8=GljgDJc(Y z$xIGdg+xV6oh=Qoe;jYY4`txr%J5-g!j2SU$({UM);p=K{hexY_TKVJ{e>nWEZ2bN zt}kisF*=*0bDXXR z4{RyMrNgQ|a@<={=eKepaM|t}oJjO9(NZ_^%eP2Xd(%L{6S@!=aQ6f&xUqmG^Ujy! zAF92L`M*VCicWuv(u$$6J-tlMm!__Av8Al$mTc`Qj8gA?>ED~*dLK3VqIYyWdcKT= zI&kSmt0guq{~j&RraG4Y9-}*}ihYENtbCrO68#OMUBSkQ&+AQ-_>Hzlsw(;dTNv15 zYtu}vMQ(1C+f6pq^YFLdn-p^IWCf`O z?;}yLCwENL2h5WEC#6a}$6j&2a||+c)Ga4U5NcAPm@P1UwEE0j&Uv=9ct^Z@X7RTC zaia|W_wOx-CxhlXWVfhgluGtQkUsRgAO||b;2c$c{1%qxC$z&S4M1iy@!;q+z|?2? zg@TC#Rsdo*bOY6)zn+_aC19!vw6FW@@Kl7iZC0A@xPfZw4k|oI9 z2_U~Jk6YLdyUoe}D&T9E6;0@-e@aT~31`sl?q29%qtTpKm-$<{@#LLr@_{}tpHN(} zjyso5(cze&IMkzSoVOxelRkIZrW0T8c+F1zhCc0=)Ikl7_iY9q#?)Vx?gxI`F-7*~ zKkqMgrCwEYEUPFBdL0dIt3H(wKjOu*`H$Ku{`Hz5K`sIkeFjwq&zr{Qeb56q5_s_^ zFXfnO$+Y(e21YQSyA9%ho!fslYo52LhDy62kjWmT49c6DPOX9t;Z=Zkn25a^GN6A; z*<}SfyVv|O`T1ai+f60&z`9EDau%J|p2NUWd3Aqh=2v@0kzhgF;`1Nb0BH3DS&9iUp2 znzLd_uh$c3*1D%CiSuXPi2LtsS#NM-HT|;Ea0d{=^FOl`J~t5nW9oxd%it$BRy04< zA$P99_g8H}n=f5j&e?I!5Cdsu79-HrU!-k7G>CSEU(G)gYWQ1o&`ZQY8wO^Sw^Czt z7Xx#SYTJ=c`b)PboD7fQt09nK;kM@JGzKQGaIy%G&S_VRS8-k2UxrU4eacIb0i0>W ze`z+K|IgyYQ{$Pu(dZ<^^PGQ=r|l8DY=PcAo=CsJXwS9UCR@%HlyWZQLAXu zRgKQC9D)!@pmFOJK&D?$09XUw4Vuol5!-yBlJ>4-6A=Bpe%HL|20(2Rml2!M@S_+3 z07Z1|!4KOLQSz@qqoK~!3?%VCnf{u%0*e>;TXcr1$J2_XXm{Jtpnwd;h_e0i4~Yk6`^w=yegM$S^2AWe^fUD{cNyfhUcX~2py;>Wj2a5@LU zmW2ZBa=?M~8Pt??wgvG0DB6WXfLOD(<)2(Oh984l0|DUm_uEy56{Qcv2seTAx(=F^ ztS9xXfm#2@lBP$dKe%64b{zzE7JMnbqNQEz$;I_t)CXs}QP>FXLn*4-K?I;B;V87% z29Vu@{{A-RUa!n+8zrYT4}#o3)bmL>6c@YLxd6*pCMpIR=5W)|M*ztI)LS^YLf-fa zr`y(N{I@RW!%ww{7Y^w*Px3t>WA{~5urf5hb%-XomUuWjcg6s^VrKJ%f*rou04Sx( zXH5=XHVM#Bwkp?VTYYA+GFCE>HVn|%caIP! z7uC-?TyF*+Jp}6dIl|{xhbwDRa&@BlGvvHmWPFe-M0^LR=dBlD3lT^D@c)Ohua1kV z>)IYc2`QySr391?=^hbjN$FH60qM?B5K*KN5CldEX^AfBhi&_b)9yOCD9< zJjVJTqm6*OcsipfqAXQebk@iAYJLmmu^1XNk(N^dJK6#})DB$QTK_0sN>)lv9Jyej z#G?4c(P--}aD+SO;b6O`2&IzHHkv&paJq!2iDdvM_Q^< zG$UlE0bgGN!CQ0N6-bF_7{K1PNnyVpk@bNU=rz$*@(_u# z2|bd`g)T9Iw+Y^>fB_&Og8_Y4^J9{a46PInV)t*7tJ(^OeY0_Y+u*J=+|F}~59?BD z-H8FOGiOzKKLS`$xX3*{O+}^_8)d`s%7&5Rdf3`sAWcL#Th5otFMnsN>KcMK!MSs1 zHQ(r$fs%juJBw7+-4%sw;-~-;`)lLb#Wf`J`8xX7pZQYPVqmT3H`(WQqfW;gc}+zb z30{jjO_0rMnM{uJev2C`+6ehG)!D!c&5xeY+Chb!{6Usw&hX0#nqWM0q-h&)VO7?- zUipW9L}?L7Z5H;VoYnD=buYtq2;Oa@&B{<(l3!p=;+&1gapiauJarY-ez~k;+^EG;UuO-`gRoz=+?BW{X~`K z3$98n@QzE7t6zaG(Jeh$6aD@8;48FR(4K}uRehfoOs?cr*`QuUra-1z>#;`0$RP-B zCqh7}k9vE9Hj#*KVcfTw!h80j$rU?poC7KXXGhkdmX1MARqaTtO_EOTVe+pfADg3R z+iNkyaPdO!F-9gf209Ov@Nye|VDnn_q&YeYYat70p;*^?s?-%Kz+3Bb_3# z-1V`L&+kwCl(Mcy&cOD|VP_t&bsg5rC0@$t60k7yl+UtmKhaX8@!Lez==qa5D(7D- zQ23^b&(&ZWtyoc?hK&0^$V9}fsJGd zVtRjuX>&bb7<;%jHG$p5y~fe3E^$lu57{)yhD)jKqlKo-L-utiI^;I}({N4$^KIUR zq?~a*I|v_a5(4q53bFUh82SmpN3_$&zBdmGYuV&PNm$l*>7Rtzc~IB6&~}?$&B3jZ z0wzK)&uWj)HCU4f05Wq2CR;3bE%)I5lRJb1V5SizJ8|V)u*SCwiy-qNV+YkerYfb; zm)EPdApbUba6 z6w?I0qte=oUm+&&Z8C=eSkZ{2`1rTymZy&KCg!BaQETKqbBGdKU^S2mf^e7>zqDc{IYT1_7|1DhrFk#VF!!9%KkrR$67E3Dn`-@6J$ z*czJ!zUVM)T_DjH;N^>jB#-1j{I|?KU*F$W%uB2cPVPY>(Pwc1NkMP9QWCWIt4(FL2(5zAjlL189 zNi%Hq)#M3#)}2fml4GAw2bY<0aGmOd&7?}l9WiVp#6Cdm<0*Hfy;MjLTZycnx?rA&N52yM!`Yhh?Q9nfwTRJ%yuNIkQh>ipkm5`QyK;XT0yL2d3`q zI&}2|+N^L}R~U$2d80$@T|P;&R=!Q1;*WU&bk#nn62B%J)*BC%@Ex)^^l(Jn%hXrJ;tEvw~IYl!!q7f>+Ps$Dcue2-WKlMr@`vM zbs@OTqC~2C>RJlERc&QO`E6qsjFt)L*0zMla56mu@ zbp#(U6d_NgKjRbGU+`B=4hwTlHd$A@yA$`E)70_HZU6d}@75dC58gMl@V_ z?4Nv6pvi6l74{dQ^lRD{=e_8)fs(`y?dQ5PQ*{HcUMs$ey=MQUgwi}hsGb|Il&-I5 ze+({^va71~q1MECv%1|(_0d{%`G&a5vyOwV=9#X9kAd?&+o%TY5${R#8xJPf(RLqljmGsH4oM?H zT|a>~4dS8PJo4JMPc$H3FTTKC@l;baBKIkB_Nem^9T9(PP4tG{%#-(-DXy)cpnL2g zLDL0@z{AB57CarNieU2D2k=LF&aaQg^u|Rw)HGPX&a0C@dXZwkLdg0tDRTjj=-FuO zrcc7=&{{5{ibp#}CqH6tL{I;wv6VgB^Y89B#y4wxrRN#82nn7Zg`h`vHU?M)EZEo9 z=@D`|F2^4o6pX*JDe;Vwg-Q{OF;CB8#liX`P+|Y{tQPv0p?JtSsvIDHt!(G{Z2i!p zO8AFpseN&yIFZ1PLAF$6kICyv+r-?628ty5LzyjtA|XXD*hYa5TH%iqVn zA1SoR4vAj1B`bXR5zZO?RD$+GgV37A$QCkURhhipWRTg`u7q%z!IF#Yb$8jzPWq9O zXBl%ngEaglTzuZ-iz*>A8+a8TIBpkmy|bfx(!^*ZE7&Z^KwX=7$zoY^SJ#5S_>h=4 zqLBi>?V8Zu@jXf>6w5qmAF(U;oqpfn^x9L+aU{wOKp}v_z@Piv{Ckxmlb7Twi8i8A z(MYNP`Fe17vD}mBOU{}m-f1k_FT+&qWT)arlPY`DtGm|s@u(VR+OUviaSILwzU;ff z@6g?}5ZTSR)H`rz&pcft$gQlNb(%h!)(V!tRm zL=JR70U**KKGJQi!>4itZ{5fKN=RsBXjNgvzq5U3{C1n^0})vkyOwMyu5DilnwND+4qU3rrAgx&&=HP}&YXWa6Oix|g zuWD>F=wl2~wY?#0%GH>kN*g>D+2H=YgC&YoLs~SmDSE>>@iM6Yw0R0_hC(eZ{WM?X z{3#kt=vsgOpkFXr^qbM&j3LE`-dbq!n6qkByK2@+8p@mV)bBVhHLyY9Q4*&Fq5?RX zjX|)`UB0)0qrjz|ZGi%}%1+ay&s8dpDG71+FNE|z{vEh5g4c8dFP%P-ykTknUW=Ur zHxZSTf)vCQIO%*Kj@w0|2uN1y04C}KSZd9-5z2Q4*q6X8ldzm!E!yTK?)=j5wQh&& z1MyWk!RozStyBI}v{x={vlr&?Dab6P)*r9Y>&Viri7d25F19S9&jgNC&prZIT3icy zxQwhRKb{?Hj5_!?XN0&N5^4o3@YB7?X_*7-L)5W802+Z+a9L<}OvuO> zz70JYhoY;X2iZ~n2Fh=Wf|cCa9_l)ey|gYaZlahvj-aF#!$GayJjK>NXSyGvF_A}F zQa8fp#+^|$s;)zwNk!1F&Y>q4Ct*_nWA>*R5^g-hutjcBf$1nZ2;1;)IlaE88E`j+^Q(eC`j?KDe-mUxFS3}pRjL|OzCXWbzK&EAi0-PxG@(cgr_T+d! zQs`so-!x$3h`r&;(u#LQdbVjM6J}y*v`1J0@G5pRnZIz@obIcnjXmaWEocEB=Lt3d z116)v1pI!KXF<56pO>!`Sauek0g|sb(WnwI>%aW{$9+EfU32_;wpwv`hIil@tT1O!NMELjMhy^~qw5{T-1u~=5#+(7cwrRM-Rt5Obdk`91yexU~Q2N024 zB-(!+_#%)LaC=9mJo`qr3db=M#@%}V{16~qpad`8ND2Ca9GX-opd=O5x_Ni${~VO9 zcC-g=diY`gcfDXg`Hze55e3|!&NF_J%{~$3ZPTM*qoQcDqh)de=ZukyWa& zrDLT=`*I+=K-xmcm%#i3yw2l2IQk5}mArNhzPk)PJB3agNp?~%E_&tV10v-AdV-9o zX8`M(R#LXN?=IS#5xg^V6w~RYMbwEhKodKUR6D7sTTaPVZ6?v8>@W~hxv6PB#0g#O zft?<}YKm!#<8|~heD75gN=P=g^|!u@u+#KbOiyd$4~$vc1^C-_=w_tM@Zt|hA~$UE zPUUP$;Q#u;3%aD#Q_&xg-3H~;x$XmZzy}S2A2xr&$sz%mTv)>7nF|aAS>F-q7smUuXkVO{oq-Q~g2a&sr_TULVqL|PfRbUH>gr09f!%$Jr zcvN1#ZeZbAf+yI}t~BQxI&^Jy@^}~ExkyDcsbgcQ!?$`%md*p`O%zBT`?*`8g?X^W zj@h50;OCSO{O+~vBm8G7V~gU=uHS1j&ydC_gcg9x##;c`2AhC%T5wkkmLpL=`V??_ zPdS0p4hQ9Ecg{tEAz07i*NhJ5kw15xp6Q!{bQOek=;myQ>R`Zb_SsPknN>))dwwH2i zxDU-I3T`QSSo^Hj6+9!t57$nOLcEGmb&uG1&l{p6rvWj>6cQBUW_inTR9nA1ZKeJ! zJ9xjF+W20<^PQP7(x!I5m(dV>2jzVFFL}^y_{)8E`Ci@f9)#ztW4imT?1Ry@$NqMo z69gdQW(`x^${C%mR-|FN^`s?4_H?wGarZu_(0b31LU0ctDj>4>-{sYv6D^+}!O;>x z3J*R(1v^Cb|8}(Y82QRx>!=1Wy9)pE2QlgECReketAil4+N|wdHe^Ssb?*$m z9V~VeK|k=mhAvY8;j#H#6!K`2e$nmYSqF5+D3bqKQs5zx-{0ne57;laSo6+-^R`~* zlK|AKT;yuu4+xK(m*kQrh`HXs|0g_)-H6UzL{|Y_+ik5Mh6AUi})>$aZC zI0~r}eV%T&O#9c(t)r>Is0x2nTo}B%b%=gy^heNj;+qxM4~W|@LDyM+ZfE7Am8k>KoF+lShvzu4JpeRLjm5xpI&8%u1w=u?5{;9!66*YRDEzX~ME@ zitqjMiHb$cL8E4$ZM5ovUfE|~T!@Hi7^C1m6_$s+p3sOU&wS59(#n7$5MJiE$|GNu zI@$9Zcy^7c8a=Eh5XQ!LLl)$&q+fzJJG_HyVm*7wvZ%{1iV9H*& zU(N5g94D&kZhbqo{X>6c>;ON3Stc%={+504*xs@1s$5@z#~L4%YL72YlMq&5U|)XG zt0Kck&-EM6dPCs;3c6t?VDUN!oOu9Nv<@p_iKrsFycS&r114U8!F!)eXU?Q0cZv~l zJ5TU&tC|?ELmeaD311uDeU*i+m$z1ei)l%dytaZ0Cr)+lS%TQgA zzv+o3eajAu8`Hj>|D?yIxR-a6?PJqSc%o>~CpK-&B|F^4DrJP%fd{PCc1hfTL$$ak z&-T{tV?PIz%=s5=GAf_q^H0no1{KRH6}vu&AB>6BJ#*YM!zyNHU#RqZ5Iy=~UHk12 zB~IuEJx34xtDOj~{JZ=J_l$L{iN2~DUqMFKCg^4ol>X6r>ZV@W@#r=UOIK5=uY%rN z+SvQ8H_7a91nJY8(w95d=?lx)+8pFIED&9J)(@Niy=Y3l`bPeXsY@u7OZu|x0RyFv zI(UTy9%SspW}OO^ePnSXv@I#jX3i3kT^MyHr-YW-;gxE<4$Lz5HKJbQ(5C~9SqQUy zW-pOa&FU_o)JY;}ejy6-^d6p>VH@rhW+kX$qY2xZ z+?p3$QY-J}SX)mjO{C42mz5^WiGT>wQikBHt||kbYBqX+{RhPPYx7}@y=s5)qTpcz ztCBUxnJ5h=B7RzPMNW>%?n;WAZ5no56{(W5f`K;CQFP|v$$@rfw15Q*isd35up z6_*FhD@5%cV5wAonIh!2BckG2RoY6{|FC~otWxErH^)VXm_^ahazV<+hkIo5t`Ya= zdlmt*TxWDlf_?Vt77)vhTB^SvYf}87Jg)zxJPM7UIA$2&d8%uM`Py})L#X7~?vd$c z>u4LSXen43TeH`#;cCyQwb?gMX?4=1$_)#6UfK_C_~rK%TmJa^cZ7L3bMTzFpN zc*_-9!yhFi{$X7|I!9DXxP9*cCCOeFN<&kl9e$$rY$Vu1$%Zp+I!pIt<5Ax8Emzc= z6V5XSpyXv*4H*rGr#6qT?iroTbD~3|D}X+p^$NZD7CAPHzJ1JNmSMDVAZ$f9{!n9# zTtjwv6f>j7_a1c>%ev#BYxId$U`hq@y`(K)gbZokp(|^?X=et08rAl?Vc&T8R)+p~ zh+Arj-kUis{}_+*c;C_vDb3z}J@!ZKr~N0+?23m%7uAHG=EL0^wz-+L#5TS(RP zs&lR&OpSZd#`|vAU5z3!Bai`q=WF!gz)sPQboa$D;;9E^^n(<9z}_eNaO}$0tCJtS zHzLDY`8kj{ThPHk z1#>RXZQ87_ad=5yS|pxevT|aL6uf(JtL(}!A=@~ z35$#oBb}=L%Al^#rcYJh`&LQgV14S{m@4k|uc})q7^GCk{GJ$N9dR+^I}2oyqPlrDPj`j6M!!i-lZNJ`0)BGv@jPDQpfT{9nd8(2 z>>4%Gg3G166%B|}*?>bmg|q3>bToTehuC)D>*1WJ(2?ZWK}wty9LFO+1AP1ZKI?rh zXcuuCRwR^VhCNlhtf{feKsV$j%us^ji=(|1!%m9oEqBUkbwas}#opYUM22WC(cV`q zD=o?oO(-?0sPFix6i4ez$6Rg67rBBpll|$`tDj*YhWtcS^O3aLf?iH{-55Xrtl)ZN zXfCsSPMYbN?J-7343qxyA%8xusnkxZ^+W_~&0O5W@ACxcKxQzMwA!7)&h zCVM5$2xE^$?<+7-e-_02KXjGzxvmmK$)1;ZpQ89XZH;sL8u~#s$VwHv6J-FUDV_imJlu$sPJ7HW5$5CoI0`?$}2f!h;-@#kF;PEK#4>X1K^+^Xzph+qr1L5+Rnfyesl zLLt%50<-@r2}+_3UA6%JP2(;fJPw%+-vfqnuJLhPN4ra};fm1Q+4OL(pCW)Yyo>-Y z+Obg1&V!cd_JOwbX=%PypGYldN-9$Xm;bMuc%0uYz7Yv{qx?`ndJNB1D~FNmH(RAX z*nU1{j=3mhADlDfr|)`DznFtWW6A)=(_o=*Py#z4&;~2INtxi83_V6c&K)ldrARY+ zEfEyjJ0hU@0UF_avp)haOA*3|WLzVj_0AqayK8=GGbBb95;?oT%`c9}hloN@D z7~alg$@}FZpqGsMsx5%ox&d2(*Hh@&8=Q}^&HS60TuxxCSuT+lR-96mZ~UzXEam6| zLheeZC05o`%T2WVFl-7RijuOGNsu%h%!7ZDA7oM01cBOIfE6XgpdkR?ty4Wixc-2M zt|7OuXwY zJc&>jfV=%B`SiZ>@geXmzf%Bul+Yh1-k_X+ex!$%#zC$IftVii%HY8(`0gfn&=zR z<>OiGvt#A0Jo?pl`N*%{ZI}P|&y!c*ef7j1`<_&S{_88rzm8K{fqnkvc{H$gn?69- zZV{p1#Z}S#a!O8y1fZOdCbo2#klY$(FS04Cb@aUphdJu>=d4dHr2sve6UstcAw3SAsU5n(1(?fzrHe_oD1&xvML zis<;@2L$u`>OY~3fq(-uV3XamX8ZxUv<0S~uf=V)ZX_*$vuKt5*19#jVodD(?e`** z*G;e?X;j#ls}q@|rhYyH9yvuq+Z6o?Qcs@cYI%;Yr=^}Iq>|0Sw(`AH0qJlHtbCet z4&!f!)@P|i^X8l<`GM$XXy}~B{Qva@nh_PWCe2C%>v8fCPy(y(wZcJ&pnh8h1!`rS zFBaH2vGE_r7Lv!>uq=wah0s~FOztCqY2q5d2F=lCm40Y)&OqoQ8Z1peur%{LN{0_( z9r3XjML(z~BIQesXBnMBC~Z`=u#(pq-~v{A#~h0SQcg6Cs4XBnkj!XOFZgcFBpQ`= zq>0ow2!#%bFGBzK&sF#9hs69g9QU*&c3_=&u+ts*v`jPD=)f=AYyr@{zJcG6_yXy# zGCei;qnXco*R}O}(cU0YVT%~Zsq(KwiB?5#GL)m63&WGj*OvhXTMRqG zJ(qOSdtmYCK~Wb&!3xWT+noA9xA4nUo4O5Le*Glb1J;=XM`N4|(eCw0+eS3RA^G2q zl|1@wG86@wmx2c%cZvTj9kbtg^yKBKCY`_d;z@cG&tPsBkHIB3!C^*^>QK0;v_dA>wd3A$w5gztF?J?tci*@u9|x;$)^%2 z^Rd-(v4kD%am!*ZL%A2xJ7aWB!^{4RcZ&W?vI@-=tCA7x@ep{bg``>^C%GIsW9bz- z8S3%2Hi?ZT2xgV7)}`$mrw@8<_B?|%`08U{bxVlH*v~!3H)hK{?eePE0%AH2vQk7~ zbm}M*vY(SUV6Y>}SMk-DG`xa7R|XqDEpaxkH&0|MDj}!1@VPZ_=k?Ksb%u(~O@UEz zySBE~g|D~YG73WPVoy{NzYyxY0c*NJb8=*Kb}8#s?q&mg2P**m?b>;0aGG@z=!ciP zf_DK|Qi^Qk@n43Y*5J1dU~3x!i6h;ty`P`wJuZN*B0>j8qcHrPvCn^BsZ#WnM!z6_MC!0?l&FjLeD&^I@^mmGjlqaBk0wI)}fr?8_&x6fT zPww|aBQ=X)Z{EUd+A=|gyz#lA_%oA)wOyPU*5vpQkS*MR)7>+eIvD4rc79i}f7V1x z&Bbp#V(mLTay&bn>mUav75?egpN|8{OW%Oat{5G5?&ig?u86>oPGZh>QLAZ0eaAiw zAWCcm?EwiE1CSpLi^2au4S8_EJ{HA;|2Qpi7`cr2}-T^uGGwH?A z5OL|W$X?xNmtkDjrG%PRcD<+ZVXt|?CfngAso#Ro@kKVl9}rKtWmCIzoB+!AF?iG9 zbrjTRNqEFaoHj7l!H$VJ4gpGwOt3x3JDFZ=Tv!}6TRSz&7#*`1fD`8~AmRpY@^#Og z8Yiuh-k}<&=Kg!9dOFUE@{|T0-M;Kk>1{vW+8Cmt+h-trL1OU! z?wiLUv~AU-OlCrim>GOA-qXs2mNB-j>CbLxjJM8u4U*e8t-pL3O&j?g17RFY7i=6% zb`_$bK>;CraT((L-*h!~nBeJ0w2R~EdEcyE&txCiPgMLo0J$5~pyRs87+m`~_e+`4 zRm;w#qde*II4Ws9OmkPtq>cfd#t(*LU*>}-DRH@!s~{$B#MnKYUrNw*+ZVBpOJsLP zN2|>*s5H(63K6#LZOAn!y6y-DGKTw+sc8GFHHO|3f=U?LPOrP{s)bgQ6HDa0TQ%!Q zzTN+RJEJ}&)3s>@(`PHsF*0y36EY(zkvF`0L$}eI@bgU>?tB4VuY)O6PFGVPQJ23mNRA|=s6_@8*)hcK8h#oRC{2OoSIJC4~e zi;FQi1#BecY!aRF2Sz@tI(MY`)##blo-^M?Pg(qlc2DIuc4*SkLC2Wt+ zw&@1Cjq|k}{T+kWCN^s=$nlF?EG$kTCgBPB(Ly5X7mf)p@s|@9)a z81BAU;kwR1iQ}-+osvl77t(e(wEGvSaSr%+EKBm-N))+v!!I)rePRid#+ZdXP8?qm zi+_I%6#47Xu3S^AoBT06I(kcXBimHHB*HJl?{brkOe90>H`TsxEf>c?3|dXEBAr5> zk$B2x1!c^6CDZP2xbgX0Wf|#6&W&~=F0hqp+{Rr|508RARMTCFiMB7YYx<^ReQL;O zce4)*8+#&2oniCL8ED|U8A*!v_#X2!A0jv>B8Yi*Ubs^%j}B>ii(90W#xBGT&pGJC zhRE@@Ec+IznFzQ#{w9y@KSfAMhZ|p2o+9%;% zQ+|G%svk329=^W+pzX%PplEv0#XLvV8xBEvXE50`hW-%W6`6=bjb0E?pYm^0oqaVL zoZ>;UI?1Q^u-xjMT#n(2j!~0yNdMrW7qbwy=oKs(%Fq;w2>eyR zDk969h947Eqvw!-Ui(mH%N%$ZbQY**YZkb-futxHpTVl_NE@@7Fc=g{3pqwP&=WaKU@28`rhhgqvsr0&-D z-dzkii;N06TZh-$$s={g_skbmD2&4!(aC6(l97!7e4egB$aZZ5K2=WA~cZ>!^_csgD)jPN!??`vsjB;P_wcs?ZxZg zO^4PJS%tv8a0r2&cV;uQxR`Y@UFJT>{1MmiTWr2t}`m6Iy}(qRj{ zy6y(?wdc*zm|b>+Vk;t9tZt$fU-YGjvwQ397oaZRA8NkW<$zyQZKS-&@{r>K_g!P! zS^K9BjjM5itF2G>{8-UjbhlT&d~z6u4$wC4gSR1(Nd54FfP<P;OnOEQ z)ti`3Ajco$j0tZ!YW3ew*MKllKwQ#ribhFX@Ba_;AWtEW_b3&_6WV$HsKckA9~-)* zm9eq4c)Hmf&+aUa)yMIrVXBZ6yO9Ic4ICSwh9+ju9+ccoi3e>H9uqAan4awq z_hLY_htQ?Hq#N;O@d??YFuQeWgE6C957yn zh!C<^OV;V;W>_D1wj#N?tA}v<9|mDz3PG-kxj&Dy7-~sn?yyuE@wt)qCBa36N`6KM z5lXV;Fnh|<&>?Ash1CRl(dy-W7RB(~5Ndbtx72qF)hzEt*YXWNyPPSo(I=95*42Tv zfQbo-?9wzK7|Z6nt`-cBp7@BW`IcM;LcbZXNodD6{eM|cIa_DSm~Wx;gPnVHxvVM$ z#eKObReSHY0j4agTTcnf-$({X4s9?jj#6bIvRgNamOY|6M>y8KnlJl5mu+ECalm|W z&wlOupn~{g@3AO+hfJf*qYf5DB!w7=p6HTx;r(X+!O%MG02ng?Bt6B)T0TT(j#}e54i~;R z=W;Yq%=9`@=|Ycj#`QlX>Z5u#JN9i=gl3CJ)~&>;NR&#dPW3fMP4U~1B4ldg@)?3^ z?sJ!y<0<2~-{oV!U0dHkiFw)3>4;{zGdw(a9DtSd4H?lYQJ}4J9*-!-u?ig0Mm zSoo6pO8;pjX~KBNyBZKB2ZkjClm^ZEoa_19VIKW8l=+#H2onkiSnG>?phiKwnxk@%}p*2k=ZuCl)>Wo6s99$JA` z!FA8NrO4(JUjCOgK`-bByybMZQogYyDVHB|BJ=gz86=kg*gQ$SzY`>=K=mu-lk%oLx!z zL^QQS30rlL4=F`@p~I~geXk2V7?_MDcKzF~KDW{m*PijU~zJTv@0pY%E9U82xi*zL@q)rM)vTKFdNj$M(el$-hF-=rIF8Are*0V?nt zEWxYHNOcT2Dt*XJ_@aTJPg?6XBdYuu{Yo8_j)QZ6C;Az(;6xREM3(}P) z7dW#Ak1oOY(%?uew$tdmxs=O?zh~>3{}0IgCi=oT;a5`s@Yf?l4$h;_lO^1><$%M|>_-As51+T(@yh z{{dl{h9Y<;e^T(iBS4tPdDsis%V8I3_V)mUI2fnZW!g8(a?Sg+FyPABuKDRBU{M2B z9tsbn#L66e0Uke~AaH`;XqEu8?p_7X;t zT<^y4z=D*S9zsRdxQSY)altb5U;ylxd!wBw0wXYJC75D*jx2z7M8cNL3N0;qLg^-L z)-uF&kY@;BL3Hu&f``)jnFas*vF0T*pB8bL=N*6+{5Gb{Z%5jspc~QR;n%W%j;C4j zdf!`I(cyMr%`#2v``4a`Cw0%2skQg^b6JW}0Fk99h3+@N&WQIDEL9I2_PljeJ(7V8 zLIAV{E(blY9{}LtK|i!N05y=c0Q<`hWbHUfrJj7pInr5{cb12ZI+6PUfdLqZMCPE9 zW_OwK3{CU17DPYO0ZQ9b=aBE;56AR#G$JeU1>`T^7t71pU}IpnWzvWeBo2y@gcYu9 zBW!4nu{r_tk&ITBo6cxdM{;Q}?3pAw!%?T;->^mywU9|L2d@@P=j1kkAT{J!m88!2 zm3i2Y2VlFK&@&(}P*T*tenEpNIUJ@K@ZX-HGJv|4bQHU`X?p`Lpa5gmyxv8SBqKUc zB*eIv!RqigFIeji_tiPWG)=-Pc@3fE3K2>p6bqaHP=LMlfTp4cOVkNgld(04I_w8c z=b#|(yozkmlgUL4y8h4{g)#?f?{Zo#Ye{XUw^KdonN+@=a)UiUYCrOD(;Yv<);Bkpi312uVb}=UA39{PP5?X4((!zYN_H z1zQd}Z3jT~`+M*sYEXi~-GD3<0e2ihH+%;jV`l)Xa9{aIp9|Ji#fZi}ujzo|pnxtJ z0)dPP-sR645LV*TXTdMg%Jn}Wu`BSc(#L?Z>7k4w0wo_pfBmYVmK61XckSs-OceYb z;5`l%!2`K0Voc>#nw%$7(7ij^1pOtm zB*BJ%9Oc5Cy~)Xdj!O8cqrPoTclcTVX-&B=tnAScP#*aVqOs38vx{w7Kus;Rb4~uN zwjSv6w@&_#AvR5)ysSH+&tiymjSR5tKCE%Z)1 z6)-%7#?HG>4m+$(CRDf@U+<(bWG(t1?W*R*ZvmekgXrW0bX#6+XD!`^z1dT=eGnqX zs{Qqw+lEGhwGHw8WUC#}uWEXAX{U3_Yxt)%)zjlt{H+2pVSFmm5sut^FOCPXD;uBe z$^QR$`x#hCW#wF1kQdgkPeSlcg;~UuG%%$`3xo*PrBi9S%qS6IZ_L7VBTkeH4D~v# zY#~-zCSi45S?R{rBiV%9(y$w1X;m#@4$F?zfdku^w0-2`#{Se3d?AlWEnlXrG+u^G z#ru#&YT!Cb$tvm$Rb;>#6QjV&%mL6=YW7NZA9A)+9zb0{D0KG>IFlY6Bio)cls(SY7Fn?1^0>#2* zC!=O393mx|8>77XB%QLI%oVi#>EHOZ?N5egw^uXwjl!>q;Pr&ZXn?zJMgoonB6Wu5 z_`0*v2@2R0l6?0m;@l$`M$3Trco|A;hdnC=ozAtb{hq%AAa8 z<+|uHDKT&is_%O6WIibz0aw>p@mGb0Po*@XPk&SWK?boxhz z9kXi#+wvT9@0?UGv3;heXK-+5%*(MHI`VPjeb)q+kM?}~95sEngzZX1g({)=0WKqr zQbUqPpT?vofkesY#(~LKfP(Tg09^_cO_E_gt8EQz=Ppp|`alkJb84Nl!k>mLtuiHr z#bbE0zPaD69~D0+XPmsU?ryhhr1Xwg@z&j_NYP76{M$`?3&o;Rc;W%BEc*KQw!Z5AHGxM75y}tT)gN8Cqkhqu4-QU|Tp@F$syaTj zWpRVj;p=mETXtlwggGm2WGYYHh;-4qn7d}FsvXUGJK&9xvfjtHIdce-m!hwwr3s3r zLj{E>Js&xz&jmc{$u%x7GvZ!<`Yc+Fo)yu_A}EHfo9N9UZlE~A%BcV1!>d*DG#(}v z`hwD(rp*Wed^A!XE*Yl~OxU86rZfLcy)u*QdVc2J zrX+UBy-~GF>gkcC`y8UGIMF9$+kHeU+zV9JfgeOj?a zo%*e%-K3}tA-f<;Dl3WWYI+jCP7~!wzhbEz&S;b2eL~q!RyOVF#!!YVPsCXy*HqI_ zQNvFbtjV1o!x(P#(%cV@ivBu6o#tq2lS4Q0@y(MU>ByUIsQP0qi1{t0yFGDQ+!=4w zM-{EnifGyCXStzjZV2VeGMR|foT@&pFT=q_ti(9 zH$SMcHR}nAyY}=lqe*~MFbaIp;7xR-!o$4OCZL@-AI+4)&sLz*XWFWo*+s|uxYud9 zUaLkfbc7SNH(`}G<*Z|6SxnCwKYtuoZLoNkNTB_hSNrtI3tUVpE@7=a;mjL0UMs;J zcLL*jX4hhvp^^CYj;~?`m}eQw=K<)xJdM1#HrUTPh=U4KAm>91_jAor*Q|B`x@z#e z9`~XE5Ujx+eCdC-Cb4q%zH`-QMm*r7-mJ-JR(BoG}WYvVO1Pm?Rhom^9*e8BksN^YK zd6r9~-p6+)sj+=yS@+Y|P|4tn_TC8$*SJ5tN^4`o#e1!BEGwpDmD!EBkhSFDlale( zP*2A0+G#}}KU5b|^_SoMpZr#7x4RW_aVHfftjx(2i@OuuN?kkO;4MqFV#$QrC^~L_ zdJTOwk5LcAc3|e=05nIzt#+V`@Yn_G<%adx&B3?>VWv-nGBd<4KS{j6K2h7FS*vo- z@i3}`9z!I6KcoO`Au;z2A`g9X()5n}Dcx!z|<=~CkgXwkjAll}8XdghwvWn`#5K$pD| zfJYQ&TCDHFVjmWodfpCd+s+hpVp^tcDNp=_hDRxIWH6N6l^-}j>oXaL5CpWUIF1T+ z$O$p#s3v`UrB@;0@@&M4XGD_p=}q^C_=ea~xX<41EmFBJiuOJR{fICx4s037EL^`A zPl5>Hmbgf5C%9a%k`z-I@OZ&wP>XxQK+c{AlOee54FwqisYXgf!IginLqE#Le6PA3 zz1CIGpHf(2ek)~=al#|=fw8Hk+nHyf+z=(~Tc4ZC2A3<^sw7R$`ZO}00S!MlD@8P~sr z`-f7?_e z3FQtJ&)6)(tf+d7u*`^4-r51OQk^!d>AFHw8m+HZdvJm=w#=NS zkUmjlIb9M-J%jxKdgt=#RjurG6GU)?Li2`$n}sjNw_3{_oh1K@30(&MdI4w&VCnzt zwcaoPtBOqW^q%}6<8aycpyTGLkhKkIks3ZF<<%vLHHn3^q)4qU{PaDhE~SQ({f#>s zk`6r==rZH|DIgaHMIGY|l%>$UrLQ&nIB9pZg&FRMeQuE6jFs!arLxz3uf8KaK*PhN zZ&A?k$R^F3un%YA5$$BiB8#1O1515E3O~8M?r82%l0hbJ=judSQic?xz5Xw*qb8LN z*jSDJd8YxuLb9B1@WSgG2&fZJx72;88!2%s(bMXk3p?o+7hx;~eVD{W7ur2CpTOOa zWd7C%e#+!Cc<(;ZSx{9+ihCm2dhB;8cZ8pQHX^!J?rW7Jjo!AN+kN`l)gZ9;^RYTf z$nc$FK$3L#5~FHwida?oR{GM6ggrato62KX!a#}_cJ~-UEnSt$ zxCN+vzozF}!8HV>EqnOb5yNYnw527*2uUjB@LZ70j?$|u6OTI?{F-M!EeFOalT4hI zH!O^>dP?PA)T_Qs!!9B8{53=ITKrsm2rGFYN3+x8@e$sAF&hKvk(=rWL?Pnsh?H-? zHnYojHdkV~@0fWMvt+SSq}M3Yv*^!lx0|q&Z4lt{MHO74-(B(T>j=APQo-ak|HhZ!FW!m4{CcBDLsC`7eeQ7@ z;e=pTD*d6cA*Eve|JUAkhBeh~>w+jCph$1h1VpJy5vdWBCLhv!34(%vRHc`N2q;Am z5KvHx^b$f9sS)WQhK_Wl_g+Ji@6Py@z1`=zXYX_W+&||>o;*p`%9>@&ImdYCJIAXl znL2$kHja-sj`Dj{Y^uy-`jv^hqRxG@ONlz2ykcsK3E2L{v5E3S>$1h{)fvCgkz6l? zd`qN>qMf~+^Ez*=@F2?j(>XDd*IV(eKov|!S>HMnfwiif8x=@WrVLU$8g_t*{51j2?c5VJ|T9~WkAZMD_{RSr=g z=-B0q%xy%DtM=?T`aewa@bwD$Tov}P0|+!#9XnZ?)YNNyCR1PpL*@xUqn*r0-v89r z%3+%c3`O{#ZzentR%u7`}Ka z+640jG?RCoPweR6?oL- zo$;4VPudvzOh%jT-aqxO=3y}T(52yCeJkpA{Q+&_|77X=KX!L0H}U>`r*q8&MaZ~scqQ3(v z?p0PhKqj03I0L|gw>ssE{PFYu@ny(=iTxHgRx4&4b4lxKh@GD63hU4Ml(|DbZPI%M za4S%^e+UNY_vf>DOzZ}9J^)Ig4UJ$?`%9*XP$D=e(IoVpl~5p*BPXmnqE(Xtv47@o zk)t`zU;j>L%?7Ccl*TJN20R6;_MaL@(yHGiP)ES<02%^tzL{5k1m!8Ad%t8gw;eV> zEY;jg-haRCz~r#zarwTPq}AD(m(;Jtk0>&630c6+zYT^SQ9MxY8R*aFP;Qubqib4z zHewv#*#|B1`GF<|AYpkMnLdN?TeCmt(AegHxAS=64bAl3V{`6X~*e-fNa2Yt_^nvx6J-4A&T7+e-i_@d8E zmvWD4AnZX6fKw@dCu-^a<#J_k8uv;`=RYq`1$aVcCHZyK2G|zb^0->l|D$jIk#L8W z%oVp23$pO@E|`Jt38%5#H|h?`%8I!BYzS?J#*z_=w+0mAd_gbE5biV#NE;WV>(z!F z?BP2@z;KC&f!KTIF+m7BwJPoKEGQu(xQ3DceL8-i54C_;z>^>eb=W7!gvz_XHrYWn zg^pn#g|vQ+(9pj;sMaOmJ}&J+V=+a=L!+xAZuQ_KN1kL?M95oOjeNw#_*$V}?SO`^ zW6+ROrJxCP_K!t3Ktl$${Z7PSuF#rm6X<;a3UM5ebO2fpW%D~xMCRH)d=jK_h`|fQ z*yxo!YO9uKARAjn)q{KvoLB=+mohvc!5pkYTl#*i@1Ca0cdY!EhzwZKKko282!C9E zR*S)r`dVRL7Q*kUho(I9hz+5yMp>Ua!!N|w3zc&zG-VvX6eVbH`9nHe7;_~hX3Ue9=(uu@?2z)p{X)u~XER1Ku1-{&d zw(Uv0Z(`6`?4515;x*YKBe3wx)x8VeF8E;6Dm-N-82fvGHREs>mIf5_eA2!hZXE4* zJ~lwhHbJ|z0Nb_z&BmGeb#n@LveE_1qzZ=fB7WdA1Oqz_?Xc3Vshzb~i-oCPVPJmd z1B!e#Fg#54*Qep~L-0@|2uvZH8Pvjj%Y|(}Fh5 zAe!G>Mq${7c~FxLxu>w?7!D`+i+JY)r17RbI#dX?mJ6c4Sy|l5upIrPA8d4BTLQ>q z8C`S4GOS?4f0JtM#(*>a{_B9L9P~eX72z!RF|ECP{k!=dmo-AKw27%0xCTC~CdngV z_enoPAqYleNPKf`1mLOD_{5GKD~*AHTwD+&9m5W_({f^t2s~c&N{^fe;KQmxD|65; zBNB#8??U~}=kk9?)0eDCjN{Z2LLV|vg5J52beeAnJR0@b(- z+_QO69O><({=q;S6-khKpZ9Oj+2a~&n;c9hE0NIRaItAk3jFA#J-ELGwd**nz;k~E zBbGS;*q_E!e{G`*cFBSA^Ej6i@@)c(YeniIg#hROMGYDUfl->tTGfPwM7M<>5_YRc z|0)`3;xk~yNw9tDpT47GLUG|u&|F<<$7GYg6D>(pb`Ezfq_xH5E~6`dK;N~7cR|HCJ0UEKlNH9kBhMKAH7csQJ;~stwitS=Q)o`gd*Fxhy8NLQ6 zw;`FPEW5w!rICK)#4Hi2RQ<^1JMt$OA^x6lyezus{htTK{`2>Y!j)^u?C;GdBjeew zM+Kygs*mx~9oQIhx%#xiWQevM12_#o$TYlc;23}^CFK<;?UDPoEFy^}k>eHBtydPC z4nI;xU$yMDy5%M-9)~y0DS6tVZOg*Wx3p-Ry1muXhXc2Y1{4PNe2xCl++=NgTb^PRB~yorHdoK$n#T zC^otBdC^)r2*?WKxg%%`KZp_AKAed=d!4LOT{t_tepiG0&05ZjdolLJN2`9W?l6iA z)n&>xm9PiLye%f2L^TOtPqQ>G`}GPBB3gEpv5RXNFKjdmSlZz_FQug=>KFLyQOH)H ztAh!xFSw0ODP%))`r+)N_d*3*-gOE>H7cdNI90z+p$7RC#A znLfk%0#3*(ffJ&HT;|+b$pOX#7NOoU1B%N4+jyaoQc|XuGry~4c#$^zH^&!4Y{GdTh^_suUJkpkWHx4$4{7i zadP_f*7Qb{l$DFEv~;Vh^ryD;q74vzE}89An;OTBenxkcADeyQt>eEN6{RBObTU|a zmgD+#X4QuZv$Qhv?5=U29MSQzAn7)xvpyL8#Nquw&9u=z8@@NPC#|d%Yh6#qxAE?v z>5nyzB{ah4{hn{+xch&bHX_e09xrKBXh;x7n@wS$S$PR@kqpM+M>o!2k5l& z5_*SB>2tNBW2PoKsZ~j>?q#>FUvP7A5D7KEgzB#296n^&KJ++^@N(H6BMv%lD#aEo zFKbVZKKC#Yc^9WA(D~X{nutM~=QuO1uW)jrDZtI^@yZ2Fo~N|M6a^T%;hd{FObSj= zaf_^((pqc6gBL#bbYEPAc|=x$RN%*PqE;0#pN_AxdRaX!4XI^vOtfD%eMZ!2lun2# z=u%!GVc}t3=u2@c7?riOXpX1s`q(K`!glV1)VW9TZ#k}9P2DXlGCg`}S@YH9Zq>FD zk=%#R2~>C7uggURN+xX-p%75#??i(U2hMkg5`h=N4L`n1$b8d{5GKPbq4qyRIQqR_ zBe26^>o&mzrls~X>J`Txjw#-g@QSevTWgh}Rw*KxDCjoA-i5A7zIhIt_u)m}4IwSX z`2LJSaRJAgqO3E8Z=JdJr16zhMvQqPPUv_0_MR`lof?RK2JGK4RSs}= zphgM*D*l)|AEf*=szcYXi;W&i0pUFC?gH;tPfP{`vs^f(NIb3(&`5Mbz$CY_`rXZ= zj*~j%GXfbY(X;nFIyQ7B%~i!3>AA6adJjYoQh4J6YIbwaIu?eHwwQXLu|dFhL%v4s zvRtlMNjoA2vpxJOv?ykX%q_rns7PwsJseIdG2yLuf;;TMbP{XwCH+i^Dk*3pV^j!FP<$zOPsj*DbAy+wa3Se|8pb%80f$u;652 zA$sYazAM=+JEk-=vm1Hjg2+Brx?rv--gxQecB0;ZUFk{A){KgJlnkyVbZR8Z@dTPB z-1r=&*!MV}rNvAALM}ya^=sp3iTH`wk9Skpl>De{(r$+eOFo%aMLl>J__bGvnXX~; z$w-xrtvLEOyd;yS5l3<;zDiC8fvC)KtK+m+6XErLD}F+$m|B}uD@XN5wfWpZ$oDsE zqeG6bKTjNOBggni$oL|HT-o^Z+5#Ojf$22dy*+CD?|p_EK$qd{!iIeiD|F~=(u`Eq z)XMfsfzF6s$|Bccq z&~eF9_Nk1yayWZgK@s9(bo)oSnVw-~ODEx~X-OM#qyDc6h2!7eoD60fEhd!`)plDa zM{usM7PxpN0ffCJbA*Q}CpOR=Y@8_^5a73B!-hw4 zc)0)=2v|Xcd?FB)K08+LwP35VR`0fECbR!8*VJT5D%oW;#Hd6r)Y-!1i3tlVgnE4e zW!hry%oa|W>Sl4RFyKcQLR7sXc*elSI_Kh!aHi&BUwP?CHP;)~M2$<9VhX{94sMlL z{KihHo@Rf=T<^WXO1;OMDNmf}4U6)=jCqMOTB#7VF)zp$>`t-#{2BgmN7y0mC3v+FWo8%FLSxq`j7?74(8Ws z*yNi#^uU|k&V(+7G+R+@-<&OOKjbAnI!zY4VvrG1j})(5!&o?NqxNk0E&I9qUAT{h zV)zi6hDIlZ(`jky3ZfCwV(R?SZ;EOX zJ#^=1&Bsz(Hu>?upWojA)GNntj%^Jm0oMk?0|;s#;dkb--l0~+SJ;%@Hufd(ZtY(C zNVSl*g*%~Ex}jaEVt%OJ6HfnCPRj{EhajTLsCOMJT;7DQZ|=%rP;C5D8%NTIhnfBCx zXwmJD(6vtOXm6gAFTEFFLFv?d19dm2nb(H)4_cBu=_c&AEKQADTqweA#jeMV%C{Sr za2T`j&V@^#r*qR9uHI~(^DA9mBiwlVZ0(MgmZJjvF-uD-WMO0x5p0Tk4gRxRkzXf zQ2SUBnDGIy0wl=>R{k|)Li{n?MVhhb1JZ2JpM6W5odH^T4vl-d0qrK6&N&wJ0Bm4; z0pEB)pjEk7ZXYdd%`9Qc*Sz6}bbGiH;9Mm=29T70o}nfA_N%FSAACwXiUHvw3O|Uv zTbvA?-W+K=Ud6-XKtYRksM!yTzinwEaX$R`u)WV4#beWBHZ7j0z3DW}`GiInWKknj z+tl+tf2%BDZyiN_)}Io1zhiJv>+gOmBXZPPlM{zp8r9F5WfI=r40KA59&dFMTu2H} zNjqqGU2HyeND0KcUqjC~mQGWg<|UHm9n`$tH^2X-$uV!-etVq^{e;Jsq@Pw$bjf(8 zDY;bL5Mo?5(y6->#)4Q&Fmrz?rpxCno=Uz1m+=VCKAh4TbaCR+&^Y8qP3^N)Pg62X z_NafmNh_9KGS0+BD{eYkoQ1hZQwP$~AGaSf3f|J4INc%CneH|aYc7(&k&$P1D6SlE z0n-<7_EsFmKK(N7k+$3oo>boPFIOv4#orp;M0yu2Hz_*So}trAUR$^9yFS{f`t2se z&O2>!A9LrER3$v@-b6#alC@5rL-tk?-n>#wyEeF8b^27CXmEN;5&sqf@bvr>2G&buq;d_o7r8Nhov`aVq_k^8NLGT%mMO{9`*r1 zKD0panAVf4;s!n^OyRJV!D4TxN4P)bboQg znue#5cftFkwgsRUUOh|dXHi~-rY65Ah+Y?DM_`7=#yzJgidc#c;DH$~6UZ-E0>Apk# zdSSRHA|J%I(Y1hz3Oize9Tx1dUKaXVW=JS12P@U~#^EiGsiQ5ze-i-E|8gw=(hOHo zoIBKnYNZZ0)gX3-g)7UtSlhQ4P2!)aTxvqv>cS{Mwb;Gz{t&3vmcgQ_!mDKYSBbst zeS+g?cMU45F2Q!y@8&U|f2r5Md-f�AeH%HqUAJ%+n_^|A)Nuf>C{{pm1-8Y>ia% zQ?633y@IsOuoVDu{{VfG2?)Z4Lzmu5XFte_gU1{_ZBktJfnm7;zKuPEWO5C~NP(NTYu*e#i4fy>FhQuc@Q&*^F#;o?A&D`pnAnI<&!o$D@Ay z;6I8{vgui;q6~ym!AuYVl%FObygzIkWMeV#{m85>e@d8hw6a#T4coNbvySEmHX;QF zHbRYk0We1fqlz?&6~ik0!yz-h&V)zv8FQIdGMu`CeRF>}A;66uy zE2L>*pQp{JVtGtaSP)F!BG@FW094_y532WUFx}_ipMMGtV8o9)KFA5x)p$dtou8oK zMS*^TJ}`*+VHvA0dFHYt<%G!G>^&!i+3|Fejd=Rl?|51|kij|Ah+qo}2$C27-D5A| zdkg>Qj3*0In=c$dqXQ%-mJVxgw>epa`K?4a=brtHt6cLUL*oX%2YKUt{1;Hp;V%kE zx-RI)xnXFb4ZvKWNf=bI7g#s2hk(U)kI-cUd4>Pn(JsIIT5xJ}zTlv2M7S*Fb*8!{ zOj<0jB{;RdQ)s*2f?-7)Et;yBX`X>fDn$u7N!o_74wM!$%NWMQ5k})7)#qjHbuw2~*!{#}4~-t_O9Wh&@VhLW z8JlHPojRMy+?Z(eGUih?XDFv-{s;uWf~mXn=$KL$7={Zr0BVg{71qE9ptkmaU99G1 zt_;eGuFP{9g|`Btu>*W(4ZwlO!(kGnKWs~R<9VfQVSu>5xJ4JQ)Bf|YIT5w%!l_~P zpCj^YC9T%u@C`Ql7h=*tDseL)|M>)VB+m4+rvzOfIuNEl;;cLD)!i2MW z!GFu=J13p7iI$H?u8`rTN?#X`c}s`^3omveDF0a##26c!1v>c)9Bbg0Se2bqmA=fX zA19&i=fqbl6P0i_Tb=WrB?$#tdgieu>SuTPk*9)P2Z}L(mY)8dsN*&25YV>&xj^t6 zK+3H?unWvrSN3V-q;4MuOh-DtnRF6$sC+kY1NWXM(VLy#bz&q4>j)|nYBB@EkU+Bo zFswxYpR%iUp$3Db^m;;t{BNWRIiw==eO|-x!^i#rwWcU{BbG{6{tiupI^4v>&KQ;hYZWT-MgafcJelXD!SWZcOmbJ%^b7eP()QZe?&!ESj?YjjE-JeL)_Ad;1>ldT zVc!7vEdmL>uV*z$FxA$MFtkL?-xs**ybuI^{h zg|F+nmp)z-=b>rmeSD#YLQw9GOwI+lc#Vd%&6!Y1Cc=RxH`c#g(*L)2-79=*RQj<1 zK_{Mfbzluil>~DZ&#|e^eX9A5wFbYVZ7zW5+e{6V2%VNjCp{S-&KZ`GW63EFcgf|g z(%@yfuqApEIZAb0#iC(zDutKhiXsp5bdA8zJRAf>ULZB!+Cx}mzT3H2*i>Jje5_iX z$N3BSu6zy0vj~tP&W(eqc3AFaVclqEit(;ubiFD%$uhQ#8oTiI~B=F4wM@(3n?`Uzxec`9#pM~q**M75cGvRSHrV8@Ahv_*5 zom@-~i_g(i$oKN$8(dBG8Yvd#tu|A}Gbg+Y=cTUmd%J(4#`kMq#n`*+w?!mVa2kQv zQYu4yywO@B5-X`kOQsTkdGo|`_)|N`wTk1eT22PEtQNQ9@Zjsww`!m0SU%3V619Gv z5MY<-+ZGL3nl23RGSW1qB&!#d$CkGUatRq^#zw4h*#wcJ8NS(bP{-dochi1a({9zZ z-NNa-8FRakalXQxRa&hryU7AGf0^<~jc4i~hbkkxFP+!CD?hvsnFRD{DxSOJRd$7uE zLMdJa8o3*bU9L=gdjEbvo+VMgR)9bU&u{dr6cG`TL08g6wRC;vvwAE10w_L>nARa& z7SsiVLO6wFlP-NEnL8Ct{FTg?=&!8^l4p_dfrnU+X<7ZgJqz8FW_qk<>NINNENEJ_ zk7!FWXUCY*K}q)83u;U{hjClHkp>BCLXsr(ogLl`QZxc#r9OKbuP=clx5ubtoLZ|J7UsSDID+>+S7dky`t7B~CX%sY zU(mVFhD}2^f**=_NSkVeQ-!dcmwO`DN?xpLL>V-(eb%S@@m^Z?;y&h9QnwRtgT-8z zg~T02*FKv}?5DM)jKg@N z(%wqJ%gA*Rm&))Qe0!V^<*WELQRnv4cxI5o_oD2H!HGpnn)n-GougCD$<0HC4|t;c z?mpB`XQsIQnGLWZyDj_W#B=ODKa^yh_<^{X?C4X>V5*jEWE+r6!s#C^>)S(?q6i6i zJ2sX&_!d_Q*CmJUN{Nk`n@cu#rUrJm^2}eOK+Y{$pq{YlI*A;wwPMEtYP42&@<{1Y z9*RsHH@MWJ*cu+%NIG2GnYI~-5r>W68E>vHR!Bj$|Z`nzXu;1kZY4KOBX6oI?ha|F`v1mxL;XY zWpwR`d}?tijA%A0>ioT#94*s6)TU(`6yW9W?7~%->Rqhs&3;pn_kqnRF+jNuX5*S2 zd`H$~IC>Hj+HB;Nq_<34R7Go{#_}dXY1WF$Rpv2!36PsB_;Zt28qNkGHqp3eTwwja zSA-C6^P)RUxl`%~l9R}*m~cm%X|O#{yryr*oUn5~J%nejanUVm*rM>k&?x#_XqVcl z?7j&uCDM8A8)sg6AI0Pjl?urb-@W@Nt5Z_m@IghAu#JmEyG`hAv4@{-s5QA7$6b+b zRV14CmoHlJRq9*BfN=q-tn3&nfE1E1suunfV>}_gfqME??B6if5q; zDj9oA+Dd;;LFeTi^(v_lYpDYxL(>oWxx(YAPR)#Q>Cvj6PBq-)QzyEYZ@#y3gQ4!4 zmv?_FuN~?9z&31YRAzZap-Zg_j9qyp{#RXj9p~f1cpP5ccX#%1k9aIny6qG78Aksu>3P_C#N|WB3!2(Ke0*dsGKoIFoq=QIr zO7FcS)DTE=$9?{N&KCDMyWH(L``$-<#xO%Nneu&Wz3W}?T7&z98wZYDQBYO@@bK^e z6Yw8^8v^72l0%1x4-t_N6BCn?l8_yyp*T!Vewg9tF)A7sMmAO!MrP&{9DH0SPMu|E zX66<>bN2iNAt50)E-|T#0+M`!LIPiQf=5b9dYJq$Jp~25z)9wl0)O}i_a2}o!M{mN zLV$M)z^BF|pvJ@118e|*M+6@2mjnL4A3S^lLZU;&B&1~I;2VmL0Qh(W1o(smL_~yy z;JdxRzXOESL`P3vkUexv<2LarI~sw9VM!$Hm-1_9HMx+e|2(q;=S2;k7d{~&0U`01^TNY-0T%*lLZXuw4jq-% zAiiyP?3BPm5}He4N%=LT?1GvI+B^1LWXCy#CQc*2oZ3%k_WMrk(VsfAf1cRC&T9}j zOn?X8JOXL}0_>o!9*U!kVV z8->Z+r|a!v3-A>`G^I-yvH3~5SS49PK5O6rQ>L_s)~7|$;kt?19Ne1kql^oYfs_IY z@_^H(POJs1WWvo?az&l;`^Fk?J?1Pgo{F)3UE|FE!ZZJo{#koz^+PT?#uK@hq^`>p zmj|y}R<0^WxjwPC(dPNE2;e;=JVI;%^e6js0|ytlO(S|VDRJI**gW9A^=ws1(RKU4 z=65C!1unheV%UO*mxlPeQ0uuGeVCn;52i1&Jj3C9ku3QxM?$SP`5LwBtJ=4E!>C{u zo+afN$C9WeHQiGlcjhb#*rPs7dn<`C%v;`*(j)isFx=BF_8t8&N@`N%Dp^#Z$#ME) zLL-y4-M)m>QW!Gind2CXSxOx%W5S;5BzBTosDHkVwov6%g~U6NU^>8*BPJY8Auv~u z1CCg2MTI#oI4%*Enmv!wI(0h~;0msy034l1B@q}*(QvVj!xgLC!I|fuKc=P7?>?s? zYGPlV%Qba%nbZz@?JDn7u@nBW4qwIPm2PEeD@!6TO5R(ubFCgG1Q+2#Y)1-)nigA|M7BDV5w7WN!Zc0Z8Zl?;|m zq>?K|-g}vq8(|)^P@=ZNeaoCEqTJAW72e%QnnQQ!4;vq* z;)+G;vT`BQf_+jf2hNuyc%)v+JIi`Klx5(;Bbj-Ru=i{J6NQBlweC7~Rf>knXIIX# zSNKm%Ys#0zieApci~>gPtc45kfqG{gKr`EOC+0?cE$!nAq1_Lyr+89L9tTUgvgZO$ zQw{y@jnV0bpBD?vNAF@P1>DLV6W*EPfT$DVfrl0^QJ;5=5H(nKyVH>Wu>m#FZzw(vZE*kHDhj(J={HU*VwC z@JnJ68hFORC}tgr$+c(4^7-K6F_(yKG`YKEn7of|md3JNymWi-kaaJ9F{m9v1- zN3!9lOfENZtl$}GR3eosqHxVAN#1raw?AW6klN14eB1N{vvKREQs8l~!0K*xO6p zp4}^J!NigdGAyeJlet_*Z{K;H+G&gGqk73y-_^o!BJwmdK3)?8{YAJ(4UF0`S4FOK zWlQQdn{I`#aOeyFl#dF|)@1Ay*mj4No2*P#`eV;xa^5Vt=zXM^*a&DzRElhlPQEXH zIE5?Tjl)+*6B3-<<*A&jXYoMqv##EdvUUDR z^SLO^saB1I7jcgPyfI0~<)xOQYD$A82yKy5Chl8c)?ZTQD zxe4ADAz9j^6Df2W&zYtRtxq!Dd@RvOH4-=;!SQ0LkaFKHrpRWB1%K&sRsYFe0^OUw zqF3)Yx!MZ2C@3K8+AkQnUPrF43?I6%;Qz{?Bz|tvAXHB@+5zITni8}TC>lq9J>gE% zMj}O~q}xP5oR-ihr<;S5%2zKWoU6AvfhCGyVyJr9#u@Z_bObd}kM`WKDSErd|9NWg zP#ZGJTBfCCtIaJcH0JJ{?`9t5;;2BMm37kkDKDB&^>5{c?w4vjD;XCE6mesY=&vHK zt6taGH^%|i5Hv?8Vf>l?qE-mC8KcOvK}UOwOEdBMpNwSQX=WcLa$1T&Uq4%^m}@@D z^|sSf#p-T_hB8Iu%0oM*a*8&ll<92aPi91jw7dZtylBv@8?@zc&^m-jLGj@MDQbTai$JdS7Wu_F}3nO zW96w(`IGCzO~>N>*YWbz*dNJX%SJWHcIGwsrod(lUtC@yt6gpP@qd(bV^!?>`I*}9ls|_9Dy#4SLKJ#-?Aq?fxe|e>!P+1vXt6*vTIZ!pRWX9mRc?u4=wUnXVo8CS3xWS>-(v8e|os&%< ze^;q#w0$DjOX+p_yXs6!=;2BmiiTyqw4hXy;+P!mS=zE;fjSn_>klKxXT2qu#-53Y zyM&}8W_le+rV4_gA`;4}(v}yP9%!*!k7T%94HpcRcN8gKedT8C;z86YvTd(ITleykWgt`Ygng>m!RLXUwf!l22D2Q>m3qc0P@_5PSaOPL3L#tc&U7t1d{*T{)g!)R(p5*klm-{SO^x>AcCyWX?1w!&Oh^wILHs(RMl+o87ascTkwpLRLr zF`|6QD=JhvD2MbLJnZg=b(jiDvxkKqy_{$=)m`x^S?P{avP@XAj~0P9v8>UVi4xSk zHx|bAb#mBVY+vQrcF}dtF|pz~>0Z1=#=JlwL;P7@Da}2rrOO;Bq zoNt9~o}sNHCk=VkU?M8KOI#I#4VFTwRMGc3{q0G(q+c*J${VAyZ***d^%-Cm=7 zzKa?K&T*0Rq2mYws;c7D-No)Ow4LKPhOU^b53}Ty)l4%7`p-K$A|Zogdv|bvLd;OB zgnUp=STh?tF+clZV@c!g%GMh_Z3%S^?~oL43Lk4BZ@33F6gA_3>xUz#qGX4r8Q4cF zY)Co~YkS(45ih$M_G(=MP9%N26*$LI;1Bd5taF{R7Ie;A93^#P5n0z~dWr9|!9eu^ z#Z1wx@#c`2uyp?93b{;WaL4s`M+{o1V=g{XU0$R=Gf2Z68@3+o9(#+i1;O(&uTm>B z4;_$uPnMd6Ucrz0HV(j7VDm9Sz0&I0ga)96w=

hbWaEviFI?H<7J+wwHo(z;-55 zs2xSUJM(~b#B!9Wm-@rC!&363L(dCCl<}N<<^rLd;1j{NeFh z7rq8DvB3)igt4}kuisWaRe$TdK3wK|m(pj-Y>0L7J@w|PO5Z`z&Pw+2HbqTe6()M& z1^COmm!w+>-?@djVyQRydxV#YU5W=IpXfx1k_uNYl%G+bxykxO{m@C|n(v`}Oe7|k zZLo5!0MoR-Kep=j;&Vl@VC;ZY7V4dTo?kx7en_XHXC-$sC{`}LFn#h~XpqlKk{g4> z?dQcHqO>hAGu@CU*TxlmpBnaVmyT!QGu#<8ifSmP>};*-%+l*tSw=R0#B zN@ui3c?(H8yf&K0GVU2Z8NG@F?iU3-=p5s1e^y6G{UM*0FMkS3H7^=unFSTPe(I@h z@wyWG_09sG(3C}aQ%~^yVG`KM<52WhPw9E zQY`yR=op>WTUZLLVwHl9UA9YjX@Fnp(42Sr?Yl>7h;Sc5>NsOe ztKErvetKN;FDTPR?vkOF)+4SWg0nrcS|@2MU$q^NsqgRfOmbFu{e&MdjgpLagR?8Y zQW$VLN5zXlkbz5VH zY|eJIW$-q3?s_=PvI}})Ts=_g)BSLnWRTT`Uu`EN#K!<@Mz`2A~3ek|BGiZV?G`A0b2Ay_bRB~rm zI@DluM>h8)eBr5PRnOpx=HiFb@e>@HuZ&Mj)SNhEM5)Aqf8NeW1(R|6Hlj%vVYn;+ z@k{e4B?<{|RC#F<8EBu!Cb0iusGQ6R0lZv;T8|=3 zOP%;=@;g)^RWhvEX^YM=?JsRIKQ(vj4fCPmQcQ-cg6Rn!4+Sd{obd&qW*ckwBVwo&x_*bhuY0*0`Y>pZEpnEACYBw1}DFQ zNROL@(7E<53P9<7lbEdtMc>vj2TUu5eh4IZAcU8Zf@)lX_Dix0F_gURD;&yxx$;bV zx3iwOEfAqwZY(yfU5nbOqspN;=VaE_^=f%)8g{l7(;>(t>fGoM)6#o3=`G4{LZ6qu zdz8K~dp_wh{mu95GVizH%!|kEJ=p`^ht-`xs`FZ65@tkSMEJ=H%+U|^?aa}y$*}B0 zkK9)bE@GoJP!#Zrl?iQ*ijdxAesl7fCanV9VOvTyNyf!B{&R(UVtM>r!Q^J@mEp~w zv^07n3?%h(gP$TTb*^d7oKwv(HHo@sM7W%LD)M?~?3=04LTOGt10z=+JEF>H6^e$c z`fVh9Hi{!sx0iAs-)@Ws52k{we(ID^7(gNOVH@$v@6>svaC#i@F7pG!)AGkd{be}d z>FAjixLUfTClYfHb6>FCw%nQV{g zO5b6m{jAk4$|k~0wh<&(@1ocLGFi=SQsq^U+Mag1N*pIIVX(yUW85eGt}PYrCq}h! z^$6jOi3YDY!WdEEO$NP{6)LwatWMq}f9o4q_>?5=S-XH50eiY-dO1=g;BK;fPDkc@ zq1{Kj*RzH>Ms_Ye46jGy#Z25rvIb35`;T5I?dRANP$3FWYgPDIsi1t-+g4SU;2l+( z!&3Uz83#L8?^bpS4P}ja_UJWm1bGWI$Z`<`r&oSv@6Hnf zBb#k$?(zZagv;TiX|B}lWJfPmCi4^=F3AEgyj_yQIN%gK1P2(Yisy&J z1#AH}A1fSCOEA8Mrgc=?2Lf<_Um{7Kq?pUO{IoCy?| znpIa|3i0fZdYD?5xWH>t!Z|6&5z!_w&Tu!Zwc?hoz(?0*p6LA((v&zLN#`;Scu!J| zih)evAzUzI1R-(;I|t`!N}@TVbDC|JMf_vX_Ut(<0INx!H3gcaL$zk5Aws`1l9Egv1O zJfc;vOR>_i$3t%?Qm%%+F-oP%wI9X5ca2Mredu|84sl4Y*j66G!Z++~?Td8&Q#rA+OBGLFQ_~`5*mW(o+I4fO)i1y{Xwr zEH6)^j`z#u+Gt|vO%sov?591R7ZR7GIgxi8vyvAEdiXLJ&qj;1uoLZ_E_;8Lih%lLc*UR_jQQS+A%O z<1s(0{J2C@2FOcz_kTsDCe}d+Yd$oGtt}71MqM*xafm0u0ihHf7#}A#%-NW7@$blk z#7da$X|j#3iL>R?`BtD;{D|ob1H+({?hO=qdcilD&Br2A$#~Zqo)mAtfr5BW2uV z5aa3%SLTRU77m((?ozobVr%noK&p#y*MQhp8-(zFc^p3<&tLbdB}}2(apjTN+C6GT zjx4fp($)$hji#(qxjlB~4*D{n8a$K&wq>;`+<_v-Dv$YAFVle(P;yi`F%HlklLJAP zH*7i%Wr?kE9z&loBS`*6Cg@NHU1vqQV0^CQ0Hu}e6!_O0G6_-+e&jo>6U0{Gfbg(n z9Po)}56u1z4k#MTtnEJ!qQlncjG;yPzv~G87fU!NNsR+eFeU7fEke+`!r-WLWyi{h zLbhppVViF)=I6hWS^iZQ1J2aIwyy5TzjtU9BrjXtS1o;!iu=!5$gwpg)o6iHctU;P zlIP(9HIyC5a)MfmPglSTbtNtRI+hvMoQVUrkG{hJ-C33vd+e`BE5rxq&Q?#ST0*zU z@^L^{i556;@8W>d?0PuhjaCRYs2pxwI6r@YAmxok^6x*bWXA!wb-_ zp}&%0-B1gNe#^DbUThajRgyNHu-e#M-LA2#lQ!_&Q{M&^qnofhm2r)KMu=^~D9v~vuWJfH_lTgd z`5`^<9(*%7{+veb_v+f@9qee+as~uTm2NA9D?(}$O%gt&z1I6MBK2>du+4Uq8?;@IlVG1jc0kjm-`9f*i?ewc1**#^A=5Wtd!$g< z!i~ZYu)2_4S~hGgXwS6HSwT%4Zi|}g8_Yz5Rt_}J+7PtJV!8N%S^LpBj^*H8bBI3; z`u3eCuw@<`fL3();_biQBE#~{hYs%K|HV4%HRKJqn7C%_>_gkJU0Nz^t5M#u-7xmx zz{G*5eFdnfQQxtiI(sY}WZ$p3t44CYO8Kme*>fG*&@g%@49o9aubwi#xPP@oo<=9s z49wZ|m2?h3#@Tkc9x#Fv&#(mRuQ$(z(f6Woz~X^d)@34Zk7x)spO#4Je=yx#)G7^EZl_|;TeGlUVxX>@K?Woz-EJfsvolNTeM=Vv&SJ> z2BUx3G;D zivUN{+#|>|0hmp^ZK#L?R5;59fO%BUVWsNsk~~C8 z1Q}*FIQ~C}O4-lXzP;OXk}6*Y2pA=P(!v3o!Lwh6$bn7YcaTVqsk54fNGd=U`uiZr z&s1CR==T&A6WiXfg~pS++_Y`28?HO`89mF{ptmc)SSF$z9S|Frwu>}&?Tki6F@3OM z2<9X>VfNbNLFjj+(-H?{+a$qZ?;-1|`{3}uRbhjnDe8ovi_wg8`vf?EW33LlOY3w*O{bbwZ?vfONBL*hlsyc~V(<0OM@(VmK@;&Nat9l!qCbGrXnBHq+5b%_75w!K zw2zxp{N?R1=m^-Cb4X$lI~mp3&ReE?x>p#udK{%Gb6;S+>0uPXCT)+7*d(Z_t?u27 zQ&TsGTgri6M;Z7?@Mhz7yCnUo-`ghmi)cW{0 zIwbTfiijS1YyQKxd(%=pKAIb99ks7}s zZf2(vm{A~P>1im(0n?SRDSZ$%Q|;?xPPkug-IXAlo7k;1oQwj`=2O#*4Xw?-CshQdH=nTf>oYsmspxB#5oE*cTS0JN^ab3r zVVIl@GTgr5`@pIDKcoopW}{%D&-T^FwvIK;9M<3}Ejzf+zyI{$7%>L1q*lmNwsjr|<_U<>U+d-Zj|E^Bzn(JslhQQyx24apSUE&N z*ENN~c>E?vQVzWasi^~z+L_UB7&4Gliv~$GYVdA=P;P;x?F*~+^_K5TtGPuzcgR9L zK`(A#A1ZF}-Z>^)5qpLRVSkKnOhF2`vptv)LC1QJ_fbyO^S}rIV2U zs(l!OvvO)zkbBi>Q$ybMPzv-{mS~Euo{9m11$gTmaqV?;DIgQ zmtg&wtUZV;2fmpy-!CNkDbmceUQNm`h+mzlx0Pj5VUPEJEuc2djc>sljTi{vM6wJK z7UlbowQh){C%+wTq!jVHt+h)^oIVvC*{e?c4YvXRCdT`I4Cz6>Z@}T8H*&;snCg$4 zgo7no0ZZD_U-9!6l?h9e`xZ^VBm-@peP({4=CAl$Y~Tl%zablVJIR5waJ0N(4jX*? z3wZ0;S8?*$>|2ExW}pWk6RTER#Mtc&SJ=8l|4v;sYHJ|6=VtVlQpZ+aViSz=^#=6i za~H+CAQ#y21G*is7C%qcKk~}sTaq4REYs`wc8_Q#r+5YjR8(D=+sfWlCr)tnkm>Ew zM2y8H$)|DpS#b!ehBwyEzo@mkmLWm9+m4`=nW}QugNIn<$TPbLj4I^Ey&oJ^u~zGC z{Gis^hvp`TMi7!(P57M%EK@2vCri^j^XZ|>`I#5tYGoWTi@bk3_y^{(n(AS42WMaf ztm%Un#mxhWv|J<;djv63>9^TO)s4R!``GF!*d8f}1KiPIZQOKyWHn;P2g!)GScP4@ z4TsfM&hx;k?CfD;!~I}B_+mLy0Bvy#Yby_x3r1O@allIR2Pw*KkVJ|9`=P%(sNzXW zDEVlc4Q~U_lfn5<>~k9ZWlWamj3)aTswYmpgI=ITmIVt4Viti-f8GvAffEc(zgE4L z4hp6+v2A@IP%#F{lXtIhfIryDCAo5APgDo2W(eNHqHVA|A=G$%=A|@QLD73=jZ&0@pdpJD`J08Yhp2)e(;C%i zF05}+SO%<_uLoP2fqldaZA@6_9>ak3Omce7J=N26VAj|GRN~0e;NAO04&%2{a3o(u zAQg5v01B#q5>GqRHtk;oc>w1r?7JZxAaiAz`-j5jU{dnmC~P9IM%CkN{W+drE+Ck@ zSw0OWtI{<4z>CYKi0L?p=Pf-Inx|`4+l#-ZfWa8|E4|t`Ntp3U7oxVY0LhaUC0VAX z93`h`UHfW3vLBL4sxd@uTnP0TzgIDs=XKjOYp^I6lS=2j(kd@`=Q2cHft!G;2JC!* zjf1h&=Nm9d?1Gb)yO!L?z!PO87=B|aFe|4`o5C4Fi_+abHkx{$c?Fs6muq5 zW_|1stoc#VTdKlD-zA0(AOP+Sax9-0Yq381zy&Ok+MTO=!-ijw+zd&ru?xJe9&t3#r z{X&;`kP#n7lB~uF&lQni9 z9Y&mgV%i&`*ON#k(CsNHNuFy?<&t6M0=2G+8sSeYyf9L~PRe|AI&KQcY8*c71mDwo zrR~ez9&y*y=_Eva#83!NF_V{RZk_f@T@9M`l^5+wRZgxQ$*JS0{;!)UUD8mr}9ELAb)?;Im(0DcWp$yCEFWK0G zGN%8kut}%ds@$o^{nFf~@SQA6ijvFKHY(;+SaFMm?6wo8@vb+l5W&Hag%4m%8BErX zFl7}$a&J9q2BV8LL{0|<#k=F(blo4Qzx=fu@s#!AK+{gn3KdrBd>)K02TV=>WS~aA z7^w6=YoH#<5Jq^5#{k?p75qodVxBALpVRK1JZZOWh5SJF(k|3{lZ&{>LLKjG%KcX; zc!Q`UkRKPk0$KqDtfr3s*X!!U`hS3n|8D@BD$s0w4Q$;19>9h-8aWdj33)oWrrEi? zWqvL-P`}AOk;o;C<|yj)bqN(`o{SU0yqP%($8H9x)Rj0}rBhtHOGc4mKu?%r%VEQE zVPFhwhe0pRg6L05T|^GE5Z8*F4{bdgbGLxwQ_Xu~Gx~PH_`X4%n0awWJ<$N6%zFs) z?vL0zHBOi}J+I#c`5DHM@=zJQkMCQ!@x{0N{ZkI7U`_Q2vIiNNO4!oOKF_zDsMP1* z9q?!v8Z?-i3-_+PrPly^k*U%gj(FHIexp#G__@oz1K95FIG zB8(|5uXs}9LQ&E}^ukY1`zS3BbE#vUNzezG+%?h;FT06WmtG@XzT?U%8>g>@oH`57 zTt0tZ7eC_tk_^+0FY3{QnUDWwE`&C2^3c#kl}6Rs83<}3m$3z@0vff#(Wqky`@Vg- zMDF=UW@^TPoeE==3y-_IPkymw6%)|tCUhxw`_+BenbWj7icF4DlJ5En5M-COr*Kof z3J&n%Wb4+2G**2;*Op{phXV)Xs=!3zT#!QbuPJW~34TqcQ;65~v&uk=!n(!j9Dzo@ zIkvq-8$s)5TT( z6L|^CkMHo}zb6Se&Vhf({V1g@eiffL*#X5|u`r8jol>EwUgSzuTPJEKbe7T7Vvd}0kv60*1XMPbW^h;jA6K4QmWz|I@TWSDw??Bq{e6Tr0xE6)U0 z&cNm^bs1guAFV)^{9*H_A{tn^yNakN4F?BD{WwGU`qn?09;ULJKjZlS3X$_0{7n&g z6Y}bI|0q*M)avZ^=*c%W`S(?Cmiye;xp&fQL!Y(-6|#(uYsm1O^S>la6K*VIziS0N zNg+0(yeXj=(osx8EIKiNsst$&vfUT*Y@*7JYujP5q{WVP<*BO%(~-Oamr)kcTLZ~D zH05{OUrx4>ZUx=h(GigB(k)Epjw1C;zyJI)Q%jHuliyU&Z1alQm+0pI6Ut^K95A4= zMQi+(zB#)A`xct}ZJvRJ@+#}^5IO%V%|Os5TyR{qm8< zw6|USANK;BF4h>hG+9lQ6hz1rTY?=*E3Q|Y3o_jDPP87c@jl#z54s$N3 zn=N@>f6FQ4_P!Z`{TEuQtm7ySX!fWD3!`8d_OdU+`>!^9N9BFK=ba%>>b#QlSGKTq zChfjkt`o&5@_H_8(g5gMP8Qkt=;RU2R$oxL=iqKOl%^Y^bObh)oQ7CqqlSBJMq)T2 zQ_A;5J`IH^^*(s+>Nz#35@L7)8$pH4yXRh;mm;|A0_OQWcQZkO%(n$}zbU}3MXE+7 zjV|QD;Fs3*7Z5EMOkyq%Cf*Hcu9M_^n8g$MFo_zmmVouO>PWCBUp5{f^ z6W?XoaR(VzoAly1%BuUVl$jbC}LL<*1$yT*%s7zIU9R!=By zbAm2Srj>u67>da5RVQNm@yGvs5s1%CuJEgsAc~gX+|+A0^`tJ9C)IOlm@MNv@xg!J zu<2O6_~F3KX3*xVf$?reW=P8$~ zn0d`2=iIH5qV-eH-qeXPy(qA1o*u_{oh^4i^Y%ozh(dcmAu}^0FnztDB>I79eoyWR z@A&~Xvw)Seq;7Yg;WvmizE>R{pZ0A8T9#S}vIv$8#62$-y+u+!bjdJ;Hr-A46FeLf zS7&_Endi(MeB=f{5KJQ6XA#30ncKwd4u5It85Y-EqJH+FTIOL&ZUWvK=J|hCg)Z>E zKpZ|Yh`OiZ;Tq0;s&|Vp_+l?lazL3kKdjsN4z`yVqEKC!d<6EA3(8F*fm#jLPGyUlPwV-DpZp5kEVeU$>p zXg8b=tmdt?>>mZQ_vHJ}mfgX+1S7mZ>3rJz9nFMWg$m2#S1%Gi9I=8k9^##iNJ=w{F?wpXZN*nR+Rm4DJCJW`QBBjU4GJnxzVQpcrcGN4?}bdKn?twe z$39$Hvi#*5uw?cJ^eZ+0mfyBS{W=u)KKnOX!gl#$qR>%6km^J9bFLf<5-L*DNUrmeopTn3*8GGQqNx%sA|Jm5xHsxSEy7nyT>c&BBXYfgau zZ@*hzgU&f56IOZqjnr*|jk~nH1H4F(lW!o%3W1)1iK**o6Jr*mQPH!0(X}6FbyOuD zurF}!_0xeIamXc$z8i&8lbnydtn%nK1Ht!y=i0sloW`$} z1-6uS5n@jl^-Fi&7^*j3FZNnqofE?WmOVw5f9%O9^wL6L0#yMd$P>_v{R(klUxf-a z^kf2>Bp1dAYfgb}s$nQB*;T;=pJ4{ZP7On-P89R=f&PwH_Mh}yD@_=$60CRRCmpsg zwK_u~=sg<@9`BpPA62;r>J0yFRj!is1P*ZR`&tEVgUv=BnDHg`%rB%f{-{P(z0XmK z*YM%VzQQH_`4p@9Xli1zPmMBCix?Wb4p*HTw9AudjpOHslB&whTm11@dpVwmJZ?6K z^-{xsIVn$Igzy6hFt0Jy3+=PzSN@wNiZjw2V2B&wE_JUM+CF)~(9j-sl+u%V0khW% z78bNTTgt=3?x^gmY;Z!!&uDQ|N}q6bL^nA?kPVP-cpuG0uJo;gs?z_zhciNe_w+(m; zRYi{v%QXtr`;hk@i@mk2mm^--r6BZbNJ1BHcW|*U6)$I(PZX&Vkh9a#jNg_$5p zb0A##?=_y|^+D?FhoIU1uj121s}_}qRRkp$HPO{*7O(;|h(R06#Q7L=srRc!JVk_% zMV*D~Ke;81f6Dv%QIB8!uE1sL@1*^QOH6`UT0iH&>e0Rx9B{1(tz&FpQx8FHchU{q z4A>05{ttuZ7P8g(a#>clB*W&J=lQWM8iEa9z3!Ygl_29ftA%Vubn0XDK(@-{gOGI- z!5*;OWOqvAM<=a67VrGr!Qt0l|CeEYt!n{Rapc(lO$!&NTGtY+V%yK_U#5u;mg%fK zHcL8E^p{0x@@(i-G+Fdl8Li@a=1_gxKQ7XhIE8QJ3QMaXRrfoiu@|J+!-qi>k^&NM_Tl<2Asi;cQ z^K8)JkX#FG)l%oSWYHa`07$e+F zA$2dcrj96L53Aha3%VHw8&F)(;20U!N%L0|c{QjCtYXzaX0*U)#fR}qumu+TC@3oa zM~gZ=O;lGTY@)e1VR2xd2l~ru@1O_c=o<;YEHugW3Tt~Z68GDc-WP`de5E%n#mGpN zPwaq;eU1ns$&JIo`?Yw)b?_MuEF0sWbBRZ*N+0!78LnsA?7KKw`KG?^4-)N5vy&E^Gem%u?>!$uuNz7a(_6`YiY)8!+duzq=i06U z@fLi!0yE(bildZGI&Sl_)tg$S1tx5CXcpM)2S?`L96fWfa|dR>___Mbl<*=*zXZ|F zKJ#Er1FK-$8Gke|`By*IKT`R6@V(QLQWIVt3cVQ>Wo->IoM94HIuS%3kQ^c{_d7_ULH4Yd&V}LWN6Jej`<&p;VM{n*{V*_Zrbr=@@?dbcnquAEyJV?kcfdvI` ztmeLSBHJ$Ir-wCfC4-GCH@-Bk?0^1F$QX*!Z60*wD9_ZA}_4s7ZIAT~OW6^fe zY`yjDKT0l0_h~{Au%C1374W~mruo8z=RFtKjyg-skVhkAmk_46n*A85J2th#0xQcf zD4FB9RIv^|K=T6>t-|R+1wI*>=*$)KtuV-ieuKt7<`RQU^*Dg0<2y7r=ecB8reE}pvunDD-gAG9cDl_wi zH9gS(^WQZDg%j6X&3Y;ntL;vu=A&(%!;s}`*&V{18}HZ`^KgKq(B93bliej-wDWgc z$DUWnV@04@$38jxjza4*YZjycP6!CRjx2(}&#mDv10lB3>|&?@Ge|{h3;JXA{xz4rIW)4PJ_qKasMc=^7Qb6| zwpRObVfrs`bLBwk_|}M*!1_53NO*+4R`lfEu?a&%ulwmB-lcHA>0;6Oz;fgCvb%i2 zZd7RXPMF$)W}npQ{WeCB0IafM0Q)G&8{{R#6vhb4{ekMb&>xLS@&9cRZ%dElwbUiX zp#B77`*lOTOmmIIu=A;rgvZtC@7^>y)?JkOdz7z~bPaOSkj^IfD=>?aa&BRKwiySM zn!n@zswH)I-oCq%6am?C3WC*{3zeR65N>=Mr!=~s`~y`$zpE>yfuetev`81UyK(-3 zy)2e?Xn=k4Mu%Tv(`NCD2R3Xd?dK1KjGtkTG5rn9Lf*x5v#v|^>(07Xlf(;T3A0=C zTeI#CZsh}hoU7=ZfP@{5V>sY$o(iAdjR)FbJ}`QhTKX}ZsRar3S(V}+<=t7-6~YVlEA$n6W-;X`k|xT&|Z%7GTMm`=IP@R(2n4w_8+% zB4+;6gF6+8D;zDR*C+fW*GT8PalnJdL;F*DePDCdaJP4Oh&^|61pl-*?8-cEQ+-oZ zi_$s1y*8 zT6)vxxEFVcyL(8dvPV}{WiaO|^waLMsr3dZ$jHM01qAAjQtHb&$KE0$a}z)?%tiF0 zv$udd0@#Kpe-qXm>}S=z=|AoTi{$#M!{TOcO)1;*+$Q`38{XWV>SsY}Psi3(Jw-v6 z-U`DU=S_v%OziAOB!C*>PXc4$(-r&|cmp>t{afqzFZhG+&r8>!H~o&K(+EqhRsO2o zmt@k-v*;X00DbGNaf;9L?&^p7XzO6L8k1{ix9Um#L~p&e4ev{4*A#HRx(G&w;kCbYC}kZ-PKc+a?A-kHzy#(4 z)@4~XVL79wurCvq^tw>(o@$7(=Ct3mOjq{U&;E(H=nnvvJU+ydTYt$8bYmmS@Po9k zDZ#EzrXZ2#M_Zspc;*3B3nD&&-6={CtRjDyZ?j|s$9piFvJrwEzFZ<#d1KVb*L40? zS;-5wYXv8#G19;0I!n)2g0I{&eu>~B6thv4g{+eBHjs=2luFgYcXN4&J2E*L(SKGxpg zdGD_SEe6owyzS5T&*yZ?Ihh6L_IR}WXDpTtOEox~_-NLT<3$+I1w4ciy-H^jZp<|S zrK5u>fcEpvoj{8vv#3cgr0?2j5~3P>IFAdqrWlGAm`n|siMqTq%mX0@k$~&~Y?+?uwhNyosBKx|0bUL6Yf2o*~8|7q_nprUNI{^3E8 z6p#)n8A>UUZWLh{krWuZ8wUhwBt!vehtxs3Yv>wUx}~KXq(eZY{NFw&{*Rt>p68tR zd*AO{>sv2tv0$#b8 zMM>Un|39e=&tGx&!fK&Uefd2uoHbhN?R~qzy>n@+z14Sk)O?c6?=bIGG8bukcTJgRv%9TA1=h?Yt)f+JUMV&Ke z&!uDXoFY}_eSEQBGO9Uwtl0KDs3mCNg}{l*Y~|f4lJ%ADu5-WaP}qm6NyUAYbAM@) z9~GdNkbmYmqrT)EnUdd2%FmHkh`V9MXLjjH@(S4Eye<-tns_dred4(x9kUL*gGc9b zF!$Bz(xglJ;l?Gi;_CXT)?3jt*YxWyM+#p!eHd#Q6V2`7j3#v{E|TsJ%Y1I!z3zCr zSie=zp<TWPh39dm#UKGzlSRapItU`Dw2`J|{Y^rXoTfICRSCJpZB_yUL5fu|(K)Xo=*70-vhN&s)eqxSxrlpj*aHo38#q5VGI&Is!`~qN@aPV~ zR~N>#^SRFts^o!4ErToE=b|Ee7t7LLdNgWP&O>^o6J18z&ZQi<&mp#+9eFgMWA}82 zHRLwuKrhwVqd9M%Bd658|G*1v7xus6@Q+>A|EV}kbmb@VCKUb|5e#X3jW_wxxCQa6 zFC|7azW-ou@wU8?vsvhq8Y5!%rwE3m7)oc_!oXUtlDM_`DQO|MuKnsD|Mhcbey_=} z#njj7Cu$oi6n*ZeBo6bn?vOpBPrR3p+Vs9!ZR=K4IXf7|jQ9Y;D(WSG0Q5-+@OI1VYn0ux?iY)YlUeey-hXL^ z$vOBfefSQ#zLS#{vLwm$!wmYP-y)&W1mD(BJODG|n=gAM#peT&2qD+AJUr!)2n^$HU6nY8sW z1D}c9DS1ea))(S+n!J%Ys&1Zhn>6j*&a$ecgL|L#NV2~~A7sO79!gYuI_|oCt@VM@ z)PDlf_K1zlX}90aH|KRW`Ia$fygV{f)i9)r-!haOfkVFu5^(Imr00S|gfGR`zp1H9 zjNFC*I^>yAW@{D18#q%6wEZK=^5eUwQta{D4N}9~LASECyTr}T4vK*w*A5^)Ml7!M zaN;|tLNMGxm#)LjWx2_VI+Z~iywNC%r$8xd$X*5CdS82}@J8utjd&QOmI8Z=1y3E&KA1zk@JPmvz(aLa4R# z$&0f~VV)a+{MKjvBO!j>P@h2YMrhnwar+Qs3QdvV-g`D;Je!Ae9)*ahjTXlXC6`Ny zx-+U5EP5GPU95pi3OGAjXr;#udW=eVq^> zmfyMYszVsI@1UYd?e7H-{^oXti7pfYP?NQnA94Xi1J@rAPCqq_{0~D-{uN5| zA3%Cgzv5f{kENviMx|l*bIm?pL+Wy1_Lukh8VWJc@6(T^v6hXY(t{6oZ&ENtJo#op zN7xqBli2z)x@oZ%4%4n2T#QhBTg0M6^pX3?N;P-`tOee%OBy~W7JQF(DL~gG$PMif zw#CLzd_Wh^6iXyDSSWR1TK_2D0Avc_d}!b(9WH-2k1iP}l^@}?#5|+iZh-QbJ4?vT zXw$h42m;y`uK~z*l|rvw;_gbHj5<53;>5WJwH~_}iVSA^_vpApeAw3UE#-;*<}QkF zh7}>oWNdDgle@gn!cCSlRB;~5MP!ZwsdGVC*QqdAoJoB^Ca>+2&+o^T#oVA2A3Fh^p+HCdTHq- zGNX^Bq%CW6XRo14)7i^kt@sAv!PBQr^T*(^jPIa;7uf&{Ft+-humS)|i=1vML(wYr zqde;Jt|L5hJ^oS)BoGFi1#0PVqqNOpr-n6lpktUSKm`lw*WW>ViqC)=7Jv`|`g-Yi z3H}ah<{kiqp@9Xtfh!Sg?m$%fM4OWF5C_mDc=o<0A<_%R+P=SgT|rvnxbX^5e-9k_ za#1Sw8BG+Suu&{#DP<(2+L#8aMaQms56hKlBzdoxOZqeM-)EyXeH{vb&cW%znd^JM zvJ|&pE3JFwbF~wQ;iWQo8T<7-LgkY3YS0D7IpjOYUoZKRIr8U@Y;ycI9N@eZa5j8s z0zf8zHz0LipoQ@Z&OX&&dcA3b+l|=ZKyT3%H7+|{e-0T!6)sg*4GVrtiIweO@sw=& z5f5_xEmOo1`#Bc@F|ahDe_a~;&q!TsBvEoE1pF{gYj7&RxY;;_oa~$CDNij9=k7PU z)p@U{}bgSrM?4rZ!8f0gk;jGM^O^%TE1^6fc~xZBcp>QdUpGA4F5{m@OJMYgu% zqt9-pnfqqjvG65b1nv_-U?dJ@4zo5?97H@|ksc-*ktTX*6CLufJGHo!f{C?Ff>mcSn$2l4?tTrT|Vw=6@sQ5l@w1c=?Re&b~9DFTX4u z{MHbUk8x%v=*gB&EpeTw$kK35A-&}&k}raR&rRw5+mjb2bCAEy8nD(jKs4>&*M5^D z2fYRFKD&hc6B^QR0%p}DieqKi<QBWn*9`(xM+7oPc%5tG z5s31$XeU47hDYjK9zY`NVu-ZR0 z0KE3wGy4G=!cGQK;C%rX>U`YVchKvc@kObqabA10eS_5ln0sKPV~u7ozQV*CJgw&4 zmp{50^iaX&tX^B8T`|EL9_GIA01n1H`Idd~8$(P3rqC}O2l(-SY2hqL3q>_|pS=f2 zgHZbSYz6tX;jer)z5E^Y%VbALzdn65q)4Z0->^%t6$^t@v);fco@2+kMnr5XX;+*_ z>l1_Y-pO@};;&3~;?XDhiW?%bCym>DZvBJIYXbfQHlJQ}c<$)nMm4cCbaaybEXZ{b zRaR9Ef@tfG)n6S5IrQo=02>L#RSMq`_cb#hEa<~id&!`JI~VJjNd9fIBG`Gjes&EB zu%RN(#T6hH{hZ7IIHWVeI4M&p*_&#S%qm;;Za8|a#IPa5|LkVF)?NMqaE>Sr!Z2Dx z!26bf*DdaJL9FYA(YW*;!~<|E=AmAA zqKm?h5>B{_(ktOo{S;pLx8PsJx}IudFz1R8)l1qHrlpMh-g4$l+PBQ~wqb}h%YIb( zRX6cqlEDAPdF-bHevmu+6Z32P(X(jU&VB6HF13m-A)hA=CiPiI3!7vv^+Rx1l!dPp zG=)VFtI3ep3Hs*v+S%!{rMn$Z2&@ICp{++56qXoRiG@?&rxag>zhy%R;N9eB2cUlAbh&)MOY$vp1{A z=H@m|<3dp#Ue7nrVupCMWl6)Bt*qE{*+;{zffa#Je+RvlZvd zj?88E;_b+qfv!Me?=9x*<-6~2AI>;gv#RcQF(96HZ^+-nV#5X3tB)Mjj4k$P3_HVJ zDhTkNcMcwg#*(H|yLTO&Op6~g(H<$0DJqfO8$Qfgwo&h%6nAl@<|4W8?|ZxP0pAhx zuEh!PdZ+Y|$`gd0z{8;vyEd&I&-Bm3bUwEU0Ubnu4``hvwjWxj11ODT;6l;4ns5SJ zx-=7IJki!-JjB`;1|+!j2~v8&1kgKVt#c==K&J4b9V#utV(QCx5a0XAb1qKe(<|-? zKLj@8k7`TB1=64K799Y+>$@*Ft_Hcg{SD{^-M@X|lVsBJ9P*N-efl-%o0G)!wD zhuyc=wKSG9yAx~Y&Ra(Z*h)vYozFP9w#yB?Zw6dp{thzJKV;m)_dLlPMH$XG&phpa zjoK$FuD;H{)c$y}Jcya!G_#6JjQl7AD z{L-cA3M9^UGJm?`YG1@VR7=i8H+u!5-0nR#9mNy&8RLh^W(HEp`+Pjyh@$80iwV#@ z;q2o_sFbhGn1~}lwak#`na(J1^xv9-?|$4(_~%T+UwHi!!G4}p4q2fdTXj_F#= z*Z#qHGmZ>a6Qq@hrv#M*CO*o_RlmnV_;>S*QbN^}jx`)&^I_-OEn0h@33IC@UNWPUaG@H;5k0O$~wTk^RrT8#7d zNwC(+svf5g_htIS4uM&rp^!V2$W;ZP@ASZXX>-p>uqtP->>W~(K*=?os}Fm`@qi|PeLF&GokYm9=(#~ytS*}XpKAbh*zCX_)-hE)%zfjHBJ;y(SYo8vo2CSV#K zcxolzQUFPL81d3-a;GY`(K*{G?EG{y`2<||9kitJ%Ww_o|8WW+Ki{G`I4DE6_DdVN zkMzgYDDA~i9k+nvhxuuUyjcemT?fT~57B~H8#ryg5Kj>oVU+zFf0HLYBJqL1*{`=TECA`xN^g0|J zD9irB*m89iE?_2q=4LE6)Y~6gIOkvNEdJZ(sr6E7kQ=^ST^*_uh#ONE1x=g1o%SLM z%4ZA`AO5YwD*v~`n)!w6Hie(X0%KXiNe!o<_WkLsvbpMzHJIOr7oRyWf$9Lia7yIQ zhFO04k6g2#+j9QlCbSrUQ4`&9N_SU|uEdVxi&ST9xn7e&u^z!0>aT3x_%p$2Wu<1a zrFvyf*M)^=Pbb8HybnyHBp5&3_r-7g2U_^Al2olbP~KlJrpmekA)YSwz*(=aH&4bC zCpHShqH7zmsSa3DKXImRv<+0K(I%gU8VZLC7Dv+EL8P1d5_9-i76Hf_{{^=Cr~Jv& zApLQ2WqXX<{5Q=?`Q5R1m(Cs3>;TkuUay?bj+{ zwy&z?XXc7mx3r>ODQ3`sq%;uC;M*GWOM+~f3!I9ZZ|&hlyyZ2ERcGw)Oqf&MpS^i? zx422PnHtQFW$8zJ)z(e7B7!{K>8eTs#mY=(!2p9NRIj-I6q;S7Vlf8!kF~CkfKmc{L zDRO@)>s1??Z%5^?=vEWc!_1Wfy}uUMtbR{ap$dC3@8 zU~Il^sa;ikFtgr`N^7lY1&N`3@3t^D8IgWhKWJVOTluK-g@e|3(ajP2auKr#)k@Fl zu|9m}Rr%|w_?OizWD(yAJL@RnM^iI~bFI3qk7v7C-r-D4xJK4ebK@ENJ;mNxt6|F? zJ!eCXR1vrp*ftv1G$p7+XlNTe#n9iHC0}|&ZN)z3C!7|`7Qh-_1JcCMD2!>Tw3XNYY_JxKSD^s4-$@X)n`OE$E$H z*fmj(lPNY_%twLmd~-wdGx>;_quh`3Jv#!8M~jvkBQC##l`zu{Ee z?tw!?BLWuKR3V(Q*<-B_A6=;^aFsRXjj?AmVe&w1JtbTK7nmF&^4A0AAJ_Y z%+=Qx>IoXNtPfmR!Z-g$w*=Cllk9U>B znpmt>l!EN>=jZ9x1jpAeDMN-eBOlj}91$w-P)~9&9DRJPSyF48#?jT(#grsA>Mh-L z>YC_nch|s35pDtQu`uJxGp=;SBK6}i^XtW4d`e86LWBg&C}PRctH(vYi)R6&yIToz znh|Z>*?ei$FD!WgzF^%C?EEmUW8TtgNLd!Q+($eGH;ug<;Qz3pBWo=7rX^Wc!^QXN zr;V>wFhZ{!-NG$9ibKlM0L2V7KgQb%^V{9AERM+W@?ow1#Z~Pcd;CWv>ex@s{BCbw z5$xzm$}SSXX#1?|J=*p))MDs}P^r)~Y`s$PSx(=bFQd>X8FR~KqHe#41VY6H5|^}1 z%1PyltEaZYLUKz+7Eh_9mgx~Wu2Jbpx3Z<6AQo0_C!#d#vOh9rqD`>pOcr)3S*}cq5Fuv4dj*3 z`9xw(`nHB^b)4P5T%9@W@j}p#_9*0R3pB;z1W*H1<(ylm`jsl_=0^d6+M0@rdSTLO z$?~jQ^rrV-5!L0eHj6NwSNAF6yzFIQ_x8FZr8n83*AfosWzc(2&|5P9fas$^?OIZW z;6MNqdUz|vTTz`#>u!1FY0&$u1)3_Ws7!?xie`1b$cLb1`Se_BSWEJxo0s$gi|fGnrl(wYsk;%+^lU`^^1grJ3Bmu1%`Osv#XD}UYDk_5+vzeg<>r) zlpsrhTs^~ti$H-nu`LnwnZwlc!Q;qsD=GUeGdKIU9n>8ZUUDDdhYxDZlNL8tcZ`G< zH`ZT5IYH!Bpx=J3_zB)BWq)^rZPlPDy!$DnI$Qk?SEeiliy1g4g-Ee^u+IkNo~`V) zIaLkkHPKdDX?fI5JIT&ODM8q)j6*kCM5$-9KPi-*Ym3gzxRccy(Y?JeyL?`&iOaM6 z1|*6TahqGX*-ELQvDS#x?pc=)@ub9HQq~(1&7&4M#EKMeU&1 z748;(ckEt=-CXULI^m05qBD^f%@-32w@J0>v9MYtpB<8js&PYninFqmgt8z(A9HxQ z8z!u{OOV#j+oo1!&gi|Hw`@HFcW`RTUYK&beg|p03lj9va*A{Y4(K8KmN@h~duXqt z6gWpBYjr0b{N>-7dD~FEKI(`#fW*Gb2+(11o82iu_~VHVsQJ6+BRc}6D=pqD721BB zm}cuLn2)7o*EbH^;;Er`El#;+lOe^muR8(Botv^j*j%4&I~EUovEq@~WZKh(UlNAd z4v5C_J>^W7e0Oo>+WP1|^zFeeHojGISEWy1r;^*_)%IdDmyd@h4Gq_yO-)_IS`@q7 zH`%6{F1W+j+zt_8u5j)X8&??SF5l#+%h$7RbAjw&xqm-{Y!jShNOBYls!xi)ICsO&(m^~B^(#Wki0}*Jm zG!g@zhjXwz( z>oy7plQmLwB^=}^th%8~)aX*MskTA39+{gP;x1V8VXA$F1XJ(I^{k}<_Q21MhLQT) z%Qyc^y_O8m= zP%;WA`0c&VrPjZ8XDMVW`5_dQWV2&$8KP)Z+64zkvbH1p@hCBw&?$B5&4%7+B42qc8d&nfN&1siEKRM(85O!YpoBqFh) zgKx3I&U1^moAv21->=pS)g=D8PC_C7W!Bf-I+a|d^pnThBikbaV{wmFsKH>TRIt

R=Jl}Thl^W5Fbf<{O`X$b?$K@v~~xpp+_ZdnmzO8O?0~Uri+Jfm3rCw z>;Cliz>*@6=Hrl2ULE;(q>vY0c-eQ{J{(c63T&vDrO;ocfvhU}J1(^+rN|V8y$%C>72g{1@Zb zu+6)g8J%G;9kH<&*yUqoz}Mon5X&lbg#{_3+9ar#Mgg3|bjT2cA=~Wc_E_6i%MEtd zfL>e;*)O^x>K6VK=C~tcobh!^eMnOcTG67a6mxseNDLG^qUYN z6M12f%=#F5hQCET>GCw6~}bi_0X;i2mS;mY3y+O9tarNme=b(FVQjPhI42NnfNl z#Y-V7Zo_-o6K-UGgptOMW4gwYeE;^$S|GfFfFMCJzi0iy`2C$*kLD!H{rnr$I=acj zUJN{b|5Ao#md0l5xk{0>l81|njU9bOTdl#vp)N)w%e8Hr^7e20X6ibm&fwMP4aP!a!Jf7H|qH-jIQG?a(7dMgw`I3dm?RQpW zcDm(4Zg{13BCK-3d}%3*%iP zu%j+yeB3Z9=w*y}o#Ovtdy)4RyS2t62PXv(T?7ujT@K1kcQ0yFY$XdNn5f*nI0UA< z<*;0C4HbP_Du3c6(z(UA`G$~@I9$QqO^LSoaqb0Dx`LuzqA%S|S!^wvqRA#68S*)a zcHhjlYRJGA{fcjTN@C0SAloUGQW{-*H{&}0!TV_BA?{%fr5>L7$Zn>WoC~}^kB0!n z&z$F{&@K;ZE=W+pTpx2g{!%#lWpc8ATxim(J8KqCPt@Xun`2Ee!FB#7a*W~MkL>sV zYr%q#Zk7Au+tDVX1Cc}BHcMFM_8Kf!Q_K~%;-T*L+nJTs;pTzne4XKgF=5wz@j;6M zC-#TLBqvTJ`9^bWg${RT3TIj#X32#qu*mqV?O)@ex+bz%xKW~la{v6f)Rt;2PHWP1 zX0dxA#fBvcBBRKIhYwyK=I#`<>}aNpQ))bWteK=xXgD;uny9GL-h{bwJ$-e-$8y?7 ztxvmgFGF}pS09oK;DA()eFs^dS=8mR#_@**O=mF3KMQ;L9w;8MT%M??wtr`@Kh`T} zrZq~>u*XfXAPbL2cUCjN$GI7_!{drb5{IeG=hx;Q_H63a2J;xHjPP&`c_3Kvh2UtwefDxwd9UC==aF$W(waNY7=zEFjKw0*%WpaIIZRgL z2+lLEJG3LPIl}88wryOX5#fXjPQ|)HYzkl_3=Vlyb&y%x_^~{h-xd^7;{s(9-#G`F3!2f@(9Kr{j%%y8pzT;L1CY8tjxjV8cf*LQTs{U z`E4mQ(MG(1&oVDoA9%sS%d5DU`Jy%8ty>b@zlr zN5Xw!6)G%p%z9ATV9-FX)2n>C1C1ivq2VoV=R&b5mD1O8c5vD@a*S7%1Q%h`Eb-cDpKW@T2e*`T8a!#{cs{tPW4 z79S*-Pqk0(`6}GQOW@8dPnE==z0<0om(zWYi2&+p49slZP3M7YQ#Q1d$23t>ypGpw>IhJ# zJ+C0y!i8)*ShGQ|7Ot}xF{1oot}|k->mba?IVvUb(@gYO{r#GE&xx}YbGk&)4U|y^ zp%VfNw=WXcu!IhTcFvmk45pxK6vIIFx@-2e)2|U(gBc?ZTU!N(pLXs~=nGss=wb=2 zENxg5n{+lIr-H%wt4}o&YdYKc z+sv&`ts@sDdxeBg%e2>BjrCdEGbPqpTkCR|AtnbY0~h5Cu|w-fLR7@qriEayYvpmM z9ewt@w|+R{`y-8}6RR0R&U$cqhvz|YkUDhKh7BuInYcG-9z^biAw#DUlsZx;ns0+R ziIBXvR*zI*uDhH{T4Z|@!W`lVeR9cFnjxn)mr@3 z3Syi@*;ds}NUK;YnGC&22pLX1ZNtn4<^yG-wtlG8D^-jo#r&Lt!&*+gcW~v*Tv@=X zPedW!^iHXm-iHssr=RJ!XXb3^UU83?FB?J4FvBHur}ZCN#!VYMH1$m^Ri4QV+?r2* zxK$*<56{uopENKuddP;Ra(rm{Z94;t;vhmwHN%|9^Zhby5!Fk9xvjp3{ReinYa_3P zVK7o+!EQgYtM>z@{Nz90@z|6hFaI|@i47&?zJx6qv-(Do+dHY=5_V+zv*@zdn&-@UOIj{hzKaUEBGfn z{c;SqRw37CpDwc1Ms~Tlwlyb!K8OG!!dS%SZClDE4LfF)L|1f{Qb$fYm!S5et`HLgqnsebpkpIEd zcAV1`O;%8^L4!GQ$@nxwd(GS*?PXyQH_Yit#Vh)XPY!OW35dI;9^H6BbNW($Henu- zr9G!Bwtc%Mr4y#o0dGN^XbHD$=7-J&p$Yp&4h9^# zW8f^MHI_~gmgp|QikyiaU-RR=x#>@}*B>0$3ZsbO8!btRoK$jqPS&1ES?{oG^1I+R zTn_kMEXDyU-z*=>*T_!OMMsolgf9`^yrDT%$R$W`N(j+xxDlpX*q!k-dw?H{xR@}7 zgSuT`!;qtNwBV@zv3^aETJ7LXe^D$~z$;sXpBBx@rEtH|tP5x5E2{JJ*!Cjp*vyJu zOodQMD%jjs@7Z;}#MXeW0XYg;*k0bI`ZV`gSzcjyCxPHA^|TM009csi9xk0OpN zMh({f^i-P!H~N;Um~al5X(Z;;l0v%nl4_3M?Hp$;4@R5iZ(E+&wZ2%Srz@4qzu5)0j-E{RUVFxviX3r8E02=b}}T>+N&)jHtk zqIBl2)JOd>p8BEOuS#v*hU(MMm1~+*SN&)ZnlgaX3S|5dCwcwfvL1Q<4JCxm|8pZ! zao$_ZKpxsRx>p{xW!ROC2iw{exmks%a+}2n*_l)k`HM65%CG0z{~vz7W<+WGm6kXV z<#IzKcr|!YQ|BJ%7lpiM{>1W<>n_9;)~A}g6AmczfM(U98#a#=^s?5kZ0Rq%FsJUL z65R4nly|z@d4(1suk!2(-jt>@KrvGUJKU#QF4@N-Ul*E{kMNSN(xV-N9#b9<7R6z5 zA%d>HZP=}&QI=u329(0{Sn^V0Z$rk#=P8uv=}qcQKQQ%&nv3_Q_FxenpxV|z*A6@= z3cVM@8CCp;Y*0Ogiym={lkAC^k1%Vr?zEzC*Ql3a;@pj|1&U~FX)7xICu69@;1%eY znqbC0*_+@slY{dX_M%6a{d~hsr%7*+bXhmHW%O)J+ZXBi)$E`oExXg%o;b=6=MjU- z9GFE?Y!0P9iY!QReCr?uTCfgb)A`haL^i{ z(x0Ot1fajxxc7UY6czVY+Tscq-ffq66>@VkHwu&Vxw5+_S<2sdTf(Is$WGHNX{Xq( zMH@5bs+$!2q)M#vofDh?l?91WWAz8qtr)SU9y@7%JbjCa%r|W8uYG~i!Fa7_QO0=8G7%M~cH6_6xCRZ8~tmuxFBN>AuQq&bo z__=Eyf1$GMp-b|Lp7ay9+-HkIJ~@49usBALZpD(McV33~JgvH2rQb0r@k@j)y=>bg zL;Uk&xA-hkv#C|YwXiok>#Jh9+F#!In2L?l=UDr&7_dM7SXk~L#u@&^D06MnOoLBw zs9#3i&4DiLIyUw_b`Ub?RS}uyxVksH*65QX=%j^^XOEs-#h_+-96xhJt2uTzA}I!A zV%j}hp>i}L?kj1_PZJM|@ofZ=onF2Lb)CExZ^puz~(4qX|}+~bm^R~~+Kgj8P5f5+f+vo_|5RfX!PfW!5|fsh^N za`)x>xW2+kQ3QkbpvJ?TjvYSLCb9@+?@fFayv=b+!@DHw@g=D23^@lI`kf3O3lFNk z?lS&jqXv=wX@;79koY!do32oq)A1NAVNIcKv5>3-EwSWD2@e%&LA>$dC5fqPM2UL)&^+_w#+l^PU_$0nmQTq8(=W8ageQ+LjjI$_^=7N)6! zWmDxT?O&cKb;--NfqMnYFh8ZN@>D@Oz{J{zW|UjPw9DlRDj>7R(J@N|q5QSF8Eo$) zQ9sNvU`4$yLr*7ldvJ9${*m50%JrG_d)(zE8DTZkIa{gPVGJ0OgpY?L)Z+=CBBSL9 z5>37Dev}VC`|#r3z0H>u+CaiZ4aUM8`HU^{!T1>RRh1ALJ#AnB&BJ^$i2Z~*h4@7P zIL}{n6FC&!GC5kuXcyAbpETY&Y-{s`P0nWC!ucCi{9fz37Lwr#kjs~oP-rDBB5B`@ z){faAPV0)0imzH;EA@x1A~e>p7{a{900_KsrP|SRb~g(%ssu;y2TkFtojPifEH6INf)Z5swIVYO zFXB#D74#_xZ&t>%2B7WV@U-zi?LIt^bH4vtiRpnLHuiLPqI^EvM#^K&r zF$nDk(JUVT_1dd~&Q%H-Npw4GasWTNxbqTG7Wa0#5f`=&n23PSd(Qptdp`x5LJ#=) zy-fEW)zQLo%8`_sVR+$4X0O7fEe#%{IC1$99$`Y3dPjXlRJ@izD5* zsax=>xk*hZY1?a4$M;TGmH0@$w{NJ)5aZ++6~2qr$l(XILo9)-bE+dzeG{Xld9pi8{ss6;SdRU2 z*22L8F~e3Pw7ZnW1~)`m4(3+gDy~qp-}QMGcDVcgnZ7b&0q!)XR2JdI4vB2-P`$0R7(?zhk~iwG6Tu5IYQrE&aR#ezc1C3(JW?eacy>Zs~trlGkxGu-Q2@Z|FV>A<^z3<1?MY(9c_*e?EdSH~5!ywBLJ>|M&m@os<8if&YKd0LJ%; F{{w*m8!i9< literal 0 HcmV?d00001 diff --git a/Nurse Stress Prediction/Images/pca.jpg b/Nurse Stress Prediction/Images/pca.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77022e33ec4d2568a0c44096a6fc5f8415fad900 GIT binary patch literal 20196 zcmeIa1ymhtvNqfV2pS}~6Fj(Uun;_Ga1AaS3GSK%cLD@=ciFgmaCZq3+}#5IK6B>W zJ12K$?##)|th?6#?Y-XBd-s03>8h@-x9X{%%Ig3J1h@EPkr{d#Bx(BYxJKJtc!A_E?wLqVfM zJ#+#j000FGx!PYY_|Gq>N6;{^kKy1E5Ro7gz-YiDC}`+MFwn5DFffqW9+2Mw7onWdUk$sd3AmB zi(F6u^si$5mt;T4g$|MH5ey784BRhrK|OMU3}|#1*k>${p9(9$>DgeAvHHMczKl#S zZ$ltwQ#``bw;e^qreI&8JpM(rKS}nF3FiBUB>OMH{#&j&02vwza`T|k0YTvMh9<)s z@&6YiZ!@m9CRWR8=3{x12{bztCD!^4NtYLvbGS5qO3cxQW+7RZd*@_y-VQ+X#Gx7S z_?v$ySz{O-D40mB>#m`JAkshJ^g6_sk1$Lq4W%ULwBax)*rrI!%oF42`(?lZgQmsF zd~FzvK#CrWNvVY^#+z*~bZbq`$}xBG6$a^7DJOEYOZx53cn?6mwou#M7Iafafq6m* zzF3S?zBcE)o0^Up>MbpTU|;Q_KgrX~f^LPRa~S?gwH1APuDihU5ZlF&IoM3=YYLAt z`FX*Sj=AFeo!He!kco|+ftxAA-s{5htS?HZzy&~fQ={|5Q5RSVY{qTf$H%_aT8P2h zp=&PAmuo+AZqC4B}sRhEW zcEvjnk+ngwyqt0F9Mbc3FJUWT$2bo576IbfG-Tb7xM*!NeAN#Ysg|1oOo|I@S9*#_ zH6uhVe&%5=nL&)})`c%kZI8PoIf{1dnRp&Q%vfdlAg|OweMoQue zTqMvXA5jPR2Q^}3o8S7xn!X$k8!PR50IrUxw?yrg{!P}wae^Me&7B6Ppe5+XzG$s} zloMH?<=n3>SxTQ?8)@J-Y-%FZiQFp7>H$){M=w^r_t&<&zngskj)Q=$trEK*_6e@w zPkL=RObZ?kral0;X((Yqn?LN!{Na%Qcbfm!*S}3S+jzmoS{HE%iN-A%pR7=8dk4#s5fpu?)9ENXCO&)-58fablG5bXg7UJyOIUTVk>4o$3+#w-3NFsfyekxkl-Cl={u@*Od>z8m3n}N5KOyvRmS{ zoG5tDB1C|VuacY{=$EPoGNtlj)vatVzYhJr(TXRqQH%yp8uESuf79#tM)yCII5S?= zBq&jR%NcI~GP16%iLpfNuKPurgc_~Q|K;x!5n&Dea82Sr90D~u`u|Sz=lk`4OE(fr z1e3ne4*)_*UF!po@{6&0^Gea-v|ZNl#`&J{-F|spqsoaUL;nG)ZWf9f+ULu@=3jTT zDz9~@#*C+j{NflL(2DLAe1+h(tU6-mZ0elhnn0>hrOv4@tFAKBL~ROZMJd6>dv6K{ z(z*{U`{?Z2xVedrg@|&p^Jlj%p6cojm1&BH4$Z!Z_67)}Bmt-|RQYpPnPQD&2j?`0 zF$@+bj2iZ)2~QtOIK0DiCOzSsLJbBJXg2U6ZBejknBJ_5%hQIqr^O>n^gNT!e9Gp{ zHdnW(J*}mSy^F61-iXzGef?Fj-)>!c+PYEbBp-munvrRO%pL562cT2(T${|kzRX`r)67c$8~&T;MnY~e zK=gLYQq8#sOnS^)K1^W1cRzPTvh$r58eA%4UA|zT|>@G z2s#T_m$A(fhXO1u(ycl47~-|gwp_Sjj(x7Cti50GLtIz8oV6Qe(Z$8ZZE$128y-c@ zkn>&bU?f<{KE+8w#V#cWB?A(NYqr_vrT4|ne#tUk=ay$2?M@K4`g?ViIJF9%$lh^0 z0B;+tzhi<&<)K6||MvLPdDwSA4?v-HdK!w?4+pFAeI>c3_QZbx%Cu|lgEY4CfQ%rT zfAbhl)EfKR9Mmnn1v^n({_IKYa5{AEnheziMwDg(rYcA2PBWR`cME$NB9ld2FR;{d zgH{yFjG@8wQT_}5oGahCRZy|DvUD^pz_6x8VZtxGwmp7a%%7Y&FvoUL6Gtm|hM|1i z{5~sIk_qM%D6 z>Z3O1<$S0k`>Q_M&QepuoZTRfWhmxEebcyp03tH+Lz|s)T!^ktWB)m3E$A zH~YlqaUTGIR#h`XGfXr5@EAb(%NM|AVtgx`w<5K(FINil9ureR)Yuer`TIYy{S{uu*8R`Lua#|_9g`M}>$}S1|>j~RwVhb9mFlQ&_ zd9VV4LGBKdRlRk@M@m1Q#$3wdMxGAlw$`t2r!!Sa?7q6>#_miy*d`EtJDj(o_Z&j1 zj6><8Tx@3xiL6SIfHC%Fbe>kJA3ZCSv^-GhdtOTJw{e|`!azp4@tPR!nJPo;V)R&D zqBW-ZO>FdP6W_~8lv0medIp0$QOs8ZlyG5iv0YN!3y%fSK;Wo;^;@hyk)oH3IxAVe z>J}aJ3K*S6B2Q)rt$I1cdODn@u;)UKclzcgZ!;xbFEab(KO+WXAD}UcahYsT^Q6JM zQ|C+aFP?wgzbL1?qmAOIE`)8g3UC5?_2i4PeA%LXn;Ld@mdHlg70b=*yFP|QJvY=$ z{18%h4izw{JbH#yD5JlrHpzk2JVE`Dp+gid8dKpp1Ne;{VN_?7+Qqh}Ee*{qaO4^U zv>u_}MYlZhnqi!O07Mz=m4~k2?j@J~TJ~@(AApS5dRl-cBk12Va@fm@0ttBi-S-t; zEF4-(RMn@?Hzp~^?D>i2)Q+1EJjt~})*TObuaw&p6D!CZFtKJQW!N2$8pnCFZ1PQv zxe?(g5{|8Lox4xpOl4~e+#8k!d<=Ls;8Xi8{H4pFYnV@td2H;P9B^LnwH1LK<8sVn zW+gYzN14q>s{UY@K%?=@@IC^ij?Y(T+`CuPqKKci2J6i2^q)@_!(^rpI-5D5;ya7% zT_(g#Jh65t8zvwcr&_LGYI03F!x}RqMjWX!mV8_Jbm#**`=%T84j=T{Bk-ODgMB}H zRfUh9kH8Mo_4;JOP`2Z|{HTE6r!BGPJiC+=5Oub0{SJKi)gk4+(fzLJ@dU8D|H1I< zmVa0^gkUihem5{3LRFSujpa-*s;GuBq)|xMEynv6I@sGGm(EbpSS$e?=JE%&KgTvbed zX#s!Zj#uNb(@}9pX0?Ad4fR5GqUy{S9^oa@)1b6+tvrU*rm!=pEhPn|RJC#PiSgGS zQiIkDMwS{5Ps`2`l2ZG;8AlbgwKZoo`3Dz{g<%Ys=u6O*T%(+^uu8J^Jd7^p`Q|~v zuQ4_|Xd9i0Jm1=M0UE#hh2q?uddFfUnVjXhrOsk-%A8T8@EN7#M$u1tjh}&j=ukC| zt-{lMYn+60iAaMty!va_f~>;x7q7yl8qA8U>|3uTh{AC53Awj>1;>lc_Okm2ru;mo z2p0l(G$$K{v$t%lTN=Wsx>Z>EYevO6R5jw%TgDj-j~1qOFG8>r6fWgM{7CLIr}DQ2 zpvUa5J;xnM6dI`+IHm`O^K?>EebCqp~5#Jb_qQeOZ*Ypn_y$V!W3fT^ecUI&{_D?3M(njgFTa<@$vu zPs%s?aXGgpZmsMPKM8p_1zWBaClV&BQ=bLLQnf^}u>%HbaH>pY?3@d7<;x>FiZEGe zW^$O@goLH`p|M_dO%35EX^I)}Ylz;&nWng1fbA5C(F5=?)8TvK`ZdYS==Z|j?!|kv zlgco*8c)78qH@iIM*O`l+339Oi}DWw`itr>zJ-^ozafb%)bNbSHDj*gwftE8>Gga( zL%P~Tsv;(edH;Vt>dCV@$f&4H*m0akrqLcwgQm(h08773LjH;Z8a}XgSSG@wKieXZ z9SwZW(7Ais%jYeab|+^(6(iu}l%W}~oZnjnw${(Ps!lb3Hz)0pnw%wbdTVGvve{&9 z8ka&p3Ffx8+W$I!R)%oPXGh^3hFW@Zqe^all&g3@hG64lLEqs%_KYvyBaV=y=d@J) zmD;F+7?v1thBY2wPg*QVZ5M}%f9g~;S1xQ%^xQ$6L$LhSbOqY$B35B&JiM>Oyg{QG zL94dbc6Fi*5fIqX4-&Tke{=kNIK!PvxGk4&UN2mGw0?6Dhsi|-Qd?riRypakdKH$o z;ywbuZd~BbU)3;bQT1J5w;g9H&TrA6VPYc|fr~ZQ@hJ{n#G{b6Hmz8*J2zSQjBy;_ z`+ARis$c@0_$rx|m5ILS1D70e*;myJ!t95LlW`2`%h^l$fA@j_Hivc8OI}<#7vO1EX>t5YKE$GpQzyp2R#u0@jUCL-jvi%OzDA6->E!_w7;F;YID| zS+w*<@7Ia_KqAY~_glxcX1dQu3vXmr`6R&vx;Wa>i1qVw1zlDV^WS7O(b1&QPu6{1 z_M?S}-$P9C{dxS`mXXzzPE)SSjT1@r)P3~AUdkv+ElVEDR?ZdgMHIS*3~wF}H_<7F zCU)}X6l(B9?9LL^l3oghAgy$_@Fq3jEyT@%9hb3N?|w5?L^hT=VSVRAl%yy)J0TvS zp8A&ZGYj7A9o;n6)Tj{QMrh_v>QUqpXs)d?XceTkPhMT=X#YyZxSx+UR$ucr4dB}- z-B}_U<;bYmsptQA7MZUEO0b%s-~EoIbAQ3W+wS(I<8%7U{c6>IOG0x;5wvg!MYuAL-4qly7{Wu)np{!{xE((?akKXbbuk$j&Wb3yk+?%+A z3|tDfw%I#~iJKeIXOOZdls7NLCM!7pA;bL5V1M2~Qy9TD4M*TJRgHjgJ;Vx*jS=_c z5?tnCyk1;>;clKT+h&|&dafmMaJep_&Q26p{CzN0=sE(YF9EBI0fAiYxw5ml>hyy7nc_-KZE1=ubX<)0czTg1mEEe#3F~J_O~kj|vE^#c4U!Gj(*1?In%s}A z@FipV^DSp+xEkKEwGK-GXLB^A6wTm|cO0cx`E3yB*LPe!hO}`wPZ-lNYhOCE!6tBCkQObMIwcuZq`Q}T%-#!Ydv(#? z2~^Cl)7PgsqNzDZ);&z%T}uxW-(JFu!WV(6`)i=KX73>|E_4+r5R)ZTU5#NTZO2fh zMb<}2TLP!w8sXuHDz!YhIju*_p3Em#ACi8GzjOYT*2A~+`mPI5{2`S4mt}rwjg2*B zm9Ymq3Yh4On|3quF=s-HU}L8McS*gK2KJP*2KEm{He#$p;<~M_)6C20Mw65Dcl_DI zjG0tk(@@nc-w#j)!(jD6$2$)I8s)8HTuxb873?!JTsoQPFL-M;4}k6qmE4YHcykTe zOvdbd@e8j-+_iu*dRsBc9^o!m#29@0y4+*NxEGrmV5!EkD_u<@6MyzW+4gRQBJ;-= zt4>R;;ju45u!xrp`TVPP3U)^|za|5^h64wm$nbAB3Ef+p#DULfdS zB3K@|K7qa(g*&D|d{RM&MK94F0WZ)w>A|FS{A6*Dd50L=4IY<-)vKn9MizmPiJBVv zIOnQ+%`t+#mq`Wbc3L!uqZVD7{^hIF4~7v=E{138hN?s>%ZSO;J)F&AfgYH#({bSp zXHjfI7bS$9n6W%IbvQZi2>3$**JOQ}6(U3rgIg78G^@tR&-dq@mSiDxpHIumT078F z;5ceT0YkZ!P~wg5jXn_bk=89Br1L895xDc8A90)XLK!UFne!N^KTl#2e&=OpB|bn-4#O-sogxR; ziF-9(a?Z`68O+XAPBm$~Y3-SeKzOR5EUO@2p>g>DkSQ5&y72RPeV)k(!;PhhRAk3h zR`7;P!`z`M3Vr!UVP6Omy)(aMHt}otDMa|sBcyOVtGmTd81yQp*yA~j>lWA5y9}*} zF4ib)K6Z-_NZd?Of3z1wp94i|KTDN7x>9+PwYcO_A@+5jG{QX%0S;=$CIoQ{k}qP< zI9v8MgD2)Vf(Kpp_b3x6v?5P=^MT`$R5^{(oU2{wNe(wlRyu7Jg2YcI;rqPyBl*gB z)OIwuTWmW*heAXgwh1jEjC-YEiL>umrTb?AQ_|O-BjiSXhx7RRd^1!8Fs1Tr2|K$V zC)pQ0yKg(o&0N)*{I!)$b5BRH=X5DvF1?-Vs;kOIF{kJ{Vmkc z$LLdM7z%tptUfo-ZBE_1E{=Js)wHGc8Au{5(vZ>64RjH&KEp=u-uanNmEzP}b*kE4 z!pilCHpl5gXtvX&0vEv3j4dFnNZ=|F$TO%^ZF-9njdp zn16qcUjP1TDS_;vJVJUPkkrxRwc^t;-^4~&NlIJVS$RGEc)GC5b#a>q~hFH#Ln3_mhk$)n}I zAS&V|5m~O0itf0_8NcI0LNYRAq<8?-ZKxR^fN;Hi)w6xhamfm4X&P+YH)%SX6DgZZ z#p9o*3h>Dc9`8Tj8Bq|$iqHEQ0?4ny8Sk$TjVW~MKfeNY9b1CI%YIBx5AMv4#VfqP zXz+oV4i5UL3U%T{H%=wiA`P|E=h`?*6X*SS8DW|}2C&&5rZ&`Lba=R~vm(JxceTWg ztMy(OGgO%?yPt^<=wv=pYX;g>aE4BaGDHbzr45sZOe3ry1z5X_n7}Rvx^ujnx~z$t znyNS2Or{tc+`t~P`KTOu1#Ff$r=cqThT;4)Zu2*(6G~zmQ1%RsTlXVxoP*yj)^HE; z)3J5N%@xNcP*_1egkVOu9R{F+G?oqpl{~seoO7g z%J5x>1dOb9af0-!`Law1%exx=JH#}}lzup5b3^2}jV8XH&B=0JQhTG=>`J1D1L-6Y?&tmGW4Mq#>PdG77ZWq0sv63SNbGez&Y@R{-vmq z?jq9?d=C$_mD^V|RHah>N!W{0uhrX+lZShWqRL@i47n^BwLZp-JKWKf$9}!-)9I>Q zg;$I{s!jE^pv9My)&^>&Y2Z(^+GHWXwW2tjl~O)=$O!B%6*1WnIH`up)N>w$S$g4; zf}_|+05#!9c!R&PT3b76>26bMHeDYwOp^Y|iX@QQ}H^upv z6C7Cf6itP#>HOjGWU0OQ`I%Q@(-O@=$ED{;*Op&7r0t3)GeBQegdB*}#|;|7vL%B%g1$NcTspZA=bjiQ`+d-VH_>naJr%+jcdl;MY5N-Qc=OhwA|RjP8V(x znWq!!NCdRa1jr&*FG3p~*r9eNlvFAS5+zKS`w?QW1{A%CSlPhdL-1Q5Dr+25c@W90 zqOOm_MiKR;tbsbNk^GlXpD;1Zq!aG6C-t=8@85Ic3>fy$wqdJ8n8=f$W;`jrLM`Lg80YLjL?fCzF#q-`v5}l2zul1d$~XsO`pTeSr|J}b z^0*8Ii+G)7>NA2DzDj2TnJswRntka?wB7(N;8@HA-y;`%!dmr>!INabsHu@N_PEXZ zX&17AIT3iHxTXl@M&kT8LnY=Kr zvqtS%{di0nen&;+LUA%YqXFT?WEAf4HGWU?ytH~Jcklo-ybs!T*Qyy_3GNzi9^Je@ zd{@o=sjJC-#J}VLVDe-cvIzr)9678l>TEmmTDX4p?UA3LtaS^>d8KJ=_KIeZ6!!B$ zfX^2wSsNkZWF1KlJ49!Y?or_{G#uEaO1d`7s_Upg##fPjg0t|#3?mlgVAn-VsMf2S z4F-dk;DqiIBk;IGtym^IqEmZ7r-V33ySl6pcek6eCf-@$cfQW4xca89%@070TB%8` z8S{QBi;6*1A8Oo?EE2Kv+89k53Uxb9zhEE-p9i&4{Ukd~b>P^lOM-*6?*QIYl`l3` z&&jFb#<@%URmToF9+g^_?BLsGpeat0zP;ZZ2n}BsH6Q=O#mfK2wN%6d4juT2Xqux9 ztx6U<&Ea1C5=Njx(tFG`ViUvHSs97OK8@8lzWw{?!5MzS=+=qWuh+)vlIhwpI4c<| zSCKw6H=($HfWEZJdx3`PWwo@K5Z57qao-;gmXWmv?_$`Vvh;@YzkC4b@1Y;n2Tk_R z*5C@JUgPE6zRFf`Zy6qd6k|JQ{?!HUzof0OLk<5}P~UX_k?Zh3$_mO8U;=GwxrCbw zImRXQ*tgl?S^%&fB>|vFawO+m70OMll^aTb*0^xlUk!5(VvZu4pY%64;nEcm56-Ag z?BIHNpc$Yq7ADNm_=K%OSF=S0+yEh!*X86e-^bX5h(G?y^cgU{bj?X!ovnHzu4pO6Lod3A z^Ymq8?+1aNmuRr$G2|iVa2$n&&cUxnrMe1sv9VbtvLmgmp0ajKJSJy{690p=p2&Cw zqy|`JJc=ZME*Qe{;Jt4k3ipeAlHKUNs3TP;MzToUb1Kl0Q2XZ7p=D&!ju>|HUUa7? z*#y>M1OVG3~44qDYF8)AMH0jQTUH#^aCI&jA&#AaEc%3ChB9yU)gJdcFF`6v(MLAmg$Z zGFgMGmd`CL4%dP(xN&d^YG_kb$h%>=v(s9Xl7AC5RktYW(CE;t98mCHO{mP$o zW|p}9OtmrJ_26kig%~%v$&OpHC(`WgrK_dOdOHbZT?(8JZan}fRiWf>q`yV2uB=*) z(r4+(8MNY&)!)oxsU*!Qor&Q}DU&7^7D9}(PWG?T27XIJe`fpBDJ)dzY9igBc*pph z+Tp2@b4;hLi^Zr*@J60R$kW6go%8l9r?%is=Zz_8>nGp_jU^q4n@C!HH#6wZlb#lb zuraR4uvYItrN?sq7UwjH@|FTO_ZJjuYcoW@8J!5lAm z;h)=w@a2wn-zBB+d)!58!1BC+c>IO)h0DzF?EL_z<*?xHivfeHrY-2vgOcLCV#E4| z6goHOIQyu+6?C|KYH!*Y|9~nPMY=%y?z>dQ~E!<7PZJr`;sk|S+;Mfl1UYd8Yr?~~* zv@USN;SITtz(LTPaFHovXZt1-+2$A=JIdlQslF!Gm(e~NOusNPYm=WG*rQ@@-{Z@u znOEDI4U;Znf*A4wGD=>*eN=?&6PZ-{X3*aCZ%`D{5Ow}ZhLeh8UD3QLuTssW_&4DX zLN1Pb8A)%VD=@P%N(M@CcTcxf-p!hAjhQ?3^w%H?92R=GtUUn5Dt8PkXGa$i)!!QX z<5A;nsO;*7&xmMsQ5SX06F7QIzZCxNg*a7g#He=5aeB)7!6kd2 zq`&vy5*_?ywDI$if}wN9Dv~bBqKuuJixKY3i`{4OH8}DG??Hy;&uqe1OH@0`5ZuL0 zI2Ln5N+^R}d@Z$JJ@fuVT8$Pa(dR3CyI85|g;s(+-Fow3m>rGwvrmdaCu!gN0m6`q zO!rkll8pcn8v9Nt|uH`N<1xeh(W!*;L9F$7VJecI`eRnQp zD(h;!H}H&owAc7O6~)9?R87+mqs=rNTI(@pH2N6ZgT0RmUFMw$P6R9*2U*8O$BO8) zDk{h6i}xvEBw?6o#lD6R=Hc>SL5PW&xu*3hVI}p(@h18egtgT^`p6y^J_)ry1$aYK z#&YYs7&%CcO0%)F0uEGl-=#asoP*WI!Ou%y-Pj{EF?@OywkTrgK(cZGqU&PQb@tZ` zZ?7hkuxx$0G^FHHSw@_Botj?K-rct>Tj4h}#X^WyGNEwqI(1b}8OJ?X<47l-bJ3UiVv#plRv0W|b81@I=i4CE# z`vc`$bc{V6oEJ;vjnfn<(usjr!2{5jbYYNefhl)QWBi+3g4fZ8vP;4@zXu?)5-#Cw z$Pk*Wyh|dl)nUlRprj~P+?@ncz@SL@JAvY z)#emwO}x#Z#RG~^Bznoo-aQ(r8-xZrNMKuyuG^I@<4E36C&rS-t}u#Dv&)Fc)HKyM`AIxodmF~{7@^x!pU+{np(%!Y<@&IYo4;6H-y=~ah#ykZD8Xp_ zOI`fCKmT$6`a2!}Mu+^fuCw&&B;fEM?W}G;Cg3Dlro;@RRhmSM%boaa!X{R+$MNie zNLZqXtfH-(&?Cyr<<7(R@8?MF5xzYD>j}SfyE5sdcDs`JJ1}V88i*wBsZ?mW=+3g1 zd=JvZyA|%XnZ`=1_GF_)y}0o2eE`y4wA@7t5m90dc?5TRoe_^b07r66kcN`c3nn~B z>D5i-0ciVm4y0A_KRBn$tcI9v!us4zcRv(GaBnxedhvVo^HVlt+k>7tZbM zzkJWMpPFx}Fe27@7NtFND=xTm9LBo|1{|wYd45o@_)H_DyH$7}0^z}&JOC#$fW7^H zdJ^Z9CmW(1#4aGH?Vs#I{Ra7-ZTbaY&d%~YKB1r`IBc!&{!2`?wfxNR++&-R+BB50 zpiP0UHNhKHQ?D!PI7r)(=?~ifQ;+t4YRYPQ?Qzl)dDEC+H9N}%NR82bc`x46nk8Gi z_EsGCq<%AbX<_>ZBOZYh7qv^(KTiD)S0#9d(GMZcu>Yr~a3mHlI1h`J1?~RwsCrB` zRYR^^b!{C#=<1?b0mW2aDTELsHGp$+e&xA>}1rA1mh@U z3<5f};=7Rsr#<<)ZdtZ)jj?~I-4l5bq&9XItaLvSjlRJ3DH2}8_)~(}_%1g*xp=nJLC2vwo-@Kt*3tLXYS}xOP0<4w@=~ zYip()IVT}-E}>)47+RGstTn7r%TZx1nCrwX;q?}V+X6NJUKM4!T`44%Dtrix61AG| zVXP^udtPA^#CWwwWYay{xKyywre8$Dy5~h6}yc$d7}X zPsFFLA+pMe6nfP3hZeTnd~?ToncO+6feijOp&+=JKz`peihE`3;6k$ma3W_MDT~mO zwD>o684N%`MGVMqBShmSODx%O)X@2SqH7+ULy_AjT}}IA-kN-oDP0%h)Z^{?j@IOydekFNMc2p_o_d$So% zodvuQ#}1oD57k&DVbMpA>gE_$frh>+Lpbj;SN)`+aTP6lJnZLHRn^2_YDLiyyRpG9 z{JBqEp6_iZ=Lh*mIdTAUSnlN3?}E)D8H3IQfjBqpRIiIbMhZFpXTIH_Xt0|5Oeg`a zg{|9a^=|O7(;eBU`L<2rZVkRpPVC2LAh({614e<@kX)#UFYe&$8KFF!9?TaTYrB=bam!qvOIU8aBMH|iIU`pHQuVTLe+HEN`^T<;<(@i6atLCG=ZaO z)TR`b^>NM_LWz^XYMZ@k(TtscJx%4?af_kYEUorc)T>IYLc$ms7v+Eegw~-Ma$N<`0q)zWirDu z5m-?>p)hw?y>rHdnp4p7j4$0iHm_&LU(m4eR}Y*+H!i_n5|v{!z}6?UTs#FD!;+?) z{O@#E2^vt5b`pws-&Rf&3V+k2@RdmFJ}9j%hn4L(StBR^h3PNq(iGPzBX)nVv@tg@ zsK@`+TT?to8}F5vOp0}CIL+E2RyRvz1ILRc=3`9Gxsn3CaluOVLFJ+phA5Y@P70+3 z0!J)wtIs?==D-;~UGULf{n--l@hiI>l`*ra%ksP$QwsV5%Sm8 z_y67P-T&D6i=2)YlcIK`@Ti9>@q29iNNCWny{HLoc2hw5LBIwB#JpMOhu* zgC9xPPj4s_h@rF1a>w9={ChQeQBr}Pf_MPmXhTAWVzTz;jQNFidatlf&H32xQTtxZhg_5 zWDcb*?p^eddYOQhJH#v* zSs~f;s8s!mw|nV8Gq|vDQ3714-d$5cSH#T8MYbYl=Myz+;4^5iBoD`vb;Ua_)m&W< z`Yv`h+c`3uyX_xQt#3p8f0H`Zwl!Rs5ID$DRE{V?B}hIJL`jVinkHyVjv`4i0!pSaVkSwHVCV(`p_QDI zA|N2zB*{rYa?VZnx2k>jzH|Tg#`wqhzB`5ouf?vaz4zK{%{A9t_3)y$8apdDD}o^G zSoL#w1ldA|KSy`&fPZ<;?0FM@obo(x=y}=I*3-+<-3HOJ^mKD_^>nho%74?w-NWA1 zMMhFy^0+wvHBV1B4+SYH=YRi#q^rA~R2S>cV7Lj3o4Sz)f^b-(f0*84QtT1Lj*dNd zTGu;%s>jP)cew5IfZZPTqub9!K3m*RJo@(e)-C$aSZlNm!ZP3Xf8Y9O=T6b{M0v5D ztfIFmXCrnUIkuDa_F~*!gh_g1V`vk9LXHJ{Q)r=>EEa9sm>9cnOP!2k@1{$%jZqXl z9zA0^uc_~6Ivp1TD2QGxsay|_vc#6{^A-<*nf87hjB zvXG3fCk@v}EB3G=9OqY=`@bg!uG??lw(VC4hE_11clhl6+F^J5-V&cYUsKcg3n9E2 z#nVMNpZT9*Nl8hpT$1mCd41I_0@p}`Lqo3XC2;fS^}`y}ojZ44?8vfN`XWaD)slL7 zY)N?lu!yHXLfm#^>brK4T#oPYiG_Q8XlPyaf8#wA~Ii2I&^eP@on!DfJ{L1ui> zjfvzpY9Yz>9>nFDZ9$VF!OiSQMaF9X9S&In&A)WEip{vl)Bb9}OmC_0##H{&uQws% zx0rd=-|=ArO(jh7T9UP1w3PUGl+JxV$jZUd9(GhM$9wLo^4iac&TPAoUjK#07b+_} zUfr*vEdq_gJqN0`J9p+_k6w6k(b}5WMz%LAnyxirQuA7Q4avQj;tu~gaH_){JZ zKWoGChLU_n4mfvYowp!t=JNXd+}-88xxUo=`RT!2$M(#<%3fhd&Mz)D>j($-rd}4_ z&dlt%Iy=x=>X-i|O2Y54h1m!z8(VgOvQ)|JZBgB~FTcN0o0!V)iz1UdP=KbQkfO?)F_B2wvKlDYv*mhpl^SQy<03&aUU?_MWyx zCfHAP=H^*RniUcAdwp?mO;1%dXnv$I9W}(q`z68!U@f#^m%;?P@Zl}2V0kcNA1CJ< ztD0vWE*q2CO}g2(THAN*5LHq#Ma_EGp_6W{R!H4DpsHWK#fNfPkaCyx0i=U0&AS_l3<*3?bZADe{bKuJ=OB#edAK!+$o={ zSFg6D8%RZp8{ug*n&`!sL2+`9$&D}Mg?Y36R$P?Vf4za_58bk5i*C-fOUks>p+}D% zX(){tJJRUu6H>V@J;nnA1FWp9_)_1c#g81AAJ4F>+-2+IV(i?q>gONtN2knKi>5^7 z)O8P?Ol*Wuc!Q#mytHH6yH7J}W&UfZ8BFw7-g%gx(%#2{B!<*skdRULLfJs7w;tKt z%&f@s`D@h8{kS#D2G>Qf~U(iT<+b!Ki+C! zq4zcZlpH)%&Y?v;EG#U|BtKKYz9NW;Tgm&q!i{kv{5hteV0=*CrDde?Me92w8D%?>Z%njldG!V4`>sr9z}Qrn=9dWJkVpF^d|N%(51qUi7#KL-oDwoPIQVmPG=+qV zP6JCyGs;e0Uzw5O`_OyUAjrWOPX$KxOSovddo3bGXpRZ z&$+?#a<09m*RNk6?=3B6-6u-C!_46Thep9;&=W(f4IaO;Fq9-s9w1X{@r>gwF55O|Hg#X^ne$1Jf$<8NSf+a7WXJJs}Fui??Z zwPpLe2w@$ew!pPvuKJpq8sFs(J5I+8GNmHG}tr^H=PdHuEdwcQlT+@}&uL*5pAG~Uc zarnFH$6Tnd&j-hGr7`CC$1gAB$@~8L>)Pf*6DDueD9(OL)q0C&<%QN>_xlcI7@cRBbto7oA#9WMP+1dq{d=rR_-@!)qU{FiXvZ;4~ z&>l{FdQg7+XI;d2cVV_OOUq>)Ws;K5yy?OktaW-tMa8G4e3zcIo?@?wI^m?2x(H#; zB(W1G^y%yE=9t_ZXXLuZSuB^LuwLt`R zs&5bPD!BgU8INKzmxcc&CMKqbj3~2DRJXvvXAc5k$(oIM*P)Aa+NK^!V;|2+H`STa zm0rD?yLa!Zhks2}c1*{B?|yh#<;amE)lIQd7AkViox1S2*3FeZa=Qh=EJ8?&0?uC6 zo+5yy^bzP1SW$~Is@@9O@Wa)sG0K6|g0BgRUOhwIE?$Fi>kw~D?7qfdDs&&#&2`W# zo&O@%2|@qSMp#@y|;Zl(r-ja1C#|q{Pg|y;`1qB74meyfDiFvMlnXuxi z+6fA%50`L@7S+>`DqRdmf6aewKGkPogj>e;iE}AEmkJYW-%J#sD{$_WGVfmYsbWh& z9mcHB9yDM=yrqBvEW(i-BbU?g3nPuLKaxDB$}P}EO~W8p8ZkjmufT1F6SuSN|3!*6 zrvO4){28IsnfwcWCse?>ugnY$Ywx(k^fjv=?TfIkGOkjf<*c@s(*&``AFkdj@|sB; zsVNNen=Vu%(AHAQHkVB#ObafeYaPrN`1bnHXE>MI_JQ4iA5!g`lOHC@U;CyC0q5HU zxjggIn+w?RZkK#h$>{y!hHi~LgiL<}LAh|9P0mDI_jW`TP6tv3RMD_x3L6%y%VAl~eJk zrJg%?*O|V&_@hqn$dNN}Tyj2#@R2t+R&e1O(UKDNS-KFdK6xpJ69A7iE#I&xY;J^G z=eqWl?Nug>QAmQ=SFc{R`)2|=76n6mSkrg2%h`9XnoAD+>r_v%0hmJR`1&^R60HYa zOJ400)4w+SB~rnA_9cK$uO40q8`pbgu=C_*5&88EbZtxslha#Ok5ISHx*b1$eEj>H z;4}kr;z@fc(}MRqb{%@lN1$E;x1^zz2Oi9!?Om*pX3R@hILdJ$(G-@cC4tFfx*5iD zSfNlf0>!BW6aj#U@a~3Vo(p>dFfky!;nOMv$5uE#j%+os6RmKbU!nL9W)n_?fYq5O zbMmC2&6nqwOifL%N*H9ChFkl6&GBApHMlWG5e%5EWDX~)@%o%AD=YJz$jHxJ&(0DT z`;c#(>mcIVTM~Ej`qe?UBXuRS8e@B6;5?^!j#0Q({8#mGxdI-QC+gy*t`E;AY}wBG z7Toqjg3$Nx-}6)i7S2>ah+H1MN!pk$)|qH0w>M$v@rI9|K5f0r!l|2Ojnzxj6*+H# zy8v!C3Pt;1x*cWD(31gBq8-j!k|B;<&WR`;tPe!IbL4xy!TxwCV1QO8?%yGxY9*Brx>P91oF>M060Cu0g)?F&U6=$x2>nWPZEM6RZEG4S; z><~H%u#(g0-(XQ#6cgf>#UKqWn{a;@LB2a=d2D8)IeEnv_@K*B8f*VlWu?zy4N* zFkt}48?v^8sG|q;av7}kvh2O(xw-FfvlhUhdYPt1aM1vA9?#kS(}4XnVf)u<8#5@_ ze|`S(_=g(a%efA%dk-B#L$>3``|Q5-%@x7e32{%rhZ!dM`f$cP*XC^kz|Ep>{U$`k zw}*Fqc`6+}U~os>5MJfIFwL>%6h}xc*8v6alybip7;cEY3_GK@u{_oK-tw&S+$YY5 zCIL|Z_)Gm(w3SYj(zKCTH*FWWZAkvrq0dht#Ui)D108$I0ylk8AcY=`j6ew7j-MXv zZcFg$wFkUxe9HajdkCu5%Ci+)+rT}zm;sbeZVDLIPf}4)VZbrrMDHp{S)24~q|8fx zIDC6~3xyu&U_k0Gm%tO7-RK5@kO6;8Dl04XFJ267Ex2yw2s@T%)$23LlMaqwf4aLc zqoP7J9b$YNc;t7Fxuk@6Jzy=;{Z^*+!S6^!*WYNC;ANnXk^rDg_3yFndzWceYz$07R*zT9+e`Wn_Xvs;2n6(DZR4%!8E}e> zC5&^_m4qxezDziOECf(C5vIob0dhCTwT%rE@PF?C>sd({WqryL&(8RTB1LdKjjSvz zAKZt(*r0!3UmXhJxqF5cZRR4C?@N3ve2 z?~VGtzCPdz@)IFn{WNu&^EdTSXJeGV$_wO+$j_U_kr+at@_g-4a2T(fr;wm_%SH^s zf7Z0XZ6Ix7i^|$hPRNfn;Jmmeiy*V^5E76BSJ&o;$9szN0oG>#B6NV58K>lvC941K zEg*>w$@|-p+C%ZPY)I{&C^z%rYPGCG%Q5sm0P9fvEoWW(=WPsf@-C!w2+}WTxWEBF zy;-V$|KAda#`3PIHXsuA?%7ji^A+f!Pzl2*QcTQW`y@?Qlezd7(`E?(+QFGOjGcg? zL7ray6-@gij2G|Mc{C}aK{%^>ue*N?3v0RcTd#bf|qx@Hp$#FuNZednSd3kd}_g)4GrvA7& zg>-X@xG@vGi}(3`j_5YBS5f*wh)nR}sY^Xxww;&&U%Z6cF8hs}qrMuq4*jOoyq`n} zlX#VhQf2SkCtAXiHIGZ}%=%jhovx~e|H4zq|CCoZHgIQyHPQ|2*7~K6uc6eN%jD|y zR1^8Jbn@hq;*4xFjdfrAm>7Eu<8kd*jf7?m(yTdXOiYxG8Jw7bukLL0?`sB%zPi41 z=d)Xc3yY`2g><66M0zBXO+NkPgS)Cw<} zupf-Ghj{*VG4dJXrWM6TQHx_Kw)u%aD=`L=_6>j8k5Qa(n z@)2^{XG#s?PF@loNP&P33p^@@wk zltm%MobYqEM`h-jd$1*sub|hECN4gyfYn#J8FBE;df~=+k;cTSrT-d<=;S*_x0IDG zE;KFszBoZq@wNH zm5f;<%DNMcrthTxjao?1Xo0^Gw~}F+c@Hm@ZJ%`Usz2>iC4I;5VKUV9^w?$BPHQq| zXQ>?rBb+{ky%Zcp<2 z>NItLdtB3^BdA7`25DtFP_YnGL}g`lQG5Wvx!=F-Q?%-fpP#1+|t$$07Rp?U>a~zD3ORO+dYUSv2b8`@3qOMw5-2i}Lz5?ma$?EEA!9ZRfo`eHa zU@H8AfwYdv&TNmAQXpv-r;G7!?_~mPta!60)xrZemkfX}1($DuvZEsnv2Oson60c< z-eDFK7Z;y<0|{L04+(gY%(3oMW5dy;9qf~p<(dcVt6A+^j@>5gn0sr3;gT|Mp>1yL z+qaJdtd1jvh<)_rNy#)@kfRpu@jkK7S?HNgd1q>$yy>?r&}u4~>gDQjnEaA|)OX=x zs?qY$r2)DIn!WY=04qgW1D# z4cv=+^6FIJH?v;Ws*4<{5+B9xq^YP-#K1JBdjfAoK$3B{?7=VX~0n0`_D*lF+mX?nm zJotv@<^cLm^>Cw0l4Jd_B{d?))dJtxZs0p5H%6dGP&auT8(+ZaB#3U!=*somzJ5b8 zu#htt(#q7>XWuF7aaii)=Qr)Bi{xiBD)@Gn3hqj67tnhotrt6KMyN5Oha9XRHeiEn zntCZCE_S)^dN8Ni05{{@@K232MT;8bG1KEuk@9=PPdM?f+8zHr$~Q&l1)B#r6LS08 z!&(UrdCTXbJ~GZl>H_Nh!DVc$VP{H?W|-k-o2q`_&qh1(x$p9G6?(Th*{n-*L(Jf2 zvJ~+z#zE}vmhX#kLx(ZEzhm2_xN<-|jZ>g_sr^Tz=G69FR7`N>2 zv~85;+=Q9&tNPLd>{~@|moqc`6H@#}jg)CdBA4g2&lJ@=jTvRe%LEKWF#<}Er4c3C z;lnlJ@1ZImVmwYgm;+~4qz>s1S>EYd@+JwV*vv)Q$GGNdYeY#&VvI`?iVz@2*xRTJ3X*>>&N(fH?!mW<9%p7kFng$_ z2>LETlP-NK;D1Ygn7el1X(;~&DmehEUb4`ls z*2b2F+AtjOtmoVu5C$5pX&rY6W&V^W2Pl&r+X(86z3A__ITfzp8QS*lL%T_Sl*+og z=*0>cD#*C)>^T_v-jZQ6qfJtcae@I$`zrYiey^&1;D(k%pSf{)uQ_3m1-wCaH*>)b z#=<2I&fD0}UP<-6;WsN~cri{!ZGDjKHpYeFyn}>Smkea4`f}>b2_pyWKkdwp6n5ie z7;jb;>qR|#ToU}r=R8Sm{CQm zowe6Ke4tE_!4_~)k-Aa_+Hum=C2WZG7AQc*-%x#Wm*kH)N8 zGGn(xcYjTkQ(Sv;z=~|}?wD4BXlurVrp2rSW2Tg@a6x=)+H(KQgxJ!AU1mRSHux-K z-HFk^u8p-CG`4z2q~ohKHym5x@buFeGg0SYUfkzZ%l~>Z045szPu%C^GFwUVN7E|49_3{ zD0Dd5))|G8;KTkpeEz~7>cAXhc865NZ;TxY*vKdiY*HTCVs7&V>?!mshG%`-Vqd{Ed={e~IkXyL)$Aa?sZ1u`+fV*>;@NTl5-qAH5+9Cjt_b zbDUgi%OHiQgtP8-gQ1TZcCVxZL!DwgYj~FXlQ8A7j!}!P2HObzzk_Mhe3z?jXSqv4 zDeV&{H+?ro9oscNe6Uq` zE>HGc&w)x`At6yI`Q|*)bL5E+ZM>DVovoqe*a>~nOJ^Kfzi39}xkd-BRZs2?m?@>) zXQ%X*;xC4F=)2GZ$EvoA*lE|b8?f$*k~EVJFfVg*DfYy=7ixw`MyF!&S6+J3O7?Pj z4Ph|R^-2~_PV0ddfMFlcx`_yUqPmp&8?o*TU0*z2o^o?CbQiB|dH&E)<4kq`m4%H{ zg|E+(TzZHXo;J)3UQTIvT;R~!Fw?^++%Vdj{$eQK=|g*FBwsk6M@CKIyh{Gymr>kI zP5HwXYts-GI$D!MNn@b;MgRW$B3k!@qJ|!DIeRfX1~6=fMY`P5pQu}vJU&zTXP4wG zi;U$`T`f|c`3YWz^O+ z%i2FZRBEdq3t>#xP8#%%>YJ|lk8Q4sgi3rQ07tk8bV>Tnsm>z*wJdYO<_(l=N2?}4 zr$oN4;ioD(jp4`EMjM}RP8uzQd~a{3whv231eN$SlG+5vV(o};)FP(&_+~WwP^rn< zYD~zgH)kjA`QLXc2(;t*ToMkw*B?BVDLf(|Ac9e%m+a-VlCFlFqmLkbkG@Ax^Q2B- zk_pQ%mJXqTHR>jLT7=Uav96ybkcMhP(Bc@N;}$5~M!eqmlg9J&CQiawy(=#^pGnH} zZ~Cf0w!jEQFndz)?{7}6fNH)(Vx|6c$=eH@gf-^YE$o5Q;a?MEwtlQoO?5I_phww6 z?bpk2c(%4=ke$;$98O#PD4q)3;@I^sQF1jrO4p=oLNLkB54Go=B4+(r_V^Y>*67?r zH%xgzUQ|>g9EiTa9xI?Z_eP7$UQkoB^R_5>CSlUhWqJCvZDYVQYr>MLMoE%`ICrPn^1b#JN<^`o-PRVoHWe;EuW4**>6>QCk4HM!~>!(2!i#)zuxWxwVy9 zI`yonpoL0yL(S9)DJ1icMHc!?I24%IcM0k&Hy};~?AhWs|1D|OXI^g`m!!aO@Li^> zRV-yJu|r=r1jSElPqe*f=@{|FMYt}_$vmjJM|bHdLIp#{P!>h&?;ou;H#hfjb31GV zolP^4w<}9hw4)ssAmk>_iYoC}beoeNbwoAS)U==klechmz4fiT3tObjG`{?C`t-Yqeur_VOQ|KmX^_BL1O|- zONw`4NgWun$}3@IIX;2zrv}h*#DE!(pP^M%#K28ryM;XYIVbJI`ntmAKESXIgF_KH z7y5?7S@+92{t}E}pZ|HBuI%+S-tZu|!~EIuKq1FNO4nS(4F4XBQ(y`4p!rh*)|a(5 z>I&+zwW<~hdzKSjhS8UqTwVY+eH`>W-_XKER~JTHT=N!-T~Ob);!SI&NtDHNxf?*c zEMelZG*6@Ne|9mYWX9r=vVp|4Y4eaP|#<3g4po0Oy-ZqPN|<1ul{T9AV;kyT&RvL0 zkAHS3b}u!+zac9$!-R#VD#Qpul)jGak-Ig=ttOWq?Q6^_cQLbD-%`RzKSIl*#KY3` zbD8OPop;N-3axJ4#Rx7GHP4)m*FIElzfz5TGE-!|dWez&j7u&(RriE`0)RN>uI^f9 zpJxq&euJaXo0l$8>ZNcI!d(-sX|eW%sWG@wnHU>j-n&&xnoP-E|T8rbNnUQrAST zBP0;RU%oDG=htJz>Vq$2YVK|Tp!#oQ3_wzpFqtstXVOH=B^2LZgoi5hrgU^<_hv;pe^+%!GJXqgGprG zp>gyAC}Xw}_z$9ZBPd_d{oFX^e4JvtdHE=>2NPM^=8!#`>N>hDLHSwYW6e5^IT)YW zrbyiSucP)I(zh|8jVKnWILM=PtaSFatZQOvFY%$QeYkGgb6A$zizxn?6^e@Vyp#!P z=t)Cvd2Qp8n0^jxE5?=m%)8VR6mghMYqGqfkXHP$$YX#s5ovaGsk0RS!Rg`r1J@t+ zb9l3$3uA2u_3azu)=>)r?O7yQ%iFp+Z{cxnjFdR*Xub)zqJA2_nwRP^8kMXS5x9B_ zMjmF2lqYQ3ByZM7bxd%mT+<$xFolc&Ir$6)jUD#@Q1MEDC+DE~%*Sj}%QvH7+$qL5 zX1`^19z_i?{T~w`n1RAL{?!?D3vnng3KD)C5`E!G=#e9nl^6>Z`_F%jO^{h=$R2d3 zDlSiT3f}m|pJ8N0&UcXrSPavB8H6rQ7P?#g_Jc#DfsZ7`>G#ZZ>Ke%?n@BD@vbwcE z2z{(~cpo9UGe5d51E@0ZGu(1t#8;StCK$UVjFNiN=YErV`=5_Agq5w{?&s)FMsFM1 z>fGm&ym?T*bD~MfN_&}|!;2_^BnG4NG-@T`C>6IrWCq+^!TZI{6^d}upHwCyBLmKQ z{cl=td5XlL63U?UkVFQ=H>&#|w4M!XCEst8nVCg-Di)essePZn#Zua zlxGYP6`Jgqdgn^*B7T2(?O8Ta)58$kV2C+KauSdjkND0cnDC@S^r3UB9+~ zPf`JqAk4EUXYT=#r`+dfnL`<;B=mqjISR6F+Un8N5qE5?mEML{D{auvOMO{F+2~AMP>q70{&<@fDALv!nuxyDk3h3Q@teWky7erVxx$a6 zK*fMC6pdH{V<4wMtJEL?C8Nq6R9)I!dKy8LzA&;xO3ZProP|Yp#^^{RzNhHx(vFG= z7!MV8vm4_rVFCeAat2+`qqcWOZ=f1%3Z+ck3=Jf@e|-N=VUtqVdZDqgEZCZ^d)< z7q9sCZ717!5q0~WbPzvOi8|B}z9ij+rAVj} zcNSbq)2lD+MfhWNgXtjbbL=j-Zd~Y2LPd1&M?HKOj{*_OP04+ad@)R_`k~{q7|&l9pYmbMp>jn5z2_^3)--H56mp9{4XeU%zlBj; zq!{>Y;a2ybq3bJ9T8U0GKzF5JSG0{_pXW&%(EsiO3Kt|m0&P&bPkH&0f8Vi-{ALF= zb)cFAI#fU$&!LQz;KGdbKh#c&@?D8a*2#x`lHXXS(=YykNaGx&UE-G4^2Ko=^#huD z2n-UjZckKme&rifqTffJu-+f8M%_DLy=y)DIeta3! z22crm4Fxe#Nl9&}#@0VjVM5%#{%^qmNqs(EM*vwR6dNTHR051|)k$8Q2i=?rE=nBR zK7t@_-SMY{x*?R&Xq0cSMsAyJBOts2tr2vng*rfu72Yqq6@EDtl7M6rD>zo;P#E&_ zvLDg(D>YY!xOlM=oL&EZqVN37&EkE0d<4DCBm(V{y1IIi>~UJeMbpTHjtetE0U1d}>?&y9cuzNWqt|qi8{@ zyKs43c?EdqNRc6R6C@O$T33*&GGGwy{ZSLRwKNypkY);Wr`Yy$3W(`LigAN z{~}MzP7eMq?2T1A$b($GH?o^lUX0iR&$IV`Emt9-mH5(0VVy*!ye27-1A|gb(0pJ8 zm6vy3@x9u?fq0*)4~M`5mi78|_;_U{1-J{3Cah$%)fAJevGuR4q~^Ll?o9&7-t^(P zErL3oxI6$4JjA>!#*ID{vh15}OZoH=|8Nfk86@_Y*?t+2S?Hg=|HmaTk>(-zU3E;9 zO;y0~7bwtiJB(vC&&@LT%TYY5X5{#esll1^JXXrP3+j_AD}DIUuTU>p_N|WsW5$2D zir#Y|Q!eWqhkGwkJnvcPRO=_r8oK1?*gWV8{!%h7VR0I6B@1p5xCUgD=!EjhA(Mnd6eM_n@P8=97@}CGbLG^Gk9V z<~MH|N12%L)7>L>eIKkwMlFEMA<(P>0~0Z>=1-vRAC;h&dSu_RD=Lr)gj|1<^zp#b z0$+zlk?YbL1t&#Xt;2xCe=pw)V=?`A-=H=Gx>q5z2;ni(Q0Q=APw14mnJD{#BM{on zN{+3qVTbEqjM+vA9oQ&fsiDq420p=aEo*K2sC%r1O0-l;ee_O*_o#}wLZH&vLcz%m zxuXIL3+~j_3Cw*m+2?quTh-d!P&@5Z{3Q&1pcTKD1_J2t*UTO^vt6klK72^i&xixn z!AlSh37k!0tK9=cC$Q;{9v&}0M%`?bigWJL44|&&Y;IAn8`2n|>m?3Bk41Qvf(G)S(Et)#9(KNti{`crx;z|?2TRFsRdC0vGue@g0!J+i1OCtB0 zW#Bh1k*gNzPDYfVJMxv}T$xgSUQgGTO9BSBH%o=kOU=@VS@#o_E^t1&{@tmb z-1ZxFWa1W6^BFxGk#d^K-{BcAVOHuR`KW{_N++jvWgi(6(v}oi77U z=PkKxU1MWqrX31O&iMfgjq+m@L*KtZ71!%KA(7IBP)0tnWPfh%qj%;rZ&QbA%n)Vc z`p{qlee{b>(lRHFiGR~5YV(k&g~jFKUR_KEhR#H?oX3FDzLjiY0V3jJvuUw8qXsgCe)e?nEhzbxdY?`I=jC#1>2? zA0mCf-X@AJ@E}A!cOt7|K{`1ipsUY_p(e zWYpJxNy+Uz453czl~u6`D!{SkQ^r3GQx?V zenJ1zSxz9_SCQ(E5z=b7>9TvbEh}O5{hBM7+7`)-t`gGE>zvP0_3Eit;WU?D+Y@Lx ztllhg7C|g5LcX)F*A2(S*cYOYtXse8Q(k3b4h;1@ z3PZT%9ISt_l-EZ~89)#wr{z0$=>r@p9^32~=j44XM%|*?RK)Lz~i8#O2so z$@zT;4x|E-ni!6@Xmif*NrtfJ0K8d#w>VP4W>#=T+wk3g7CbnR1N_wks5@_aE^^s( zb=DG{K4`=)gY*pKYNyzF6m&sNS62)8qocYB^WsMR+2GEV<4_mr%+o6RTxbTn8#XR; z0r)u*pe8YCX*_{C7mP}Uj$3_x>peG!LP6=*YET7pqm{IzgtWZ8mE&QDFZHw+k;Ze& zX#n)j#2~XeisM{}Xjbc-}gSsHUMy@AGCF z)p>q-E`sXahKGjUKuP~CbkEoaoP_7@Jtzi<+%_%AzYWNK*&AuP&R(;BzL^IbxtTIl?2l8l{p zW1_MNhth12e?WjtmM{{OVqDasxv?^ZOIw55Pnqb_jBDn7R>V#7(MLKcNTb6b2r3zA zK4Dn}1?B`CV|zk|F&dEHW0&-k5afrr>9sR~^JodEbnZT*n1f`6%FZlr1sT_+OCvvf z>LR89I5*^!``!R%1Tp1;WJh&e!te?Ml0G{Gx(mws5`e?n*Jvt;pI)?wV!!>mryoem z00rtd0t!S#!e7rO#YF`0!M@7MZ$)aW%IM~3bz^pbX#6$amMaPB<#Z0DmIBcTLVhGf zqe9b1AtB|FfsjKs{sY500C^HAiq1hjckewk(tn3ZX1#`rkE9t&M-Xu}#1r z6;`vC4lWHK99SpZTisn7goVL>Al>{pHlpj9~?*#`>e0s=LGh8pUxV<6tydjLDj9OQJQb$|fg%y(@#8m#pw^t*uaBNYT2zThnu z!G?bicK`WcvGyqBGcjfXd!VB!$N6BrKf?b4AXrnZOp3pMLl3ISg$d)rA<}sESKL~h z+J%H37sstn%E(M5DaxlNibXGeSA%jCK2{oXMWptxRPzN3*iq*n?@y!6XmHY(%ITXr z!rJlQ0PCiSPA>g{81=n6J95=*VWeY1D^5K^2usocE(qcONb;RW-NiU`V?+p`DtPFm zyaZ6xle&6cE9URRJqNcTL{0{ZWr!U5uh@5=w4b{Q@;_@2$@(nuloz$)|0AE0Zo0J< z>NryneW7dWx{Q z)Gh()Rdr#Mat z1=|Umf2^! z3=Q0P+7IbfDrEK(rI-HX;u6MS%1vB$B5wEUqtQ$aN@h1E!pFC>X?TpNTlibHt!+iz zI7Q4CFrXa8!j6IvDFS5B@!lrT2n0&bN>CN4y8=L%>cSbAs|}B(G;S~cVZ)AuvWo1Y z^98QH5|CNrlXr=Cei#Ccz0ekw3Q~0vAsFd@3cSSqU6H+kT~q=n@futG_`EB?eIvYL z)dK_&Nrw|bi97Mawd@kaX6bjJdv*A?S^*x%=g-ejD}VwodOSlV+RUfU8&O>^@V*4n z0Q+zJ*rin>o;$jN$~Eh2T#P@peo+{F#&=}z#e<|41)OwIf+5W zpQe}Y00`Bf)vh7t70AU%xXVarhFJms(v(+s3O7KcR_3HBZpwVVybyj4k!*jHR&L# zLT*sRCAHr{OFjUpu;gHz*Zb0GZ*_}mdXP;YT3 zoa2Oa65sv$buHJv`2uw0#VLA8DsCb{0tw2FH|Gz?d^RT=UIOLEK-lakdDbm+i%3wKPw5u8Sr+!Vpt5-A zl{wHMj95zmGY33D=?Y|4!mUS-fFOi)YpWoEFuD#jHMfg>5*2Zkplq1#xZojkPwXvzng+Wgj`y#T}+ z7QJ82GO4zCt>=K;)w3@ENZQgOqrv8K##thfCiVqpD*!u8nFI;aXj1epKJ7FpN^ha3 zljG<>t23eGPUk2e9LChkXmQ0ZsbeD70r;FWU6ejXDE(2O$5G8YVfXB}a(WGWhZ%>V zqigSd2=44g`fm_YbOTCFSI?t>s((Mw_CY^EJBO|&Xy>?3Xd0Ksfg_x~22~5ya3H*j zZbsTR<+V?=M<;8BeTfD&2Rv^#0I}Z2tcK_1ctH>%|M6UfdeQg;aPmm)2|!}A=4#K> zK|JR%+Bvb(eN-z^{5MU7Snq|G0r7JzkH4s17Bk(nkof%#$)0J~YooZY5GvRnhyKf8ca{p|Yq3 zD@zzS>cJsF3yZPA^CChQ9zB*>sgJ!ZYN8M1w}KDey|Cdr0NIHzk+?@sBfrKMt|i?8 z5`-5R`#VWV&yNP9%*p0WK|VeYzh{Slie5{ImPt8a{^@hv#`bOMUfq^~cEzS6UiRN# zkF2;my<1B#ej8e-;B#xsh>FKZOxJi@WTHPsNks|oAT2q7c>^T_22*20JH4?M+uxl} zHnI)X6PQ^5<-ysiEZ`Rw`m*h`9^{EH47kT`_%vDY0eWSQo*3`zJA4>Vr$Loav6<5a z3$AGYAxz(onB!JxOBH;a;w_YzjmrZ|ngI|}IiIy?2rFI2?rRH9s+0(7 zUPtKAK&c;SGtPu8=u}TTum_qR&@lz_#Y`W6_@oBJ9cR8+ zTdPSam4o8RZ)1`7QoLWh}Sy}-g2t9s-lBm+snsCzP+8T69C5k7T`%TeUhNFTtrk< zbZ!V58)Ltxg-IoyDwMaBj}wEu*rh32YQeWC>Sw@6t!0#u;N8Gv5afAtMb}Su2BY^R z7=waVOjfpKIm{l2zvA_HC7-2jJy{K%>+{2n*R?fz?XFy*C?es?)CEb{p$>zpnYHdh zQVpM1&OU2#5ZFM?J_1Efyvh#gXlFgNAGyCxKR63KiqHMKF{L+~5@c`=|Kd>+dS~cg zR6c&xl92pbvU7InMji%A$RGCHE+>;AJ(yfcY6O|`3KSNAzt6R<3;z@c4K&b!>j_eF zg&!U4vi3)w@=2XP7xVbqAr&Xu!QGab$Kv#s*K~SQY+|R>Jw{~dt7p$P?&Y_{UaTr+ zlH{tt4Hceq?dzL7dq6AsMTKr&@y5KfbdiFC*7FRMeuvKpP3GD zRb&)G6;j2N`|patEdiCcM|g7dGvdepK!U^%%N=MRs-kD`Q@8TkZrn@_@Pm-#w+Ygo z-ABWFUu{7u9z)J=`yp2t;m`gwk>CY14d_PyTXG6j%pKy>TS9YzPmNu+@L8IGo*F1f z&i}j)wM-;yD|pSU`ye^Z@0AvQ1H!xWk2Rn?bU6hDJq72%RiAXN-!IeAm)B@M(^3~d zd2s&-R0R-gdGwMnV6p|R)SJ#Ak2N2Em&G1}sU!K~maoTi;<{A}vT zwiQl7^%Si8fHg2zMuQv@4lkuHg^SkEOYgh`ES1mk_cm;me6Vq#pbRpBf>-H!nygEF zDac}Cm)p~zO$R)dC@dYZ=ki<*dd&TDqv_J7l)GBKlllR(cFX|S+obvj%eRJxisDiQP@~ctrK2Q1e6mMjREvh zMra#t5Me)bEW<<%f_KGP5FNM$q-bN6{WOvSY{~6uP}A2-0~sfjML1#3na~rC_}NM zKFk*M(f);rJ&Li(6`fgN0lso^@!FWU>num}-))A+^U z`z4@l$f`DXZP#A!-|8^{fh9;5HraYRmz0KUsbFiG&42o?3e*@+I{(9WL66jL-^ITH zdXtla|GV${ZI3MAyK*cZ$$V_;HK8eY+R_+%y$Vq?LWO&?cXqwhOC9MILp2#p(i&914V^U5E~9$+ zro@pm=BH1i{s}4BHNaQ9bMz|~m4mqxt&OltkgADXZYW0AJ@$zWM%CBk!zstZAa9N}e&t*_7HQ3~q6C{}w;bhE5a z!3wlIdL%78qa9~WRyzmz%TsQ~{L#*cTP=p~D^P70{m?0ZW+e85=n>$@p|A02tQl&C z*yiMp2~g{5-a}&i5zDq%ew=Jm|x`;dE3i{X;IF9tCpwR5Zay z5PN9#D~Kxe07?wx@}RO;GF)G?Lrr*A9q#xOP&X=}g1JW_VfE zAP`&U_{uRJrUVcBV1;kb6ru{Z|3fPe7Ahk|pEZvXY>bD#FmTRSUZV1Dl-mUC19Bkm zl%r}yE(;JBeQ2L4REtwG621Hx^_PfrD0E0MvvU*ImnOuH9aD!7;M^?Y@fNL@R$SH1 zbOK4bI~Lj_>Z3p#0Xf)zAw-9sqTC|Su|ZF51WSPo?Y<%K65A2FwgK2yl$8enxQ zybC(u{P|mzY&)7v;B;W)qNt+j^1HdXQqT{HG`#_Oq*%gx3s93fP|Aw>8jnq5W`2?2 zpXm4O8*G2cnLKT!e?m^sUB*s9?Biu6<5H28WC8NS4$*s&$+aj9S9Il>tJKTGS-y*3xq z6SzFnM@BzHg6d8}LfYFhOa!s$Hz?qfHQ9}orx^WCi=B>mCnvnJ4lncxjisijWsF?k{XyDe8L_kX>VPVU@>H6T@|I0^*>J^IDXT`f5 z$v&s122F~Zmo8n3r%u#$yLia;f_qsQjTrY?(BKOY*c`=Z0*e{cjy6li)M5Csow+#R zdW^F_n-eCF17*426Fry+M`*^%n%apyd{XRul0Dahp*6NiDqty6)^R^-!~H@r)T0v{ zn_i%+yfHDkM5oq>(=BU`!I9o;IUn+F0-Bv_|NK|8)B4Ck2=M5MLAy`X+HwMlq4TKw z8X3M*Qh3Fnw}f#%`|IGIj)k6Bw32{2@A9b=W5qM@$t$F^NKi+D1@&9(-kJSGSJP`_b{gaLhw&3)C15bwYW}NJfKjG5Rf02O<;JH2~ zY(IF8@u~_|^C1oS|LS!r2RWtZThEAkJiH6PGra18>Hp5}A<}SL>u0%+5TO2zJQ=M{ zu&yQ0$!iT?fg*v0G5SV5?d{jx?H8{x9w`KC_axgl7rg#r4Ifr68aLi?8Hxd{tnMJG zg8uk(t7_|tUfSz31X9>h!Fr9fXbH#VN!M=--W4hNt3EKaOh5Daks~OmzYQ?*|8#aP z&{U>t9N$w-rW;Grbt1)7lE$Tx6cy4|sE~09O(M2S%_j#Y^|NniKBmHHoD0(x* zRE7;kPM?h(;i<8PV$!x3Z4-3XdWs%4q`6Vn9M_8?+ci$HZtFR&w7oMNB)5%y>!YGV z^?PcM#jZd&?QRf7;b0a%m1CK+MWpNu3`~Jx>?=1&CGoM1_}E%ebBr0&#XJ2O^12-* zqBwQH6hAujNAgL>`I9r~0)v&H`gBKg?5~o~4IN(&m!3uPsd-ETg4c_t^Ve**;zZK^ z@@ixJXlsLUVlT67GHafh$M%hb5j>DHdAj#|+*x&}Wk%o+1 zb^DxXKttn4oizT`?b*NQc+j{=3Edu*;RVg$_&JmG!$r9u<3|+LE|+(cpHkGZ>3{RB_6M_(cUm;@Ntrun7Ql~p7KTex zY;&Aeu_+W{XZ*+#{Ztbv*;Qm3(}Op#xd3ih!NX;b`ZH9jbx@56-qk@c*;6OfNM z;Vh*#(emyEd1?Jd_?(X1{^)a}x>~xWXg$1`6(dZ4hyDs=wG_fiWiM<#3w;iL1<$hY zOEUlW^waLBXdm9d#>j=|d1$Z%8m_nMl8!c9>H_v{i5njBPuUnALzLS9y=3nwks0;K zHyYtv|DJzRCZUry^y{4Lyr8n#0e5$6wTDQQhf?MhZ2i-lm(IvPCr;jy>w+f6w~MPr zhpTFCh%S{>xyB72J^EVSs@4G~Lq&NP<41rTj88|zG#@c#o0iIqMo7mT9o;d0b_UL) z^o>ro+l&3r-jiKZM_4e>9I$i$529;bB-q=RWT|X(ZiE-pQJXC$j8;f_5Rr1Ql{R7q zNyXJlMtF`5LO~DTzb*qQWKoeQPBVHo4OL7xh^!A0c5@*8+{VFQY-{W5Xb-nVD=1;9XqDDo0|iMVFh$SU1)+@g!f4O zK_XCBSD%c`LtECB?z=AqUiFwo)dSe!F}s5Y{JbjU*EUGS2}2+ zxdFv*ev67senpVg?Iw5VBDcuN$>EkGd6F1k;ON>>NxT&Bs%6O5QTE8HY>9gpo{POK z>k8@F_wYxht@s8-o7=rc7aj&+HQgN=8nWR%ITizX7OEOXy?4vC|MhccJhQ`sCOk<% zp73WVvKR`FX+grVzQI9XuJnt=fBYl-qCr)`tALB%ezj8y@u6T1WEV6Ze>W?8t`Jxh z^#+(qdxnSy1Cp9>j0Tz@6RBXOn zh2$d4gaL4j*&vBwJkZ|Cs9q^I190JVq^JOE>U}zO)^;?UasXFLZQL}UW+obcVRHt# z{ZF)V?TaR)Hukxk2omf5=M=9)OL?H>l&lM?%l_!(C%VsYJ^%n1k!1mXJ;;?#E=H4+ zhx5`6j0T}w(aZcE#Hh~tti8sZlV((x%yp?%cPyWqYF)JQ^qDheAR6cTbc+~HP$-~7 z)tm-}N2;~%{8=ll%%F*_gz_inVC!aTY*Mq_r>nlji)9;eQ#(5z_)h1p`YdQM3NN{T z>a6b8ppFT;70fxhm<>%_Z}WT~w?Gs*qvbh`G#_q&L)Fp9$t-D-y9v1*DFLA?(`=gR zPAz-$D;qx1-@Lg4D9D4{g~=hky$6WahfcZ|S2`0@BqA(4oM?H~ZVcO&zp09A)z1r_ zgrqt8e$PYKMcUf75I1j!I`3UUzj12gdn?UL?hGbPYVcKwq-@NY;1?>j)OZ>GDoWuw zwbN!R{Q!^W+8XKLNeC_kW`lOu4D86%#*Ood8A^}H8|pP;F++<-@Yrg%!z;fK&b#t) z$=_D}`tx;u+tCEv4iQW39Z#oIYfEFR`tCyd5d}A|3+lrODtk{>-+VRu{3<(Jz!YoI zbgW6)IwuzjI#m_4OK8eptJxj%+#w3q!i+ef#7S3Lr`p#gvUb%g&V`R#r;FW!#BVRu|l`z zb=Xx56y)(cKm)zxCf>UfEK5A;1U08f;KwsSZ`Ev?S#=S9NHjyL-TYP-7lshT4l=SE zdSNpuT1U$2T=rXFYEY3KBs@x7ENDU&Eqc{AoZ@4*~9;$53>*>W01 z_r*-|EZEy$!FUuhugTz_lNT4<60pA?7B!Vu_FZ|=%u)TGNWj;(1Oxb#{? zaMeP&YG90PF^8oN)1rKck5U@*hPWwq0Zk)x;AmRn~_K8H*0zpz9=EXJy$2>{gp zF9`U*%(2Q~tKUPo+upb}^?$`@$SK7RW4peRN{uWCn0B#tsfMzWB&=V(;8(UMvKnz^}VW2tz z4Ha{aWn2oRhwaauk_bD!uuU8tM7p*|aP^@_gf6NAtsA1YqGg_#oSd>23wCEqaVRMU zm~g|05pxj4IBSBf5xxk^^nU3X9OtPU_~MS|3h*KQVd_Dy(0w@5hA)MZNS$qf5ur;V z7=~){I^edfm-hk@eY513!=Hd5f%r60{&BYttM^sW#|;CNOUM=*`Rh<$umFj0*4(*2 zKswVnQV@su-2pWDQ%qe~-lIob5X0>{>a(tYe`ZYIIH(hlv*E=*SJE#HI6h-v@Tdp^GKYm%q|9zGR;t5hbS>!clc8Tuz6Qrv_s z%uNc4mAL(w{2w91&|VV_76d*bVdwhuToB08Kp+nr3;;?I+UQB?s>n}Kk>0yItxP&GtcD^Yu3K}MjRj!vRsH0^UH+QWJXQ`NZZntWdm zdYmwZpLeiLUI(_GKRTuaHin&wi7of;9$DO=Ii~08eLv5#rbR(AQ{vep<)Da2SA&1U zJkQmVXrWl4%qCeMRajtBiPml)8)yb5aWytT>~M;N3Xi63i`Q1E>rwb24|e$!f|LS! zZjz8B!T5YHG>?^eZq}XHQS(r70ZTS_f8}Dr1A-xL^17S$0@%i9_VfdgV}(e-0p9nU zmCDLbrcR%pa}>n|hyXgF@yiCa^zQvexK$hwUe(`I{RU0F{k*Q{)sP9$z$iS%HCC<` z*r5EQ@OW+Dh}SpW#i7%P;+X6B%lyVHY;if4{a#POSEkt&9^Hldq${V8-@vk1|11{M z#|cl!8tGEpKFeKD`vV{A0FZfm0+^Gf*2uY@fi#-*b&LZ%(QmmQpx1m5?EuoNMph5_ z-B0+pfpg3OZI+PL*7TYIvTExa7}#+<7`>CwF!^aC+To@sX#rnP7*5odgq2vIGd(h` za@p7|X6gvBWGU^%5?zJ|4+tfpy+WtW8Gz;lU1P&j60*Cn)kyWkEHMxVF}#zz-nEHq z4j8Kof?~L!8ObCmNHNtF_>#bP(hQ;JCr`+A4o{8=DA`*hSwYy+%i9t8@1eiI1bj)2 z#LB|aw>r_#yGF60mQu9NOGmy9WCa`IKo?ZzmcJ7k7NVDlWW`Zng`U1L@(t+Wkp?>| z?znaW6+xf%{pD&ToJR6}M_osju||R3HxaA>Q(e}>$b~Bqb4ZSkcNYXHz5O{BB1mi| z=6I_>;Mnk6i}i%htgg|ux3_2ac)}>ftU@|;WwCyEy?g)QpoyvM6y&YE`n^%kn7kcN zuZAG~W|Kx5gB4wanMQ9?SYi-qhH&);WlgP~f`0B&J(OrPFT{2goLb>KeQf|g{c_OQ zVNBXqwg5S&4Y0zL$I&K=k?sf*3X&#IpL+#a(K6(poB`g14URZ(1&5HfTy@{i$wNaZ zFYZTPMK3781!W#CCzU(agF*(g5Womr5oz{q`iBsPe(v@mH9FX2cRTned}ZM8lVah_ zMIJ@eJ%gHjrvnig@7H(eI0RnJqY>vd-*bRo#sHIEe{bU_&PezO-|3CW%T#?k`_h_& zuenjNz1P}$TS|z|FW>KOaEPeQScN_%J^I*nYjT`TDOf|3Yk_Bx>(#!KaGT3V5@0d1 zCyUp))XV;4;jb={&`Bo?9u$aH_m13w;_E7Aj6rlwwv)+>d8&FOox_~s!Gqs?AZiTV zeKs~&8vWm%Bz`v(Kc&na#~nGm{{#WA9VZ?d;!T@2(VH#k8rzi z4)h0l=xP<~t`k5QRFJyB^h=ta9c8NuYw*ORB_*#y!`A^uZq`C6{DJmED0aCJcoL@d z1KgRW*ufQ;xKt5#1swAqaDtc*{p!8ZJ^}@6>f1>$9Hf=YxZm_UAuamd)%<^_NB@~v b-4}lHyzPYZ#eJSZ^!-eIW4(+`_Q(GL^CD0W literal 0 HcmV?d00001 diff --git a/Nurse Stress Prediction/Models/nurse_stress_prediction.ipynb b/Nurse Stress Prediction/Models/nurse_stress_prediction.ipynb new file mode 100644 index 000000000..77df9efac --- /dev/null +++ b/Nurse Stress Prediction/Models/nurse_stress_prediction.ipynb @@ -0,0 +1,4574 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "mMH8I8s0_tA0" + }, + "source": [ + "## Connect Colab with Google drive and Kaggle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "fJ6WKbwefV8G", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7cb1ae64-2823-4aa9-d055-3e8905e24c56" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "13UU-XiufoMX" + }, + "outputs": [], + "source": [ + "!pip install -q kaggle\n", + "!mkdir -p ~/.kaggle\n", + "!cp /content/drive/MyDrive/kaggle.json ~/.kaggle\n", + "!chmod 600 ~/.kaggle/kaggle.json" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "YpLjzkaWf9nQ" + }, + "outputs": [], + "source": [ + "import os\n", + "os.environ['KAGGLE_CONFIG_DIR'] = '/root/.kaggle/'" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "mnpJEmdYgJCs" + }, + "outputs": [], + "source": [ + "import kaggle\n", + "kaggle.api.authenticate()\n", + "kaggle.api.dataset_download_files('priyankraval/nurse-stress-prediction-wearable-sensors', unzip=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kC2qXDc2EZgw" + }, + "source": [ + "# Nurse Stress Prediction - Machine Learning Model\n", + "\n", + "Dataset from Kaggle [Link](https://www.kaggle.com/datasets/priyankraval/nurse-stress-prediction-wearable-sensors)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "J7pFi1wYDYKt" + }, + "source": [ + "### Dataset Nine Columns Description\n", + "\n", + "#### X, Y, Z:\n", + "- ***Description***: Numerical values representing orientation data.\n", + "- ***Unique Entries***: Each column has 256 unique values.\n", + "\n", + "#### EDA (Electrodermal Activity):\n", + "- ***Description***: Continuous numerical values measuring electrodermal activity.\n", + "- ***Unique Entries***: Contains 274,452 unique numerical values.\n", + "\n", + "#### HR (Heart Rate):\n", + "- ***Description***: Continuous numerical values representing heart rate measurements.\n", + "- ***Unique Entries***: Comprises 6,268 distinct numerical values.\n", + "\n", + "#### TEMP (Temperature):\n", + "- ***Description***: Continuous numerical values denoting temperature readings.\n", + "- ***Unique Entries***: Contains 599 unique numerical values.\n", + "\n", + "#### id:\n", + "- ***Description***: Categorical data serving as identifiers for specific subjects or entities.\n", + "- ***Unique Entries***: Consists of 18 distinct categorical entries.\n", + "\n", + "#### datetime:\n", + "- ***Description***: Object type encompassing a wide range of date and time entries.\n", + "- ***Unique Entries***: Holds approximately 10.6 million unique date and time values.\n", + "\n", + "#### label:\n", + "- ***Description***: Categorical data representing different states or classes.\n", + "- ***Unique Entries***: Contains three unique categorical values.\n", + "\n", + "---\n", + "\n", + "Each column in this dataset offers distinct information. The orientation data (X, Y, Z) seemingly represents spatial or directional measurements. Electrodermal activity (EDA), heart rate (HR), and temperature (TEMP) columns provide continuous physiological measurements. The 'id' column serves as a categorical identifier, while 'datetime' indicates timestamps. Lastly, the 'label' column presents categorical classifications." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "UX272bM5EYc7" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "90b2_eG1Cw5E" + }, + "source": [ + "### Reading dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "Ji2eCTJaB9j-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 258 + }, + "outputId": "630860a2-fc52-4189-dd29-d30a41dedd17" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":1: DtypeWarning: Columns (6) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " data = pd.read_csv('/content/merged_data.csv')\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(11509051, 9)\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " X Y Z EDA HR TEMP id \\\n", + "0 -13.0 -61.0 5.0 6.769995 99.43 31.17 15 \n", + "1 -20.0 -69.0 -3.0 6.769995 99.43 31.17 15 \n", + "2 -31.0 -78.0 -15.0 6.769995 99.43 31.17 15 \n", + "3 -47.0 -65.0 -38.0 6.769995 99.43 31.17 15 \n", + "4 -67.0 -57.0 -53.0 6.769995 99.43 31.17 15 \n", + "\n", + " datetime label \n", + "0 2020-07-08 14:03:00.000000000 2.0 \n", + "1 2020-07-08 14:03:00.031249920 2.0 \n", + "2 2020-07-08 14:03:00.062500096 2.0 \n", + "3 2020-07-08 14:03:00.093750016 2.0 \n", + "4 2020-07-08 14:03:00.124999936 2.0 " + ], + "text/html": [ + "\n", + "

\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
XYZEDAHRTEMPiddatetimelabel
0-13.0-61.05.06.76999599.4331.17152020-07-08 14:03:00.0000000002.0
1-20.0-69.0-3.06.76999599.4331.17152020-07-08 14:03:00.0312499202.0
2-31.0-78.0-15.06.76999599.4331.17152020-07-08 14:03:00.0625000962.0
3-47.0-65.0-38.06.76999599.4331.17152020-07-08 14:03:00.0937500162.0
4-67.0-57.0-53.06.76999599.4331.17152020-07-08 14:03:00.1249999362.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "data = pd.read_csv('/content/merged_data.csv')\n", + "print(data.shape)\n", + "data.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "k0sqpANKCzgM" + }, + "source": [ + "## Performing EDA on the dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "oXYlY0bKCpDp", + "outputId": "34dba9a0-cb8a-4cf6-df3e-e97831301045" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 11509051 entries, 0 to 11509050\n", + "Data columns (total 9 columns):\n", + " # Column Dtype \n", + "--- ------ ----- \n", + " 0 X float64\n", + " 1 Y float64\n", + " 2 Z float64\n", + " 3 EDA float64\n", + " 4 HR float64\n", + " 5 TEMP float64\n", + " 6 id object \n", + " 7 datetime object \n", + " 8 label float64\n", + "dtypes: float64(7), object(2)\n", + "memory usage: 790.3+ MB\n" + ] + } + ], + "source": [ + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8Rb5fmQzC7ac", + "outputId": "b72b9382-185d-4b07-c370-178cf02b02fe" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "X 0\n", + "Y 0\n", + "Z 0\n", + "EDA 0\n", + "HR 0\n", + "TEMP 0\n", + "id 0\n", + "datetime 0\n", + "label 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "data.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oXT7G97YJEWH" + }, + "source": [ + "#### Converting the object variables into integer and datetime format" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "h_9-vK8TC-2N", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "9966aea1-9230-4dcf-9d2a-e797046ac75c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([15, '15', '5C', '6B', '6D', '7A', '7E', '83', 83, '8B', '94', 94,\n", + " 'BG', 'CE', 'DF', 'E4', 'EG', 'F5'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data.id.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "2uTUxVC6E-x6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "outputId": "2524ee2d-81d2-4248-ddf2-b48844425365" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " X Y Z EDA HR TEMP id \\\n", + "0 -13.0 -61.0 5.0 6.769995 99.43 31.17 15 \n", + "1 -20.0 -69.0 -3.0 6.769995 99.43 31.17 15 \n", + "2 -31.0 -78.0 -15.0 6.769995 99.43 31.17 15 \n", + "3 -47.0 -65.0 -38.0 6.769995 99.43 31.17 15 \n", + "4 -67.0 -57.0 -53.0 6.769995 99.43 31.17 15 \n", + "\n", + " datetime label \n", + "0 2020-07-08 14:03:00.000000000 2.0 \n", + "1 2020-07-08 14:03:00.031249920 2.0 \n", + "2 2020-07-08 14:03:00.062500096 2.0 \n", + "3 2020-07-08 14:03:00.093750016 2.0 \n", + "4 2020-07-08 14:03:00.124999936 2.0 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
XYZEDAHRTEMPiddatetimelabel
0-13.0-61.05.06.76999599.4331.17152020-07-08 14:03:00.0000000002.0
1-20.0-69.0-3.06.76999599.4331.17152020-07-08 14:03:00.0312499202.0
2-31.0-78.0-15.06.76999599.4331.17152020-07-08 14:03:00.0625000962.0
3-47.0-65.0-38.06.76999599.4331.17152020-07-08 14:03:00.0937500162.0
4-67.0-57.0-53.06.76999599.4331.17152020-07-08 14:03:00.1249999362.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "target_mapping = {15: 15,'15': 15,'5C': 53,'6B': 62,'6D': 64,'7A': 71,'7E': 75,'83': 83,83: 83,'8B': 82,'94': 94,94: 94,'BG': 27,'CE': 35,'DF': 46,'E4': 54,'EG': 57,'F5': 65}\n", + "data['id'] = data['id'].map(target_mapping)\n", + "\n", + "data.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "toHt-HjEHvYI", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "01779cfd-1bd8-49aa-a801-6867f4a1541f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 11509051 entries, 0 to 11509050\n", + "Data columns (total 9 columns):\n", + " # Column Dtype \n", + "--- ------ ----- \n", + " 0 X float64\n", + " 1 Y float64\n", + " 2 Z float64\n", + " 3 EDA float64\n", + " 4 HR float64\n", + " 5 TEMP float64\n", + " 6 id int64 \n", + " 7 datetime object \n", + " 8 label float64\n", + "dtypes: float64(7), int64(1), object(1)\n", + "memory usage: 790.3+ MB\n" + ] + } + ], + "source": [ + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Dk5VYxVwI3wX", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c8901e7f-6c36-4874-b276-e311df6bdc88" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['2020-07-08 14:03:00.000000000', '2020-07-08 14:03:00.031249920',\n", + " '2020-07-08 14:03:00.062500096', ...,\n", + " '2020-07-23 17:28:59.937499904', '2020-07-23 17:28:59.968750080',\n", + " '2020-07-23 17:29:00.000000000'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "data.datetime.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "Q_Ez-HQuIY84" + }, + "outputs": [], + "source": [ + "data['datetime'] = pd.to_datetime(data['datetime'])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "3eJAAg2lI8O3", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7ac711b5-6534-48f0-e494-90b9a2f1abe6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 11509051 entries, 0 to 11509050\n", + "Data columns (total 9 columns):\n", + " # Column Dtype \n", + "--- ------ ----- \n", + " 0 X float64 \n", + " 1 Y float64 \n", + " 2 Z float64 \n", + " 3 EDA float64 \n", + " 4 HR float64 \n", + " 5 TEMP float64 \n", + " 6 id int64 \n", + " 7 datetime datetime64[ns]\n", + " 8 label float64 \n", + "dtypes: datetime64[ns](1), float64(7), int64(1)\n", + "memory usage: 790.3 MB\n" + ] + } + ], + "source": [ + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "nr75GljmJvTm", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "outputId": "f8ae0080-ca8d-46b9-f73c-3336d0ad295f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " X Y Z EDA HR \\\n", + "count 1.150905e+07 1.150905e+07 1.150905e+07 1.150905e+07 1.150905e+07 \n", + "mean -2.823775e+01 -9.091032e-01 2.382449e+01 3.502127e+00 8.576090e+01 \n", + "std 3.142310e+01 3.343382e+01 2.985317e+01 5.656541e+00 1.419642e+01 \n", + "min -1.280000e+02 -1.280000e+02 -1.280000e+02 0.000000e+00 5.100000e+01 \n", + "25% -5.200000e+01 -1.900000e+01 4.000000e+00 2.242060e-01 7.672000e+01 \n", + "50% -3.300000e+01 1.000000e+00 2.500000e+01 1.157407e+00 8.390000e+01 \n", + "75% -1.400000e+01 1.700000e+01 4.900000e+01 4.077436e+00 9.310000e+01 \n", + "max 1.270000e+02 1.270000e+02 1.270000e+02 5.976071e+01 1.802300e+02 \n", + "\n", + " TEMP id label \n", + "count 1.150905e+07 1.150905e+07 1.150905e+07 \n", + "mean 3.223435e+01 6.024097e+01 1.554202e+00 \n", + "std 2.260516e+00 1.848968e+01 7.891827e-01 \n", + "min 2.409000e+01 1.500000e+01 0.000000e+00 \n", + "25% 3.019000e+01 5.300000e+01 1.000000e+00 \n", + "50% 3.257000e+01 6.200000e+01 2.000000e+00 \n", + "75% 3.425000e+01 7.100000e+01 2.000000e+00 \n", + "max 3.659000e+01 9.400000e+01 2.000000e+00 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
XYZEDAHRTEMPidlabel
count1.150905e+071.150905e+071.150905e+071.150905e+071.150905e+071.150905e+071.150905e+071.150905e+07
mean-2.823775e+01-9.091032e-012.382449e+013.502127e+008.576090e+013.223435e+016.024097e+011.554202e+00
std3.142310e+013.343382e+012.985317e+015.656541e+001.419642e+012.260516e+001.848968e+017.891827e-01
min-1.280000e+02-1.280000e+02-1.280000e+020.000000e+005.100000e+012.409000e+011.500000e+010.000000e+00
25%-5.200000e+01-1.900000e+014.000000e+002.242060e-017.672000e+013.019000e+015.300000e+011.000000e+00
50%-3.300000e+011.000000e+002.500000e+011.157407e+008.390000e+013.257000e+016.200000e+012.000000e+00
75%-1.400000e+011.700000e+014.900000e+014.077436e+009.310000e+013.425000e+017.100000e+012.000000e+00
max1.270000e+021.270000e+021.270000e+025.976071e+011.802300e+023.659000e+019.400000e+012.000000e+00
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "data.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "xrnc948rS-Vq", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "07e512ff-2685-4d2d-bd77-015e8d3da578" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2., 0., 1.])" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ], + "source": [ + "data.label.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "qdwW_GyZIAY8" + }, + "outputs": [], + "source": [ + "def skewKur(col):\n", + " skewness = data[col].skew()\n", + " kurtosis = data[col].kurt()\n", + " return [skewness, kurtosis]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "i6JsWR1zITXf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "227a607b-d3f8-4e8a-aee0-680d28e7a6e6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Skewness of X feature -> 0.9662396920878424\n", + "Kurtosis of X feature -> 0.8489368705986484\n", + "\n", + "Skewness of Y feature -> -0.20626391357535862\n", + "Kurtosis of Y feature -> -0.06743471926335465\n", + "\n", + "Skewness of Z feature -> -0.3490533290581033\n", + "Kurtosis of Z feature -> 0.25403111851784255\n", + "\n", + "Skewness of EDA feature -> 3.0261409778597668\n", + "Kurtosis of EDA feature -> 12.16955252489096\n", + "\n", + "Skewness of HR feature -> 0.9278425500827757\n", + "Kurtosis of HR feature -> 2.3275633791378176\n", + "\n", + "Skewness of TEMP feature -> -0.2828160906982833\n", + "Kurtosis of TEMP feature -> -1.0887129456181879\n", + "\n", + "Skewness of id feature -> -0.2980288082621934\n", + "Kurtosis of id feature -> -0.2745117743700636\n", + "\n", + "Skewness of label feature -> -1.3255098415728082\n", + "Kurtosis of label feature -> -0.08131856770271328\n", + "\n" + ] + } + ], + "source": [ + "for col in data.columns:\n", + " if col != 'datetime':\n", + " res = skewKur(col)\n", + " print(f'Skewness of {col} feature -> {res[0]}')\n", + " print(f'Kurtosis of {col} feature -> {res[1]}\\n')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y3vobS91JK9e" + }, + "source": [ + "#### Let's first of all visualize the dataset distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aGq9MFJmI9Qn" + }, + "outputs": [], + "source": [ + "def plotGraph(col, bins=30, bandwidth=None):\n", + " fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))\n", + "\n", + " sns.histplot(col, bins=bins, kde=True, color='skyblue', alpha=0.7, ax=axes[0])\n", + " axes[0].set_title(f'Distribution of {col.name}')\n", + " axes[0].set_xlabel(f'{col.name} values')\n", + " axes[0].set_ylabel('Count')\n", + "\n", + " sns.kdeplot(col, color='blue', fill=True, bw_adjust=bandwidth if bandwidth is not None else 1.0, ax=axes[1])\n", + " axes[1].set_title(f'Kernel Density Estimate (KDE) plot of {col.name}')\n", + " axes[1].set_xlabel(f'{col.name} values')\n", + " axes[1].set_ylabel('Density')\n", + "\n", + " sns.boxplot(x=col, color='lightgray', width=0.3, linewidth=2, fliersize=5, ax=axes[2])\n", + " axes[2].set_title(f'Box Plot of {col.name}')\n", + " axes[2].set_xlabel(f'{col.name} values')\n", + " axes[2].set_ylabel('Value')\n", + "\n", + " plt.savefig(f'{col.name}_plot.jpg', format='jpg')\n", + "\n", + " plt.tight_layout()\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mhRsa3NsJ-w3", + "outputId": "5f9687a4-4ce6-4283-af27-001d6b096cc6" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJOCAYAAAB/dnBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7GklEQVR4nOzdd3iT5f7H8U/SXboZLUWkLGWPg4IoCsoWUfSAioMhgkdBUMSBg6lyPAqCyk/kHBkOBHHgQBFkiAoOlogKAjJktIwCHXQmz++PNKHpTpo2He/XdeWKeZ47T+7EljzNJ9/vbTIMwxAAAAAAAAAAAACASs3s7QkAAAAAAAAAAAAAKD2CPwAAAAAAAAAAAKAKIPgDAAAAAAAAAAAAqgCCPwAAAAAAAAAAAKAKIPgDAAAAAAAAAAAAqgCCPwAAAAAAAAAAAKAKIPgDAAAAAAAAAAAAqgCCPwAAAAAAAAAAAKAKIPgDAAAAAAAAAAAAqgCCPwBumTJlikwmU7k8Vrdu3dStWzfH7Q0bNshkMumDDz4ol8cfNmyY4uLiyuWx3JWSkqJ7771XMTExMplMeuihh7w9JQAASi3vOUBlV57nT+WhMpwjuev666/XyJEjvT2NfH7//Xf5+vpq165dHj92XFychg0b5vHjlsbevXvVq1cvhYeHy2QyacWKFd6eEgAA5e7gwYMymUxatGiRt6fiZNWqVWrXrp0CAwNlMpl09uxZb08JQA6CPwBatGiRTCaT4xIYGKjY2Fj17t1br7zyipKTkz3yOMeOHdOUKVO0Y8cOjxzPkyry3Eri+eef16JFi3T//ffr7bff1t13313guN9//13+/v4aPnx4vn1nz55V3bp11alTJ1mt1rKeMgCgHNjf47ds2eK0/dy5c+rYsaMCAwO1atUqL83Oc+Li4hznMWazWREREWrdurVGjRqlH3/80dvTK9Lzzz/v8TDD/iWpwi5Lly4t8bEq6jnSkiVLNHv27DI59vfff6/Vq1fr8ccfd2wr7ItnmZmZuuGGG2Q2m7VgwQJJ7p1b20Phwi7x8fGSpBYtWqhfv36aNGlSmTx3d5Tlz8jQoUP166+/6rnnntPbb7+tyy67rMBx//vf/2QymbR48eJ8+zZv3iyz2awJEyZ4fH4AgMol73u0yWRSnTp1dO211+rLL78s9/nkPWfz8/NTo0aNNGTIEP31118eeYxNmzZpypQpHg/lTp8+rVtvvVVBQUGaO3eu3n77bdWoUaPAsXfddZcCAwP1559/5tv373//WyaTSZ9//rlH5wdUd77engCAimPatGlq2LChsrKyFB8frw0bNuihhx7SrFmz9Omnn6pNmzaOsU8//bSeeOIJl45/7NgxTZ06VXFxcWrXrl2J77d69WqXHscdRc3tv//9b4UPwtatW6crrrhCkydPLnJcixYt9Oijj+r555/XsGHD1LVrV8e+J554QidPntSXX34ps5nvhQBAVZWUlKRevXpp586d+vjjj9WnTx9vT8kj2rVrp0ceeUSSlJycrD/++EPLly/Xf//7Xz388MOaNWuWl2dY8PnT888/r4EDB2rAgAEef7yxY8fq8ssvz7e9c+fOJT5GRT1HWrJkiXbt2lUmXQ5efPFFde/eXU2aNClyXFZWlgYOHKgvvvhC//3vf3XPPfc47Xfl3Nru9ddfV0hISL7tERERjv/+17/+peuvv1779+9X48aN3XuSHuTuOX5x0tLStHnzZj311FMaM2ZMkWNHjBihxYsXa8KECbrhhhtUs2ZNSbb/R6NGjVL9+vU1depUj80NAFC52d+jDcNQQkKCFi1apOuvv16fffaZbrjhhnKfj/2cLSsrS9u2bdP8+fO1cuVK/frrr4qNjS3VsTdt2qSpU6dq2LBhTucTpfXzzz8rOTlZ06dPV48ePYocO2vWLH3xxRf617/+pXXr1jm2HzhwQNOmTdM///lPr7zuQFVG8AfAoW/fvk7fop04caLWrVunG264QTfeeKP++OMPBQUFSZJ8fX3l61u2/4ScP39ewcHB8vf3L9PHKY6fn59XH78kTpw4oRYtWpRo7DPPPKNly5bpvvvu086dO+Xv76/Nmzdr/vz5evjhhz36gQ0AoGJJTk5W7969tWPHDn300Ufq27dvqY+Znp4uf39/r39ppF69errrrructr3wwgu644479PLLL6tp06a6//77vTQ7m/I4f8rt6quv1sCBA8vs+JXhHMlVJ06c0MqVKzVv3rwix2VlZenWW2/V559/rjfeeEMjRozIN8aVc2u7gQMHqlatWkU+do8ePRQZGanFixdr2rRpLjy7yuXkyZOSVKIPKU0mk9544w21a9dOEyZM0MKFCyVJM2fO1K5du/Tpp58WWoUAAKh+8r5HjxgxQtHR0Xrvvfe8EkDlPmcbPny4LrnkEo0dO1aLFy/WxIkTy30+JXHixAlJJXufrlOnjl544QWNGjVKixcv1tChQyVJDzzwgPz8/DRnzpyynCpQLVHSAaBI1113nZ555hkdOnRI77zzjmN7QWvUrFmzRl26dFFERIRCQkJ06aWX6sknn5Rka19g/8b58OHDHW0M7P3Ju3XrplatWmnr1q265pprFBwc7LhvYev7WCwWPfnkk4qJiVGNGjV044036u+//3YaU9haJbmPWdzcClq/JjU1VY888ojq16+vgIAAXXrppXrppZdkGIbTOJPJpDFjxmjFihVq1aqVAgIC1LJlyxK3VTtx4oTjBDQwMFBt27Z1amFkbwtx4MABrVy50jH3gwcPFnrMwMBAvf7669qzZ49mzJjh9E3oqvzhEQBUdykpKerTp4+2bdumDz/8UP369XPaf/ToUd1zzz2Kjo52vF/ZWxfa2d93li5dqqefflr16tVTcHCwkpKSNGzYMIWEhOjo0aMaMGCAQkJCVLt2bU2YMEEWi8XpOFarVbNnz1bLli0VGBio6Oho3XfffTpz5oxHn3NQUJDefvttRUVF6bnnnnN6ny7pHOLi4nTDDTfou+++c7RHbdSokd566y2ncVlZWZo6daqaNm2qwMBA1axZU126dNGaNWscY/KeP5lMJqWmpmrx4sWO9/Bhw4Zp/fr1MplM+vjjj/M9pyVLlshkMmnz5s0eeY1Kc/6W9xzJvv7MSy+9pLlz56pRo0YKDg5Wr1699Pfff8swDE2fPl0XXXSRgoKCdNNNNykxMdFpPp988on69eun2NhYBQQEqHHjxpo+fbrTz1C3bt20cuVKHTp0yDGn3PPIyMjQ5MmT1aRJEwUEBKh+/fp67LHHlJGRUezrsXLlSmVnZxf5zfXs7Gzdfvvt+uSTT/T666+7tBZgYefWrvDz81O3bt30ySefFDvW/jO3e/du3XrrrQoLC1PNmjU1btw4paenF3v/v/76S4MGDVJUVJSCg4N1xRVXaOXKlY79xf2MFGb79u3q27evwsLCFBISou7du+uHH35wmneDBg0kSY8++mi+/8cFsXe2WLRokb755htHFcEtt9yi/v37F/tcAQDVV0REhIKCgvJ9Qau4z37S0tLUrFkzNWvWTGlpaY77JSYmqm7durryyivznQeXxHXXXSfJVhFXlHXr1unqq69WjRo1FBERoZtuukl//PGHY/+UKVP06KOPSpIaNmxYos+MJGn58uXq0KGDgoKCVKtWLd111106evSoY3+3bt0c4d3ll1/uOIctyr333qurrrpKEyZM0OnTp7V06VKtWrVKzz77rOrVq1fkfQG4joo/AMW6++679eSTT2r16tWFfrDx22+/6YYbblCbNm00bdo0BQQEaN++ffr+++8lSc2bN9e0adM0adIkjRo1SldffbUk6corr3Qc4/Tp0+rbt69uv/123XXXXYqOji5yXs8995xMJpMef/xxnThxQrNnz1aPHj20Y8eOfN+eLkpJ5pabYRi68cYbtX79eo0YMULt2rXTV199pUcffVRHjx7Vyy+/7DT+u+++00cffaQHHnhAoaGheuWVV/TPf/5Thw8fdrQhKkhaWpq6deumffv2acyYMWrYsKGWL1+uYcOG6ezZsxo3bpyaN2+ut99+Ww8//LAuuugiR4uz2rVrF/mce/bsqcGDB2vGjBk6duyYdu3apU8++YRvQgNAFZWamqq+ffvq559/1gcffJDvm8wJCQm64oorHF9YqV27tr788kuNGDFCSUlJ+dopTp8+Xf7+/powYYIyMjIc1fkWi0W9e/dWp06d9NJLL+nrr7/WzJkz1bhxY6dqu/vuu0+LFi3S8OHDNXbsWB04cECvvfaatm/fru+//96jlWQhISG6+eab9eabb+r3339Xy5YtXZ7Dvn37NHDgQI0YMUJDhw7VggULNGzYMHXo0MFxvClTpmjGjBm699571bFjRyUlJWnLli3atm2bevbsWeDc3n77bcf4UaNGSZIaN26sK664QvXr19e7776rm2++2ek+7777rho3blyidp3Jyck6depUvu01a9aUyWTyyPlbQd59911lZmbqwQcfVGJiov7zn//o1ltv1XXXXacNGzbo8ccf1759+/Tqq69qwoQJTgHzokWLFBISovHjxyskJETr1q3TpEmTlJSUpBdffFGS9NRTT+ncuXM6cuSI47zL3h7TarXqxhtv1HfffadRo0apefPm+vXXX/Xyyy/rzz//LHY9xU2bNqlmzZqO0Cmv7OxsDR48WB9//LHmzp2r++67r8jjFaSoc+u8QahkqxTN+236Dh066JNPPlFSUpLCwsKKfcxbb71VcXFxmjFjhn744Qe98sorOnPmTL4AO7eEhARdeeWVOn/+vMaOHauaNWtq8eLFuvHGG/XBBx/o5ptvdutn5LffftPVV1+tsLAwPfbYY/Lz89Mbb7yhbt266ZtvvlGnTp10yy23KCIiQg8//LAGDx6s66+/vsAWqHk9/fTTWrp0qe677z41aNBAvr6+euWVV4q9HwCgejl37pxOnTolwzB04sQJvfrqq0pJSXHqHlGSz36CgoK0ePFiXXXVVXrqqaccreVHjx6tc+fOadGiRfLx8XF5fvv375ekIj8z+vrrr9W3b181atRIU6ZMUVpaml599VVdddVV2rZtm+Li4nTLLbfozz//1HvvvaeXX37Z0VWgqM+M7OfHl19+uWbMmKGEhATNmTNH33//vbZv366IiAg99dRTuvTSSzV//nxH29Ti2o/bq/Pbt2+v+++/X99++60uu+wyjR492uXXB0AJGACqvYULFxqSjJ9//rnQMeHh4Ub79u0dtydPnmzk/ifk5ZdfNiQZJ0+eLPQYP//8syHJWLhwYb59Xbt2NSQZ8+bNK3Bf165dHbfXr19vSDLq1atnJCUlOba///77hiRjzpw5jm0NGjQwhg4dWuwxi5rb0KFDjQYNGjhur1ixwpBkPPvss07jBg4caJhMJmPfvn2ObZIMf39/p22//PKLIcl49dVX8z1WbrNnzzYkGe+8845jW2ZmptG5c2cjJCTE6bk3aNDA6NevX5HHyys+Pt6IjIw0JBkDBgxw6b4AgMrB/h7foEEDw8/Pz1ixYkWB40aMGGHUrVvXOHXqlNP222+/3QgPDzfOnz9vGMaF9+BGjRo5ttkNHTrUkGRMmzbNaXv79u2NDh06OG5/++23hiTj3XffdRq3atWqfNvzvl8Xprj3Qft5yieffOLyHBo0aGBIMjZu3OjYduLECSMgIMB45JFHHNvatm1b7Htx3vMnwzCMGjVqFHiuMnHiRCMgIMA4e/as0+P6+voakydPLvJx7P+fCrscP37c6XVx9/wt7znSgQMHDElG7dq1neY9ceJEQ5LRtm1bIysry7F98ODBhr+/v5Genu7YlvfnyjAM47777jOCg4OdxvXr18/pse3efvttw2w2G99++63T9nnz5hmSjO+//77Q52oYhtGlSxenn1c7+2tq/3mYO3duoccozbl1QZdLL7003/2XLFliSDJ+/PHHIp+P/bg33nij0/YHHnjAkGT88ssvjm15z5sfeughQ5LTa5mcnGw0bNjQiIuLMywWi2EYRf+MFGTAgAGGv7+/sX//fse2Y8eOGaGhocY111zj2Gb/eXrxxRdLdFy7r776yvHazZ4926X7AgCqNvt7dN5LQECAsWjRIqexrnz2M3HiRMNsNhsbN240li9fXuL3IPv5xYIFC4yTJ08ax44dM1auXGnExcUZJpPJcS5hf0/M/V7brl07o06dOsbp06cd23755RfDbDYbQ4YMcWx78cUXDUnGgQMHip1PZmamUadOHaNVq1ZGWlqaY/vnn39uSDImTZrk2FaS852C2M8LfXx8jK1bt7p0XwAlR6tPACUSEhKi5OTkQvfbv4X8ySefyGq1uvUYAQEBGj58eInHDxkyRKGhoY7bAwcOVN26dfXFF1+49fgl9cUXX8jHx0djx4512v7II4/IMAx9+eWXTtt79Ojh9M2nNm3aKCwsTH/99VexjxMTE6PBgwc7tvn5+Wns2LFKSUnRN998U6rnERwcrODgYElSr169SnUsAEDFlpCQoMDAQNWvXz/fPsMw9OGHH6p///4yDEOnTp1yXHr37q1z585p27ZtTvcZOnRoodX1//rXv5xuX3311U7vecuXL1d4eLh69uzp9FgdOnRQSEiI1q9f74Fn7MxeKWQ/l3F1Di1atHBUMkm2b0lfeumlTs8rIiJCv/32m/bu3euROQ8ZMkQZGRn64IMPHNuWLVum7OzsfGsZFmbSpElas2ZNvktUVJRjzlLpzt8KMmjQIIWHhztud+rUSZJ01113ObXQ6tSpkzIzM51aR+X+ubJXLF599dU6f/68du/eXexjL1++XM2bN1ezZs2c/t/aW2YV9/N1+vRpRUZGFro/ISFBvr6+atiwYbFzKUph59Yffvhhvv9f9vXqcrPPsaCKzoLk/Tb9gw8+KElFnjd/8cUX6tixo7p06eI071GjRungwYP6/fffS/TYuVksFq1evVoDBgxQo0aNHNvr1q2rO+64Q999952SkpJcPm5uUVFRjjVHOccFABRk7ty5jvfZd955R9dee63uvfdeffTRR44xrnz2M2XKFLVs2VJDhw7VAw88oK5du+a7X1Huuece1a5dW7GxserXr5+jFXzudQhzO378uHbs2KFhw4Y5zusk2+dNPXv2dPtzsS1btujEiRN64IEHFBgY6Njer18/NWvWzKndt7vsVYexsbFq1apVqY8HoGAEf8XYuHGj+vfvr9jYWJlMpmJbwxTEMAy99NJLuuSSSxQQEKB69erpueee8/xkgTKUkpLiFLLlddttt+mqq67Svffeq+joaN1+++16//33XfoQqV69eo5WYSXRtGlTp9smk0lNmjQptld5aR06dEixsbH5Xo/mzZs79ud28cUX5ztGZGRksesYHTp0SE2bNnV8cFHc47jqqaeeUnx8vJo3b67Jkyd7fF0lAEDF8cYbb8jf3199+vTRnj17nPadPHlSZ8+e1fz581W7dm2ni/0LOSdOnHC6T2GhR2BgYL7WQXnf8/bu3atz586pTp06+R4vJSUl32N5QkpKiiQ53rtdnUNJ3sunTZums2fP6pJLLlHr1q316KOPaufOnW7PuVmzZrr88sv17rvvOra9++67uuKKK9SkSZMSHaN169bq0aNHvov9fMsT528Fyft62UPAvMGzfXvu1/G3337TzTffrPDwcIWFhal27dqOoPPcuXPFPvbevXv122+/5fv/eskll0jK/7NcECPPms25/ec//9HFF1+sgQMHOlqiuqOwc+trrrkm3/+vgtq62ueYd83twuQ9b27cuLHMZnOR582HDh3SpZdemm97ac5FT548qfPnzxd6XKvVmm/NbldYLBaNGjVKsbGxioiIcOlDVwBA9dGxY0fH++ydd96plStXqkWLFhozZowyMzMlufbZj7+/vxYsWKADBw4oOTlZCxcuLPF7tHThy1rr1q3Tzp07dezYMd19992Fjrc/dmHvp6dOnVJqamqJH78kx23WrFmpP4f6+++/NXnyZLVq1Up///23/vOf/5TqeAAKxxp/xUhNTVXbtm11zz336JZbbnHrGOPGjdPq1av10ksvqXXr1kpMTCxw7Qagojpy5IjOnTtX5IdMQUFB2rhxo9avX6+VK1dq1apVWrZsma677jqtXr26RD3NXVmXr6QKO9GyWCxu9Vl3R2GPU9SHSmVty5Ytmjt3rsaOHavhw4erQ4cOevzxxzV//nyvzQkAUHZatGihL774Qt27d1fPnj31/fffO0IYe8hz1113aejQoQXev02bNk63C3vPLsl7q9VqVZ06dZwCrdyKW6fWHbt27ZIkx7mMq3MoyXv5Nddco/379+uTTz7R6tWr9b///U8vv/yy5s2bp3vvvdeteQ8ZMkTjxo3TkSNHlJGRoR9++EGvvfaaW8cqiCfO3wpS2P2Kex3Pnj2rrl27KiwsTNOmTVPjxo0VGBiobdu26fHHHy9RIGm1WtW6dWvHGjt5FVT1mlvNmjWL/DJU3bp1tWbNGnXp0kX9+vXTN998o7Zt2xY7r9xKcm5dHPsc7d+ad5UrH0ZWJnPmzNH27du1YsUKHT16VKNHj9aSJUt0xx13eHtqAIAKzGw269prr9WcOXO0d+9exxrOrvjqq68kSenp6dq7d69L3QHsX9aq6saMGSNJ+vLLLzV+/Hg999xzuuOOO5y6AADwDIK/YvTt21d9+/YtdH9GRoaeeuopvffeezp79qxatWqlF154Qd26dZMk/fHHH3r99de1a9cux7clStsWBihvb7/9tiSpd+/eRY4zm83q3r27unfvrlmzZun555/XU089pfXr16tHjx4e/4AhbystwzC0b98+pw8nIyMjdfbs2Xz3PXTokNOJhStza9Cggb7++mslJyc7ffPL3n6qQYMGJT5WcY+zc+dOWa1Wp6q/0j5O7m9CT5s2TaGhoRo3bpxmzZql4cOHF/itcgBA5dexY0etWLFC/fr1U8+ePfXtt986qqFCQ0NlsVjK5QOHxo0b6+uvv9ZVV11VJl/6ySslJUUff/yx6tev7/iGdlnNISoqSsOHD9fw4cOVkpKia665RlOmTCky+CvqHOT222/X+PHj9d577yktLU1+fn667bbbPDZfqfzP34qyYcMGnT59Wh999JGuueYax/YDBw7kG1vYvBo3bqxffvlF3bt3d2vuzZo104cffljkmEaNGumrr75S165d1bt3b3377bf5KuqKUtJz66IcOHBAZrPZUclYnLwfQO7bt09Wq1VxcXGF3qdBgwb5KoSl/OeirrzOtWvXVnBwcKHHNZvNxYazhbFXEdx000266aabZLVatXjxYo0fP179+vVzaj8LAEBe2dnZki50inDls5+dO3dq2rRpGj58uHbs2KF7771Xv/76a5m999gfu7D301q1aqlGjRqSXP+8y35ce5t0uz179pTq866PP/5Yn376qV5++WVddNFFmj17tr766iuNHj0635I5AEqPVp+lNGbMGG3evFlLly7Vzp07NWjQIPXp08cRSHz22Wdq1KiRPv/8czVs2FBxcXG69957qfhDpbFu3TpNnz5dDRs21J133lnouIJ+ptu1ayfJFpBLcpx0FBTEueOtt95yWhvlgw8+0PHjx53C+saNG+uHH35wtGqQpM8//zxfCyFX5nb99dfLYrHk+8b9yy+/LJPJVOSXBVxx/fXXKz4+XsuWLXNsy87O1quvvqqQkBB17drVreO+8sor2r59u1555RXHyevUqVN10UUX6V//+pfjZBcAUPV0795d7733nvbt26c+ffooKSlJPj4++uc//6kPP/zQURmX28mTJz06h1tvvVUWi0XTp0/Pty87O9tj5wmSlJaWprvvvluJiYl66qmnHB98lMUcTp8+7XQ7JCRETZo0cZwHFaZGjRqFPl6tWrXUt29fvfPOO3r33XfVp08ftyu8CuKN87ei2CsCc1dSZmZm6v/+7//yja1Ro0aBrT9vvfVWHT16VP/973/z7UtLSyu27VXnzp115syZYtdibt26tVauXKmUlBT17NnTaZ3CopT03Lo4W7duVcuWLUv8geLcuXOdbr/66quSVOR56/XXX6+ffvpJmzdvdmxLTU3V/PnzFRcXpxYtWkhy7WfEx8dHvXr10ieffOLUZjQhIUFLlixRly5dFBYWVqLnlNeDDz4owzAcz81sNmvevHk6deqUnnzySbeOCQCoHrKysrR69Wr5+/s7vihW0s9+srKyNGzYMMXGxmrOnDlatGiREhIS9PDDD5fZfOvWrat27dpp8eLFTu+/u3bt0urVq3X99dc7trnyPn3ZZZepTp06mjdvntM57Jdffqk//vhD/fr1c2u+ycnJGjt2rNq3b+9YZzg2NlbTp0/XqlWrtHz5creOC6BwVPyVwuHDh7Vw4UIdPnxYsbGxkqQJEyZo1apVWrhwoZ5//nn99ddfOnTokJYvX6633npLFotFDz/8sAYOHKh169Z5+RkAzr788kvt3r1b2dnZSkhI0Lp167RmzRo1aNBAn376qdPCvnlNmzZNGzduVL9+/dSgQQOdOHFC//d//6eLLrpIXbp0kWQL4SIiIjRv3jyFhoaqRo0a6tSpk9tVsFFRUerSpYuGDx+uhIQEzZ49W02aNNHIkSMdY+6991598MEH6tOnj2699Vbt379f77zzjho3bux0LFfm1r9/f1177bV66qmndPDgQbVt21arV6/WJ598ooceeijfsd01atQovfHGGxo2bJi2bt2quLg4ffDBB/r+++81e/bsItdcLMzff/+tSZMmqX///rr55psd22vUqKE5c+bolltu0Zw5c/TII4945DkAACqem2++Wf/97391zz336MYbb9SqVav073//W+vXr1enTp00cuRItWjRQomJidq2bZu+/vprj35prWvXrrrvvvs0Y8YM7dixQ7169ZKfn5/27t2r5cuXa86cORo4cKDLxz169KjeeecdSbZvav/+++9avny54uPj9cgjj+i+++4r0zm0aNFC3bp1U4cOHRQVFaUtW7bogw8+cLQ0KkyHDh309ddfa9asWYqNjVXDhg3VqVMnx/4hQ4Y45lJQUFmUb7/9Vunp6fm2t2nTRm3atPHK+VtRrrzySkVGRmro0KEaO3asTCaT3n777QLbo3fo0EHLli3T+PHjdfnllyskJET9+/fX3Xffrffff1//+te/tH79el111VWyWCzavXu33n//fX311Ve67LLLCp1Dv3795Ovrq6+//lqjRo0qcr6dO3fWRx99pP79+zuqaGvWrOnY78659QcffKCQkJB823v27Kno6GhJtg8Yv/nmGz3wwANFzi+3AwcO6MYbb1SfPn20efNmvfPOO7rjjjuKbFP6xBNP6L333lPfvn01duxYRUVFafHixTpw4IA+/PBDR0cKV39Gnn32WUe71AceeEC+vr564403lJGR4fZaPx9//LE++eQTzZw506lisH379ho9erRee+01DRs2TJdffrlbxwcAVC3292jJtv7vkiVLtHfvXj3xxBOOL6CU9LOfZ599Vjt27NDatWsVGhqqNm3aaNKkSXr66ac1cOBApxDOk1588UX17dtXnTt31ogRI5SWlqZXX31V4eHhmjJlimNchw4dJElPPfWUbr/9dvn5+al///6OQDA3Pz8/vfDCCxo+fLi6du2qwYMHKyEhQXPmzFFcXJzbYebTTz+tY8eO6aOPPnJq/T569GgtXrxYDz30kPr06ePW51wACmGgxCQZH3/8seP2559/bkgyatSo4XTx9fU1br31VsMwDGPkyJGGJGPPnj2O+23dutWQZOzevbu8nwJQoIULFxqSHBd/f38jJibG6NmzpzFnzhwjKSkp330mT55s5P4nZO3atcZNN91kxMbGGv7+/kZsbKwxePBg488//3S63yeffGK0aNHC8PX1NSQZCxcuNAzDMLp27Wq0bNmywPl17drV6Nq1q+P2+vXrDUnGe++9Z0ycONGoU6eOERQUZPTr1884dOhQvvvPnDnTqFevnhEQEGBcddVVxpYtW/Ids6i5DR061GjQoIHT2OTkZOPhhx82YmNjDT8/P6Np06bGiy++aFitVqdxkozRo0fnm1ODBg2MoUOHFvh8c0tISDCGDx9u1KpVy/D39zdat27tmFfe4/Xr16/Y4910001GjRo1CnydDMMwbrjhBiMkJMQ4fPhwsccCAFR89vf4n3/+Od++l156yZBk3HDDDUZWVpaRkJBgjB492qhfv77h5+dnxMTEGN27dzfmz5/vuI/9PXj58uX5jjd06FCjRo0a+bbnPWewmz9/vtGhQwcjKCjICA0NNVq3bm089thjxrFjxxxjCnq/LkiDBg0c5zEmk8kICwszWrZsaYwcOdL48ccfC71fSeZQ2Hts3rk9++yzRseOHY2IiAgjKCjIaNasmfHcc88ZmZmZRb4Wu3fvNq655hojKCjIkJTv/CAjI8OIjIw0wsPDjbS0tGJfC8O48P+psMvkyZMNwyj9+Vvec6QDBw4YkowXX3yxwPnk/bkp6Ofz+++/N6644gojKCjIiI2NNR577DHjq6++MiQZ69evd4xLSUkx7rjjDiMiIsKQ5DSPzMxM44UXXjBatmxpBAQEGJGRkUaHDh2MqVOnGufOnSv29bvxxhuN7t27l+g5GIZhLFu2zDCbzcbll19uJCUllercurBL7uf+5ZdfGpKMvXv3Fvtc7Mf9/fffjYEDBxqhoaFGZGSkMWbMmHw/TwWdn+7fv98YOHCgERERYQQGBhodO3Y0Pv/883yPU9jPSGG2bdtm9O7d2wgJCTGCg4ONa6+91ti0aZPTmMJ+nvJKTk42LrroIqNdu3ZGdnZ2vv1JSUlGbGys8Y9//KPA/QCA6iPve7QkIzAw0GjXrp3x+uuv5/tMp7jPfrZu3Wr4+voaDz74oNP9srOzjcsvv9yIjY01zpw5U+h8ijq/yM3+npj3/fXrr782rrrqKiMoKMgICwsz+vfvb/z+++/57j99+nSjXr16htlsNiQZBw4cKPLxli1bZrRv394ICAgwoqKijDvvvNM4cuSI05ii/s7IbcuWLYaPj48xZsyYAvf/9NNPhtlsNsaOHVvkcQC4xmQYBXx9EgUymUz6+OOPNWDAAEnSsmXLdOedd+q3337Lt1B9SEiIYmJiNHnyZD3//PPKyspy7EtLS1NwcLBWr16tnj17ludTAAAAAFCJZGdnKzY2Vv3799ebb77p7elUC99++626deum3bt3u7R2X3kZMGCA42/T4kyZMkVTp07VyZMnPdomFgAAAEDFRavPUmjfvr0sFotOnDihq6++usAxV111lbKzs7V//35HCfiff/4pSaVaEBUAAABA1bdixQqdPHlSQ4YM8fZUqo2rr75avXr10n/+858C1wr0pj/++EOff/65duzY4e2pAAAAAKigCP6KkZKSon379jluHzhwQDt27FBUVJQuueQS3XnnnRoyZIhmzpyp9u3b6+TJk1q7dq3atGmjfv36qUePHvrHP/6he+65R7Nnz5bVatXo0aPVs2dPXXLJJV58ZgAAAAAqqh9//FE7d+7U9OnT1b59e3Xt2tXbU6pWvvzyS29PoUDNmzdXdna2t6cBAAAAoAIze3sCFd2WLVvUvn17tW/fXpI0fvx4tW/fXpMmTZIkLVy4UEOGDNEjjzyiSy+9VAMGDNDPP/+siy++WJJkNpv12WefqVatWrrmmmvUr18/NW/eXEuXLvXacwIAAABQsb3++uu6//77VadOHb311lveng4AAAAAoJJgjT8AAAAAAAAAAACgCqDiDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKsDX2xOoiKxWq44dO6bQ0FCZTCZvTwcAAJQBwzCUnJys2NhYmc18F6o8cI4FAEDVxzlW+eMcCwCAqs+VcyyCvwIcO3ZM9evX9/Y0AABAOfj777910UUXeXsa1QLnWAAAVB+cY5UfzrEAAKg+SnKORfBXgNDQUEm2FzAsLMzLswEAAGUhKSlJ9evXd7zvo+xxjgUAQNXHOVb54xwLAICqz5VzLIK/AtjbIoSFhXHCBABAFUc7pPLDORYAANUH51jlh3MsAACqj5KcY9FsHQAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgDwAAAAAAAAAAAKgCCP4AAAAAAAAAAACAKoDgD/CApEyLVh1O0cm0bG9PBQAAAAAAAAAAVFMEf4AH/JqYoR2n07XtVLq3pwIAAFAlrV0r3X+/t2cBAAAAAEDFRvAHeEBqllWSlJZt9fJMAAAAqqaNG6VFiyTD8PZMAAAAAACouAj+AA9It9g+gcq08EkUAABAWcjIkNLTpZQUb88EAAAAAICKi+AP8AB7pV+GleAPAACgLKTndFQ/ccK78wAAAAAAoCIj+AM8II2KPwAAgDJlD/4SErw7DwAAAAAAKjKCP8AD0u0VfwR/AAAAZSIjw3ZNxR8AAAAAAIUj+AM8wF7xR6tPAACAskGrTwAAAAAAiufV4G/GjBm6/PLLFRoaqjp16mjAgAHas2dPsfdbvny5mjVrpsDAQLVu3VpffPGF037DMDRp0iTVrVtXQUFB6tGjh/bu3VtWTwPVnNUwHJV+mRZDhkH4BwAA4GlU/AEAAAAAUDyvBn/ffPONRo8erR9++EFr1qxRVlaWevXqpdTU1ELvs2nTJg0ePFgjRozQ9u3bNWDAAA0YMEC7du1yjPnPf/6jV155RfPmzdOPP/6oGjVqqHfv3kq3f00Y8KD07AtBnyEpy+q9uQAAAFRVVPwBAAAAAFA8X28++KpVq5xuL1q0SHXq1NHWrVt1zTXXFHifOXPmqE+fPnr00UclSdOnT9eaNWv02muvad68eTIMQ7Nnz9bTTz+tm266SZL01ltvKTo6WitWrNDtt99etk8K1U6axTnpy7Qa8vcxeWk2AAAAVVNamu2a4A8AAAAAgMJVqDX+zp07J0mKiooqdMzmzZvVo0cPp229e/fW5s2bJUkHDhxQfHy805jw8HB16tTJMSavjIwMJSUlOV2AkkrLdm7tmWGh5A8AAMDT7K0+ExK8Ow8AAAAAACqyChP8Wa1WPfTQQ7rqqqvUqlWrQsfFx8crOjraaVt0dLTi4+Md++3bChuT14wZMxQeHu641K9fvzRPBdVMvoo/C2v8AQAAeBqtPgEAAAAAKF6FCf5Gjx6tXbt2aenSpeX+2BMnTtS5c+ccl7///rvc54DKK1/Fn5XgDwAAwNOo+AMAAAAAoHheXePPbsyYMfr888+1ceNGXXTRRUWOjYmJUUKev/YTEhIUExPj2G/fVrduXacx7dq1K/CYAQEBCggIKMUzQHWWlu1c8ZdBxR8AAIDHpadLYWFSYqKUnS35Voi/ZAAAAAAAqFi8WvFnGIbGjBmjjz/+WOvWrVPDhg2LvU/nzp21du1ap21r1qxR586dJUkNGzZUTEyM05ikpCT9+OOPjjGAJ6XnCfpo9QkAAOB56elSnTqSYUinT3t7NgAAAAAAVExeDf5Gjx6td955R0uWLFFoaKji4+MVHx+vtLQ0x5ghQ4Zo4sSJjtvjxo3TqlWrNHPmTO3evVtTpkzRli1bNGbMGEmSyWTSQw89pGeffVaffvqpfv31Vw0ZMkSxsbEaMGBAeT9FVAO0+gQAACh7GRm24E9inT8AAAAAAArj1QY5r7/+uiSpW7duTtsXLlyoYcOGSZIOHz4ss/lCPnnllVdqyZIlevrpp/Xkk0+qadOmWrFihVq1auUY89hjjyk1NVWjRo3S2bNn1aVLF61atUqBgYFl/pxQ/aRZnFt9UvEHAADgeQR/AAAAAAAUz6vBn2EUH5Bs2LAh37ZBgwZp0KBBhd7HZDJp2rRpmjZtWmmmB5RIek7FXw1fk1KzDdb4AwAAKAMEfwAAAAAAFM+rrT6BqsBe8Rfu7yNJyqTVJwCglObOnau4uDgFBgaqU6dO+umnn4ocv3z5cjVr1kyBgYFq3bq1vvjiC8e+rKwsPf7442rdurVq1Kih2NhYDRkyRMeOHXM6RmJiou68806FhYUpIiJCI0aMUEpKitOYnTt36uqrr1ZgYKDq16+v//znP5570kARLBYpK0sKC5MCAwn+AAAAAAAoDMEfUEr2Nf4iAmzBHxV/AIDSWLZsmcaPH6/Jkydr27Ztatu2rXr37q0ThSQdmzZt0uDBgzVixAht375dAwYM0IABA7Rr1y5J0vnz57Vt2zY988wz2rZtmz766CPt2bNHN954o9Nx7rzzTv32229as2aNPv/8c23cuFGjRo1y7E9KSlKvXr3UoEEDbd26VS+++KKmTJmi+fPnl92LAeTIyLBd+/tLkZEEfwAAAAAAFMZklKTfZjWTlJSk8PBwnTt3TmFhYd6eDiq4mb+cUpZV6hwdpM0JaWoc5qdBjcO9PS0AQDEq6vt9p06ddPnll+u1116TJFmtVtWvX18PPvignnjiiXzjb7vtNqWmpurzzz93bLviiivUrl07zZs3r8DH+Pnnn9WxY0cdOnRIF198sf744w+1aNFCP//8sy677DJJ0qpVq3T99dfryJEjio2N1euvv66nnnpK8fHx8vf3lyQ98cQTWrFihXbv3l2i51ZRX3NUfGfOSFFR0pQp0vvvS507S//7n7dnBQAoCO/35Y/XHACAqs+V93sq/oBSyLYayrJ1+qTVJwCg1DIzM7V161b16NHDsc1sNqtHjx7avHlzgffZvHmz03hJ6t27d6HjJencuXMymUyKiIhwHCMiIsIR+klSjx49ZDab9eOPPzrGXHPNNY7Qz/44e/bs0ZkzZ1x+roAr0tNt1/7+Ung4FX8AAAAAABSG4A8ohbRsW+pnkhTmb/t1otUnAMBdp06dksViUXR0tNP26OhoxcfHF3if+Ph4l8anp6fr8ccf1+DBgx3fEIuPj1edOnWcxvn6+ioqKspxnMIex76vIBkZGUpKSnK6AO7I3eozIkJKSPDqdAAAAAAAqLAI/oBSSMsJ+YJ8TQrwMUmSMgn+AAAVVFZWlm699VYZhqHXX3+9zB9vxowZCg8Pd1zq169f5o+Jqsle8efnxxp/AAAAAAAUheAPKAV7xV+gj1n+Zlvwl0GrTwCAm2rVqiUfHx8l5ClnSkhIUExMTIH3iYmJKdF4e+h36NAhrVmzxqkffExMjE7kSVKys7OVmJjoOE5hj2PfV5CJEyfq3Llzjsvff/9d2FMHipS71WdEhHTypFenAwAAAABAhUXwB5QCFX8AAE/y9/dXhw4dtHbtWsc2q9WqtWvXqnPnzgXep3Pnzk7jJWnNmjVO4+2h3969e/X111+rZs2a+Y5x9uxZbd261bFt3bp1slqt6tSpk2PMxo0blZWV5fQ4l156qSIjIwucW0BAgMLCwpwugDvytvpMTbVdAAAAAACAM4I/oBTSs3OCPx+z/HOCP4shZVP1BwBw0/jx4/Xf//5Xixcv1h9//KH7779fqampGj58uCRpyJAhmjhxomP8uHHjtGrVKs2cOVO7d+/WlClTtGXLFo0ZM0aSLfQbOHCgtmzZonfffVcWi0Xx8fGKj49XZmamJKl58+bq06ePRo4cqZ9++knff/+9xowZo9tvv12xsbGSpDvuuEP+/v4aMWKEfvvtNy1btkxz5szR+PHjy/kVQnWUt9WnRNUfAAAAAAAF8fX2BIDKzNHq09fkaPUp2ar+fHPdBgCgpG677TadPHlSkyZNUnx8vNq1a6dVq1YpOjpaknT48GGZzRe+u3XllVdqyZIlevrpp/Xkk0+qadOmWrFihVq1aiVJOnr0qD799FNJUrt27Zwea/369erWrZsk6d1339WYMWPUvXt3mc1m/fOf/9Qrr7ziGBseHq7Vq1dr9OjR6tChg2rVqqVJkyZp1KhRZfhqADZ5K/4kKSFBiovz1owAAAAAAKiYCP6AUnC0+vQxyWyyhX+ZVkMZVkPBXp4bAKDyGjNmjKNiL68NGzbk2zZo0CANGjSowPFxcXEyjOIr0aOiorRkyZIix7Rp00bffvttsccCPC33Gn81atj+OznZe/MBAAAAAKCiIvgDSiE9p+IvyNdWeeEI/ljnDwAAwGPsFX9+fpIpp6kCa/wBAAAAAJAfwR9QCo6KP1/bJ1D+PiYp29bqEwAAAJ6Ru+LPN+cvmJQU780HAAAAAICKiuAPKAX7Gn9BPraKvwAfWwCYYbV6bU4AAABVjT348/OzXZtMVPwBAAAAAFAQgj+gFDKttso+e+Dnb7ZdU/EHAADgORkZtmo/e5vPoCAq/gAAAAAAKIjZ2xMAKrOc3E85ed+Fij+CPwAAAI9JT7cFf3ZBQVT8AQAAAABQEII/oBQuBH+51vjThUpAAAAAlJ694s+O4A8AAAAAgIIR/AGlYDVsAV/eij9afQIAAHhO3oq/wEBafQIAAAAAUBCCP6AUHBV/ObcDchLADCr+AAAAPCY9XfLzu3A7MJCKPwAAAAAACkLwB5SCNefalKfVJ2v8AQAAeE7eVp8EfwAAAAAAFIzgDygFWn0CAACUPVp9AgAAAABQMgR/QCk4Wn3mBH/+Zir+AAAAPC0jI3+rT4I/AAAAAADyI/gDSiGn4E8+Oa0+A3xsv1KZrPEHAADgMXnX+AsKotUnAAAAAAAFIfgDSsEqW8CXU/DHGn8AAABlIG/wR8UfAAAAAAAFI/gDSiFvq88AR6tPq5dmBAAAUPUUtMYfFX8AAAAAAORH8AeUgsUR/NkCP3vFXxa5HwAAgMfkDf5o9QkAAAAAQMEI/gA3GcaFdp72ij//nP/ItBpO+wEAAOC+jIz8rT4J/gAAAAAAyI/gD3CTNVeuZ/9F8rMngKLqDwAAwFMKqvjLypIyM703JwAAAAAAKiKCP8BNuXM9e6tPv1y/UZlWKv4AAAA8oaDgT6LqDwAAAACAvAj+ADdZC2j1aTKZHO0+swj+AAAAPKKgVp8SwR8AAAAAAHkR/AFucmr1eaHD54V1/iwEfwAAAJ5AxR8AAAAAACVD8Ae4KXfwlyv3k5+P7ZpWnwAAAJ6RkeEc/Nkr/lJSvDMfAAAAAAAqKoI/wE1W2YI9s2wtPu2o+AMAAPAsWn0CAAAAAFAyBH+Am+wFfbnbfEqSH2v8AQAAeBStPgEAAAAAKBmCP8BNF4I/5+QvwCen4o/gDwAAoNSysyWrteDgj1afAAAAAAA4I/gD3GQ1bMGeqZCKP4I/AACA0ktPt10XtMYfFX8AAAAAADgj+APcZM/1fPIEf/Y1/rJY4w8AAKDUMjJs17nX+PP1td0m+AMAAAAAwBnBH+AmR6tPOSd/frT6BAAA8JiCKv4kW7tPWn0CAAAAAOCM4A9wkz3WM+ep+Aug1ScAAIDHFBX8UfEHAAAAAIAzgj/ATcWu8UerTwAAgFIrqNWnZFvnj+APAAAAAABnBH+Am+y5Xt6KP/+cVp9ZVPwBAACUWmEVf4GBtPoEAAAAACAvgj/ATfaKP3Oekj8/Wn0CAAB4TGEVf7T6BAAAAAAgP4I/wE2GveIvz3Z/Wn0CAAB4DBV/AAAAAACUHMEf4CZrznVhrT6p+AMAACi9woK/gACCPwAAAAAA8iL4A9xkdazx55z82Sv+WOMPAACg9OytPvMGf7T6BAAAAAAgP4I/wE0X1vhz3u5Hq08AAACPKaziLyiIij8AAAAAAPIi+APcdKHiz3m7vdVnllUAAAAopcIq/gIDqfgDAAAAACAvrwZ/GzduVP/+/RUbGyuTyaQVK1YUOX7YsGEymUz5Li1btnSMmTJlSr79zZo1K+NngurIEfyp4FafmVZDhkHVHwAAQGmkp0tms+Tj47ydVp8AAAAAAOTn1eAvNTVVbdu21dy5c0s0fs6cOTp+/Ljj8vfffysqKkqDBg1yGteyZUuncd99911ZTB/VnFUFt/q0V/xJVP0BAACUVnp6/mo/iYo/AAAAAAAK4uvNB+/bt6/69u1b4vHh4eEKDw933F6xYoXOnDmj4cOHO43z9fVVTEyMx+YJFKSwVp++uW5nWg2nIBAAAACuycgoOPgLCpLOn5cMQzJxugUAAAAAgKRKvsbfm2++qR49eqhBgwZO2/fu3avY2Fg1atRId955pw4fPuylGaIquxD8OX/SZDKZHO0+s6y0+gQAACiNoir+DENKSyv/OQEAAAAAUFF5teKvNI4dO6Yvv/xSS5YscdreqVMnLVq0SJdeeqmOHz+uqVOn6uqrr9auXbsUGhpa4LEyMjKUkZHhuJ2UlFSmc0fVYDUKbvUp2db5y7QayrQQ/AEAAJRGYRV/gYG265QUKTi4fOcEAAAAAEBFVWmDv8WLFysiIkIDBgxw2p67dWibNm3UqVMnNWjQQO+//75GjBhR4LFmzJihqVOnluV0UQXZl+8rqGzW38ckZdtafQIAAMB96emSn1/+7UFBtmvW+QMAAAAA4IJK2erTMAwtWLBAd999t/wL+vpvLhEREbrkkku0b9++QsdMnDhR586dc1z+/vtvT08ZVVBhrT4lyS/nN4uKPwAAgNIprNUnwR8AAAAAAPlVyuDvm2++0b59+wqt4MstJSVF+/fvV926dQsdExAQoLCwMKcLUBx7q88Ccj9bxZ9Y4w8AAKC0MjIKrvjL3eoTAAAAAADYeDX4S0lJ0Y4dO7Rjxw5J0oEDB7Rjxw4dPnxYkq0Sb8iQIfnu9+abb6pTp05q1apVvn0TJkzQN998o4MHD2rTpk26+eab5ePjo8GDB5fpc0H1c6HiL/8+/5yNtPoEAAAoHSr+AAAAAAAoOa+u8bdlyxZde+21jtvjx4+XJA0dOlSLFi3S8ePHHSGg3blz5/Thhx9qzpw5BR7zyJEjGjx4sE6fPq3atWurS5cu+uGHH1S7du2yeyKolhzBnwpq9UnwBwAA4AlU/AEAAAAAUHJerfjr1q2bDMPId1m0aJEkadGiRdqwYYPTfcLDw3X+/HmNHDmywGMuXbpUx44dU0ZGho4cOaKlS5eqcePGZfxMUB1ZZQv1Cqz4y2n1yRp/AAB3zJ07V3FxcQoMDFSnTp30008/FTl++fLlatasmQIDA9W6dWt98cUXTvs/+ugj9erVSzVr1pTJZHJ0W7A7ePCgTCZTgZfly5c7xhW0f+nSpR573kBB0tOLDv6o+AMAAAAA4IJKucYfUBEYJWj1yRp/AABXLVu2TOPHj9fkyZO1bds2tW3bVr1799aJEycKHL9p0yYNHjxYI0aM0Pbt2zVgwAANGDBAu3btcoxJTU1Vly5d9MILLxR4jPr16+v48eNOl6lTpyokJER9+/Z1Grtw4UKncQMGDPDYcwcKkpZWcKvPgADbWssEfwAAAAAAXODVVp9AZXZhjb/8yR9r/AEA3DVr1iyNHDlSw4cPlyTNmzdPK1eu1IIFC/TEE0/kGz9nzhz16dNHjz76qCRp+vTpWrNmjV577TXNmzdPknT33XdLslX2FcTHx0cxMTFO2z7++GPdeuutCgkJcdoeERGRbyxQljIypODg/NvNZlvVH60+AQAAAAC4gIo/wE1Wo/BWn441/mj1CQBwQWZmprZu3aoePXo4tpnNZvXo0UObN28u8D6bN292Gi9JvXv3LnR8SWzdulU7duzQiBEj8u0bPXq0atWqpY4dO2rBggUyDN7rULYKa/Up2QJBKv4AAAAAALiAij/ATfZMr6D03L7GH60+AQCuOHXqlCwWi6Kjo522R0dHa/fu3QXeJz4+vsDx8fHxbs/jzTffVPPmzXXllVc6bZ82bZquu+46BQcHa/Xq1XrggQeUkpKisWPHFnicjIwMZWRkOG4nJSW5PSdUX1lZkm8hf7VQ8QcAAAAAgDOCP8BN9kivyFafVPwBACqZtLQ0LVmyRM8880y+fbm3tW/fXqmpqXrxxRcLDf5mzJihqVOnltlcUT1kZxce/AUHS8nJ5TsfAAAAAAAqMlp9Am4qstWnD2v8AQBcV6tWLfn4+CghIcFpe0JCQqHr6sXExLg0vjgffPCBzp8/ryFDhhQ7tlOnTjpy5IhTVV9uEydO1Llz5xyXv//+2605oXrLzrat51eQ4GDp3LnynQ8AAAAAABUZwR/gJnumV1Dw56j4I/gDALjA399fHTp00Nq1ax3brFar1q5dq86dOxd4n86dOzuNl6Q1a9YUOr44b775pm688UbVrl272LE7duxQZGSkAgICCtwfEBCgsLAwpwvgKotF8vEpeF+NGgR/AAAAAADkRqtPwE0Xgr/CW32yxh8AwFXjx4/X0KFDddlll6ljx46aPXu2UlNTNXz4cEnSkCFDVK9ePc2YMUOSNG7cOHXt2lUzZ85Uv379tHTpUm3ZskXz5893HDMxMVGHDx/WsWPHJEl79uyRZKsWzF0ZuG/fPm3cuFFffPFFvnl99tlnSkhI0BVXXKHAwECtWbNGzz//vCZMmFBmrwUgFV3xV6OGdPZsuU4HAAAAAIAKjeAPcJOj1WcB+/x9WOMPAOCe2267TSdPntSkSZMUHx+vdu3aadWqVYqOjpYkHT58WOZcKciVV16pJUuW6Omnn9aTTz6ppk2basWKFWrVqpVjzKeffuoIDiXp9ttvlyRNnjxZU6ZMcWxfsGCBLrroIvXq1SvfvPz8/DR37lw9/PDDMgxDTZo00axZszRy5EhPvwSAk+zsoiv+4uPLdz4AAAAAAFRkJsMwSCbySEpKUnh4uM6dO0dLKhTq4wNJ2nM2U70uqqF/1A5y2nc2w6J5v5+Rn1l6pG0tL80QAFAU3u/LH6853BEbK/XuLQ0dmn/f//4nffutdOhQ+c8LAFAw3u/LH685AABVnyvv96zxB7ipqFaffo5WnxLZOgAAgPuKq/hjjT8AAAAAAC4g+APcZG/1WUDu52j1KdnCPwAAALinuOAvOVnie1YAAAAAANgQ/AFuclT8FbDP1yTZo79MK59EAQAAuMtiKTr4s1qllJTynRMAAAAAABUVwR/gpgutPvPvM5lM8ne0+yT4AwAAcJfFIpkL+aulRg3bNe0+AQAAAACwIfgD3GSVLdDzKajXpyS/nHafGRaCPwAAAHcVV/EnEfwBAAAAAGBH8Ae4yb6WTCG5n6Pij1afAAAA7itqjb+QENt1UlL5zQcAAAAAgIqM4A9wU1GtPiUpwFHxZy2nGQEAAFQ92dm0+gQAAAAAoKQI/gA3OYI/FZz8BeYEf+nZVPwBAAC4w5rz/SlafQIAAAAAUDIEf4CbLDm9Pgur+HMEf6zxBwAA4JbsbNt1YRV/QUG2tusEfwAAAAAA2BD8AW6yx3mFBn++tl+vdFp9AgAAuMUe/BVW8Wc226r+CP4AAAAAALAh+APcdGGNv4KTvyAq/gAAAErFYrFdFxb8SVJICMEfAAAAAAB2BH+Am6zFtPoMYI0/AACAUimu1adExR8AAAAAALkR/AFuulDxV/B+Wn0CAACUTnGtPiWCPwAAAAAAciP4A9xkj/PMKjj5C6TVJwAAQKmUpNVncDDBHwAAAAAAdgR/gJuKa/UZSKtPAACAUilpxd/Zs+UyHQAAAAAAKjyCP8BNxbb69KHVJwAAQGmUpOKPVp8AAAAAAFxA8Ae46ULwV3DyF+R7odWnYVD1BwAA4Cp7xZ+5iL9aQkII/gAAAAAAsCP4A9xkb/VZSMGfo+LPYkh0+wQAAHBdSVt9EvwBAAAAAGBD8Ae4yd7A06eQ5M/PfOEXLC2bdp8AAACuKmmrz6QkiQYLAAAAAAAQ/AFuK67Vp8lkUmCudp8AAABwTUlafdaoYQsIz58vnzkBAAAAAFCREfwBbsi9Zp+5sF6futDuk+APAADAdSVt9SnR7hMAAAAAAIngD3CLNVeOV0jBnyQpMKcPaDqtPgEAAFxWklafISG2a4I/AAAAAAAI/gC35C7gM6vw5M8R/FHxBwAA4LKStvqUCP4AAAAAAJAI/gC3WFXCVp++tPoEAABwF60+AQAAAABwDcEf4AYjd8VfSVp9Wmj1CQAA4KqStPok+AMAAAAA4AKCP8ANVqfgrwStPrOp+AMAAHBVSSr+goNtay4T/AEAAAAAQPAHuMWaU/JXVLWfRKtPAACA0ihJxZ/ZbKv6I/gDAAAAAIDgD3CLvXFncb9AtPoEAABwn73iz1zMSRfBHwAAAAAANgR/gBvsrT6LavMp0eoTAACgNErS6lMi+AMAAAAAwI7gD3BDiVt9+tDqEwAAwF0lafUpEfwBAAAAAGBH8Ae44ULFX9HjAn1p9QkAAOCukrb6DA4m+AMAAAAAQCL4A9ziCP5U8lafhkHVHwAAgCtcafV59myZTwcAAAAAgAqP4A9wg1Wutfq0Ssqi6A8AAMAltPoEAAAAAMA1BH+AG0ra6tPPfGEM7T4BAABcU9JWnyEhBH8AAAAAAEgEf4BbLgR/RSd/JpPpQrtPC60+AQAAXFHS4C8sTDp9uuznAwAAAABARUfwB7jBapSs1ad0od1nejbBHwAAgCssFlubz2K+a6WICCkpScrIKJdpAQAAAABQYRH8AW6wV/yVIPdTkK+94o9WnwAAAK7Izi5+fT/JFvxJ0smTZTodAAAAAAAqPII/wA0lXeNPEq0+AQAA3GSv+CsOwR8AAAAAADZeDf42btyo/v37KzY2ViaTSStWrChy/IYNG2QymfJd4uPjncbNnTtXcXFxCgwMVKdOnfTTTz+V4bNAdWSVvdVn8cmfvdVnWjYVfwAAAK5wteLvxIkynQ4AAAAAABWeV4O/1NRUtW3bVnPnznXpfnv27NHx48cdlzp16jj2LVu2TOPHj9fkyZO1bds2tW3bVr1799YJPgWAB7lS8ReQU/GXQcUfAACAS2j1CQAAAACAa3y9+eB9+/ZV3759Xb5fnTp1FGH/6z6PWbNmaeTIkRo+fLgkad68eVq5cqUWLFigJ554ojTTBRwMF4I/+xp/aQR/AAAALilpq8/AQCkoiOAPAAAAAIBKucZfu3btVLduXfXs2VPff/+9Y3tmZqa2bt2qHj16OLaZzWb16NFDmzdvLvR4GRkZSkpKcroARXFU/Kn45K+Gr+3XLDWLVp8AAACuyM6WzCX8iyUiglafAAAAAABUquCvbt26mjdvnj788EN9+OGHql+/vrp166Zt27ZJkk6dOiWLxaLo6Gin+0VHR+dbBzC3GTNmKDw83HGpX79+mT4PVH4X1vgrfmwNv5zgjzX+AAAAXFLSVp+SFBlJxR8AAAAAAF5t9emqSy+9VJdeeqnj9pVXXqn9+/fr5Zdf1ttvv+32cSdOnKjx48c7biclJRH+oUiurPFHxR8AAIB7StrqU5LCwqj4AwAAAACgUgV/BenYsaO+++47SVKtWrXk4+OjhIQEpzEJCQmKiYkp9BgBAQEKCAgo03miarkQ/JWg1ScVfwAAAG6h1ScAAAAAAK6p9MHfjh07VLduXUmSv7+/OnTooLVr12rAgAGSJKvVqrVr12rMmDFenCWqGqvhQqvPnIq/LKuUaTHk71OCO1VyiYmJSk5Oduu+oaGhioqK8vCMAABAZeRKq8+ICGnPnjKdDgAAAAAAFZ5Xg7+UlBTt27fPcfvAgQPasWOHoqKidPHFF2vixIk6evSo3nrrLUnS7Nmz1bBhQ7Vs2VLp6en63//+p3Xr1mn16tWOY4wfP15Dhw7VZZddpo4dO2r27NlKTU3V8OHDy/35oepyVPyVYKy/j0l+Zlvwl5ptlX9JP72qpBITE9W4SROdPXPGrftHREZq/759hH8AAMClVp+RkdKpU2U7HwAAAAAAKjqvBn9btmzRtdde67htX2dv6NChWrRokY4fP67Dhw879mdmZuqRRx7R0aNHFRwcrDZt2ujrr792OsZtt92mkydPatKkSYqPj1e7du20atUqRUdHl98TQ5Vnb9pZklafkhTsa9a5TKtSs6yKDKjawV9ycrLOnjmjactWqWZMrNM+q8ms88E15WPJVFD6uXz3PR1/TJNu66Pk5GSCPwDV2ty5c/Xiiy8qPj5ebdu21auvvqqOHTsWOn758uV65plndPDgQTVt2lQvvPCCrr/+esf+jz76SPPmzdPWrVuVmJio7du3q127dk7H6Natm7755hunbffdd5/mzZvnuH348GHdf//9Wr9+vUJCQjR06FDNmDFDvr6VvokEKihXKv7Cw6XkZCk9XQoMLNt5AQAAAABQUXn1U5pu3brJyGmZWJBFixY53X7sscf02GOPFXvcMWPG0NoTZcqVVp+SFOKXE/xVo3X+asbEqna9i522nUyzyJplldXsq4uiwkocnAJAdbJs2TKNHz9e8+bNU6dOnTR79mz17t1be/bsUZ06dfKN37RpkwYPHqwZM2bohhtu0JIlSzRgwABt27ZNrVq1kiSlpqaqS5cuuvXWWzVy5MhCH3vkyJGaNm2a43ZwcLDjvy0Wi/r166eYmBht2rRJx48f15AhQ+Tn56fnn3/eg68AcIEra/xFRtquT56U6tcvuzlVVFarlJEhBQV5eyYAAAAAAG8q4Z/RAHJztPosYW4VnLPOX2pW9Qn+8sqyGkrK9fyr8UsBAEWaNWuWRo4cqeHDh6tFixaaN2+egoODtWDBggLHz5kzR3369NGjjz6q5s2ba/r06frHP/6h1157zTHm7rvv1qRJk9SjR48iHzs4OFgxMTGOS1hYmGPf6tWr9fvvv+udd95Ru3bt1LdvX02fPl1z585VZmamZ548kIcrrT7Dw23XJ06U3XwqslmzpObNJX4dAQAAAKB6I/gD3HAh+CtZ8hfilxP8VaOKv7wS0y1OtzMshVf7AkB1lZmZqa1btzoFdGazWT169NDmzZsLvM/mzZvzBXq9e/cudHxR3n33XdWqVUutWrXSxIkTdf78eafHad26tVP79N69eyspKUm//fZbgcfLyMhQUlKS0wVwhSutPnNX/FVHX30lHTokffCBt2cCAAAAAPAmgj/ADfZWnyVtVBnsaxt5Prt6hl0ZFkMpOc89yMf2WmRaq+drAQBFOXXqlCwWS761iaOjoxUfH1/gfeLj410aX5g77rhD77zzjtavX6+JEyfq7bff1l133VXs49j3FWTGjBkKDw93XOpXx/6LKBWLpeStPiMibNfVMfizWKQff7S9VnPmeHs2AAAAAABv8uoaf0BlZa/bK2mrzxo5rT5Tqml/y+Sc5x3ia1KQr1lpFgsVfwBQwYwaNcrx361bt1bdunXVvXt37d+/X40bN3brmBMnTtT48eMdt5OSkgj/4BJX1vjz95eCg6tnq8/ffpOSk6XbbpOWLZN++knq2NHbswIAAAAAeAMVf4AbXG31WSOn1ef5atrq0x7yBfuaFZCr4s8wCP8AILdatWrJx8dHCQkJTtsTEhIUExNT4H1iYmJcGl9SnTp1kiTt27evyMex7ytIQECAwsLCnC6AK1xp9SnZ2n1Wx4q/TZskX19p6FApNlZ69VVvzwgAAAAA4C0Ef4Ab7K0+fVys+EuthhV/hmE4gr8AH5NyMlBZDYmiPwBw5u/vrw4dOmjt2rWObVarVWvXrlXnzp0LvE/nzp2dxkvSmjVrCh1fUjt27JAk1a1b1/E4v/76q07kKqdas2aNwsLC1KJFi1I9FlAYV1p9SlJ4ePWs+Nu0SWraVAoKkm66yVb1lyenBwAAAABUEwR/gBvsFX8lLPhzVPylVsOKv0yrZMj2j42f2VYlaQ//aPcJAPmNHz9e//3vf7V48WL98ccfuv/++5Wamqrhw4dLkoYMGaKJEyc6xo8bN06rVq3SzJkztXv3bk2ZMkVbtmzRmDFjHGMSExO1Y8cO/f7775KkPXv2aMeOHY61+fbv36/p06dr69atOnjwoD799FMNGTJE11xzjdq0aSNJ6tWrl1q0aKG7775bv/zyi7766is9/fTTGj16tAICAsrr5UE142rFX0RE9az4+/57yZ6/X3ONlJUlbd/u3TkBAAAAALyD4A9wgz2uMquErT5zKv6yrFJmNQu70i22sDPAxyRTTlIaYL7Q7hMA4Oy2227TSy+9pEmTJqldu3basWOHVq1apejoaEnS4cOHdfz4ccf4K6+8UkuWLNH8+fPVtm1bffDBB1qxYoVatWrlGPPpp5+qffv26tevnyTp9ttvV/v27TVv3jxJtkrDr7/+Wr169VKzZs30yCOP6J///Kc+++wzxzF8fHz0+eefy8fHR507d9Zdd92lIUOGaNq0aeXxsqCacjX4Cw+vfpVuCQnSX39JLVvabteubauSPHzYu/MCAAAAAHiHr7cnAFRG9laf5mJyv8TERCUnJ0uSfBWsbJn056G/FepTssArNDRUUVFRpZqrt+Vu82nn72OSso1qF4ICQEmNGTPGqWIvtw0bNuTbNmjQIA0aNKjQ4w0bNkzDhg0rdH/9+vX1zTffFDuvBg0a6Isvvih2HOAp2dmutfqMjJT++KPs5lMRbd5su7Zn/T4+tvDv0CHvzQkAAAAA4D0Ef4Ab7HlVUcFfYmKiGjdporNnzkiSJnzyk2rWb6gbbhmkQ7/8VKLHiYiM1P59+yp1+Jee82IF5g7+cl64DCr+AABAEdyp+KturT6//16KjraFfXbR0VT8AQAAAEB1RfAHuMFwBH+FJ3/Jyck6e+aMpi1bpZoxsUoNrimLpIf/7x35ZacX+xin449p0m19lJycXGmDP6thKCtnWcPcFX/2/86y2sYU9ToCAIDqKztb8vcv+fjISCk1VTp/XgoOLrt5VSTffSc1b+68rXZt6eBBr0wHAAAAAOBlBH+AGxytPkswtmZMrGrXu1iW89lKzTZUI7Kmwv1d+Op6JWZv8+lrknxzlUf6mGzVklbDFv4FVI+XAwAAuMhica3VZ3i47frkSalBg7KZU0WSnCxt2SI9+KDz9uhoWyAIAAAAAKh+XPgzGoBdThFbsWv85eaTU9VmsRYzsApJL2B9P0kymUzyy3k9smn3CQAACuFqq8/ISNv1iRNlM5+K5ptvbK9Rhw7O26OjpaNHbfsAAAAAANULwR/gBmsJWn3m5ZPz22apRjlXRiHBnyT55rwe2UY1ekEAAIBLLBbXgr+aNW3Xx4+XzXwqmq+/lurWlWJjnbdHR9teu+ryOgAAAAAALiD4A9zgaPXpUsWf7bq6BF2GpLRs23MNLCD483FU/JXnrAAAQGWSne16q08fH+nYsbKbU0WyerX0j39Ieb+LVqeO7frQofKfEwAAAADAuwj+ADdcqPgr+X187a0+q0fup2zfQFllW9+voOCPij8AAFAcV1t9+vjYqv6qQ6XbsWPSH3/Ygr+8oqNt14cPl++cAAAAAADeR/AHuMER/MmFVp85Qy3VZE27TL9gSVKon1mmAlqi+lbDNQ8BAIBrXG31KdmCv+pQ8bd2re26oOAvOFgKCyP4AwAAAIDqyNfbEwAqI6vcaPWZMzjbkAzDKDAMqyrCY+rJ4uMvSQr1L/j7BT5U/AEAgGK4WvEnSVFR1SP4W7NGuuQSKSKi4P3R0bT6BAAA5eONN95QSkqKt6dR4YSEhOi+++7z9jQAVEMEf4Ab7EV7rmR3vrnGWo0LFYBV0T/63SaZTAr0McmvkHSUij8AAFAcd4K/mjWrfuBlGLbgr2vXwsfUqUPFHwAAKB8pKSlKTk729jQAADkI/gA32IM/HxeSP5PJJB+TbY2/bENy8TOsSsMwpA433i5JCvMrvJuwfY0/qySrYchchSsgAQCAeywWyezi4gQ1a0o//FA286koduyQ4uOlyy4rfEydOtKePeU2JQAAAElSUFCQ1x47LS2tws0DALyB4A9wg9VwvdWnZKtysxiGsq2GAqpoyV+ixaya9RtKhlU1/Ar/J8ZsMskkyZCUbZX8q2oSCgAA3OZuxd/Jk1JWluTnVzbz8rbFi20tTdu3L3xMdLStKtAwXOtSAQAA4K6goCD169fPa4+/cuVKpaWlVZh5AIC3uPj9WQDShYo/V3+BqsO6dsezbJ/O+WZnFlvF51sNXg8AAOA+d4M/w5ASEspmTt6WmSm9847Uo0fRr02dOlJKinT2bLlNDQAAAABQARD8AW6wx1Sufnvavq5ddhVe1y7eHvxZ0osdyzp/AACgKO60+qxVy3Z97Jjn51MRfPGFdPq01Lt30eOio23XrPMHAAAAANULwR/gBouj1adryZ+9ws1SRSvc0rOtOpVte5K+2ZnFjq8OFZAAAMB97lb8SdLx456fT0WweLF0ySVSo0ZFj7MHf4cOlf2cAAAAAAAVB8Ef4AZHq08q/pwcTMmSIZNOHPhTZsNS7Piq/noAAIDSsVpdr/gLD5d8fatmxd/Jk9Lnnxdf7SdJkZG2NQ6p+AMAAACA6oXgD3CD4W7wV8Ur3A4k2ar8/ty0rkTjq3oFJAAAKB13Kv7MZikqqmoGf8uX2667dy9+rNlsW+eP4A8AAAAAqheCP8ANjoo/uZb8+eSqcDOqWNhlGIb+SsqSVPLgz4eKPwAAUAR3gj/Jts5fVQz+fvpJatrUVtVYElFRUnx82c4JAAAAAFCxEPwBbrDKvsafa/ezV7gZkqpa1nUq3aLkLKt8ZOjAts0luk9Vr4AEAAClY7G43upTsgVeVXGNv+3bi1/bL7eICII/AAAAAKhuCP4AN7i7xp/ZZHL80lmqWPJ3MNlW7Vfbz6LsjPQS3ce+xp/FqHoVkAAAoHSsVtvFnYq/qCjp6FHPz8mbMjKk33+XmjQp+X2o+AMAAACA6sfX2xMAKqMLwZ+LyZ9sVW6ZVluVm7+LrUJdkZiYqOTkZLfvHxoaqqioqBKPP5GWLUmq5VvyRNMn19O3kPsBAIBcLBbbtbutPjdt8ux8vO33322tT5s2Lfl9IiOlhISymxMAAAAAoOIh+APcYDXca/Up2de1M8p0XbvExEQ1btJEZ8+ccfsYEZGR2r9vX4nDv1Pptk/nwn1K/sRMJpN8TLbQj3afAAAgt9IEfzVrSqdOSVlZkp+fZ+flLTt2SCaTa60+o6Jsr4PF4t7rCAAAAACofAj+ADc4Kv7cuK+vWZKlbIOu5ORknT1zRtOWrVLNmFiX7386/pgm3dZHycnJJQr+DMPQqXRbxV+EC8GfZGv3aTGMKtf6FAAAlE627dTC7Yo/ydbmsn59z83Jm7Zvtz2XoKCS3ycy0tYu9dQpKTq67OYGAAAAAKg4CP4AFxmGIXtG5Varz5yKv/IIumrGxKp2vYvL/HHOZVqVZbW17gwxuxZo+pqlDCsVfwAAwFlpgj/795aOHatawV/jxq7dx/46xMcT/AEAAABAdeFOwRJQreWOp9xp9embc6eqFHSdzKn2qxno4/Jr4pMTnpZl61MAAFD52Ft9mt34i8Ve8XfsmOfm401Wq/TLL1KTJq7dzx78sc4fAAAAAFQfBH+Ai6y58jr3gj/bdba16gR/p9Jsn8zVCnS9iNj+eliqUBAKAABKrzQVf2Fhkq+vdPy4Z+fkLQcOSMnJrgd/kZG26/h4z88JAAAAAFAxEfwBLnIO/lxP/hwVblUo5zqVbgv+age6/smc/fWwVKHXAwAAlF5pKv7MZlvV399/e3ZO3rJjh+3a1eAvIEAKCaHiDwAAAACqE4I/wEXWXM0+3fkFsle4WQ3JWkWq3OytPmsFuRP82a6rUgUkAAAovdJU/ElSbKy0b5/n5uNNO3ZINWteaN3piqgoKv4AAAAAoDoh+ANcZJSy1adZkv1uVaHKzWoYOu2o+HOn1ScVfwAAIL/SBn8XXSTt3u25+XjT9u1S48bu3Tcykoo/AAAAAKhOCP4AF+UOqExutPo0mUyOqr/MKpB2ncmwyGJIfmYp3N/1f1LsFX8WQ6r8rwYAAPCU0rT6lKT69W0Vf1ar5+bkLb/84n7wFxFBxR8AAAAAVCeul+cA1UxiYqKSk5Mdt89bTZKCZZahQ4cOFXq/I0eOFLrP32xSltVQptVQDU9O1gtO5lT71Qr0dSsI9cl1F8PEdxEAAIBNaSv+6teX0tNt6/w1aOC5eZW3M2ekI0fcD/6ioqQ///TsnAAAAAAAFRfBH1CExMRENW7SRGfPnHFsi6hbX4+v3Kb0tDTFxcUVe4ysrOx82wJ8TErNtgV/ZcmQZBiGW4FcSZ1Kswd/7n0qZzKZZDbZ1jwk+AMAAHaeCP4kac+eyh38/fqr7bpRI/fuzxp/AAAAAFC9EPwBRUhOTtbZM2c0bdkq1YyJlSRZTT5KkeQfGKi53+ws9L77f92uWWOGymLJH/z556xrV1SrT0NSeEw9pzUFSyrTKvUbP03JITGyplkUHeRTZuHfqXTb83M3+JNsVX8EfwAAIDd7q093g7/oaMnPz1bt1quX5+ZV3nbutD0Pe5DpqshIKTHRFqT68tcfAAAAAFR5/OkHlEDNmFjVrnexJFtYl5KaLbPZ7NhWkNPxxwrd55/T3zLTWnhFXoZ/iJ74Yof+ysxQnAtzPZySpc/PBavLXfdLklKzDZ1Is6hOGYV/8edtwV+dIPf/OfE1mZQlQ1aT++EhAACoWkpb8efjI110ka3ir6xkZ0vHj7sfypXEzp1SXJz7oV1UlGQY0smTUt26Hp0aAAAAAKACorwGcJG9AK80EZqv6cIvX6Y1//5Mi6FM/xBJ0p50PxklLPszDENr/k5RhmHSiQN/KiAjSZKUkm3oVHoBD1RKqVlWnc15AnWD3Q/+fHJeDCr+AACAnT34M5fi9OCii6Tduwvf/8sv0pdfun7c5GRp5kzbuntxcdLq1W5PsVi//CI1bOj+/SMjbde0+wQAAACA6oFP2QEvMJlMF6r+8rT7NAxDp9ItUk513jmLWQk56+gV52hqtk6mW+QjQ68Pu14BmamKDrJ9TT4py6qMIlqLuuNoapYkqXagjwJ93f/nxCfnuRql+WQPAABUKaVt9SnZgr8//yx4n2FIw4dLt95qC/Jccddd0hNPSM2aSe3bS7ffLh086P48C2O1Srt22QJGd0VF2a4TEjwzJwAAAABAxcan7ICLjJyav9I2zbSv85dhdQ7jzmcbSrMYkmHo4I6fJEm/JqaX6JjbT9nGNfDPVnryOUlSiJ9ZIb45IWJmyQLEkjqSavsqfr0afqU6Ts70ZNDqEwAA5Chtq0/J1oLz77+ltLT8+zZskLZvl1JSpPfeK/kxDxyQPvtMGjdOmjhRmjRJCgqSbr654Mcpjb/+ks6flxo1cv8YERG2ayr+AAAAAKB6IPgDXOWhormAAir+DMPQ6QxbOOefmar1/5slSfo9MUMWa9EPfD7Lqt1nMyRJTQKznfaF+dt+1VOyDFkKaRuaaTGUmGFxqSrQXvFXr0bplgu1V/xZafUJAABy2Cv+StMQoH59W2Xfvn359734oi1Q69xZmjev5Md84w2pRg2pe3fb7bAwaepU6bffpFdfdX+uBdm503ZdmuDP3982Ryr+AAAAAKB64FN2wEWONf5KWfKXk8UpM1egl2ExlGW1VRMGZKZo348bFGSyKs1iaF9SZpHH25mYLoshxQT7qqav83p+gT4m+Zttc08uYFFBwzAUn5atMxlWHUnNVmpQlOpe2rrIx8u2Goo/bwsYLwopXcUfa/wBAIC8PFXxJ0l79jhv//1329p+gwZJ/fvbKv+2bCn+eBkZ0v/+J/Xubavys2vSRLrmGtu+opZmTk52rSpw505bq057u053RUZS8QcAAAAA1YVXP2XfuHGj+vfvr9jYWJlMJq1YsaLI8R999JF69uyp2rVrKywsTJ07d9ZXX33lNGbKlCkymUxOl2bNmpXhswDcY1/jz2LYQjRJSs6yXdfwM8kkQ1aLRXEBtk+9dpwqvN2n1TAcbT7b1wrMt99kMjmq/pKyrDLyfCKVlhM42ll8AzRq/gqdyi78n4j489myGFKwr0kR/qX7p8Sxxh+tPgEAQA5PBH/h4bZL3uBv1iypdm1b1V7HjlJ0tK2SrzgffCCdPi3deGP+fX37Snv3Sps2FXxfq1W69lqpVSvpyJGSzX/nTqlhw5KNLUpUFBV/AAAAAFBdeDX4S01NVdu2bTV37twSjd+4caN69uypL774Qlu3btW1116r/v37a/v27U7jWrZsqePHjzsu3333XVlMH9WUo+KvlMcxm0zyy1X1ZxiGUnLSt1C/C7+ajQOyZZZ0IDlLf+a08szrjzMZOpdpVZCPSc0jAgocE+pnlklSltUW9OV2LqcKMNzfrItDfOWTnaHA0DBtSA7U3nMZOpthcYSTdhfafPrJVMryR8caf2azzL6laxsKAACqBk+0+pRsVX9//nnh9qlT0jvvSAMGSH5+tmDx+uulJUukM2eKPtbcuVKHDtLFF+ff1769VLeu9OabBd/3ww+lrVttj9G1q23tweL88kvp2nzaRURIx4+X/jgAAAAAgIrPq8Ff37599eyzz+rmm28u0fjZs2frscce0+WXX66mTZvq+eefV9OmTfXZZ585jfP19VVMTIzjUqtWrbKYPqope7GcqdTRn+Rvth3jfLah1GxDVkk+JinI58KxQ30MdYy29ZJacyRVGRbnVp1Ww9CmeFvPqMvrBDkqCfMym0yOQPFsxoVjZFoMnc+2PakwP7P8zCYFp53RX1u+V5Zh0od/JWve72f02q5EHUq+0G70aGpOm89Sru9nm9uF/w6J5PcVAAB4puJPkurVk3799cLtBQts53P9+l3YdsMNtm3PP1/4cX74Qdq82RYYFsRstrUAff99W0vP3LKzpaefljp1kv7v/6Tz56UuXaQ1awp/vHPnpL/+8kzwFxVFq08AAAAAqC4q9YJaVqtVycnJisqz6MXevXsVGxurRo0a6c4779Thw4eLPE5GRoaSkpKcLkCxSp/7KdjX9it4LtOqk+m2r7WH+pnzVdBdFROsCH+zkrOsWnMkVQnnsx0B4J6zmTqdYVGAj0kdaudv85lbRIDt8dIshtJz7m+v9gv2NTlCQ5MMLRp7h+L8sxTmZ5aPSUq3GPr4QLLO5FT/5a74Ky2TySR7XhlSq06pjwcAACo/TwV/nTvb1vBbtcrWbvP116Vu3WwtQO2ioqTbb5deeUU6cKDg4/z737ZKvyuvLPyx+vSxhXrvv++8/e23bVWH99wjxcRIL78s1awp9eolDR7sHEzazZ8v+fraKgxLKzKSVp8AAAAAUF1U6uDvpZdeUkpKim699VbHtk6dOmnRokVatWqVXn/9dR04cEBXX321kvN+7TaXGTNmKDw83HGpX79+eUwflZSnWn1KUqifSVE5YZy9k2buNp92fmaT+lwcIknalZihhXvO6uWdiXr7z7PacCxVknRZ7UAF+BT9K+1nNinUzzbzMxlWnc+2KjnrQpvP3LLSz6tzSKYeaBWlh9rUVEywr9IthpbvT9L//jij1GxDfmYpJtgzrTntwV9ozWiPHA8AAFRu9lafpQ3+rrnG1oZz3Djps8+kgwelm27KP27QIFsYOHFi/n1//CF98ol0221Ftx6NjratGThr1oXg8vx5afJkW3vPSy6xbYuJkWbOtD3WmjVSmza2gG/VKtv+tDTppZdswWDt2qV6+pJswd+ZM1JWVumPBQAAAACo2Cpt8LdkyRJNnTpV77//vurUuVAh1LdvXw0aNEht2rRR79699cUXX+js2bN6P+/XbnOZOHGizp0757j8XZIFNwAPMJlMigzwUe1A2ydagT6mQlt1xoX6q9dFNVQ32FfBOYviHU3N1rlMq/zNJl1eO6hEjxnhb3us89mGjp+3yJCt2i+okMeVbIHhPxuFKsTPrMQMi85mWhXia9aNcaHyNXsiApXjOKE1qfgDAACeq/gzmaQxY6R9+6QhQ2zhW/Pm+ccFBdkq8pYtkx57zLZW388/26oEX3zRFsD16FH84w0fLv3++4W1/qZOtVXbjRiRf169eknvvSdNn24LOgcMkL77ztaO9NQp6Y47Svfc7ewNUk6c8MzxAAAAAAAVl2dKdcrZ0qVLde+992r58uXqUcxf3xEREbrkkku0b9++QscEBAQoICDA09NEFeXJij+7MH+zaviaVFyG9o/aQfpHTsCXnGXR3rOZOpSSpeYRAQr0LVmO7+9jUg1fk1Jz1vUL8TOpTqBPvvaieYX6+WhgozCtPZqii0P81KlOcKEhpTto9QkAAHKzB39FVdiVVKNG0o03SitWSKNG2UK3gvTsKW3bJi1aZAveDMNWnXfqlHTvvZK/f/GPdemltrX+nn7aFjLOnCkNGyYV1lTEz8+23l/HjtITT0j9+9tCyGuvta1P6AmRkbbr+HjPHRMAAAAAUDFVuoq/9957T8OHD9d7772nfv36FTs+JSVF+/fvV926dcthdqgWjOKHuMPHbCo2fMst1M9H/6gdpJsbhqlZpGvBdc1AHwX4mBTpby5R6GcXE+yrO5tG6Oq6NTwa+kmSj4mKPwCwmzt3ruLi4hQYGKhOnTrpp59+KnL88uXL1axZMwUGBqp169b64osvnPZ/9NFH6tWrl2rWrCmTyaQdO3Y47U9MTNSDDz6oSy+9VEFBQbr44os1duxYnTt3zmmcyWTKd1m6dKlHnjOQl73VpyeCP8lWcXf//bZwrzA+PtKTT9rW6Fu1yrYWX5cu0uWXSzfc4NpjpaTYAsCGDW3rBxbH31+aNk2KiJCOH5fuvLPkj1cce8Uf6/wBACqrN954QzNnztQbb7zh7akAqOT49wTVgVeDv5SUFO3YscPx4dOBAwe0Y8cOHT58WJKtBeeQIUMc45csWaIhQ4Zo5syZ6tSpk+Lj4xUfH+/0odSECRP0zTff6ODBg9q0aZNuvvlm+fj4aPDgweX63FB1OSr+PJt7lSs/s0kX1fBVlAuhX1mzFywS/AGo7pYtW6bx48dr8uTJ2rZtm9q2bavevXvrRCE9+jZt2qTBgwdrxIgR2r59uwYMGKABAwZo165djjGpqanq0qWLXnjhhQKPcezYMR07dkwvvfSSdu3a5VgveUTe3oSSFi5cqOPHjzsuAwYM8MjzBvLKzraFfp4K/kJCpFtvLVnVnmQb166dNHq09PzzUo0aJX+s2rVtbTqtVmnCBMm3hH1WQkJsFYIvvGALDD0lIsJ2TfAHAKisUlJSlJycrJSUFG9PBUAlx78nqA682upzy5Ytuvbaax23x48fL0kaOnSoFi1apOPHjztCQEmaP3++srOzNXr0aI0ePdqx3T5eko4cOaLBgwfr9OnTql27trp06aIffvhBtWvXLp8nhWqjYsRlVYe94o9WnwCqu1mzZmnkyJEaPny4JGnevHlauXKlFixYoCeeeCLf+Dlz5qhPnz569NFHJUnTp0/XmjVr9Nprr2nevHmSpLvvvluSdPDgwQIfs1WrVvrwww8dtxs3bqznnntOd911l7Kzs+WbK7WIiIhQTEyMR54rUBSLxXOhnzfcdZfUt69Uq5Zr94uKsrX99CQ/Pyk8nOAPAAAAAKoDrwZ/3bp1k2EU3jfRHubZbdiwodhj0m4KZc0oq16f1Zy9cygVfwCqs8zMTG3dulUTJ050bDObzerRo4c2b95c4H02b97s+PKUXe/evbVixYpSzeXcuXMKCwtzCv0kafTo0br33nvVqFEj/etf/9Lw4cMLrR7PyMhQRkaG43ZSUlKp5oTqJTu75JVyFZHJ5HroV5YiIwn+AAAAAKA6qMR/SgPeYc+qqfjzLNb4AwDp1KlTslgsio6OdtoeHR2t3bt3F3if+Pj4AsfHx8eXah7Tp0/XqFGjnLZPmzZN1113nYKDg7V69Wo98MADSklJ0dixYws8zowZMzR16lS354HqLTvbtuYePCMyUirFPwsAAAAAgEqC4A9wF8mfR9nX+AuoEaJsI9W7kwGAaiwpKUn9+vVTixYtNGXKFKd9zzzzjOO/27dvr9TUVL344ouFBn8TJ050qkZMSkpS/fr1y2TeqHoqe6vPiiYiguAPAAAAAKoD/pQGXGRv9Enu51kmyVFOmW7l1QVQPdWqVUs+Pj5KyNOPLyEhodB19WJiYlwaX5Tk5GT16dNHoaGh+vjjj+Xn51fk+E6dOunIkSNO7TxzCwgIUFhYmNMFKCkq/jyLVp8AAAAAUD0Q/AGoEEwmk0yGRZKURvAHoJry9/dXhw4dtHbtWsc2q9WqtWvXqnPnzgXep3Pnzk7jJWnNmjWFji9MUlKSevXqJX9/f3366acKDAws9j47duxQZGSkAgICXHosoCQI/jwrKorgDwAAAACqA1p9Ai66UPFHOOVpZsMqi6R0g9cWQPU1fvx4DR06VJdddpk6duyo2bNnKzU1VcOHD5ckDRkyRPXq1dOMGTMkSePGjVPXrl01c+ZM9evXT0uXLtWWLVs0f/58xzETExN1+PBhHTt2TJK0Z88eSbZqwZiYGEfod/78eb3zzjtKSkpSUlKSJKl27dry8fHRZ599poSEBF1xxRUKDAzUmjVr9Pzzz2vChAnl+fKgGrFYCP48KTJSSkyUsrKkYop5AQAAAACVGMEf4Kqc5M9ENuVxJqtV8qHVJ4Dq7bbbbtPJkyc1adIkxcfHq127dlq1apWio6MlSYcPH5Y518JnV155pZYsWaKnn35aTz75pJo2baoVK1aoVatWjjGffvqpIziUpNtvv12SNHnyZE2ZMkXbtm3Tjz/+KElq0qSJ03wOHDiguLg4+fn5ae7cuXr44YdlGIaaNGmiWbNmaeTIkWX2WqB6o+LPsyIjbdcnTkj16nl3LgAAAACAskPwB7jIKH4I3ESrTwCwGTNmjMaMGVPgvg0bNuTbNmjQIA0aNKjQ4w0bNkzDhg0rdH+3bt1kGEW/w/Xp00d9+vQpcgzgSdnZkpmFCTwmKsp2nZBA8AcAAAAAVRnBH+CiC60+y8eRI0fK5T4V4bHNhlUSrT4BAACtPj0td/AHAAAAAKi6CP6ACio16ZxMZrO6dOni9jGysrIr1WPbK/5o9QkAAGj16VkREbbr+HivTgMAAAAAUMYI/gAX2TuhlXU0lX4+VYbVqqfe+kSxDRq6dN/9v27XrDFDZbG4F/x567FNVlvFH60+AQAArT49y89PCguj4g8AAAAAqjqCP8Bd5ZRNRUXXVe16F7t0n9PxxyrlY5to9QkAAHLQ6tPzIiMJ/gAAAACgquM7tICLjJxV/oimPM+xxp/VJMNeWgkAlcRff/3l7SkAVQqtPj2P4A8AAAAAqj6CPwAVhn2NP6tMyrAQ/AGoXJo0aaJrr71W77zzjtLT0709HaDSs1ho9elpkZHS8ePengUAAAAAoCzxpzTgInscRcWf55kkpSWdlSSlZFu9OhcAcNW2bdvUpk0bjR8/XjExMbrvvvv0008/eXtaQKVFxZ/nUfEHAAAAAFUfwR/gInsHShPJX5lIPn1CkpSaRfAHoHJp166d5syZo2PHjmnBggU6fvy4unTpolatWmnWrFk6efKkt6cIVCrZ2VT8eRrBHwAAAABUffwpDaBCST5lD/5o9QmgcvL19dUtt9yi5cuX64UXXtC+ffs0YcIE1a9fX0OGDNFx+uwBJWKxUPHnaZGRUmKilJXl7ZkAAAAAAMqKW8Ffo0aNdPr06Xzbz549q0aNGpV6UkBFdqHVJyV/ZSElp+KPVp8AKqstW7bogQceUN26dTVr1ixNmDBB+/fv15o1a3Ts2DHddNNN3p4iUClQ8ed5UVG2awqQAQAAAKDq8nXnTgcPHpTFYsm3PSMjQ0ePHi31pABUX7T6BFBZzZo1SwsXLtSePXt0/fXX66233tL1118vc05y0bBhQy1atEhxcXHenShQSbDGn+fZg7/4eCk21rtzAQAAAACUDZeCv08//dTx31999ZXCw8Mdty0Wi9auXcuHWajyHGv8eXcaVZaj1ScVfwAqmddff1333HOPhg0bprp16xY4pk6dOnrzzTfLeWZA5WSxUPHnafbgj47DAFB+srOztWHDBu3fv1933HGHQkNDdezYMYWFhSkkJMTb0wMAAFWQS8HfgAEDJEkmk0lDhw512ufn56e4uDjNnDnTY5MDKjSSvzKRkmjrPUXFH4DKZs2aNbr44osdFX52hmHo77//1sUXXyx/f/9851AACkbFn+dFRUkmE8EfAJSXQ4cOqU+fPjp8+LAyMjLUs2dPhYaG6oUXXlBGRobmzZvn7SkCAIAqyKXv0FqtVlmtVl188cU6ceKE47bValVGRob27NmjG264oazmClQIF9b4Q1mwr/FHxR+AyqZx48Y6depUvu2JiYlq2LChF2YEVG5ZWVT8eZqPjxQZSfAHAOVl3Lhxuuyyy3TmzBkFBQU5tt98881au3atF2cGAACqMrfW+Dtw4ICn5wFUOgR/ZcPR6pOKPwCVjGHvBZ1HSkqKAgMDy3k2QOVnsVDxVxZq1pSOHfP2LACgevj222+1adMm+fv7O22Pi4vT0aNHvTQrAABQ1bkV/EnS2rVrtXbtWkflX24LFiwo9cSAiqqQz3XhIck5FX/nsw1ZDUNmExErgIpt/Pjxkmyt0CdNmqTg4GDHPovFoh9//FHt2rXz0uyAyis7W8pVHAEPiYqi4g8AyovVapXFYsm3/ciRIwoNDfXCjAAAQHXgVvA3depUTZs2TZdddpnq1q0rEx/Moxoxcpp98mNfNlLPnJJJhgyZdD7bUIgfLzSAim379u2SbBV/v/76q9M3uv39/dW2bVtNmDDBW9MDKi0q/spGVBQVfwBQXnr16qXZs2dr/vz5kmxfFEtJSdHkyZN1/fXXe3l2AACgqnIr+Js3b54WLVqku+++29PzAVDNGVarAkyG0g2TUrKsCvFjcR8AFdv69eslScOHD9ecOXMUFhbm5RkBVUN2NsFfWahZU/r1V2/PAgCqh5kzZ6p3795q0aKF0tPTdccdd2jv3r2qVauW3nvvPW9PDwAAVFFuBX+ZmZm68sorPT0XoFKwd/qkDq3sBJkNpVukFNb5A1CJLFy40NtTAKqU7GzJzPd/PC4qSkpIsLWvp4MFAJStiy66SL/88ouWLl2qnTt3KiUlRSNGjNCdd96pIPpZAwCAMuJW8HfvvfdqyZIleuaZZzw9HwBQkNnQGYuUnJV/LQQAqEhuueUWLVq0SGFhYbrllluKHPvRRx+V06yAqoFWn2WjZk0pK0s6fVqqVcvbswGAqs/X11d33XWXt6cBAACqEbeCv/T0dM2fP19ff/212rRpIz8/P6f9s2bN8sjkgIrIyCn54wvSZSfYbHuRk6n4A1DBhYeHO9Y6Dg8P9/JsgKqFVp9lo2ZN2/Xx4wR/AFDW3nrrrSL3DxkypJxmAgAAqhO3gr+dO3eqXbt2kqRdu3Y57TPRLwbVBD/rZScoJ/hLyST4A1Cx5W7vSatPwLNo9Vk2cgd/rVt7dy4AUNWNGzfO6XZWVpbOnz8vf39/BQcHE/wBAIAy4Vbwt379ek/PA6g0jOKHoJSo+ANQGaWlpckwDAUHB0uSDh06pI8//lgtWrRQr169vDw7oPKh1WfZiIqyXR875t15AEB1cObMmXzb9u7dq/vvv1+PPvqoF2YEAACqA75DC7jIHvxR71d2ggj+AFRCN910k6Od09mzZ9WxY0fNnDlTN910k15//XUvzw6ofGj1WTb8/aXwcFvFHwCg/DVt2lT//ve/81UDAgAAeIpbFX/XXnttkW0O161b5/aEgAqPkr8yF2yyBX4EfwAqk23btunll1+WJH3wwQeKiYnR9u3b9eGHH2rSpEm6//77vTxDoHKh1WfZqVmT4A8AvMnX11fHKkHp9ZQpU7w9BQDwuOTkZMc1/86hrHnrZ8yt4M++vp9dVlaWduzYoV27dmno0KGemBdQYTkq/ij5KzP2ir8Mi6EsqyE/My82gIrv/PnzCg0NlSStXr1at9xyi8xms6644godOnTIy7MDKh9afZadyEiCPwAoD59++qnTbcMwdPz4cb322mu66qqrvDSrkqmoH4bbP7AHAHdU1H/bUHVNmTLFKz93bgV/9m+z5zVlyhSlpKSUakIA4GeS/MxSllVKzrQqKpBP/QBUfE2aNNGKFSt0880366uvvtLDDz8sSTpx4oTCwsK8PDug8qHVZ9mJimKNPwAoDwMGDHC6bTKZVLt2bV133XWaOXOmdyZVAhX9g3FvfYgKoHLj3w14izfet9wK/gpz1113qWPHjnrppZc8eVigQmGNv7JnMkmhfj5KzLAoOctC8AegUpg0aZLuuOMOPfzww+revbs6d+4syVb91759ey/PDqh8qPgrOzVrSvv2eXsWAFD1Wa1ls3xFRkaGMjIyHLeTkpLK5HEqsoocnFZHFIIULCUlhZ9VAF7h0eBv8+bNCgwM9OQhgQrFMFjgr7yE+Jlzgj/W+QNQOQwcOFBdunTR8ePH1bZtW8f27t276+abb/bizIDKiYq/slOzphQfLxkG7esBoDKaMWOGpk6d6u1peBUtP1EZGIbBzyoAr3Ar+Lvlllucbtt7lG/ZskXPPPOMRyYGVHR8SFK2Qv3MkqQUgj8AlUhMTIxiYmKctnXs2NFLswEqN4tFMpu9PYuqqWZNKS1NSkqSwsO9PRsAqFrGjx9f4rGzZs1y6zEmTpzo9DhJSUmqX7++W8eqrOxra6NiSElJ4cvyBTCZTAoJCfH2NJCDEBbViVvBX3ievw7NZrMuvfRSTZs2Tb169fLIxICKKPcpDLlf2Qr1t33SR8UfgMoiNTVV//73v7V27VqdOHEiX2unv/76y0szAyonWn2WnZo1bdfHjhH8AYCnbd++vUTjTKX4NnFAQIACAgLcvn9V8Mgjj3h7Cshl5syZhCoFCAkJ4We1AmGNP1QnbgV/Cxcu9PQ8AMCJveIvOZPgD0DlcO+99+qbb77R3Xffrbp165bqwxwAtPosS/bg7/hxqXlz784FAKqa9evXe3sKpTZlypQK/QF5RZ4bgIqrov/bhqrLGz93pVrjb+vWrfrjjz8kSS1btlT79u09MimgoqLir/yE+FHxB6By+fLLL7Vy5UpdddVV3p4KUOkZBq0+y1JUlO36+HHvzgMAUHFV1A/IafEJoDQq6r9tqLq89fPmVvB34sQJ3X777dqwYYMiIiIkSWfPntW1116rpUuXqnbt2p6cI1Bx0K683LDGH4DKJjIyUlH2T9MBlIq9Uy4Vf2UjKEiqUYPgDwDKw5YtW/T+++/r8OHDyszMdNr30UcfeWlWJVORPhynlSQATwkNDVVycrJCQ0NpxYoqy63v0D744INKTk7Wb7/9psTERCUmJmrXrl1KSkrS2LFjPT1HoMJwqvijhVuZsq/xl5JllZUFogFUAtOnT9ekSZN0/vx5b08FqPSys23XBH9lp3Zt6cgRb88CAKq2pUuX6sorr9Qff/yhjz/+WFlZWfrtt9+0bt06hbPIKgAAKCNuVfytWrVKX3/9tZrnWhCiRYsWmjt3rnr16uWxyQGovmr4mmWSLWxNzbYq1I9P/gBUbDNnztT+/fsVHR2tuLg4+fn5Oe3ftm2bl2YGVD724I9Wn2WnTh3p0CFvzwIAqrbnn39eL7/8skaPHq3Q0FDNmTNHDRs21H333ae6det6e3oAAKCKciv4s1qt+T7MkiQ/Pz9ZrbTlQ9Vlrzuj1q/smU0mhfiZlZxlVXImwR+Aim/AgAHengJQZVgstmsq/spOdLR04IC3ZwEAVdv+/fvVr18/SZK/v79SU1NlMpn08MMP67rrrtPUqVO9PEMAAFAVuRX8XXfddRo3bpzee+89xcbGSpKOHj2qhx9+WN27d/foBIGKxN5xkuCvfDiCP9b5A1AJTJ482dtTAKoMKv7KXnS09O233p4FAFRtkZGRjnXp6tWrp127dql169Y6e/Ys7eEBAECZcetP6ddee01JSUmKi4tT48aN1bhxYzVs2FBJSUl69dVXPT1HoOIh+SsXoX4X1vkDgMrg7Nmz+t///qeJEycqMTFRkq3F59GjR708M6ByoeKv7MXESGfPSjmfRwMAPGjXrl2SpGuuuUZr1qyRJA0aNEjjxo3TyJEjNXjwYL44DwAAyoxbFX/169fXtm3b9PXXX2v37t2SpObNm6tHjx4enRxQ0dDqs3yF+tuCv6RMgj8AFd/OnTvVo0cPhYeH6+DBgxo5cqSioqL00Ucf6fDhw3rrrbe8PUWg0rBX/BH8lZ3oaNv1oUNSq1benQsAVDVt2rTR5ZdfrgEDBmjQoEGSpKeeekp+fn7atGmT/vnPf+rpp5/28iwBAEBV5VLF37p169SiRQslJSXJZDKpZ8+eevDBB/Xggw/q8ssvV8uWLfWtC/1iNm7cqP79+ys2NlYmk0krVqwo9j4bNmzQP/7xDwUEBKhJkyZatGhRvjFz585VXFycAgMD1alTJ/30008uPEsAFUWEv+3TvrOZFi/PBACKN378eA0bNkx79+5VYGCgY/v111+vjRs3enFmQOVD8Ff27MHfwYNenQYAVEnffPONWrZsqRkzZqh58+YaOnSovv/+ez3xxBP69NNPNXPmTEVGRnp7mgAAoIpyKfibPXu2Ro4cqbCwsHz7wsPDdd9992nWrFklPl5qaqratm2ruXPnlmj8gQMH1K9fP1177bXasWOHHnroId1777366quvHGOWLVum8ePHa/Lkydq2bZvatm2r3r1768SJEyWeF1AYI6fmj4q/8hERYPsn6mwGwR+Aiu/nn3/Wfffdl297vXr1FB8f74UZAZUXa/yVvZo1JV9fW8UfAMCzrr76ai1YsEDHjx/Xq6++qoMHD6pr16665JJL9MILL3BuCAAAypRLf0r/8ssv6tOnT6H7e/Xqpa1bt5b4eH379tWzzz6rm2++uUTj582bp4YNG2rmzJlq3ry5xowZo4EDB+rll192jJk1a5ZGjhyp4cOHq0WLFpo3b56Cg4O1YMGCEs8LKJRR/BB4zoWKP6sMgxcfQMUWEBCgpKSkfNv//PNP1a5d2wszAiqvrCzbta9bCxOgJMxm2zp/BH8AUHZq1Kih4cOH65tvvtGff/6pQYMGae7cubr44ot14403ent6AACginIp+EtISJCfn1+h+319fXXy5MlST6owmzdvzreOYO/evbV582ZJUmZmprZu3eo0xmw2q0ePHo4xQGk41vij5K9cRATYgr8Mi6F0C8EfgIrtxhtv1LRp05SVk1iYTCYdPnxYjz/+uP75z396eXZA5ULwVz7q1CH4A4Dy0qRJEz355JN6+umnFRoaqpUrV3p7SgAAoIpyKfirV6+edu3aVej+nTt3qm7duqWeVGHi4+MVbV+MIkd0dLSSkpKUlpamU6dOyWKxFDimqDYKGRkZSkpKcroABSF6Kl9+ZpNCfGn3CaBymDlzplJSUlS7dm2lpaWpa9euatKkiUJDQ/Xcc895e3pApULwVz7q1JEOHPD2LACg6tu4caOG/X979x0fVZ3vf/x9pmUSQholIYD0Lk1cERZ1VdZgWcXCoquCrILXFcvitWABF/SC2Ouirgj8VtTlXhdddVEMoqsUFUSsCEgVEkpIb1PO74+TDEQSkkCSMzN5PR/33DFzzpz5zAFmv5n3fL7fa65RWlqabr/9dl1yySX69NNP7S4LAABEqXr9Kn3eeefpvvvu06hRo+T1eqvsKykp0fTp03XBBRc0aIFNYdasWfrLX/5idxmIIDT8NZ2kGIcK/UHllgfVroXd1QBAzRITE7Vs2TJ9+umn+uqrr1RYWKiTTjrpiNkKANSO4K9ppKVJ69bZXQUARKfdu3dr/vz5mj9/vjZv3qzhw4frqaee0u9//3u1aMEvtwAAoPHUq+Pv3nvvVU5Ojnr27Kk5c+bozTff1JtvvqmHHnpIvXr1Uk5Oju65557GqlVpaWnKzs6ucl92drYSEhIUGxur1q1by+l0VntMWlpajeedOnWq8vLyQtvOnTsbpX5Evspl5gyivyZTOd3nQTr+AISxYDCoefPm6YILLtD111+vv/71r/rkk0+0e/fuY1qj9Nlnn1Xnzp3l9Xo1dOhQffbZZ0c9fvHixerdu7e8Xq/69++vd999t8r+N954Q+ecc45atWolwzC0fv36I85RWlqqG2+8Ua1atVJ8fLwuvfTSI8ZUO3bs0Pnnn6+4uDi1bdtWt99+u/x+f71fH1CbyuDP6bS3jmiXmirt3SuVltpdCQBEl3PPPVedOnXS008/rYsvvljff/+9PvnkE02YMIHQDwAANLp6BX+pqalauXKlTjzxRE2dOlUXX3yxLr74Yt1999068cQT9cknnxwxzWZDGjZsmDIzM6vct2zZMg0bNkyS5PF4NGTIkCrHBINBZWZmho6pTkxMjBISEqpswFGR+zWZJI/1iV9uOcEfgPBkmqYuvPBCXXfddfr555/Vv39/9evXT9u3b9c111yjiy++uF7ne/311zVlyhRNnz5d69at08CBA5WRkaG9e/dWe/zKlSt1xRVX6Nprr9WXX36p0aNHa/To0VWmZy8qKtKIESP00EMP1fi8f/7zn/Wvf/1Lixcv1kcffaTdu3frkksuCe0PBAI6//zzVV5erpUrV2rBggWaP3++pk2bVq/XB9QFHX9No/K7kTt22FsHAEQbt9ut//3f/9WuXbtCX5YHAABoKvX+VbpTp0569913dfDgQW3evFmmaapHjx5KTk6u95MXFhZq8+bNoZ+3bt2q9evXKyUlRSeccIKmTp2qn3/+WQsXLpQk/dd//ZeeeeYZ3XHHHfrjH/+o5cuX6x//+EeVBZGnTJmi8ePH6+STT9Ypp5yiJ554QkVFRZowYUK96wN+qbJng9yv6STFVK7xF7S5EgCo3vz58/Xxxx8rMzNTZ555ZpV9y5cv1+jRo7Vw4UKNGzeuTud77LHHNHHixNDYZe7cuXrnnXc0b9483XXXXUcc/+STT2rUqFG6/fbbJUkzZ87UsmXL9Mwzz2ju3LmSpKuvvlqStG3btmqfMy8vTy+99JIWLVqks846S5L08ssvq0+fPlq9erVOPfVUvf/++/ruu+/0wQcfKDU1VYMGDdLMmTN155136v7775fH46nT6wPqguCvaVR+Z3PbNqlnT1tLAYCo8tZbb9ldAgAAaMbq1fF3uOTkZP3qV7/SKaecckyhnyR98cUXGjx4sAYPHizJCu0GDx4c+ub4nj17tOOwr5926dJF77zzjpYtW6aBAwfq0Ucf1d/+9jdlZGSEjhk7dqweeeQRTZs2TYMGDdL69eu1dOnSRu1EBNB4kium+sxlqk8AYerVV1/V3XfffUToJ0lnnXWW7rrrLr3yyit1Old5ebnWrl1bZV1Ah8OhkSNHatWqVdU+ZtWqVUesI5iRkVHj8dVZu3atfD5flfP07t1bJ5xwQug8q1atUv/+/auMqTIyMpSfn69vv/22zs8F1AXBX9No00ZyOKTt2+2uBAAAAADQUGz9Vfo3v/nNUde9mT9/frWP+fLLL4963smTJ2vy5MnHWx5wBDr+ml7lVJ/5vqD8QVMuB1cfQHjZsGGD5syZU+P+c889V0899VSdzrV//34FAoEjvrCUmpqqH374odrHZGVlVXt8VlZWnZ6z8hwej0dJSUk1nqem56ncV52ysjKVlZWFfs7Pz69zTWjeWOOvabhcVvhH8AcAAAAA0eOYO/6A5ugoOTUaSZzLkLvinSq/nOk+AYSfnJyco84skJqaqoMHDzZhReFj1qxZSkxMDG0dO3a0uyRECDr+mk5qKsEfAAAAAEQTgj/gGBg0nTUZwzBCXX8Hme4TQBgKBAJyHSWdcDqd8vv9dTpX69at5XQ6lZ2dXeX+7OxspaWlVfuYtLS0eh1f0znKy8uVm5tb43lqep7KfdWZOnWq8vLyQtvOnTvrXBOaN4K/ptO2rbR1q91VAAAAAAAaCr9KA/VgVkz2Se7XtJJinNpXGlBuOcEfgPBjmqauueYaxcTEVLv/8Kkua+PxeDRkyBBlZmZq9OjRkqRgMKjMzMwapzEfNmyYMjMzdeutt4buW7ZsmYYNG1bn5x0yZIjcbrcyMzN16aWXSpI2btyoHTt2hM4zbNgwPfjgg9q7d6/atm0bep6EhAT17du32vPGxMTUeF2AoyH4azrt2kkffGB3FQAAAACAhsKv0gDCXpLHak7OpeMPQBgaP358rceMGzeuzuebMmWKxo8fr5NPPlmnnHKKnnjiCRUVFWnChAmhc7Vv316zZs2SJN1yyy0644wz9Oijj+r888/Xa6+9pi+++EIvvPBC6Jw5OTnasWOHdu/eLckK9SSrUy8tLU2JiYm69tprNWXKFKWkpCghIUE33XSThg0bplNPPVWSdM4556hv3766+uqrNWfOHGVlZenee+/VjTfeSLiHBscaf02nfXtpzx6pqEhq0cLuagAAAAAAx4vgD6iHyjX+6PhrWskx1qd+uazxByAMvfzyyw16vrFjx2rfvn2aNm2asrKyNGjQIC1dujS0juCOHTvkcByarX348OFatGiR7r33Xt19993q0aOHlixZohNPPDF0zFtvvRUKDiXp8ssvlyRNnz5d999/vyTp8ccfl8Ph0KWXXqqysjJlZGToueeeCz3G6XTq7bff1g033KBhw4apRYsWGj9+vGbMmNGgrx+QrODPMAj+mkKHDtbt5s3SwIH21gIAAAAAOH4Ef8CxIPlrUkkxrPEHoHmZPHlyjVN7rlix4oj7xowZozFjxtR4vmuuuUbXXHPNUZ/T6/Xq2Wef1bPPPlvjMZ06ddK777571PMADcHnY5rPplIZ/G3aRPAHAAAAANHAUfshACpVNPyR+zWxlMOCP7Oy7RIAAEQtgr+mk5AgtWxpBX8AAAAAgMhH8Acg7CV4HHIYUsCU8n1M9wkAQLQj+Gs6hmF1/RH8AQAAAEB0IPgD6uHQGn/0/DUlh2GE1vnLKWW6TwAAoh3BX9NKT5d+/NHuKgAAAAAADYHgD6iH0FSf5H5NrnK6zxzW+QMAIOoR/DUtOv4AAAAAIHoQ/AGICAR/AAA0HwR/Tat9e2nvXik/3+5KAAAAAADHi+APqIdQx5+tVTRPKV6m+gQAoLnw+SSn0+4qmo8OHazbzZvtrQMAAAAAcPwI/gBEBDr+AABoPuj4a1qVwR/TfQIAAABA5CP4A+rBrGj5o+Ov6VUGf3nlQfmDZi1HAwCASEbw17RatpQSEwn+AAAAACAaEPwBx4Lkr8nFuQzFOK0Lf5CuPwAAohpTfTa9Dh0I/gAAAAAgGvA9WqAezIpV/sj9mp5hGEqJcWpPsV85ZQG1ieXtCwCAaEXHX9NLT5d+/NHuKgAAqF58fHyVWwA4VryfoDng12mgHphg0l6h4K+Ujj8AAKIZwV/T69BBeustu6sAAKB6119/vd0lAIgSvJ+gOWCqT6A+WOPPVilea86vHKb6BAAgqjHVZ9Pr0EE6cEDKzbW7EgAAAADA8SD4A+qhsuPPIPmzRUqM9Qkga/wBABDdCP6aXvv21u3mzfbWAQAAAAA4PgR/ACJGckXwd4DgDwCAqMZUn00vPd263bLF3joAAAAAAMeH4A+oh1DHH5N92qKy46/Eb6rEH7S5GgAA0FgI/ppey5ZSYiLBHwAAAABEOoI/ABHD4zQU77betpjuEwCA6MVUn/ZIT2eqTwAAAACIdAR/QD2YFS1/9PvZJ8ljvW3lltPxBwBAtCovp+PPDu3aEfwBAAAAQKTj12mgHiqn+iT5a1y7du2qcZ/b55Hk1rbsA2qR7ztif8uWLZWSktKI1QEAgMbm80ktWthdRfOTni4tX253FQAAAACA40HwBxwDcr/GUZSfJ8Ph0IgRI2o85qyJt+m3N9yll15drDdm3HrE/qTkZG3ZvJnwDwCACMZUn/ZIT5d275ZKSqTYWLurAQAAAAAcC4I/oB4qO/4I/hpHaXGRzGBQ9yx8U+mdulR7jM/lVYmkUy+4TGeffVaVfQeydmva2FEqKCgg+AMAIIL5fEz1aYf27a3brVulvn3trQUAAAAAcGz4dRqoD7P2Q3D8UlLbqU37E6rdV+oP6ufigAx3jNqkVH8MAACIbAR/9khPt243byb4AwAAAIBI5bC7ACCSmBXJn0HLn21cDuvi+03JNEliAQCIRgR/9mjVSvJ6pS1b7K4EAAAAAHCsCP4ARBSncWiqVV/Q1lIAAEAjYY0/exiG1fVH8AcAAAAAkYvgD6gH1vizn2EYcle8c/mCdPwBABCN6PizT7t21lSfAAAAAIDIRPAHIOK4Q9N9EvwBABCNCP7s064dHX8AAAAAEMkI/oB6qMyZWOPPXpXr/DHVJwAA0Yngzz7t20vbtkl+v92VAAAAAACOBcEfUA+Hpvok+bMTU30CABDd/H7W+LNLerp1/XfutLsSAAAAAMCxIPgDEHFCU30S/AEAEJXo+LNP+/bWLdN9AgAAAEBkIvgD6uFQxx/s5DIOTfVpss4fAABRh+DPPqmpVrclwR8AAAAARCaCP6A+yJjCQuVUn6akAH8mAABElWDQ2pjq0x4ul9S2rbXOHwAAAAAg8hD8AfUQ6vij5c9WhmHIVfFnwHSfAABEF5/PuqXjzz5t27LGHwAAAABEKoI/ABHJ5Tg03ScAAIgeBH/2a91a2r7d7ioAAAAAAMeC4A+oB9b4Cx+V0336WOMPAICoQvBnPzr+AAAAACByEfwBdWQeFjAR/NmvsuOPqT4BAIgulcEfa/zZp21bafduKRCwuxIAAAAAQH0R/AHHguTPdi6jMvizuRAAANCg6PizX9u21p9DdrbdlQAAAAAA6ovgD6ijw/vKyP3sVznVp5+pPgEAiCoEf/Zr29a6ZbpPAAAAAIg8BH8AItKhqT6rTsMKAAAiG8Gf/Qj+AAAAACByEfwBdUTHX3hxVfwhmJJY5g8AgOjBGn/2a9lS8noJ/gAAAAAgEhH8AXVFuBRWDMOQsyL88/NnAwBA1KDjz36GIaWmSjt22F0JAAAAAKC+CP6AOqrS8WfQ8xcOXEbldJ8kfwAARAuCv/DQpg0dfwAAAAAQiQj+gHoi8gsfrop3MD9r/AEAEDUI/sJDmzZ0/AEAAABAJCL4A+qIaCn8uBxWDOsL2lwIAABoMKzxFx6Y6hMAAAAAIlNYBH/PPvusOnfuLK/Xq6FDh+qzzz6r8djf/OY3MgzjiO38888PHXPNNdccsX/UqFFN8VIQxSqbyuj4Cx+uyjX+mOoTAICoQcdfeGjTRtq7Vyovt7sSAAAAAEB92P7r9Ouvv64pU6Zo7ty5Gjp0qJ544gllZGRo48aNatu27RHHv/HGGyo/7LfPAwcOaODAgRozZkyV40aNGqWXX3459HNMTEzjvQg0LyR/YaOy489P7gcAQNQg+AsPbdtaX3z7+WepSxe7qwEAAAAA1JXtHX+PPfaYJk6cqAkTJqhv376aO3eu4uLiNG/evGqPT0lJUVpaWmhbtmyZ4uLijgj+YmJiqhyXnJzcFC8HUawyWyL3Cx+hNf7o+AMAIGoQ/IWHyu9gMt0nAAAAAEQWW3+dLi8v19q1azV16tTQfQ6HQyNHjtSqVavqdI6XXnpJl19+uVq0aFHl/hUrVqht27ZKTk7WWWedpQceeECtWrVq0PoB2MtlWDFswJRMk/APAIBowBp/4aEy+Nu50946AABA5CgpKdE777xj6/OHUx0AYBdbO/7279+vQCCg1NTUKvenpqYqKyur1sd/9tln+uabb3TddddVuX/UqFFauHChMjMz9dBDD+mjjz7Sueeeq0AgUO15ysrKlJ+fX2UDfsms6Pmj4y98OI1Dfx5M9wkgmtRn/WNJWrx4sXr37i2v16v+/fvr3XffrbLfNE1NmzZN7dq1U2xsrEaOHKlNmzaF9q9YsaLaNZQNw9Dnn38uSdq2bVu1+1evXt3wFwDNGh1/4cHrlRITCf4AAED9lJSU2LaFYx0AYIeI/nX6pZdeUv/+/XXKKadUuf/yyy8P/Xf//v01YMAAdevWTStWrNDZZ599xHlmzZqlv/zlL41eLyJcRbBkkPyFDcMw5HJIviDTfQKIHvVd/3jlypW64oorNGvWLF1wwQVatGiRRo8erXXr1unEE0+UJM2ZM0dPPfWUFixYoC5duui+++5TRkaGvvvuO3m9Xg0fPlx79uypct777rtPmZmZOvnkk6vc/8EHH6hfv36hn5lRAQ2N4C98tG3LVJ8AAKB28fHxdpcQlrguAOxi66/TrVu3ltPpVHZ2dpX7s7OzlZaWdtTHFhUV6bXXXtOMGTNqfZ6uXbuqdevW2rx5c7XB39SpUzVlypTQz/n5+erYsWMdXwWaC2Kl8OQyDPlkyh+0uxIAaBiHr38sSXPnztU777yjefPm6a677jri+CeffFKjRo3S7bffLkmaOXOmli1bpmeeeUZz586VaZp64okndO+99+qiiy6SJC1cuFCpqalasmSJLr/8cnk8nipjL5/PpzfffFM33XSTjF9846VVq1a1jtOA40HwFz7atKHjDwAA1O7666+3uwQAwGFsnerT4/FoyJAhyszMDN0XDAaVmZmpYcOGHfWxixcvVllZma666qpan2fXrl06cOCA2rVrV+3+mJgYJSQkVNmAX6oM/mj4Cy+uincxP2v8AYgClesfjxw5MnRfbesfr1q1qsrxkpSRkRE6fuvWrcrKyqpyTGJiooYOHVrjOd966y0dOHAgFD4e7sILL1Tbtm01YsQIvfXWW/V+jUBtKoM/h62/qUCSUlOlrVvtrgIAAAAAUB+2/zo9ZcoUvfjii1qwYIG+//573XDDDSoqKgp90DRu3DhNnTr1iMe99NJLGj169BHTSxUWFur222/X6tWrtW3bNmVmZuqiiy5S9+7dlZGR0SSvCUDTcVV0otDxByAaHMv6x1lZWUc9vvK2Pud86aWXlJGRoQ4dOoTui4+P16OPPqrFixfrnXfe0YgRIzR69Oijhn+so4xj4fNZ3X5Mr26/9HQr+AsyzgIAAACAiGH7BDpjx47Vvn37NG3aNGVlZWnQoEFaunRp6MOpHTt2yPGLr/tu3LhRn3zyid5///0jzud0OrVhwwYtWLBAubm5Sk9P1znnnKOZM2cqJiamSV4TolNlQ5lBz19YcTkqgj/TtP8NDQCiwK5du/Tee+/pH//4R5X7W7duXWVq9F/96lfavXu3Hn74YV144YXVnot1lHEsKoM/2K99e6mkRNq9WzrsewAAAAAAgDAWFr9ST548WZMnT65234oVK464r1evXjJrmNYvNjZW7733XkOWB1RF7hdWKqf69AUJ/gBEvmNZ/zgtLe2ox1feZmdnV5n2PDs7W4MGDTrifC+//LJatWpVY5h3uKFDh2rZsmU17mcdZRwLgr/w0b69dbt5M8EfAAAAAEQK26f6BCIFa/yFJ09Fx58veOjPCAAi1bGsfzxs2LAqx0vSsmXLQsd36dJFaWlpVY7Jz8/XmjVrjjinaZp6+eWXNW7cOLnd7lrrXb9+fY1rKEuso4xj4/NJdfjrhybQrp211uLmzXZXAgAAAACoK75LCyCiOQ0rjDUlBR28pQGIfFOmTNH48eN18skn65RTTtETTzxxxPrH7du316xZsyRJt9xyi8444ww9+uijOv/88/Xaa6/piy++0AsvvCBJMgxDt956qx544AH16NFDXbp00X333af09HSNHj26ynMvX75cW7du1XXXXXdEXQsWLJDH49HgwYMlSW+88YbmzZunv/3tb414NdAc0fEXPtxuKS2N4A8AAAAAIgm/UgN1RMdfeDIMQx6HobKgSfAHICrUd/3j4cOHa9GiRbr33nt19913q0ePHlqyZIlOPPHE0DF33HGHioqKNGnSJOXm5mrEiBFaunSpvF5vled+6aWXNHz4cPXu3bva2mbOnKnt27fL5XKpd+/eev3113XZZZc1wlVAc0bwF17S06VNm+yuAgAAAABQV/xKDdRR5bKSBslf2PE4pbIgHX8Aokd91z8eM2aMxowZU+P5DMPQjBkzNGPGjKM+76JFi2rcN378eI0fP/6ojwcags8nOZ12V4FKBH8AAAAAEFlY4w9AxHNXrPMXIPgDACDi0fEXXjp0kLZsOfQlOAAAAABAeCP4A+rIrJjsk4a/8OOpCP7o+AMAIPIR/IWX9u2l4mJpzx67KwEAAAAA1AXBH4CI53EeCv4MB29rAABEMoK/8NK+vXW7ebO9dQAAAAAA6oZPyIE6Cq3xZ28ZqIbLqPhzMQyltO9kdzkAAOA4sMZfeGnXzlrjmuAPAAAAACIDwR9QR6FlTUj+wo5hGHJXvJu16dLD3mIAAMBxoeMvvHg8UloawR8AAAAARAqCP6COKoM/B8lfWKpc569tl142VwIAAI4HHX/hJz1d2rTJ7ioAAAAAAHVB8AfUUWiqT3K/sFS5zl/bLj1trgQAABwPOv7CD8EfAAAAAEQOgj+gjio7/sj9wpO7suOvK8EfAACRjI6/8NO+vbRly6EvwgEAAAAAwhfBH1BHoY4/e8tADQ5N9dmTD6UAAIhgdPyFn/btpcJCafduuysBAAAAANSG4A+oI7Oi54+pPsOT2yHJNBXTIl6FQf6QAACIVOXldPyFm759rduPP7a3DgAAAABA7Qj+gDqi4y+8GYYhZ8AnScry8WkhAACRio6/8JOSInXtKn3wgd2VAAAAAABqQ/AH1FFojT+Sv7DlCpRKkvYQ/AEAELEI/sLT4MHSsmWs8wcAAAAA4Y7gD6ijUPBHz1/YcvnLJEnZPqf8QT6VAgAgEvl8TPUZjoYMkXbulLZssbsSAAAAAMDREPwBdVSZIznI/cKWI+hX/r4s+WVoV6HP7nIAAMAxoOMvPA0YYAWymZl2VwIAAAAAOBqCP6CODnX8IVwZkn5cuVyStCW/3N5iAADAMSH4C08tWkh9+rDOHwAAAACEO4I/oI7MigVNWOMvvG38xPo06qd8Ov4AAIhEBH/ha/BgaflyKRi0uxIAAAAAQE0I/oA6ouMvMmxe85EMmTpQFlBuWcDucgAAQD2xxl/4GjJEysmRvvrK7koAAAAAADUh+APqqKLhj+AvzJUW5qu1y/oa+tYCpvsEACDS0PEXvvr2lbxe1vkDAAAAgHBG8AfUUajjj7k+w16a2+r021not7kSAABQXwR/4cvtlvr1k/7zH7srAQAAAADUhOAPqCM6/iJHa5cV/O0qZJ0/AAAiDcFfeOvfX/r4Y9b5AwAAAIBwRfAH1NGhjj9by0AdtHYF5ZCU7wsqr5x1/gAAiCR+P2v8hbMBA6TcXOnbb+2uBAAAAABQHYI/oA5MHRb82VkI6sRlSKlxVqsAXX8AAEQWOv7CW58+1p/Pxx/bXQkAAAAAoDoEf0A9OUj+IkKHFhXBXxHr/AEAEEkI/sKb1yv17s06fwAAAAAQrgj+gDoxqvkvhLMO8W5JdPwBABBJTFMKBJjqM9z17y999NGhNbABAAAAAOGD4A+oA5OF/SJOhxZW8LevNKBSf9DmagAAQF34Kr6vQ8dfeBswQMrKkrZssbsSAAAAAMAvEfwBdWKE/r9BCBgRWrgdSomx2gWY7hMAgMhA8BcZTjxRMgym+wQAAACAcETwB9RBZccfmV9k6RBfsc4f030CABARCP4iQ3y81L27Nd0nAAAAACC8EPwB9UDuF1kqp/vcVUTwBwBAJKgM/ljjL/z16yetWmV3FQAAAACAXyL4A+rAPGyqT0SO9BZWu0B2iV9B07S5GgAAUBs6/iJHz57Spk1SQYHdlQAAAAAADsev1EBdMNVnRNm1a5ckyTQll+LkCxr6+qedSnIdPfxr2bKlUlJSmqJEAABQDYK/yNGzpzXW+vJL6fTT7a4GAAAAAFCJX6mBOqjs+HPQ8xfWivLzZDgcGjFiROi+iS8sUdeTf61rp9yltW+9etTHJyUna8vmzYR/AADYhOAvcnTuLMXESGvXEvwBAAAAQDjhV2qgLuj4iwilxUUyg0Hds/BNpXfqYt0X01Llkq64e5b+eNvUGh97IGu3po0dpYKCAoI/AABswhp/kcPplLp1s4I/AAAAAED4IPgD6oHcLzKkpLZTm/YnSJIKfUFllwTk8MarTeskewsDAABHRcdfZOnRQ/riC7urAAAAAAAczmF3AUAkqJzqk46/yBPjtP7QyoKmTPPoa/wBAAB7EfxFlp49pR9/lAoK7K4EAAAAAFCJ4A+oi8qpPm0uA/XnMg690ZUHbS0FAADUguAvsvTsKZmmtH693ZUAAAAAACoR/AF1QMdf5DIMI9T1Vxog+QMAIJyxxl9k6dxZ8nhY5w8AAAAAwgnBH1AXdPxFtNB0nwGm+gQAIJzR8RdZXC6pWzeCPwAAAAAIJwR/QB1UxkUG0V9EIvgDACAyEPxFnh49pC++sLsKAAAAAEAlgj+gLgym+oxk3orgrzwoBU3CPwAAwhXBX+Tp2VPauFEqKLC7EgAAAACARPAH1EnlGn/8g4lMTsPaJKmUrj8AAMIWa/xFnn79JNOUVq+2uxIAAAAAgESOAdQRHX+RzDAMxbqsP7wSP8EfAADhio6/yNOpk5SUJH38sd2VAAAAAAAkgj+gbiqn+rS5DBy7WKf1dldCxx8AAGGL4C/yGIbUv7/00Ud2VwIAAAAAkAj+gDqpjIro+ItclR1/ZQGTdf4AAAhTBH+RacAA6bPPpNJSuysBAAAAABD8AXUR6vgj+YtUboehiuyP6T4BAAhTlcGfg99SIsrAgVJZmfT553ZXAgAAAAAIi1+pn332WXXu3Fler1dDhw7VZ599VuOx8+fPl2EYVTav11vlGNM0NW3aNLVr106xsbEaOXKkNm3a1NgvA1HMZI2/qBBa54/pPgEACEs+n9Xtx5grsnTtKsXHs84fAAAAAIQD24O/119/XVOmTNH06dO1bt06DRw4UBkZGdq7d2+Nj0lISNCePXtC2/bt26vsnzNnjp566inNnTtXa9asUYsWLZSRkaFS5p7BsWKNv6gQ67Le8krp+AMAICxVBn+ILE6ndOKJrPMHAAAAAOHA9uDvscce08SJEzVhwgT17dtXc+fOVVxcnObNm1fjYwzDUFpaWmhLTU0N7TNNU0888YTuvfdeXXTRRRowYIAWLlyo3bt3a8mSJU3wihCNQh1/NteB4xPrrFjnL2gqwDp/AACEndJSyeOxuwociwEDpJUrJb/f7koAAAAAoHmzNfgrLy/X2rVrNXLkyNB9DodDI0eO1KpVq2p8XGFhoTp16qSOHTvqoosu0rfffhvat3XrVmVlZVU5Z2JiooYOHVrjOcvKypSfn19lA6rjIPmLaC6HIXfFux7r/AEIZ/WZBl2SFi9erN69e8vr9ap///569913q+yvyzTonTt3PmI69dmzZ1c5ZsOGDTrttNPk9XrVsWNHzZkzp2FeMFChsFCKi7O7ChyLgQOloiLpyy/trgQAAAAAmjdbg7/9+/crEAhU6diTpNTUVGVlZVX7mF69emnevHl688039fe//13BYFDDhw/Xrl27JCn0uPqcc9asWUpMTAxtHTt2PN6XhihjMtVn1IirmO6zyBe0uRIAqF59p0FfuXKlrrjiCl177bX68ssvNXr0aI0ePVrffPNN6Ji6ToM+Y8aMKtOp33TTTaF9+fn5Ouecc9SpUyetXbtWDz/8sO6//3698MILjXMh0CwVFBD8RaqePa0/u6VL7a4EAAAAAJo326f6rK9hw4Zp3LhxGjRokM444wy98cYbatOmjZ5//vljPufUqVOVl5cX2nbu3NmAFSM6VAR/BtFfpIt3W3+GRX5TQab7BBCG6jsN+pNPPqlRo0bp9ttvV58+fTRz5kyddNJJeuaZZyTVbxr0li1bVplOvUWLFqF9r7zyisrLyzVv3jz169dPl19+uW6++WY99thjjXYt0PwUFkper91V4Fi4XNKvfy298orEEAsAAAAA7GNr8Ne6dWs5nU5lZ2dXuT87O1tpaWl1Oofb7dbgwYO1efNmSQo9rj7njImJUUJCQpUNOBwdf9EjpmK6T1NSoY9PpQCEl2OZBn3VqlVVjpekjIyM0PH1mQZ99uzZatWqlQYPHqyHH35Y/sMW61q1apVOP/10eQ5bgC0jI0MbN27UwYMHq62N6dRRXwUFUmys3VXgWJ19trRxo/TVV3ZXAgAAAADNl63Bn8fj0ZAhQ5SZmRm6LxgMKjMzU8OGDavTOQKBgL7++mu1a9dOktSlSxelpaVVOWd+fr7WrFlT53MCR6rs+LO5DBw3wzDUsmKhvwKm+wQQZo5lGvSsrKyjHl/XadBvvvlmvfbaa/rwww91/fXX63/+5390xx131Po8hz/HLzGdOuqL4C+yDRkiJSVJixbZXQkAAAAANF8uuwuYMmWKxo8fr5NPPlmnnHKKnnjiCRUVFWnChAmSpHHjxql9+/aaNWuWJGvtmVNPPVXdu3dXbm6uHn74YW3fvl3XXXedJOtD/VtvvVUPPPCAevTooS5duui+++5Tenq6Ro8ebdfLRJQg94sO8W6HcsqCKg2Y8gVNuR38yQLAlClTQv89YMAAeTweXX/99Zo1a5ZiYmKO6ZxTp06tct78/HzCPxwVwV9kc7mkM86wgr/ZsyVHxC0sAQAAAACRz/bgb+zYsdq3b5+mTZumrKwsDRo0SEuXLg19g3zHjh1yHPYb48GDBzVx4kRlZWUpOTlZQ4YM0cqVK9W3b9/QMXfccYeKioo0adIk5ebmasSIEVq6dKm8LBiCY+B0uUOtfnT8RQe3w5DXaag0YKrQF1RyjNPukgBA0rFNg56WlnbU4w+fBr1yhoTKnwcNGlRjLUOHDpXf79e2bdvUq1evGp/n8Of4pZiYmGMODdE8FRRIrVrZXQWOx9lnS2++KX3yiXT66XZXAwAAAADNT1h8B3Py5Mnavn27ysrKtGbNGg0dOjS0b8WKFZo/f37o58cffzx0bFZWlt555x0NHjy4yvkMw9CMGTOUlZWl0tJSffDBB+rZs2dTvRxEGddhgXFY/INBgzh8uk/TZK0/AOHhWKZBHzZsWJXjJWnZsmWh4491GvT169fL4XCobdu2oef5+OOP5fP5qjxPr169lJycXP8XC1SjsJCOv0jXr5+Ulia98ordlQAAAABA80SOAdTC7aFTNBrFuw0ZknxBqTRA8AcgfEyZMkUvvviiFixYoO+//1433HDDEdOgT506NXT8LbfcoqVLl+rRRx/VDz/8oPvvv19ffPGFJk+eLKnqNOhvvfWWvv76a40bN67KNOirVq3SE088oa+++ko//fSTXnnlFf35z3/WVVddFQr1/vCHP8jj8ejaa6/Vt99+q9dff11PPvlklak8geNVUCDFxdldBY6Hw2F1/b3+ulRSYnc1AAAAAND82D7VJxDuXBVTlBmyPjxFdHAYhuLdhgp8pvJ9Qb4FASBs1Hca9OHDh2vRokW69957dffdd6tHjx5asmSJTjzxxNAxtU2DHhMTo9dee03333+/ysrK1KVLF/35z3+uEuolJibq/fff14033qghQ4aodevWmjZtmiZNmtREVwbNAR1/0WHUKKvjb8kS6Yor7K4GAAAAAJoXgj+gFi7PoeAP0SXB41CBL6Ain6l4/oQBhJHJkyeHOvZ+acWKFUfcN2bMGI0ZM6bG81VOgz5jxoxq95900klavXp1rXUNGDBA//nPf2o9DjgWgYBUXEzwFw06dJAGDJDmzSP4AwAAAICmRpMLUAtXxVSfNPtFnxiHIY9DMiX53HzKCACAnYqKrFum+owOo0ZJmZnSjh12VwIAAAAAzQvBH1ALd8U0aOR+0ccwDLV0W2+D5W4+ZQQAwE6FhdYtHX/R4Te/kbxeacECuysBAAAAgOaF4A+oRWiqT5K/qNTS45AhKeh0q88Zo+wuBwCAZqugwLql4y86xMZKZ5xhTfcZCNhdDQAAAAA0HwR/QC3cMXT8RTOnYSjRY70Vnj9lhgKmzQUBANBMVQZ/dPxFj4sukrZtk/7+d7srAQAAAIDmg+APqMWhjj+iv2iVHOOQEQyoVccu+rHUZXc5AAA0S5VTfdLxFz1695bOPFO6+26puNjuagAAAACgeSD4A2oRCv5srgONx2EYiimz2gy+LfWoyBe0uSIAAJofOv6i03XXSXv3So8/bnclAAAAANA8EPwBtXB7rU+fHCR/Uc3tL9HP338ln2nozW0FCpjM+QkAQFOq7Pgj+Isu6enSxRdLs2dLWVl2VwMAAAAA0Y/gD6gFHX/NgyHpH/fdKJdM7Sj0afnPRXaXBABAs1JQIBmG5PXaXQka2lVXSS6XdPXVUiBgdzUAAAAAEN0I/oBauGII/pqLvT9t1LD4MknS2n2l+vpAqc0VAQDQfBQUWOv7saxy9ElIkO69V1q+XJo+3e5qAAAAACC6EfwBtXB5rK+d8yFU89DBE9CItDhJ0kd7ihUIMuUnAABNobDQCv4QnYYMsdb7e/BB6a237K4GAAAAAKIXwR9QC3eo44/kr7k4NTVWLVyGCn1B/ZBbZnc5AAA0C5Udf4hel18unXqqNGWKFAzaXQ0AAAAARCeCP6AWrhg6/pobl8PQSW1iJUmf7S2RadL1BwBAYyssZH2/aGcY0pVXSlu2SO+9Z3c1AAAAABCdCP6AWrgrp/q0uQ40rcGtvXIZUnZJQDuL/HaXAwBA1KPjr3no10/q2VN6+mm7KwEAAACA6ETwB9TCVTHVp4Pkr1mJczl0YooV+n6+t8TmagAAiH4FBVJsrN1VoLEZhjR6tLR0qbR5s93VAAAAAED0IfgDauHyVK7xh+bmV22t4G9TXrnyygM2VwMAQHQrKGCqz+birLOkhATpuefsrgQAAAAAog/BH1ALl4c1/pqrVl6XToh3S5K+PlBmczUAAEQ3pvpsPmJipPPOk+bNk4qL7a4GAAAAAKILwR9QC7e3co0/kr/maGArq+NzQ06pTNO0uRoAAKJXYSFTfTYn558v5eVJ//yn3ZUAAAAAQHQh+ANqEZrqk9yvWeqZFKMYp6H88qC2F/jsLgcAgKhFx1/z0r69NGiQ9NJLdlcCAAAAANGF4A+ohTvG+uo5uV/z5HYY6ptshb9fHSi1uRoAAKIXwV/zM2qU9OGH0tatdlcCAAAAANGD4A+oRWxCoiTJQfLXbA1sZU33+mNeuUr8QZurAQAg+pimVFQkVcywjmbi9NOlFi2kBQvsrgQAAAAAogfBH1CLFimtJUlO5vpstlJjnWob61TAlDbQ9QcAQIMrKZGCQTr+mpvYWOk3v5Feftn68wcAAAAAHD+CP+AogqYUl5giSXKS+zVbhmFoSGtryte1+0oVNE2bKwIAILoUFFi3sbH21oGmN2qUtGOHlJlpdyUAAAAAEB0I/oCjKDMlh8MhmSbBXzPXLyVGcS5D+b6gNuaW210OAABRpbDQuqXjr/np10/q1k168km7KwEAAACA6OCyuwAgnJUFrbTPMIMymOqzWdi1a1eN+7q63frG79F/duYqNq9Uv/wr0bJlS6WkpDRyhQAARJ/Kjj+Cv+bHMKRLLpEefljatEnq0cPuigAAAAAgshH8AUdRah4K/hDdivLzZDgcGjFiRI3HtEhurTvf/VI5MV79ZvTvtf2rz6rsT0pO1pbNm48r/MsrDyjW6ZCHFlMAQDNS2fHHVJ/N08iR0t/+Jj31lPT003ZXAwAAAACRjeAPOIrSIMFfc1FaXCQzGNQ9C99UeqcuNR5XYgTlkzT5xf9TXMnB0P0HsnZr2thRKigoOObgb2+JXws35srjNPT7bolKi+MtGgDQPLDGX/Pm8Ui/+5308svSzJlSUlLDP4ffL+XnS0zOAAAAACDa8akycBRldPw1Oymp7dSm/Qk17i8PmNpZ5Jff5VXLtA7yOhtuqdSVWcXym5Lfb+rVTXm6tGuCTmjpbrDzAwAQrgj+cNFF0qJFVufff/93w567tFQaNUr64Qfpp5+YUhYAAABAdGu4T6yBKFTZ8ecg+EMFj9NQS7f19yKntOH+Xhwo9euH3HJJUmqsU2VBU//Ykqe88kCDPQcAAOGKqT6RkiKdc440Z45UVNRw5/X7pd//XlqzRtq/X5o3r+HODQAAAADhiOAPOArW+EN1kmOckqSSgKlSf8P83VidXSJJ6p7g0VU9k9QuziW/KX1/sKxBzg8AQDgrKJC8XsnptLsS2Onqq6WDBxt2nb+bbpL+/W9p+nTpzDOlhx+WfL6GOz8AAAAAhBuCP+AoykJr/NF1hUPcjkNdfwfKgjJN87jOl1ce0Lc5VsA3PC1WboehAa1iJEkbK7oAAQCIZoWFTL8IKS1NuuAC6aGHpNzc4z/fzp3SCy9IEydKp54qjR0r7dgh/eMfx39uAAAAAAhXBH/AUZQG6fhD9Sq7/koDpg6WHd/fj5VZxQpK6hTvVnoLa02/HolW8Len2M90nwCAqFdQQPAHy1VXWWvyPfLI8Z/rxRetTtILLrB+7t5dOuUUafZs6Ti/twUAAAAAYctldwFAOAtN9Rkk+ENVboehNl6n9pUGdLA8qFiXV5K0a9euep0nz29oQ36sJEOntTv0iWe826GO8S7tLPRrY265TmnLokcAgOhVUMD6frC0aiVdfLH02GPSRRdJv/rVsZ3H57OCv5Ejq4bKY8dKt90mffqpNGJEw9QMAAAAAOGE4A84isqpPh10/KEaCR6HyoOm8sqDKvEmqsuQ4RpRz0+Qxj3xd/U5PUMbP35PcZ3OlZQS2tcrMUY7C/36MbeM4A8AENUKCwn+cMi4cdKGDdJ550mrV0vdutX/HG++KWVlWeHh4QYOlBITpaVLCf4AAAAARCeCP6AG5QFTfjHVJ46uVYxDvqCpYr9D1zz1qgJZW5XaOuWojwkYTpkOp4KGU6WxSTJNU28/Nk33jx6hlJRDj+2Z5NEHPxdpV5FfBb6AWrqdjf1yAACwBR1/OJzXKz34oHTTTdKoUVZ3Xtu29TvHc89J/ftLXbtWvd/plE46yQr+Hnig4WoGAAAAgHDBGn9ADYr9VtjnKyuVxCIgqJ5hGEqNdSpYlCdPbJxiO/dRi9QOatP+hCpb6/SOimnTQWVJ6SqKb6viuFYqjU2SJHl8xdq/46cjzp3gcSo9zvp+xo+55U35sgAAaFIFBVbYA1RKTLTW4jt4UDrrLGnfvro97ssvrXUCP/xQ+t3vqj/mV7+S1q2T9u9vuHoBAAAAIFwQ/AE1qAz+inL2V/T9AdVzGIYCe7bo2w/flQyH9hQHVOQ71CUaNE1llQS0rzSgsoAVIrsdksuQYpyGYsoLazx3zySPJGlrvq9xXwQAADY6eFCKj7e7CoSb9HTp0UelPXtqDv/KyqRrr7WmA01IsLr5MjOlyZOls8+u/ry/+pVkmtKyZY1bPwAAAADYgeAPqEGx3wpoCg/yVWDUgWlq0Z3XyigrkiRllQR0sMwKAHcXB1TsN2VISolxqFO8SyfEu9WppVsdWriOuoZk55ZW8Lej0KegSecpACA6bd8upabaXQXCUadOVvi3e7d0xhnSrl2H9hUXW119f/+7NGSIdOWV0syZ1s+XXio5avhtt3VrKyh8772meQ0AAAAA0JRY4w+oQVFFx1/hgX1SRz6JQu2Cfr9c+XsV066rCv2mcsoOBXoOSe3inPK66vd9i7axTnmdhkoDpvYU+9W+hbuBqwYAwF6FhdaUi2lpdleCcNW5s/T449Kdd0rDhkn/7/9JO3ZY6/ht2CDNmmV1+tXHySdb6/yZpmQwvQcAAACAKELHH1CD4oqpGun4Q30YssK6lBiH4lyGYhyGYp2G2rdw1Tv0k6xpRDu1tMK+bQVM9wkAiD7bt1u3BH84mhNOkJ56SnK5pDPPlMaPtwLjOXPqH/pJ1nSf2dlWcAgAAAAA0YSOP6AGRaE1/qpZTAQ4CsMwlBzjbLDzdW7p1sbccm0rKNev0+Ia7LwAAISDbdusW4I/1KZNG+mZZ6SNG6Xu3a01/Y5V//6S12tN9zlwYMPVCAAAAAB2I/gDahBa4y+Hjj80jV2HL1pzGHfAkBSnnwt92rJtu1y/mI6qZcuWSklJafwCAQBoBNu2WV1crVrZXQkiQYsWx9bh90sejzRggPTBB9Iddxz/+QAAAAAgXBD8ATUoruz4Y6pPNLKi/DwZDodGjBhR4zF3vLNOye066tw/TNCmVR9W2ZeUnKwtmzcT/gEAItLWrVa3n4NFCNDEBg+WFi6UysutIBAAAAAAogHBH1CDoso1/uj4QyMrLS6SGQzqnoVvKr1Tl2qPKfEmyifpvx6fJ29ZQej+A1m7NW3sKBUUFBD8AQAi0rZtUmqq3VWgORo8WHr+eWn1aun00+2uBgAAAAAaBsEfUIPKjj+CPzSVlNR2atP+hGr3FfiC2lsSkLzxatM6uYkrAwCg8WzdKrVrZ3cVaI4q1wnMzCT4AwAAABA9mFAHqIZpmqE1/opy9tlcDSDFOq2F/cqDkj9o2lwNAAANZ9s2a6pPoKk5ndKgQVbwBwAAAADRIiyCv2effVadO3eW1+vV0KFD9dlnn9V47IsvvqjTTjtNycnJSk5O1siRI484/pprrpFhGFW2UaNGNfbLQBQp8ZuqjFaKDh6wtRZAklwOQzEV4V9lKA0AQKQrKJBycgj+YJ/Bg6U1a6TCQrsrAQAAAICGYXvw9/rrr2vKlCmaPn261q1bp4EDByojI0N79+6t9vgVK1boiiuu0IcffqhVq1apY8eOOuecc/Tzzz9XOW7UqFHas2dPaHv11Veb4uUgSuwvC0iSWjiCCvh9NlcDWFq4rOCvqGIaWgDRqz5fipKkxYsXq3fv3vJ6verfv7/efffdKvtN09S0adPUrl07xcbGauTIkdq0aVNo/7Zt23TttdeqS5cuio2NVbdu3TR9+nSVl5dXOeaXX6wyDEOrV69u2BePZmXbNuuW4A92Oekkye+X/vMfuysBAAAAgIZhe/D32GOPaeLEiZowYYL69u2ruXPnKi4uTvPmzav2+FdeeUV/+tOfNGjQIPXu3Vt/+9vfFAwGlfmL+VliYmKUlpYW2pKTWRMLdbevxC9JSnQSsCB8xLmst+wSv6mgSdcfEK3q+6WolStX6oorrtC1116rL7/8UqNHj9bo0aP1zTffhI6ZM2eOnnrqKc2dO1dr1qxRixYtlJGRodLSUknSDz/8oGAwqOeff17ffvutHn/8cc2dO1d33333Ec/3wQcfVPly1ZAhQxrnQqBZIPiD3Tp2lNq0kZYvt7sSAAAAAGgYtgZ/5eXlWrt2rUaOHBm6z+FwaOTIkVq1alWdzlFcXCyfz6eUlJQq969YsUJt27ZVr169dMMNN+jAgZqnaywrK1N+fn6VDc3bvhKr4y+J4A9hxOOQnIZkSioNEPwB0aq+X4p68sknNWrUKN1+++3q06ePZs6cqZNOOknPPPOMJKvb74knntC9996riy66SAMGDNDChQu1e/duLVmyRJI1U8LLL7+sc845R127dtWFF16o//7v/9Ybb7xxxPO1atWqyper3G53o10LRL9t2ySPR/rFUB5oMoZhrfP3/vt2VwIAAAAADcPW4G///v0KBAJKTU2tcn9qaqqysrLqdI4777xT6enpVcLDUaNGaeHChcrMzNRDDz2kjz76SOeee64CgUC155g1a5YSExNDW8eOHY/9RSEq7Cu1Ov4I/hBODMNQnIt1/oBodixfilq1alWV4yUpIyMjdPzWrVuVlZVV5ZjExEQNHTr0qF+0ysvLO+KLVZJ04YUXqm3bthoxYoTeeuuto74evlyF2mzbZnX7OWyfhwTN2fDh0oYN0k8/2V0JAAAAABy/iP4Ve/bs2Xrttdf0z3/+U16vN3T/5ZdfrgsvvFD9+/fX6NGj9fbbb+vzzz/XihUrqj3P1KlTlZeXF9p27tzZRK8A4cg0zUMdfy6CP4SXFhXTfRb5gjKZ7hOIOsfypaisrKyjHl95W59zbt68WU8//bSuv/760H3x8fF69NFHtXjxYr3zzjsaMWKERo8efdTwjy9XoTZbt0q/+KsJNLmhQyWvV1q82O5KAAAAAOD42Rr8tW7dWk6nU9nZ2VXuz87OVlotC3088sgjmj17tt5//30NGDDgqMd27dpVrVu31ubNm6vdHxMTo4SEhCobmq+88qDKg6achtTSQbCC8BLrMmRI8ptSObk0gEbw888/a9SoURozZowmTpwYur9169aaMmWKhg4dql/96leaPXu2rrrqKj388MM1nosvV6E2BH8IB7GxVvj3j3/YXQkAAAAAHD9bgz+Px6MhQ4YoMzMzdF8wGFRmZqaGDRtW4+PmzJmjmTNnaunSpTr55JNrfZ5du3bpwIEDateuXYPUjei2t8Sa5rOV1ymHYXMxwC84Dpvus8BH8gdEm2P5UlRaWtpRj6+8rcs5d+/erTPPPFPDhw/XCy+8UGu9Q4cOrfGLVRJfrkLtKqf6BOx2xhnSunVM9wkAAAAg8tk+1eeUKVP04osvasGCBfr+++91ww03qKioSBMmTJAkjRs3TlOnTg0d/9BDD+m+++7TvHnz1LlzZ2VlZSkrK0uFhYWSpMLCQt1+++1avXq1tm3bpszMTF100UXq3r27MjIybHmNiCz7Sq1pPtvGumyuBKheS7f11l3gC4qeVCC6HMuXooYNG1bleElatmxZ6PguXbooLS2tyjH5+flas2ZNlXP+/PPP+s1vfqMhQ4bo5ZdflqMOi66tX7+eL1bhmOXlSbm5BH8ID6eeynSfAAAAAKKD7cnG2LFjtW/fPk2bNk1ZWVkaNGiQli5dGlqHZseOHVU+ePrrX/+q8vJyXXbZZVXOM336dN1///1yOp3asGGDFixYoNzcXKWnp+ucc87RzJkzFRMT06SvDZFpX0XHXxuvUyq1uRigGnEuQ05DCpiS38X7GhBtpkyZovHjx+vkk0/WKaecoieeeOKIL0W1b99es2bNkiTdcsstOuOMM/Too4/q/PPP12uvvaYvvvgi1LFnGIZuvfVWPfDAA+rRo4e6dOmi++67T+np6Ro9erSkQ6Ffp06d9Mgjj2jfvn2heiq7AhcsWCCPx6PBgwdLkt544w3NmzdPf/vb35rq0iDKrFtn3Xbtam8dgGRN93nKKdZ0n3feaXc1AAAAAHDsbA/+JGny5MmaPHlytftWrFhR5edt27Yd9VyxsbF67733GqgyNEd7Sw7r+CP4QxgyDEMt3Q7llgflc8fZXQ6ABlbfL0UNHz5cixYt0r333qu7775bPXr00JIlS3TiiSeGjrnjjjtUVFSkSZMmKTc3VyNGjNDSpUvl9XolWR2Cmzdv1ubNm9WhQ4cq9Zjmod7imTNnavv27XK5XOrdu7def/31I76MBdTVqlVSfLzUqZPdlQCWM86QZs6UNm+Wune3uxoAAAAAODZhEfwB4cIXNHWwzAr+2sS6dOCgzQUBNagM/vzOGLVsnWp3OQAaWH2+FCVJY8aM0ZgxY2o8n2EYmjFjhmbMmFHt/muuuUbXXHPNUWsaP368xo8ff9RjgPpYvVrq3Vuqw6yyQJMYPlxq2VL629+k2bPtrgYAAAAAjg2/ZgOHOVAakCkp1mWohcuwuxygRh6nIa/TkAxDQy76g93l6ECpXyuzivX53hJ9m1MqX7BxVh8MmFY4/1N+uXYV+hrlOQAAjc80rY6/Pn3srgQ4xOuVzjlHeuklqazM7moAAAAA4NjQ8QccJrtifb+2XpcMg+AP4S3B7VBpIKBhv79WgcbJ2WqVk5OjvPwC/TsvVvnBQ98labUrT2cnlMpZyz+jli1bKiUlpU7PtaPApze35avIf+jFnn9CvPq38h5T7QAA+/z0k7R/v9S3r92VAFX97nfS//2f9M9/Spdfbl8deXlWHYGAtf7gpZdatw3t00+l0lJp2DApjhnkAQAAgKhAxx9wmB0FVgdRegsycYS/eLchIxhQQptUbStv+r+zOTk56ta9u0Zff6vygw6VFOTpq6VvqKQgTwcCTt3611fVuXPno27dundXTk5Orc/1TU6pXtuSpyK/KZchJXqs//n6987C0L9bAEDkWL3auqXjD+GmUydp0CDpr3+1t46//EW69lpp0iTp6qut/zYb8ItegYB0113SiBHSyJFScrI0bpwUDDbccwAAAACwB+kGUME0TW0rKJckdW7ptrkaoHaGYchTXqQyb4J+KHHrTNNs0k7VgoIC5eXm6vK/PCVJSvI4dNqvh8nnDKhE0vDLr9PZF10qt7+02scfyNqtaWNHqaCg4Khdf1/uL9F7O4skSb2TPDq/U0u5DOnNbQX6Ibdcb2zN1/heSUqOcTb4awQANI7Vq6UTTpASE+2uBDjS734nzZwpff+9PeF0To70wgtW4PfHP0rLl1v1nHaadMMNx3/+ggLpkkus895wg/SrX0krV1prG/7619L11x//cwAAAACwD8EfUGF/aSDUTdS+BcEfIoPHV6w8n6SWCdqS71P3RE+TPn+/s38nIyZWDkntWifLaVgBXk5pQAfLgyqJTVa816kEz6EGc9M05TclU7WHlNsKyvV+Reh3SttYnZkeFwo3z+/UUvnledpd7NeHPxfpkq4JDf8CAQCNYuVKqXdvu6sAqnfaaVJKijRnjvTyy03//M89J/n90sUXWz+fdZb09dfSrbdKJ59sBXXHyueTLrvMWmPz4Yelk06y7u/SRdqzR7r9dum886SOHY/7ZQAAAACwCVN9AhW2VkwX2DHeLZeD9f0QGQyZ+uyfCyVJn+wpViDYdIv9maZ01sQpkqTEGIech3UbJsc4FO+yft5XGtDeEr8OlAaUXeLXjkJrK2zRRq07davx/AfLAlqytUCmpH7JMVVCP0lyOwydd0K8JOnHvHLtq1ijEwAQ3oqLpQ0bpH797K4EqJ7bLV11lbRggbR+fdM+d0mJ9OSTUkaGNf1mpRtukLp1k377W2nZsiMft39/7dN0mqY0caLV6feXvxwK/Sr9139JXq81vWhDTisKAAAAoGkR/AEVtjPNJyLUJ3+fK7dhKqvEr8yfi5rseff4nGrXo59kBkNr7lUyDENtY51Krri/wGcqtzyoQp/V7SdJpsOpiS8sUUHgyKA9EDT1z635Kg2Yahfn0rknxFc7jWnrWJd6JVldjquySxr4FQIAGsO6dVY3U9++dlcC1Ox3v7O63m67rWlDsPnzrak+x46ter/HY3Ug9uolnXuu1Zk3ZYo0erTUoYPUpo10xhlSafUzrEuSHn3UCjPvvFMaMuTI/fHx0i23SEuXSh980JCvCgAAAEBTIvgDZIUMOwqtjr/OLZt2qkTgeBXsz9awFmWSpHX7S/VtzlE+8WlAG0ut2aI9vuIq3X6VDMNQiteptFinWroNJbgdSo5xqF2cUyfEu+QI+JTQJk2Z+V7llweqPPbT7GLtLQko1mXokq4tj9qFOyw1TpL0/cEyHSwL1HgcACA8rFghxcVZUwsC4crlsta6W75cevfdpnnOQEB65BErwEtPP3J/fLz0P/9jTQH6179K//d/0u7d1tSkN98sffaZdN111QeVmzdL990n/f730siRNdcwfLj1b/P55xvudQEAAABoWqzxB0j6udgvX1CKc1ldSkCkMfduV7+ULvq21KO3txfoy9256uH1KdUVVDWZXBUtW7ZUSkpKvZ5vX4lfWX6XgoGAPOXFkpJrPLaF26EW7iO/ZxJXkqMt2QeV2q233thaoKt6JMrlMJRV7NeqLKt7L6NDvFq6j/5vMi3OpW4Jbm3J92lVdrHOO6FlvV4LAKBpvfWWtUaZkyEXwtywYdZ0mBMmWJ14553XuM/3r39JP/0k/fd/13yM0yndeKO1/VJiojRzptSjhzR9+qH7TdOavjMlxXotR2MY0gUXWOsM7tkjtWt3bK8FAAAAgH3o+AMkbcuvnObTU+10gkC4KsrPk+FwaMSIEbroxI76aukbMmVol8+lDwtiNXv5NzrtgkvUuXPnGrdu3bsrJyenXs/7xT4rmPtuxb/lMI+ty85hBjX/5j/IZQaUVezX/36fpf9s2qX/25QjU1JHj1+x+Vnavn17tdvhNZ9a0fX3w8Fy+ZtwnUMAQP3s2SN9/rnVVQSEO8OQ7rlH6tpVOv986Y9/lLZubbzne+QRacAAqU+fY3v8WWdZNd5/vxVUVnr5ZenDD6U//9law68255xjrXM4b96x1QEAAADAXnT8AZI257O+HyJTaXGRzGBQ9yx8U+mdrDnTAkX7VO6Ok88dp86Dh+pPC9+Tu7xY3rI8/TLWPpC1W9PGjlJBQUGdu/6KfUF9m2NNLfrpouc1/JQXjqn2ovw85WX/rLk3/F5/fPYf2lbu1rZy699gYc4+XX/ZaSrKPVDj45OSk7Vl82alpKSoQwuX4l0OFfqD2lHoU9cEpuwFgHD09tuSwyENHWp3JUDdpKRIs2ZZ032+8IIVqJ17rjR7ttS/f8M9z2efSZ9+anXsHY+rrpKys60pP+PjpZUrpSeflDIypJNPrts54uOlM8+0pvu86y66cwEAAIBIQ/CHZm9/qV97SwJySOqeSFiAyJSS2k5t2p9Q5T5/0FROWUAFPlM+T5ycsS2UFuuU8yjr5dUmpzSg/9uaL78ppTgD2vbl6mM+V2Voefnk2xTrK1SZM1FG0C+3r1RpHlNz3vywxsf+MrA0DEPdEz1af6BUm/LKCf4AIEy99ZYVliQm2l0JUHeGYXX8nX22lJkp/e//SqeeaoWAY8Y0zHM8/rjUvr01vejxMAyrs+/gQas2r1eaOFG67LL6ned3v5P+/W9p6VLrtQMAAACIHAR/aBZycnJUUFBQ7b4NxW5JHqW5/dr3884q+3bt2tUE1QGNw+Uw1DbWpXh3UFnFAZUGTO0q8istzqUYZ83hn2mayvcFdbA0oL2lAe0r8assYMphSFsLfCoLmGrpduiU2JIGqTMltZ06tG2tgGnKIZcMI1ZHWzOwJj0qgr/NeeU6p4PJtL0AEGaKi6UPPqh9jTEgXHm9hwLARx6Rfv976e67rS49xzEuolFUZE0n+vrr0i23NEx3ndMp3Xef9MYb0hlnWIFiffXuLXXpYp2D4A8AAACILAR/iHo5OTnq1r27cg8erHb/bUvWqPUJXfXY7Tdq/NI3qj3G5/M3ZolAo4pzOdShhaE9xX75TennIr9ae51q6baCsaR2HfRdiVtf/JSvg2UB5ZYF5D/KMnntW7h0cZcEHdhdfZh+rJzHGdR1aumW2yEV+ILKLgkoLY7/iQOAcPLBB1JpKev7IfJ5vVZY162bNQ3ojz9KCxZIcXE1PyYvz1of8PPPpdWrpb17pZgYad06afdu6YYbrC67hqzxD3849scbhjR4sLR8ecPVBAAAAKBp8Kkool5BQYFyDx7UjNeXqlVaepV9AYdbRS1aS2ZQE6f+RcbU+6vs3/L1l3ps8ngFAgR/iGwep6EO8S7tLQmo2G9qX2lA+0olR4s2uvOdL/VViaSS8tDxDklJMU619jrVJtapeLdDAVPyOg31SYqR02Go5tX37OFyGOrS0qMf88q1Ka+M4A8Awsybb0qdOkkdOthdCXD8DEO64gqpY0fpwQelESOkBx6QRo2yAu5ly6SPPpK++ELasMEK/iSrM7BbN6lNG8nnkzp3lmbMCM9/F4MHWx1/27ZZdQIAAACIDHwqimajVVr6EWug7S8NSOVBxbudatu+4xGPOZC1u6nKAxqd0zCUFutUbnlQuWVBBSUFHS4Fg0ElmyXq1tKlBIepeGdQLRzW1J6SpPKKrcKuika/cJwKt0diZfBXrtPatbC7HABAhaIia120Cy+0uxKgYY0YIT35pPToo9aUmB06SDk51tS27dpJvXpZ6+ulp0upqVLXrlJsrN1V183AgVbA+eGHTNELAAAARBKCPzRbpmmq0BeUJMW7j3FRDiDCGIah5BinkjwO+U1p17atemj8Rcrds7P2B9cgnKbC7ZbokSFpb0lA+eUBJXgaYKEcAMBxW7xYys+XzjvP7kqAhtezpzR3rvT999J770lpaVYg2PHI7xVGlJYtrddG8AcAAABEFoI/NFtFflMBU3IYUpzr+NYWAyKNYRhyG1LZwb3K3bNT9yx8U+mdutTrHOEwFW51XYfJTq9yAk6t37ZHnWIC1T6uZcuWSklJaezyAAAVnn9eOvlkqwMKiEaGIfXta23RZOBAa50/07ReIwAAAIDwR/CHZsk0TeWWWd1+iR6HDH6LRTOXktruiKlwa2PnVLhF+XkyHA6NGDHiiH2/u/1/NPyKiXr4xYV6+5F7qn18UnKytmzeTPgHAE3g22+l1aul+++3uxIA9TVokPSPf0hbtkjdu9tdDQAAAIC6IPhDs1QaMFUWNGVISmSaTyDilBYXyQwGq+1U9Lm8KpF02thrdO7vfnfEYw9k7da0saNUUFBA8AcATeDFF6XkZGn4cLsrAVBfAwZITqfV9UfwBwAAAEQGgj80S7nlVrdfS7dDTgfdfkCkqq5T0Rc0taPQr6DTo1bpHeWgoxcAbFNcLC1cKJ1zjuR2210NgPpq0ULq1cta52/SJLurAQAAAFAXtDqh2SkPmCr2m5KsaT4BRBeXITkrsr6ygGlvMQDQzD33nFRQIF10kd2VADhWAwZIH31kdxUAAAAA6orUA81OTllAkhTnMuRx0gkERBvDMOSt+LddSvAHALYpLJRmz5ZGjZLatbO7GgDHql8/ac8eadcuuysBAAAAUBcEf2hWSvxBFVV0+7WKcdpcDYDGElMR/NHxBwD2eeYZKT9fuuoquysBcDz69LFu16yxtw4AAAAAdUPwh2bDlLS/1Or2S3A76PYDotjhHX+mSfgHAE0tP1+aM0c6/3wpNdXuagAcj1atrH/HBH8AAABAZCD4Q7Phc8eqPGj9pU+J4a8+EM0qO/4CpuQn9wOAJvfgg1JRkfSHP9hdCYCG0Lu3tGqV3VUAAAAAqAvSDzQLiWntVRqTIElKjnHI6aDbD4hmDsNQjIN1/gDADl9+KT36qHT11VKbNnZXA6Ah9O0rrVsn+f12VwIAAACgNgR/iHqmKY35y9OS4VCM01Cih7/2QHPgdVUEf7T8AUCTCQSk666TOnWSxo61uxoADaVPH6m4WPrmG7srAQAAAFAbEhBEvY2lLnX71WmSGVRbr1OGQbcf0BzEVkz3WRII2lwJADQfTz5pdfzddpvkdttdDYCG0qOH5HRKq1fbXQkAAACA2hD8IartKvTpqxKPJMlbli+Pk9APaC4qO/58QckfpOsPABrbF19IU6dKl1xiTQsIIHp4vVK3btKaNXZXAgAAAKA2BH+IWnnlAb2xNV9BGfr6g3/J7SuxuyQATch52Dp/JUz3CQCN6uBB6bLLrGBg0iS7qwHQGHr3puMPAAAAiAQEf4hKZYGg/ndLvor9ppKdAS2eNln0+gHNT6yL6T4BoLEFg9K4cVb4N22a5PHYXRGAxtCnj/TDD1Jurt2VAAAAADgagj9EHV/Q1P/+lK99pQG1cBk6Lb5MvtJiu8sCYINQ8Oc3ZZp0/QFAQzNN6dZbpXfftab5TEuzuyIAjWXQIOv2/fdtLQMAAABALQj+EFX8QVP/91O+dhb6FeMwdFm3BLVw8mE/0Fx5K9b19JvWBgBoWA89JD39tHTLLdKpp9pdDYDGlJYm9egh/fOfdlcCAAAA4GgI/hA1Sv1BLd6Sr20FPrkd0phuCWoX57a7LAA2chhGKPxjnT8AaFjPPmt1+Y0bJ114od3VAGgKv/619M47UlmZ3ZUAAAAAqAnBH6JCbllAf9+Up+2FPnkchi7rmqAO8YR+AKTYUPDHOn8A0BBMU3rwQWnyZOmyy6RrrrG7IgBN5bTTpIICaflyuysBAAAAUBOCP0S8LXnlWvBjrvaXBhTvdujKHonq1NJjd1kAwkRcxTp/RX5T/iBdfwBwPHw+a1rPe++VJkyQ/vQnyTDsrgpAU+nSRWrfnuk+AQAAgHBG8IeI5QuaytxVqMU/5avEb6ptrFPjeiYqNc5ld2kAwkiM01CM05ApKbecrj8AOFZ79khnnin99a9W+DduHKEf0NwYhjRihLRkiRQI2F0NAAAAgOqQkCAi5OTkqKCgIPTzXp9DnxXFqCBoZdc9Y3wa5C3SwT35OviLx+7atasJKwUQbgzDULLHoaySgPLLg2rBp9QAUG//+pd03XVSMCg99pjUv7/dFQGwy4gR0uuvS6tWWf8NAAAAILwQ/CHs5eTkqFv37so9eFCJqek6509366TfjZUk5e3doyUP3qYf/rOs1vP4fP7GLhVAmIpzGfI4pPKgVO5uYXc5ABAxcnKk226T5s+Xhg2T/vu/pZQUu6sCYKe+faXUVOmBB6R//5vOXwAAACDcEPwh7BUUFCjg9OiBD76WMzk19Julu7xIHWIN3fTAo0d9/Javv9Rjk8crECD4A5orwzCUHONUdklA5Z4WSu3W2+6SACCsBQLS3/4m3X23VFYm3XGHNGoUH/ADkBwOa7rfu++WXnxRmjTJ7ooAAAAAHI7gD2HLNE39XOTXmkKP7nh7rZyeGEmS12moldchb0KSpKRaz3Mga3ej1gkgMrRwWWv9lQUcmvTimzrgd6iT3UUBQJgJBKR//EOaOVP6/nsr7Js4kS4/AFUNGyadf740ZYo0cqTUtavdFQEAAACoRPCHsJNTGtA3B0v1bU6Z8sqDktxyeSRnoFxt4mMV5zJk8HVzAPVkGIbaxTm1M7dYcUkpWp5vypNTqn7JMbynAGj29u+3pvOcO1faskUaOlR67jmpTx+7KwMQrv70J2ndOmn0aOmf/5S6dbO7IgAAAACS5LC7AMA0TWUX+/XJnmK9/MNBvfD9Qa3MKlFeeVAeh6EuHp/mTjhfLYoPqIXbwQf0AI6Z0zAUV5yjn774VH4Zent7of7fj3naUeCTaZp2lwcATaqkRFq8WLr4Yql9e2vavi5dpL/+VZo9m9APwNHFxVndwTk50kknSa+9JjGcAgAAAOxHxx+aTE5OjgoKCiRJ5UFpn9+pLJ9TP/ucKgoeyqANmWrnDqiTx68OnoCyft6l7V99ZlfZAKKMIVPzbvy9/rVhq74r82h3sV+LNucpNdapk9vEqldSjDxOvmAAIDoVFkrvv28Ffv/6l1RUZAV8EydKv/2tlJhod4UAIkm3btLzz0uPPSZdcYX09NNWGHjmmawJCgAAANiF4A+NrtgX1Oa9B3X7Aw8puWM3pffur9adusvhOBT2+UpLtGn1Cn330VL98PH7Kjq4/4jz+Hz+piwbQBQL+MqVcGCrzkvvqG9L3Npa5lJ2SUDv7CjUezsK1MHjV3tPQGmugDzV9Ma3bNlSKSx4BSAC+P3SV19JK1ZIH3wgffihVFYmde8uXX659JvfSB062F0lgEjWooV0773WlwcWLJDOPtvqAPzTn6z3mRYt7K4QAAAAaF7CYqrPZ599Vp07d5bX69XQoUP12WdH7+5avHixevfuLa/Xq/79++vdd9+tst80TU2bNk3t2rVTbGysRo4cqU2bNjXmS6izzF2Fen9noQp8AbtLaVCl/qD2FPn0bU6pPtlTrH9tK9CCjbl6YsMBPfVNjt7da+rMSXdo0LmXqm2XnnI4HHIE/XKXFyu2JEcpvjydOmSQ/jjlLs1ZslzPfrQhtE15ZoEkKRAg+ANw/Iry82Q4HBoxYoT6du2kMf3Sdf9ZvfXeMw/qwM6t8svQtnK3Pi30avEBrx5dtVVTXvqnrrjzAWVceZ1OPv0s9ejdRzk5OXa/FEQxO8ZGOTk5uvLKK5WQkKCkpCRde+21KiwsrHLMhg0bdNppp8nr9apjx46aM2dOw7xgNIjiYmntWmnePOmWW6Rf/9rq4Dv5ZOtD+X37pGuvlf7+d+nFF6WrriL0A9AwDEM69VRrbdBZsySPx+okbttW+v3vrWlAs7LsrhIAAABoHmzv+Hv99dc1ZcoUzZ07V0OHDtUTTzyhjIwMbdy4UW3btj3i+JUrV+qKK67QrFmzdMEFF2jRokUaPXq01q1bpxNPPFGSNGfOHD311FNasGCBunTpovvuu08ZGRn67rvv5PV6m/olhhT6glq3v1QBU9pwoFSDWns1PC1Oca6wyF+rME1TZUFTpX5TJYGgSvym9ucVKK+4VGWmoZKgoeKgoeKgQ8VBQz7z6PO4xAbLteaDf+tXZ5yp5KRkxTgNuRxuSbGSjj6n1IGs3Q33wgA0e6XFRTKDQd2z8E2ld+pSZZ8pKVC0X363V35njOR0K73XiUrvdWKV44KBgF7Z6VfKgVwluJ1K9DjU0uNQgtupBI9DCR6HPA6DNUlxTOwaG1155ZXas2ePli1bJp/PpwkTJmjSpElatGiRJCk/P1/nnHOORo4cqblz5+rrr7/WH//4RyUlJWnSpElNd4HqqahIevVVadUq6bbbpL597a7o+BQXS9u3S1u2WNvmzdKmTdLGjdb9pml9AN+hg9SjhzR+vDWVZ+/ektttd/UAol1lAHjqqVbQt3y59PHH1vTCkjU16JAh0oknWu9L3bpJXbtKSUm2lg0AAABEFduDv8cee0wTJ07UhAkTJElz587VO++8o3nz5umuu+464vgnn3xSo0aN0u233y5JmjlzppYtW6ZnnnlGc+fOlWmaeuKJJ3TvvffqoosukiQtXLhQqampWrJkiS6//PKme3G/0MJlaEy3BH24M1/ZZdIX+0q1YX+J+seWq1uMX3VdUio+Pl4JySkKBE35TFOBoOQPmvKblbem/EHJb5oKBA/9tz9oqqCoRMVlZQrIUNCUAqYUkCG/KZWZhsqDhnVrSqaqKyimxrry92XrwM6ftH/HTzqwo+J25086sHOrfKUlkqShH6xTizatjuHqAUDDSkltpzbtTzjqMf6gqdKAqbKAKV/Q2soDQTmcThUFpaJCv6Tqu5EdMuU2JI9hymOYcjtMeQyphcellnGx8jgMuR2Sx2nI7TDkqdjcFT+7HYachuQ0DDkdksuwfm5uYWKpP6iDZQG1jnXJ7Wger92OsdH333+vpUuX6vPPP9fJJ58sSXr66ad13nnn6ZFHHlF6erpeeeUVlZeXa968efJ4POrXr5/Wr1+vxx57LCyDv2BQevRR6cEHpfx8KTlZeuUVqxPlllskR5h87yoQkHJypP37rY68Awesn3NyrP8+cEDKzpZ+/lnaudM6ppLHI7VvL6WnS0OHSmPHSp06SZ07S7Gxtr0kAJAkpaVJf/iDte3fL339tfTNN9KPP0rvvSfl5R06NiFBOuEEqUsXKwjs1Enq2NH6EkPbttbWogXrBgIAAAB1YWvwV15errVr12rq1Kmh+xwOh0aOHKlVq1ZV+5hVq1ZpypQpVe7LyMjQkiVLJElbt25VVlaWRo4cGdqfmJiooUOHatWqVbYGf4ZhKMFXqCkjeqpN70E695ZpatfzRK0tjtHnhW4V7M9WSX6unC63nC6XHC73L/674jbHlHYcOI5KPHU+srykWMV5Byu2HHXp3U9er1eGGZTDDMgRDMgwA3IEg0rwmurQo7PUo7Oks6qcZ8vXX+qxyeOZrhNARHE5DMU7DMUf1iWz9fuv9cAfL1NKeiclpbVXYloHJbXroMTUdCWldVBSWnvFJSYrKENlFV+qkCRVzvBcLqmw5JhrMmTKKclhSE6ZFbeSwzh0v6PiZ0MKfYXDkNXN7TAMyfq/Kvsqv+5h6NCHaofv93jc1vt/6BijyvGhYw3JkFHlHIakkpISlZeVHnZMRU2SghVfNjFlfSGlKOhQQcBQQdCh8orrd1WPRHWIj/52JbvGRqtWrVJSUlIo9JOkkSNHyuFwaM2aNbr44ou1atUqnX766fJ4PFWe56GHHtLBgweVnJzcEJegQeTkSFdfLb37rnTxxdKYMVJKivS3v0lTpkh//at1O2aMNRWmq2JEHAhYa+L5/ZLPJ5WXW+vhlZZaW1mZdV95ubXf57PuLyk5tJWVHTqu8r+LiqytoMAKIQsKpNxc6eBB69Y0j3wN8fFWbQkJVidMu3bSgAHWB+lpaVbY16pV+ASYAHA0rVtLZ55pbZL1vpefL+3ZI+3eLe3da33JIStL2rDB+u/S0qrncLut98VfbgkJUsuW1vtmfLwVEB6+xcZKXu+hLTb2yC0a30tN0/rSyMaN1nVq315KTY3O1woAAICqbA3+9u/fr0AgoNTU1Cr3p6am6ocffqj2MVlZWdUen1WxYEDl7dGO+aWysjKVlZWFfs6r+Ophfn5+PV5N3ezevVu5Bw/qitFjFFe4XwU/fSNXSroMl1sxcfGKiYuv8bEBv18Bv1++w+4LBgLylZcqUFYmf3mZfOWl8peVKeArk6+sTP6yUvl85db+slL5fGXqc/IwxXi91m8CwaBkBmWaQSkYkBnwSwF/xW1AMq0Pgg9u/kF/n32f/vv5V5XWsZP14awOfY5dm7IS60PuPdu2WOeuh+wd2475scf7eLse21yfO1LrtvO5I7VuO5/7eOve8cO3KtiXrbE3T1Xrdu2r7izaL9+W/cozDMnpkuF0So7KW6cK8/K0YdVHcsXEKiauhTzeWLljW8gTGydPbJzcsXGKiY2TJ7aFXDFeOd0eudx1/7JG4yqVVGDLMxce2KttsalKSE9p0PNW/u+8WV3qYhO7xkZZWVlHTCPqcrmUkpJS5ZguXboccY7KfdUFf005xiopkW68Ufq//zt0X9++1ofBS5daP8fFWdPPrV4t3XCDtdkpNtbqYklIOBTwVX54Xd0Hs8Gg9QH57t3SunVNXi4ANKrK98KePa1fVQsLra7nvDxrKyiwtv377a40elx9tfTwww3fJR6OY6xoV3mtG2OMBQAAwkO9xlimjX7++WdTkrly5coq999+++3mKaecUu1j3G63uWjRoir3Pfvss2bbtm1N0zTNTz/91JRk7t69u8oxY8aMMX//+99Xe87p06ebspoO2NjY2NjY2JrZtnPnzmMdyjQ4u8ZGDz74oNmzZ88jzt2mTRvzueeeM03TNH/729+akyZNqrL/22+/NSWZ3333XbW1McZiY2NjY2Nrvls4jbGi3c6dO23/82ZjY2NjY2Nrmq0uYyxbO/5at24tp9Op7OzsKvdnZ2crLS2t2sekpaUd9fjK2+zsbLVr167KMYMGDar2nFOnTq0yRVYwGFROTo5atWrV7NZSqo/8/Hx17NhRO3fuVEJCgt3lRC2uc9PhWjcdrnXT4DofnWmaKigoUHp6ut2lhNg1NkpLS9PevXurnMPv9ysnJ6fKeap7nsOf45cYYzUc/j03Lq5v4+L6Ni6ub+Pi+tZfOI6xol16erp27typli1bMsY6Cv49Nw2uc9PhWjcNrnPT4VofXX3GWLYGfx6PR0OGDFFmZqZGjx4tyfpAKDMzU5MnT672McOGDVNmZqZuvfXW0H3Lli3TsGHDJEldunRRWlqaMjMzQx9m5efna82aNbqhhvmcYmJiFBMTU+W+pKSk43ptzUlCQgL/EJsA17npcK2bDte6aXCda5aYmGh3CVXYNTYaNmyYcnNztXbtWg0ZMkSStHz5cgWDQQ0dOjR0zD333COfzye32x16nl69etW4vh9jrIbHv+fGxfVtXFzfxsX1bVxc3/oJtzFWtHM4HOrQoYPdZUQM/j03Da5z0+FaNw2uc9PhWtesrmMs25d1njJlil588UUtWLBA33//vW644QYVFRVpwoQJkqRx48Zp6tSpoeNvueUWLV26VI8++qh++OEH3X///friiy9CH4YZhqFbb71VDzzwgN566y19/fXXGjdunNLT00MfoAEAAIQrO8ZGffr00ahRozRx4kR99tln+vTTTzV58mRdfvnloW+S/eEPf5DH49G1116rb7/9Vq+//rqefPLJKh19AAAAAAAAsJetHX+SNHbsWO3bt0/Tpk1TVlaWBg0apKVLlyo1NVWStGPHDjkch/LJ4cOHa9GiRbr33nt19913q0ePHlqyZIlOPPHE0DF33HGHioqKNGnSJOXm5mrEiBFaunSpvF5vk78+AACA+rBrbPTKK69o8uTJOvvss+VwOHTppZfqqaeeCu1PTEzU+++/rxtvvFFDhgxR69atNW3aNE2aNKkJrgoAAAAAAADqwvbgT5ImT55c4/RVK1asOOK+MWPGaMyYMTWezzAMzZgxQzNmzGioElGNmJgYTZ8+/YgpvNCwuM5Nh2vddLjWTYPrHLnsGBulpKRo0aJFR61rwIAB+s9//nPUY9A4+PfcuLi+jYvr27i4vo2L6wtED/49Nw2uc9PhWjcNrnPT4Vo3HMM0TdPuIgAAAAAAAAAAAAAcH9vX+AMAAAAAAAAAAABw/Aj+AAAAAAAAAAAAgChA8AcAAAAAAAAAAABEAYI/1OrBBx/U8OHDFRcXp6SkpGqP2bFjh84//3zFxcWpbdu2uv322+X3+6scs2LFCp100kmKiYlR9+7dNX/+/MYvPsJ17txZhmFU2WbPnl3lmA0bNui0006T1+tVx44dNWfOHJuqjXzPPvusOnfuLK/Xq6FDh+qzzz6zu6SIdv/99x/x97d3796h/aWlpbrxxhvVqlUrxcfH69JLL1V2draNFUeOjz/+WL/73e+Unp4uwzC0ZMmSKvtN09S0adPUrl07xcbGauTIkdq0aVOVY3JycnTllVcqISFBSUlJuvbaa1VYWNiErwJAdRh3NT3GW42L8VXDYFzVsBhLAdGN8ZR9GFc1HcZYDY/xVuNg3GUPgj/Uqry8XGPGjNENN9xQ7f5AIKDzzz9f5eXlWrlypRYsWKD58+dr2rRpoWO2bt2q888/X2eeeabWr1+vW2+9Vdddd53ee++9pnoZEWvGjBnas2dPaLvppptC+/Lz83XOOeeoU6dOWrt2rR5++GHdf//9euGFF2ysODK9/vrrmjJliqZPn65169Zp4MCBysjI0N69e+0uLaL169evyt/fTz75JLTvz3/+s/71r39p8eLF+uijj7R7925dcsklNlYbOYqKijRw4EA9++yz1e6fM2eOnnrqKc2dO1dr1qxRixYtlJGRodLS0tAxV155pb799lstW7ZMb7/9tj7++GNNmjSpqV4CgBow7rIH463GwfiqYTGuajiMpYDoxnjKXoyrGh9jrMbDeKvhMe6yiQnU0csvv2wmJiYecf+7775rOhwOMysrK3TfX//6VzMhIcEsKyszTdM077jjDrNfv35VHjd27FgzIyOjUWuOdJ06dTIff/zxGvc/99xzZnJycug6m6Zp3nnnnWavXr2aoLrocsopp5g33nhj6OdAIGCmp6ebs2bNsrGqyDZ9+nRz4MCB1e7Lzc013W63uXjx4tB933//vSnJXLVqVRNVGB0kmf/85z9DPweDQTMtLc18+OGHQ/fl5uaaMTEx5quvvmqapml+9913piTz888/Dx3z73//2zQMw/z555+brHYANWPc1XQYbzUexlcNh3FV42EsBUQvxlNNj3FV02CM1TgYbzU+xl1Nh44/HLdVq1apf//+Sk1NDd2XkZGh/Px8ffvtt6FjRo4cWeVxGRkZWrVqVZPWGolmz56tVq1aafDgwXr44YerTD2xatUqnX766fJ4PKH7MjIytHHjRh08eNCOciNSeXm51q5dW+XvqMPh0MiRI/k7epw2bdqk9PR0de3aVVdeeaV27NghSVq7dq18Pl+Va967d2+dcMIJXPPjtHXrVmVlZVW5tomJiRo6dGjo2q5atUpJSUk6+eSTQ8eMHDlSDodDa9asafKaAdQd467GwXir4TG+aniMq5oGYykg+jGealyMqxoXY6zGxXiraTHuajwuuwtA5MvKyqoyWJIU+jkrK+uox+Tn56ukpESxsbFNU2yEufnmm3XSSScpJSVFK1eu1NSpU7Vnzx499thjkqzr2qVLlyqPOfzaJycnN3nNkWj//v0KBALV/h394YcfbKoq8g0dOlTz589Xr169tGfPHv3lL3/Raaedpm+++UZZWVnyeDxHrLeQmpoaet/Asam8ftX9fT78Pblt27ZV9rtcLqWkpHD9gTDHuKvhMd5qHIyvGhbjqqbDWAqIfoynGg/jqsbHGKvxMN5qeoy7Gg/BXzN111136aGHHjrqMd9//32VBUzRMOpz7adMmRK6b8CAAfJ4PLr++us1a9YsxcTENHapwHE599xzQ/89YMAADR06VJ06ddI//vEPfkkC0Kww7mp6jLcQbRhXAWjuGE/Zh3EVmgvGW4gmBH/N1G233aZrrrnmqMd07dq1TudKS0vTZ599VuW+7Ozs0L7K28r7Dj8mISGh2b1xHs+1Hzp0qPx+v7Zt26ZevXrVeF2lQ9cetWvdurWcTme115Lr2HCSkpLUs2dPbd68Wb/97W9VXl6u3NzcKt+W4pofv8rrl52drXbt2oXuz87O1qBBg0LH/HLRb7/fr5ycHK4/0AgYdzU9xlv2Y3zVuBhXNR7GUkB4YjxlH8ZV4YUxVtNhvNX4GHc1HoK/ZqpNmzZq06ZNg5xr2LBhevDBB7V3795Q2+2yZcuUkJCgvn37ho559913qzxu2bJlGjZsWIPUEEmO59qvX79eDocjdJ2HDRume+65Rz6fT263W5J1XXv16sX0CPXg8Xg0ZMgQZWZmavTo0ZKkYDCozMxMTZ482d7iokhhYaG2bNmiq6++WkOGDJHb7VZmZqYuvfRSSdLGjRu1Y8eOZvm+0JC6dOmitLQ0ZWZmhgZJ+fn5WrNmjW644QZJ1ntHbm6u1q5dqyFDhkiSli9frmAwqKFDh9pVOhC1GHc1PcZb9mN81bgYVzUexlJAeGI8ZR/GVeGFMVbTYbzV+Bh3NSITqMX27dvNL7/80vzLX/5ixsfHm19++aX55ZdfmgUFBaZpmqbf7zdPPPFE85xzzjHXr19vLl261GzTpo05derU0Dl++uknMy4uzrz99tvN77//3nz22WdNp9NpLl261K6XFfZWrlxpPv744+b69evNLVu2mH//+9/NNm3amOPGjQsdk5uba6ampppXX321+c0335ivvfaaGRcXZz7//PM2Vh6ZXnvtNTMmJsacP3+++d1335mTJk0yk5KSzKysLLtLi1i33XabuWLFCnPr1q3mp59+ao4cOdJs3bq1uXfvXtM0TfO//uu/zBNOOMFcvny5+cUXX5jDhg0zhw0bZnPVkaGgoCD0XizJfOyxx8wvv/zS3L59u2mapjl79mwzKSnJfPPNN80NGzaYF110kdmlSxezpKQkdI5Ro0aZgwcPNtesWWN+8sknZo8ePcwrrrjCrpcEoALjrqbFeKtxMb5qOIyrGhZjKSC6MZ6yB+OqpsMYq3Ew3mocjLvsQfCHWo0fP96UdMT24Ycfho7Ztm2bee6555qxsbFm69atzdtuu830+XxVzvPhhx+agwYNMj0ej9m1a1fz5ZdfbtoXEmHWrl1rDh061ExMTDS9Xq/Zp08f83/+53/M0tLSKsd99dVX5ogRI8yYmBizffv25uzZs22qOPI9/fTT5gknnGB6PB7zlFNOMVevXm13SRFt7NixZrt27UyPx2O2b9/eHDt2rLl58+bQ/pKSEvNPf/qTmZycbMbFxZkXX3yxuWfPHhsrjhwffvhhte/L48ePN03TNIPBoHnfffeZqampZkxMjHn22WebGzdurHKOAwcOmFdccYUZHx9vJiQkmBMmTAj9IgzAPoy7mhbjrcbH+KphMK5qWIylgOjGeMoejKuaFmOshsd4q3Ew7rKHYZqm2ehthQAAAAAAAAAAAAAalcPuAgAAAAAAAAAAAAAcP4I/AAAAAAAAAAAAIAoQ/AEAAAAAAAAAAABRgOAPAAAAAAAAAAAAiAIEfwAAAAAAAAAAAEAUIPgDAAAAAAAAAAAAogDBHwAAAAAAAAAAABAFCP4AAAAAAAAAAACAKEDwBwDVMAxDS5YssbsMAACAqMIYCwAAoGExvgLwSwR/AMJSIBDQ8OHDdckll1S5Py8vTx07dtQ999xjU2UAAACRizEWAABAw2J8BSDcEPwBCEtOp1Pz58/X0qVL9corr4Tuv+mmm5SSkqLp06fbWB0AAEBkYowFAADQsBhfAQg3BH8AwlbPnj01e/Zs3XTTTdqzZ4/efPNNvfbaa1q4cKE8Hk+1j7n77rs1dOjQI+4fOHCgZsyYIUn6/PPP9dvf/latW7dWYmKizjjjDK1bt67GOlasWCHDMJSbmxu6b/369TIMQ9u2bQvd98knn+i0005TbGysOnbsqJtvvllFRUWh/c8995x69Oghr9er1NRUXXbZZfW8IgAAAMePMRYAAEDDYnwFIJwQ/AEIazfddJMGDhyoq6++WpMmTdK0adM0cODAGo+/8sor9dlnn2nLli2h+7799ltt2LBBf/jDHyRJBQUFGj9+vD755BOtXr1aPXr00HnnnaeCgoJjrnPLli0aNWqULr30Um3YsEGvv/66PvnkE02ePFmS9MUXX+jmm2/WjBkztHHjRi1dulSnn376MT8fAADA8WCMBQAA0LAYXwEIF4ZpmqbdRQDA0fzwww/q06eP+vfvr3Xr1snlch31+EGDBunSSy/VfffdJ8n6BtXy5cu1evXqao8PBoNKSkrSokWLdMEFF0iyFkb+5z//qdGjR2vFihU688wzdfDgQSUlJUmyvi01ePBgbd26VZ07d9Z1110np9Op559/PnTeTz75RGeccYaKior07rvvasKECdq1a5datmzZAFcFAADg+DDGAgAAaFiMrwCEAzr+AIS9efPmKS4uTlu3btWuXbtqPf7KK6/UokWLJEmmaerVV1/VlVdeGdqfnZ2tiRMnqkePHkpMTFRCQoIKCwu1Y8eOY67xq6++0vz58xUfHx/aMjIyFAwGtXXrVv32t79Vp06d1LVrV1199dV65ZVXVFxcfMzPBwAAcLwYYwEAADQsxlcAwgHBH4CwtnLlSj3++ON6++23dcopp+jaa69VbY3KV1xxhTZu3Kh169Zp5cqV2rlzp8aOHRvaP378eK1fv15PPvmkVq5cqfXr16tVq1YqLy+v9nwOh/VWefjz+ny+KscUFhbq+uuv1/r160PbV199pU2bNqlbt25q2bKl1q1bp1dffVXt2rULTfdw+JzrAAAATYUxFgAAQMNifAUgXBy91xgAbFRcXKxrrrlGN9xwg84880x16dJF/fv319y5c3XDDTfU+LgOHTrojDPO0CuvvKKSkhL99re/Vdu2bUP7P/30Uz333HM677zzJEk7d+7U/v37azxfmzZtJEl79uxRcnKyJGuahMOddNJJ+u6779S9e/caz+NyuTRy5EiNHDlS06dPV1JSkpYvX65LLrmk1msBAADQUBhjAQAANCzGVwDCCR1/AMLW1KlTZZqmZs+eLUnq3LmzHnnkEd1xxx3atm3bUR975ZVX6rXXXtPixYurTJEgST169ND/+3//T99//73WrFmjK6+8UrGxsTWeq3v37urYsaPuv/9+bdq0Se+8844effTRKsfceeedWrlypSZPnqz169dr06ZNevPNN0MLI7/99tt66qmntH79em3fvl0LFy5UMBhUr169juHKAAAAHDvGWAAAAA2L8RWAcELwByAsffTRR3r22Wf18ssvKy4uLnT/9ddfr+HDh9c6XcJll12mAwcOqLi4WKNHj66y76WXXtLBgwd10kkn6eqrr9bNN99c5dtUv+R2u/Xqq6/qhx9+0IABA/TQQw/pgQceqHLMgAED9NFHH+nHH3/UaaedpsGDB2vatGlKT0+XJCUlJemNN97QWWedpT59+mju3Ll69dVX1a9fv2O4OgAAAMeGMRYAAEDDYnwFINwYZm0TDQMAAAAAAAAAAAAIe3T8AQAAAAAAAAAAAFGA4A8AAAAAAAAAAACIAgR/AAAAAAAAAAAAQBQg+AMAAAAAAAAAAACiAMEfAAAAAAAAAAAAEAUI/gAAAAAAAAAAAIAoQPAHAAAAAAAAAAAARAGCPwAAAAAAAAAAACAKEPwBAAAAAAAAAAAAUYDgDwAAAAAAAAAAAIgCBH8AAAAAAAAAAABAFCD4AwAAAAAAAAAAAKLA/weMK5pUaXhXgwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plotGraph(data.X)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "puNFgfH4OPNk", + "outputId": "c9a7c512-53b9-4343-fea1-76dde7a123d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv0AAAJOCAYAAACUQctNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADn1UlEQVR4nOzdd3hUddrG8XsmHVIgtBBEgoAUqYuAYAEFqYqogGKhiIirKIIVCyCsoq/SVlmR3RVsCAsiKCjS1RV0BUREBQFpAgk9jdSZ8/4xmSFDejKTad/PdeUacubMOc/EXJPj3PM8P5NhGIYAAAAAAAAAAAAA+CyzpwsAAAAAAAAAAAAAUDGEfgAAAAAAAAAAAICPI/QDAAAAAAAAAAAAfByhHwAAAAAAAAAAAODjCP0AAAAAAAAAAAAAH0foBwAAAAAAAAAAAPg4Qj8AAAAAAAAAAADAxxH6AQAAAAAAAAAAAD6O0A8AAAAAAAAAAADwcYR+AEpl8uTJMplMlXKubt26qVu3bo7vN23aJJPJpKVLl1bK+YcPH66EhIRKOVd5paWl6f7771dcXJxMJpMee+wxT5cEAECFXXwN4Osq8/qpMvjCNVJ59e3bV6NGjfJ0GQX8+uuvCg4O1q5du1x+7ISEBA0fPtzlx62IvXv3qmfPnoqJiZHJZNLy5cs9XRIAAJXu4MGDMplMWrBggadLcbJ69Wq1bdtW4eHhMplMOnfunKdLAlAIQj8gAC1YsEAmk8nxFR4ervj4ePXq1Ut///vflZqa6pLzHDt2TJMnT9aOHTtccjxX8ubaSuPll1/WggUL9Ne//lXvv/++7r333gL7bNmyRWazWRMmTCj0GK+++qpMJpNWrVrl7nIBAJXE/jd+69atTtuTk5PVsWNHhYeHa/Xq1R6qznUSEhIc1zFms1nVqlVTq1at9MADD+j777/3dHnFevnll10eZNg/IFXU16JFi0p9LG+9Rlq4cKFmzZrllmN/++23WrNmjZ5++mnHtqI+dJadna2bbrpJZrNZ77zzjqTyXVvbA+GivhITEyVJLVq0UL9+/TRx4kS3PPfycOfvyLBhw/Tzzz/rpZde0vvvv68rr7yywD6vvPKKTCaTvvzyy0KP0bdvX8XExOjYsWMurw8A4Fsu/httMplUu3ZtXX/99friiy8qvZ6Lr9lCQkJ02WWXaejQofrjjz9cco7Nmzdr8uTJLg/kTp8+rcGDBysiIkJz5szR+++/r6pVqxbYr0+fPqpevbqSkpIK3JecnKy6deuqU6dOslqtLq0PwAXBni4AgOdMmTJFDRs2VE5OjhITE7Vp0yY99thjmjFjhj799FO1bt3ase/zzz+vZ555pkzHP3bsmF588UUlJCSobdu2pX7cmjVrynSe8iiutn/+859ef/GxYcMGXXXVVZo0aVKR+3Tu3FmjR4/W9OnTdc899+iKK65w3Hfo0CFNmTJFgwYNUr9+/SqjZACAh6SkpKhnz57auXOnPvnkE/Xu3dvTJblE27Zt9fjjj0uSUlNT9dtvv2nJkiX65z//qXHjxmnGjBkerrDw66eXX35ZAwcO1IABA1x+vkcffVQdOnQosL1z586lPoa3XiMtXLhQu3btcst0g9dee03du3dX48aNi90vJydHAwcO1Oeff65//vOfuu+++5zuL8u1td1bb72lyMjIAturVavm+PeDDz6ovn37av/+/WrUqFH5nqQLlfcavyQZGRnasmWLnnvuOY0ZM6bI/R5//HEtXLhQDz30kHbt2qWIiAjHfUuWLNEXX3yhOXPmKD4+3mW1AQB8m/1vtGEYSkpK0oIFC9S3b1999tlnuummmyq9Hvs1W05OjrZv36558+Zp1apV+vnnnyv892vz5s168cUXNXz4cKfriYr64YcflJqaqqlTp6pHjx5F7vePf/xDLVu21Lhx47Rw4UKn+5599lmdOnVKq1evltlMLxLgLoR+QADr06eP06dnJ0yYoA0bNuimm25S//799dtvvzn+Jzo4OFjBwe59yTh//ryqVKmi0NBQt56nJCEhIR49f2mcOHFCLVq0KHG/V155RStWrNDo0aP1zTffOEaMPfLIIwoJCdHs2bPdXSoAwINSU1PVq1cv7dixQ8uWLVOfPn0qfMzMzEyFhoZ6/H/U69Wrp3vuucdp26uvvqq77rpLM2fOVJMmTfTXv/7VQ9XZVMb1U37XXnutBg4c6Lbj+8I1UlmdOHFCq1at0ty5c4vdLycnR4MHD9bKlSv19ttva+TIkQX2Kcu1td3AgQNVs2bNYs/do0cPVa9eXe+++66mTJlShmfnW06ePClJJb5BGRISonnz5unqq6/W1KlT9fLLL0uyvd499thjuuqqq/Tggw+6u1wAgA+5+G/0yJEjVadOHX300UceCf3yX7ONGDFCl19+uR599FG9++67RU5r8rQTJ05IKvnvdMOGDTVp0iQ9/fTTGj58uHr27CnJFhrOnTtXTzzxhNq0aePucoGARqQOwMkNN9ygF154QYcOHdIHH3zg2F7YmjRr167VNddco2rVqikyMlJNmzbVs88+K8k2ssD+SfMRI0Y4RhfY55F369ZNLVu21LZt23TdddepSpUqjscWtZ6PxWLRs88+q7i4OFWtWlX9+/fXkSNHnPYpam2S/McsqbbC1qtJT0/X448/rvr16yssLExNmzbV66+/LsMwnPYzmUwaM2aMli9frpYtWyosLExXXHFFqUepnThxwnHxGR4erjZt2ujdd9913G8fBXHgwAGtWrXKUfvBgwcLPV5MTIxmz56tb7/9Vv/6178kSZ988ok+++wzvfLKK6pbt26p6gIA+J60tDT17t1b27dv18cff1ygs/vo0aO67777VKdOHcffK/u4Qjv7351Fixbp+eefV7169VSlShWlpKRo+PDhioyM1NGjRzVgwABFRkaqVq1aeuKJJ2SxWJyOY7VaNWvWLF1xxRUKDw9XnTp1NHr0aJ09e9alzzkiIkLvv/++YmNj9dJLLzn9nS5tDQkJCbrpppv03//+1zES9bLLLtN7773ntF9OTo5efPFFNWnSROHh4apRo4auueYarV271rHPxddPJpNJ6enpevfddx1/w4cPH66NGzfKZDLpk08+KfCcFi5cKJPJpC1btrjkZ1SR67eLr5Hs6828/vrrmjNnji677DJVqVJFPXv21JEjR2QYhqZOnapLLrlEERERuuWWW3TmzBmnelasWKF+/fopPj5eYWFhatSokaZOner0O9StWzetWrVKhw4dctSUv46srCxNmjRJjRs3VlhYmOrXr6+nnnpKWVlZJf48Vq1apdzc3GI/sZ6bm6s777xTK1as0FtvvVWmtf+KurYui5CQEHXr1k0rVqwocV/779zu3bs1ePBgRUdHq0aNGho7dqwyMzNLfPwff/yhQYMGKTY2VlWqVNFVV13lNAq+pN+Rovz444/q06ePoqOjFRkZqe7du+u7775zqrtBgwaSpCeffLLAf+OL2YO9119/Xb/++qskW2ftiRMnNG/ePI9/KAEA4N2qVaumiIiIAh/OKum9n4yMDDVr1kzNmjVTRkaG43FnzpxR3bp11aVLlwLXwaVxww03SJIOHDhQ7H4bNmzQtddeq6pVq6patWq65ZZb9Ntvvznunzx5sp588klJtvCtpPeM7JYsWaL27dsrIiJCNWvW1D333KOjR4867u/WrZuGDRsmSerQoYPjGrYo48ePV+vWrfXQQw8pMzNTFotFDz74oBo0aFDsxCoArkGnH4AC7r33Xj377LNas2ZNkW9q/PLLL7rpppvUunVrTZkyRWFhYdq3b5++/fZbSVLz5s01ZcoUTZw4UQ888ICuvfZaSVKXLl0cxzh9+rT69OmjO++8U/fcc4/q1KlTbF0vvfSSTCaTnn76aZ04cUKzZs1Sjx49tGPHjgKfmi5OaWrLzzAM9e/fXxs3btTIkSPVtm1bffnll3ryySd19OhRzZw502n///73v1q2bJkeeughRUVF6e9//7tuv/12HT58WDVq1CiyroyMDHXr1k379u3TmDFj1LBhQy1ZskTDhw/XuXPnNHbsWDVv3lzvv/++xo0bp0suucQx1qxWrVpFHtc+wvPpp59W9+7dNXbsWHXp0kWjR48u9c8MAOBb0tPT1adPH/3www9aunRpgU8wJyUl6aqrrnJ8WKVWrVr64osvNHLkSKWkpBQYoTh16lSFhobqiSeeUFZWlqMr32KxqFevXurUqZNef/11rVu3TtOnT1ejRo2cuuxGjx6tBQsWaMSIEXr00Ud14MABvfnmm/rxxx/17bffurSDLDIyUrfeeqv+/e9/69dff3WMty5LDfv27dPAgQM1cuRIDRs2TO+8846GDx+u9u3bO443efJkTZs2Tffff786duyolJQUbd26Vdu3b9eNN95YaG3vv/++Y/8HHnhAktSoUSNdddVVql+/vj788EPdeuutTo/58MMP1ahRo1KN6ExNTdWpU6cKbK9Ro4ZMJpNLrt8K8+GHHyo7O1uPPPKIzpw5o//7v//T4MGDdcMNN2jTpk16+umntW/fPr3xxht64oknnMLlBQsWKDIyUuPHj1dkZKQ2bNigiRMnKiUlRa+99pok6bnnnlNycrL+/PNPx3WXfSSm1WpV//799d///lcPPPCAmjdvrp9//lkzZ87U77//XuL6iZs3b1aNGjUcgdPFcnNzNWTIEH3yySeaM2dOua6firu2vjgElWwdohd/ir59+/ZasWKFUlJSFB0dXeI5Bw8erISEBE2bNk3fffed/v73v+vs2bMFwuv8kpKS1KVLF50/f16PPvqoatSooXfffVf9+/fX0qVLdeutt5brd+SXX37Rtddeq+joaD311FMKCQnR22+/rW7duumrr75Sp06ddNttt6latWoaN26chgwZor59+xY69jS/adOmafny5Ro9erRmzZqlOXPm6Mknn1SrVq1K/PkAAAJLcnKyTp06JcMwdOLECb3xxhtKS0tzmhpRmvd+IiIi9O677+rqq6/Wc8895xgn//DDDys5OVkLFixQUFBQmevbv3+/JBX7ntG6devUp08fXXbZZZo8ebIyMjL0xhtv6Oqrr9b27duVkJCg2267Tb///rs++ugjzZw50zFNoLj3jOzXxx06dNC0adOUlJTk+PD4jz/+qGrVqum5555T06ZNNW/ePMeo1OJGjgcHB2vevHnq0qWLpk6dqtq1a2v79u1avXq1qlSpUuafD4AyMgAEnPnz5xuSjB9++KHIfWJiYox27do5vp80aZKR/yVj5syZhiTj5MmTRR7jhx9+MCQZ8+fPL3Bf165dDUnG3LlzC72va9euju83btxoSDLq1atnpKSkOLb/5z//MSQZs2fPdmxr0KCBMWzYsBKPWVxtw4YNMxo0aOD4fvny5YYk429/+5vTfgMHDjRMJpOxb98+xzZJRmhoqNO2n376yZBkvPHGGwXOld+sWbMMScYHH3zg2JadnW107tzZiIyMdHruDRo0MPr161fs8fI7ePCgUbVqVSM2NtYICQkxfv7551I/FgDgO+x/4xs0aGCEhIQYy5cvL3S/kSNHGnXr1jVOnTrltP3OO+80YmJijPPnzxuGceFv8GWXXebYZjds2DBDkjFlyhSn7e3atTPat2/v+P6bb74xJBkffvih036rV68usP3iv9dFKenvoP06ZcWKFWWuoUGDBoYk4+uvv3ZsO3HihBEWFmY8/vjjjm1t2rQp8W/xxddPhmEYVatWLfRaZcKECUZYWJhx7tw5p/MGBwcbkyZNKvY89v9ORX0dP37c6edS3uu3i6+RDhw4YEgyatWq5VT3hAkTDElGmzZtjJycHMf2IUOGGKGhoUZmZqZj28W/V4ZhGKNHjzaqVKnitF+/fv2czm33/vvvG2az2fjmm2+cts+dO9eQZHz77bdFPlfDMIxrrrnG6ffVzv4ztf8+zJkzp8hjVOTaurCvpk2bFnj8woULDUnG999/X+zzsR+3f//+TtsfeughQ5Lx008/ObZdfN382GOPGZKcfpapqalGw4YNjYSEBMNisRiGUfzvSGEGDBhghIaGGvv373dsO3bsmBEVFWVcd911jm3236fXXnutVMc1DMNYunSpIcmIjY0t9HUKABDY7H+jL/4KCwszFixY4LRvWd77mTBhgmE2m42vv/7aWLJkiSHJmDVrVon12K8v3nnnHePkyZPGsWPHjFWrVhkJCQmGyWRyXEvY/ybm/1vbtm1bo3bt2sbp06cd23766SfDbDYbQ4cOdWx77bXXDEnGgQMHSqwnOzvbqF27ttGyZUsjIyPDsX3lypWGJGPixImObaW53rnYmDFjjJCQECMyMtIYMmRIqR8HoGKYeQGgUJGRkUpNTS3yfvunj1esWCGr1Vquc4SFhWnEiBGl3n/o0KGKiopyfD9w4EDVrVtXn3/+ebnOX1qff/65goKC9Oijjzptf/zxx2UYhr744gun7T169HD6xFPr1q0VHR2tP/74o8TzxMXFaciQIY5tISEhevTRR5WWlqavvvqq3M/BPkLhzJkzGj9+vFq2bFnuYwEAvF9SUpLCw8NVv379AvcZhqGPP/5YN998swzD0KlTpxxfvXr1UnJysrZv3+70mGHDhhXZVX/x2lnXXnut09+8JUuWKCYmRjfeeKPTudq3b6/IyEht3LjRBc/Ymb1DyH4tU9YaWrRo4ehgkmyfjm7atKnT86pWrZp++eUX7d271yU1Dx06VFlZWVq6dKlj2+LFi5Wbm1tg7cKiTJw4UWvXri3wFRsb66hZqtj1W2EGDRqkmJgYx/edOnWSJN1zzz1OY7M6deqk7Oxsp3FR+X+v7J2K1157rc6fP6/du3eXeO4lS5aoefPmatasmdN/W/uYrJJ+v06fPq3q1asXeX9SUpKCg4PVsGHDEmspTlHX1h9//HGB/17z588vsJ+9xsI6OQvz8MMPO33/yCOPSFKx182ff/65OnbsqGuuucap7gceeEAHDx50jNEsC4vFojVr1mjAgAG67LLLHNvr1q2ru+66S//973+VkpJS5uPa3X777erbt6/OnDmjOXPmlGn6BwAgcMyZM8fxd/aDDz7Q9ddfr/vvv1/Lli1z7FOW934mT56sK664QsOGDdNDDz2krl27Fnhcce677z7VqlVL8fHx6tevn2P8e/51B/M7fvy4duzYoeHDhzuu6yTb+0033nhjud8X27p1q06cOKGHHnpI4eHhju39+vVTs2bNnEZ8l8dLL72kGjVqyGw2F5iSBcB9Ajr0+/rrr3XzzTcrPj5eJpOpxNEvhTEMQ6+//rouv/xyhYWFqV69enrppZdcXyxQydLS0pwCtovdcccduvrqq3X//ferTp06uvPOO/Wf//ynTG8g1atXzzEerDSaNGni9L3JZFLjxo1LnE1eUYcOHVJ8fHyBn0fz5s0d9+d36aWXFjhG9erVS1y36NChQ2rSpEmBNUiKOk9Z2ddfKeoiEgDgP95++22Fhoaqd+/e2rNnj9N9J0+e1Llz5zRv3jzVqlXL6cv+YZwTJ044PaaowCM8PLzAuKCL/+bt3btXycnJql27doHzpaWlFTiXK6SlpUmS4293WWsozd/yKVOm6Ny5c7r88svVqlUrPfnkk9q5c2e5a27WrJk6dOigDz/80LHtww8/1FVXXaXGjRuX6hitWrVSjx49CnzZr7dccf1WmIt/XvYA8OLQ2b49/8/xl19+0a233qqYmBhFR0erVq1ajpAzOTm5xHPv3btXv/zyS4H/rpdffrmkgr/LhTEuWqM5v//7v//TpZdeqoEDBzrGoJZHUdfW1113XYH/XoWNcrXXePEa20W5+Lq5UaNGMpvNxV43Hzp0SE2bNi2wvSLXoidPntT58+eLPK7Vai2wRndZcY0LAChJx44dHX9n7777bq1atUotWrTQmDFjlJ2dLals7/2EhobqnXfe0YEDB5Samqr58+eX+m+0dOGDWhs2bNDOnTt17Ngx3XvvvUXubz93UX9PT506pfT09FKfvzTHbdasWYXfh4qOjlbTpk1Vv379Epf0AeA6Ab2mX3p6utq0aaP77rtPt912W7mOMXbsWK1Zs0avv/66WrVqpTNnzhS6LgPgS/78808lJycX+wZTRESEvv76a23cuFGrVq3S6tWrtXjxYt1www1as2ZNqWaYu+OTuEVdZFkslnLNVS+Pos5T3BtKAAC4UosWLfT555+re/fuuvHGG/Xtt986Ahh7wHPPPfdo2LBhhT6+devWTt8X9Te7NH9brVarateu7RRm5VfcGiPltWvXLklyXMuUtYbS/C2/7rrrtH//fq1YsUJr1qzRv/71L82cOVNz587V/fffX666hw4dqrFjx+rPP/9UVlaWvvvuO7355pvlOlZhXHH9VpiiHlfSz/HcuXPq2rWroqOjNWXKFDVq1Ejh4eHavn27nn766VKFkVarVa1atXKsqXOxwrpd86tRo0axH8yqW7eu1q5dq2uuuUb9+vXTV199pTZt2pRYV36lubYuib1G+9o8ZVWWNyIBAPB3ZrNZ119/vWbPnq29e/c61mwuiy+//FKSlJmZqb1795ZpKoD9g1oA4A4BHfr16dNHffr0KfL+rKwsPffcc/roo4907tw5tWzZUq+++qq6desmSfrtt9/01ltvadeuXY5PRFR07AvgDd5//31JUq9evYrdz2w2q3v37urevbtmzJihl19+Wc8995w2btyoHj16uPzNhYvHZxmGoX379jm9MVm9enWdO3euwGMPHTrkNFKoLLU1aNBA69atU2pqqtMnvuwjpxo0aFDqY5V0np07d8pqtTp1+7n6PACAwNCxY0ctX75c/fr104033qhvvvnG0QUVFRUli8VSKW82NGrUSOvWrdPVV19dKaP30tLS9Mknn6h+/fqOT2a7q4bY2FiNGDFCI0aMUFpamq677jpNnjy52NCvuGuQO++8U+PHj9dHH32kjIwMhYSE6I477nBZvVLlX78VZ9OmTTp9+rSWLVum6667zrH9wIEDBfYtqq5GjRrpp59+Uvfu3ctVe7NmzfTxxx8Xu89ll12mL7/8Ul27dlWvXr30zTffFOikK05pr62Lc+DAAZnNZkcHY0kufvNx3759slqtSkhIKPIxDRo0KNAZLBW8Fi3Lz7lWrVqqUqVKkcc1m80lBrMAALhDbm6upAsTIsry3s/OnTs1ZcoUjRgxQjt27ND999+vn3/+2WncuSvZz13U39OaNWuqatWqksr+fpf9uPbR6HZ79uzhfSjARwX0eM+SjBkzRlu2bNGiRYu0c+dODRo0SL1793YED5999pkuu+wyrVy5Ug0bNlRCQoLuv/9+Ov3g0zZs2KCpU6eqYcOGuvvuu4vcr7Df87Zt20qyBeaSHBcchYVw5fHee+85rYWydOlSHT9+3Cm8b9Sokb777jvHeAZJWrlyZYGxQWWprW/fvrJYLAU+aT9z5kyZTKZiPzxQFn379lViYqIWL17s2Jabm6s33nhDkZGR6tq1q0vOAwAIHN27d9dHH32kffv2qXfv3kpJSVFQUJBuv/12ffzxx46OuPxOnjzp0hoGDx4si8WiqVOnFrgvNzfXZdcJkpSRkaF7771XZ86c0XPPPed408MdNZw+fdrp+8jISDVu3NhxHVSUqlWrFnm+mjVrqk+fPvrggw/04Ycfqnfv3uXu7CqMJ67fimPvBMzfQZmdna1//OMfBfatWrVqoeM+Bw8erKNHj+qf//xngfsyMjJKHHXVuXNnnT17tsS1l1u1aqVVq1YpLS1NN954o9O6hMUp7bV1SbZt26Yrrrii1G8mzpkzx+n7N954Q5KKvW7t27ev/ve//2nLli2Obenp6Zo3b54SEhLUokULSWX7HQkKClLPnj21YsUKp9GiSUlJWrhwoa655hpFR0eX6jkBAOAqOTk5WrNmjUJDQx0fEivtez85OTkaPny44uPjNXv2bC1YsEBJSUkaN26c2+qtW7eu2rZtq3fffdfp7++uXbu0Zs0a9e3b17GtLH+nr7zyStWuXVtz5851uob94osv9Ntvv6lfv34uew4AKk9Ad/oV5/Dhw5o/f74OHz6s+Ph4SdITTzyh1atXa/78+Xr55Zf1xx9/6NChQ1qyZInee+89WSwWjRs3TgMHDtSGDRs8/AyAkn3xxRfavXu3cnNzlZSUpA0bNmjt2rVq0KCBPv30U6dFfC82ZcoUff311+rXr58aNGigEydO6B//+IcuueQSXXPNNZJsAVy1atU0d+5cRUVFqWrVqurUqVO5O2JjY2N1zTXXaMSIEUpKStKsWbPUuHFjjRo1yrHP/fffr6VLl6p3794aPHiw9u/frw8++ECNGjVyOlZZarv55pt1/fXX67nnntPBgwfVpk0brVmzRitWrNBjjz1W4Njl9cADD+jtt9/W8OHDtW3bNiUkJGjp0qX69ttvNWvWrGLXWAQAoCi33nqr/vnPf+q+++5T//79tXr1ar3yyivauHGjOnXqpFGjRqlFixY6c+aMtm/frnXr1rn0Q2xdu3bV6NGjNW3aNO3YsUM9e/ZUSEiI9u7dqyVLlmj27NkaOHBgmY979OhRffDBB5Jsn9D+9ddftWTJEiUmJurxxx/X6NGj3VpDixYt1K1bN7Vv316xsbHaunWrli5dqjFjxhT7uPbt22vdunWaMWOG4uPj1bBhQ3Xq1Mlx/9ChQx21FBZSFuebb75RZmZmge2tW7dW69atPXL9VpwuXbqoevXqGjZsmB599FGZTCa9//77hY5Eb9++vRYvXqzx48erQ4cOioyM1M0336x7771X//nPf/Tggw9q48aNuvrqq2WxWLR792795z//0ZdfflnsWm/9+vVTcHCw1q1bpwceeKDYejt37qxly5bp5ptvdnTP1qhRw3F/ea6tly5dqsjIyALbb7zxRsfaNzk5Ofrqq6/00EMPFVtffgcOHFD//v3Vu3dvbdmyRR988IHuuuuuYkeTPvPMM/roo4/Up08fPfroo4qNjdW7776rAwcO6OOPP3ZMoijr78jf/vY3x4jUhx56SMHBwXr77beVlZWl//u//yv1cwIAoLzsf6Ml23q/Cxcu1N69e/XMM884PnxS2vd+/va3v2nHjh1av369oqKi1Lp1a02cOFHPP/+8Bg4c6BTAudJrr72mPn36qHPnzho5cqQyMjL0xhtvKCYmRpMnT3bs1759e0nSc889pzvvvFMhISG6+eabHWFgfiEhIXr11Vc1YsQIde3aVUOGDFFSUpJmz56thIQEtwaZANzIgGEYhiHJ+OSTTxzfr1y50pBkVK1a1ekrODjYGDx4sGEYhjFq1ChDkrFnzx7H47Zt22ZIMnbv3l3ZTwEotfnz5xuSHF+hoaFGXFycceONNxqzZ882UlJSCjxm0qRJRv6XjPXr1xu33HKLER8fb4SGhhrx8fHGkCFDjN9//93pcStWrDBatGhhBAcHG5KM+fPnG4ZhGF27djWuuOKKQuvr2rWr0bVrV8f3GzduNCQZH330kTFhwgSjdu3aRkREhNGvXz/j0KFDBR4/ffp0o169ekZYWJhx9dVXG1u3bi1wzOJqGzZsmNGgQQOnfVNTU41x48YZ8fHxRkhIiNGkSRPjtddeM6xWq9N+koyHH364QE0NGjQwhg0bVujzzS8pKckYMWKEUbNmTSM0NNRo1aqVo66Lj9evX78Sj5ef/ee4ZMmSMj0OAOA77H/jf/jhhwL3vf7664Yk46abbjJycnKMpKQk4+GHHzbq169vhISEGHFxcUb37t2NefPmOR5T3N+OYcOGGVWrVi2w/eJrBrt58+YZ7du3NyIiIoyoqCijVatWxlNPPWUcO3bMsU9hf68L06BBA8d1jMlkMqKjo40rrrjCGDVqlPH9998X+bjS1FDU39iLa/vb3/5mdOzY0ahWrZoRERFhNGvWzHjppZeM7OzsYn8Wu3fvNq677jojIiLCkFTg+iArK8uoXr26ERMTY2RkZJT4szCMC/+divqaNGmSYRgVv367+BrpwIEDhiTjtddeK7Sei39vCvv9/Pbbb42rrrrKiIiIMOLj442nnnrK+PLLLw1JxsaNGx37paWlGXfddZdRrVo1Q5JTHdnZ2carr75qXHHFFUZYWJhRvXp1o3379saLL75oJCcnl/jz69+/v9G9e/dSPQfDMIzFixcbZrPZ6NChg5GSklKha+uivvI/9y+++MKQZOzdu7fE52I/7q+//moMHDjQiIqKMqpXr26MGTOmwO9TYden+/fvNwYOHGhUq1bNCA8PNzp27GisXLmywHmK+h0pyvbt241evXoZkZGRRpUqVYzrr7/e2Lx5s9M+Rf0+lfY5nzx5skyPAwD4v4v/RksywsPDjbZt2xpvvfVWgfd0SnrvZ9u2bUZwcLDxyCOPOD0uNzfX6NChgxEfH2+cPXu2yHpK+76M/W/ixX9f161bZ1x99dVGRESEER0dbdx8883Gr7/+WuDxU6dONerVq2eYzWZDknHgwIFiz7d48WKjXbt2RlhYmBEbG2vcfffdxp9//um0T3H/n1Gc4t7/A+AeJsMo5GOUAchkMumTTz7RgAEDJEmLFy/W3XffrV9++aXAAvSRkZGKi4vTpEmT9PLLLysnJ8dxX0ZGhqpUqaI1a9boxhtvrMynAAAAAMDH5ebmKj4+XjfffLP+/e9/e7qcgPDNN9+oW7du2r17d5nW6qssAwYMcPz/akkmT56sF198USdPnnTpaFgAAAAAvoHxnkVo166dLBaLTpw4oWuvvbbQfa6++mrl5uZq//79jhbv33//XZJY6BQAAABAmS1fvlwnT57U0KFDPV1KwLj22mvVs2dP/d///V+hawN60m+//aaVK1dqx44dni4FAAAAgA8I6NAvLS1N+/btc3x/4MAB7dixQ7Gxsbr88st19913a+jQoZo+fbratWunkydPav369WrdurX69eunHj166C9/+Yvuu+8+zZo1S1arVQ8//LBuvPFGXX755R58ZgAAAAB8yffff6+dO3dq6tSpateunbp27erpkgLKF1984ekSCtW8eXPl5uZ6ugwAAAAAPsLs6QI8aevWrWrXrp3atWsnSRo/frzatWuniRMnSpLmz5+voUOH6vHHH1fTpk01YMAA/fDDD7r00kslSWazWZ999plq1qyp6667Tv369VPz5s21aNEijz0nAAAAAL7nrbfe0l//+lfVrl1b7733nqfLAQAAAAD4INb0AwAAAAAAAAAAAHxcQHf6AQAAAAAAAAAAAP6A0A8AAAAAAAAAAADwccGeLqCyWa1WHTt2TFFRUTKZTJ4uBwAAeIhhGEpNTVV8fLzMZu/6HNScOXP02muvKTExUW3atNEbb7yhjh07Frn/kiVL9MILL+jgwYNq0qSJXn31VfXt29dx/+TJk7Vo0SIdOXJEoaGhat++vV566SV16tTJsc+ZM2f0yCOP6LPPPpPZbNbtt9+u2bNnKzIyslQ1c40FAAAk777G8kVcYwEAAKn011gBt6bfn3/+qfr163u6DAAA4CWOHDmiSy65xNNlOCxevFhDhw7V3Llz1alTJ82aNUtLlizRnj17VLt27QL7b968Wdddd52mTZumm266SQsXLtSrr76q7du3q2XLlpKkhQsXqnbt2rrsssuUkZGhmTNnasmSJdq3b59q1aolSerTp4+OHz+ut99+Wzk5ORoxYoQ6dOighQsXlqpurrEAAEB+3naN5au4xgIAAPmVdI0VcKFfcnKyqlWrpiNHjig6OtrT5QAAAA9JSUlR/fr1de7cOcXExHi6HIdOnTqpQ4cOevPNNyXZPt1dv359PfLII3rmmWcK7H/HHXcoPT1dK1eudGy76qqr1LZtW82dO7fQc6SkpCgmJkbr1q1T9+7d9dtvv6lFixb64YcfdOWVV0qSVq9erb59++rPP/9UfHx8iXVzjQUAACTvvcbyVVxjAQAAqfTXWAE33tM+CiE6OpqLJQAA4FVjkrKzs7Vt2zZNmDDBsc1sNqtHjx7asmVLoY/ZsmWLxo8f77StV69eWr58eZHnmDdvnmJiYtSmTRvHMapVq+YI/CSpR48eMpvN+v7773XrrbeWWDvXWAAAID9vusbyZVxjAQCA/Eq6xgq40A8AAMBbnTp1ShaLRXXq1HHaXqdOHe3evbvQxyQmJha6f2JiotO2lStX6s4779T58+dVt25drV27VjVr1nQc4+LRocHBwYqNjS1wHLusrCxlZWU5vk9JSSndkwQAAAAAAIBbsKIyAABAALj++uu1Y8cObd68Wb1799bgwYN14sSJch9v2rRpiomJcXyx1gwAAAAAAIBnEfoBAAB4iZo1ayooKEhJSUlO25OSkhQXF1foY+Li4kq1f9WqVdW4cWNdddVV+ve//63g4GD9+9//dhzj4gAwNzdXZ86cKfK8EyZMUHJysuPryJEjZXquAAAAAAAAcC1CPwAAAC8RGhqq9u3ba/369Y5tVqtV69evV+fOnQt9TOfOnZ32l6S1a9cWuX/+49rHc3bu3Fnnzp3Ttm3bHPdv2LBBVqtVnTp1KvTxYWFhjrVlWGMGAAAAAADA81jTDwAAwIuMHz9ew4YN05VXXqmOHTtq1qxZSk9P14gRIyRJQ4cOVb169TRt2jRJ0tixY9W1a1dNnz5d/fr106JFi7R161bNmzdPkpSenq6XXnpJ/fv3V926dXXq1CnNmTNHR48e1aBBgyRJzZs3V+/evTVq1CjNnTtXOTk5GjNmjO68807Fx8d75gcBAAAAAACAMiH0AwAA8CJ33HGHTp48qYkTJyoxMVFt27bV6tWrVadOHUnS4cOHZTZfGNbQpUsXLVy4UM8//7yeffZZNWnSRMuXL1fLli0lSUFBQdq9e7feffddnTp1SjVq1FCHDh30zTff6IorrnAc58MPP9SYMWPUvXt3mc1m3X777fr73/9euU8eAAAAAAAA5WYyDMPwdBGVKSUlRTExMUpOTmYMFQAAAYxrAtfi5wkAACSuCVyNnycAAJBKf03Amn4AAAAAAAAAAACAjyP0AwAAAAAAAAAAAHwcoR8AAAAAAAAAAADg4wj9AAAAAAAAAAAAAB9H6AcAAAAAAAAAAAD4OEI/AAAAAAAAAAAAwMcR+gEAAAAAAAAAAAA+jtAPAAAAAAAAAAAA8HGEfgAAAAAAAAAAAICPI/QDAAAAAAAAAAAAfByhHwAAAAAAAAAAAODjCP0AAAAAAAAAAAAAH0foBwAAAAAAAAAAAPi4YE8XAACe8l3SeaXnWNWiepjiqgTLZDJ5uiQAAAAAAAAAAMqFTj8AASnLYtWmY+f1w8lMvft7st7ZfU7J2RZPlwUAAODztm2T+vSRTpzwdCUAAAAAEFgI/QAEpCyL4fh3sEk6mWnRHynZHqwIAADAP/zwg7R6tdS3r5Sa6ulqAAAAACBwEPoBCEg5VlvoFxZkUtNqYZKk7HxBIAAAAMonPV0KDpb27JFuu03K5nNVAAAAAFApCP0ABKQcq+021GxSWJBtLb8sK6EfAABARaWnSzEx0pQp0rp10rJlnq4IAAAAAAIDoR+AgJSdF/CFmE0KNdtCvxw6/QAAACosPV2KiJDatZNCQ6VTpzxdEQAAAAAEBkI/AAHJHvCFmKWQvE6/bDr9AAAAKiw9XQoPt/07IkJKS/NsPQAAAAAQKAj9AASknEI6/VjTDwAAoOLOn78Q+lWpQugHAAAAAJWF0A9AQLKHfqFmk0Lp9AMAAHCZ9HQpLMz2bzr9AAAAAKDyEPoBCEiOTr8gk8LyOv2y6PQDAACosPyhX3g4oR8AAAAAVBZCPwABKTv/eM+8Tr8cOv0AAAAqLC2NNf0AAAAAwBMI/QAEpPxr+oWYGe8JAADgKunptrBPotMPAAAAACoToR+AgJRjtd2GmE0KtYd+jPcEAACosPR0506/1FTP1gMAAAAAgYLQD0BAutDpJ4UF0ekHAADgKheHfnT6AQAAAEDlIPQDEJDsXX2h+Tr9cqyS1SD4AwAAqIjz5wn9AAAAAMATCP0ABCSnNf3yOv3ybwcAAED5EPoBAAAAgGcQ+gEISPlDv2CTZI/9WNcPAACg/KxWQj8AAAAA8BRCPwAByRH6BZlkMpkUyrp+AAAAFZaRYbvNH/qlp0tMUAcAAAAA9yP0AxCQ7OGefT2/MDOhHwAAQEWlp9tu84d+FouUleW5mgAAAAAgUBD6AQhI+cd7SrrQ6cd4TwAAgHKzh34REc63jPgEAAAAAPcj9AMQkHKstlt76BdCpx8AAECFnT9vu83f6ScR+gEAAABAZSD0AxCQci4a72m/pdMPAACg/Aob7ykR+gEAAABAZSD0AxBwDMNwhHshea+CjvGedPoBAACUG6EfAAAAAHgOoR+AgGMxJHu0F0KnHwAAgMsQ+gEAAACA5xD6AQg4Ofm6+ULyOvzC6PQDAACosKJCP/t2AAAAAID7EPoBCDj20M9skoJMtrAvhE4/AACACqPTDwAAAAA8h9APQMCxh372kZ4Sa/oBAAC4wvnzUmioFBRk+z4kxPZvQj8AAAAAcD9CPwABJ8dquw3JH/rR6QcAAFBh6ekXuvskyWSyfU/oBwAAAADuR+gHIODYg70QOv0AAABcKj39wmhPuypVCP0AAAAAoDIQ+gEIOPbxniH5XgEdnX6EfgAAAOVWWOgXHk7oBwAAAACVgdAPQMC5EPox3hMAAMCVCgv9GO8JAAAAAJWD0A9AwLF384Uy3hMAAMCl6PQDAAAAAM8h9AMQcBydfkF0+gEAALhSeroUFua8jU4/AAAAAKgchH4AAk5h4z3D6PQDAACosKI6/VJTPVMPAAAAAAQSQj8AAaew8Z72ADDHKhkGwR8AAEB5sKYfAAAAAHgOoR+AgJNjKdjpF5pv1CfdfgAAAOVD6AcAAAAAnkPoByDg5Fhtt/lDv2CTZP+O0A8AAKB8CP0AAAAAwHMI/QAEnAtr+l3YZjKZHN1+2RZCPwAAgPIg9AMAAAAAzyH0AxBw7KFf/pGekhSW1/lHpx8AAED5FBX6pad7ph4AAAAACCSEfgACzoVOP+fQL4ROPwAAgArJyCg89MvMlHJzPVMTAAAAAAQKQj8AASe7iNAvlE4/AACAcsvNlbKzbSFffvbv6fYDAAAAAPci9AMQcIrq9HOEfnT6AQAAlJk91Cus009iXT8AAAAAcDdCPwABp8jQL4hOPwAAgPKyh35hYc7bCf0AAAAAoHIQ+gEIODkW2y2dfgAAAK5jD/2KGu9J6AcAAAAA7kXoByDg2Dv9Qun0AwAAcBnGewIAAACAZxH6AQgohmE4Qr2QIOf76PQDAAAoP0I/AAAAAPAsQj8AAcViSPZIjzX9AAAAXOf8edstoR8AAAAAeAahH4CAkpMv0Csw3pNOPwAAgHIrak2/sDDn+wEAAAAA7kHoByCg2Lv4gkyS2USnHwAAgKsUNd4zKMi2jU4/AAAAAHAvQj8AAcXe6XfxaE8pX6cfoR8AAECZpadLJpMUGlrwvipVCP0AAAAAwN08GvpNmzZNHTp0UFRUlGrXrq0BAwZoz549xT5mwYIFMplMTl/hF3+UFACKYA/9Lh7tKV0IAnOtlVoSAACAX0hPt3X0mQpeZikigtAPAAAAANzNo6HfV199pYcffljfffed1q5dq5ycHPXs2VPpJSz2EB0drePHjzu+Dh06VEkVA/B1ORbbbWGdfsF5r4i5dPoBAACUWXp6wfX87Aj9AAAAAMD9gj158tWrVzt9v2DBAtWuXVvbtm3TddddV+TjTCaT4uLi3F0eAD+UXcx4T/u2HEI/AACAMjt/vuB6fnaEfgAAAADgfl61pl9ycrIkKTY2ttj90tLS1KBBA9WvX1+33HKLfvnllyL3zcrKUkpKitMXgMDlWNMvqOB9hH4AAADlZx/vWZiwMEI/AAAAAHA3rwn9rFarHnvsMV199dVq2bJlkfs1bdpU77zzjlasWKEPPvhAVqtVXbp00Z9//lno/tOmTVNMTIzjq379+u56CgB8QE4xnX7BJtb0AwAAKK/iQj86/QAAAADA/bwm9Hv44Ye1a9cuLVq0qNj9OnfurKFDh6pt27bq2rWrli1bplq1auntt98udP8JEyYoOTnZ8XXkyBF3lA/ARxQX+oXkvSLmGHT6AQAAlFVxoV94uJSaWrn1AAAAAECg8eiafnZjxozRypUr9fXXX+uSSy4p02NDQkLUrl077du3r9D7w8LCFBYW5ooyAfiB3LzQz97Vl589CLQaksUwFFTIPgAAAChcerptjGdhwsKkM2cqtx4AAAAACDQe7fQzDENjxozRJ598og0bNqhhw4ZlPobFYtHPP/+sunXruqFCAP7GktfEF1TIq19wvu6/XNb1AwAAKJOS1vTLyKjcegAAAAAg0Hi00+/hhx/WwoULtWLFCkVFRSkxMVGSFBMTo4iICEnS0KFDVa9ePU2bNk2SNGXKFF111VVq3Lixzp07p9dee02HDh3S/fff77HnAcB35BpFd/oF5duUY5XCgiqrKgAAAN+XmSlFRRV+X1iYdP585dYDAAAAAIHGo6HfW2+9JUnq1q2b0/b58+dr+PDhkqTDhw/LbL7QknP27FmNGjVKiYmJql69utq3b6/NmzerRYsWlVU2AB9msdpugwqZ3GkymRRitgV+dPoBAACUTVaWFBtb+H10+gEAAACA+3l8vGdhX/bAT5I2bdqkBQsWOL6fOXOmDh06pKysLCUmJmrVqlVq165d5RcPwCdZ7J1+5sLX67Ov65dD6AfAg+bMmaOEhASFh4erU6dO+t///lfs/kuWLFGzZs0UHh6uVq1a6fPPP3fcl5OTo6efflqtWrVS1apVFR8fr6FDh+rYsWNOx0hISJDJZHL6euWVV9zy/AD4p6wsKSSk8PvCw+n0AwAAAAB382joBwCVLdfR6Vd46GcPA+n0A+Apixcv1vjx4zVp0iRt375dbdq0Ua9evXTixIlC99+8ebOGDBmikSNH6scff9SAAQM0YMAA7dq1S5J0/vx5bd++XS+88IK2b9+uZcuWac+ePerfv3+BY02ZMkXHjx93fD3yyCNufa4A/EtWlhQaWvh9oaG28Z8AAAAAAPch9AMQUC50+hV+f4jJ3ulXWRUBgLMZM2Zo1KhRGjFihFq0aKG5c+eqSpUqeueddwrdf/bs2erdu7eefPJJNW/eXFOnTtVf/vIXvfnmm5JsayWvXbtWgwcPVtOmTXXVVVfpzTff1LZt23T48GGnY0VFRSkuLs7xVbVqVbc/XwD+o6ROv5wc2xcAAAAAwD0I/QAEFEteA1/RnX62W8Z7AvCE7Oxsbdu2TT169HBsM5vN6tGjh7Zs2VLoY7Zs2eK0vyT16tWryP0lKTk5WSaTSdWqVXPa/sorr6hGjRpq166dXnvtNeXm5hZ5jKysLKWkpDh9AQhsxYV+9g5A1vUDAAAAAPcJ9nQBAFCZ7GM7gwrP/Bxr+uUahH4AKt+pU6dksVhUp04dp+116tTR7t27C31MYmJiofsnJiYWun9mZqaefvppDRkyRNHR0Y7tjz76qP7yl78oNjZWmzdv1oQJE3T8+HHNmDGj0ONMmzZNL774YlmeHgA/V1Knn2QL/fK99AAAAAAAXIjQD0BAuTDes/DUzx760ekHwB/l5ORo8ODBMgxDb731ltN948ePd/y7devWCg0N1ejRozVt2jSFhYUVONaECROcHpOSkqL69eu7r3gAXi87u+jQz/4ycv585dUDAAAAAIGG0A9AQMnNW6uvqE4/exiYy5p+ADygZs2aCgoKUlJSktP2pKQkxcXFFfqYuLi4Uu1vD/wOHTqkDRs2OHX5FaZTp07Kzc3VwYMH1bRp0wL3h4WFFRoGAghcmZkXxnhezP5ywXhPAAAAAHAf1vQDEFDsnX5BdPoB8EKhoaFq37691q9f79hmtVq1fv16de7cudDHdO7c2Wl/SVq7dq3T/vbAb+/evVq3bp1q1KhRYi07duyQ2WxW7dq1y/lsAASS3FzJai15vCedfgAAAADgPnT6AQgouXlZXrCp8NAvOO+jELmEfgA8ZPz48Ro2bJiuvPJKdezYUbNmzVJ6erpGjBghSRo6dKjq1aunadOmSZLGjh2rrl27avr06erXr58WLVqkrVu3at68eZJsgd/AgQO1fft2rVy5UhaLxbHeX2xsrEJDQ7VlyxZ9//33uv766xUVFaUtW7Zo3Lhxuueee1S9enXP/CAA+JSsLNttUZ1+9u10+gEAAACA+xD6AQgolrwwL7iI8Z50+gHwtDvuuEMnT57UxIkTlZiYqLZt22r16tWqU6eOJOnw4cMymy8Ma+jSpYsWLlyo559/Xs8++6yaNGmi5cuXq2XLlpKko0eP6tNPP5UktW3b1ulcGzduVLdu3RQWFqZFixZp8uTJysrKUsOGDTVu3DinNfsAoDj20I9OPwAAAADwHEI/AAHFkpflFTXe094BSOgHwJPGjBmjMWPGFHrfpk2bCmwbNGiQBg0aVOj+CQkJMoziX9P+8pe/6LvvvitznQBgV1Lox5p+AAAAAOB+rOkHIKDYx3YGldDpl0vmBwAAUGoljfe0h350+gEAAACA+xD6AQgolrxul+AiOv1C8l4V6fQDAAAovZI6/exhIKEfAAAAALgPoR+AgGLv4Cuq088eBuYS+gEAAJRaSaGf2Wzr9mO8JwAAAAC4D6EfgIBicYz3LKrTjzX9AAAAyqqk0E+yhX50+gEAAACA+xD6AQgYhmE4Ov2KGu8Z7Aj9KqsqAAAA31fSmn6SFB5Opx8AAAAAuBOhH4CAkT/HCy5ivKd9TT/GewIAAJReaTr9QkPp9AMAAAAAdyL0AxAwLPlSv6AiOv1CTIz3BAAAKKvMTNttcaEfnX4AAAAA4F6EfgACRq5xIcgLKqLTzz7eM/++AAAAKB6dfgAAAADgeYR+AAKGJa97zyzJbGJNPwAAAFcpzZp+YWF0+gEAAACAOxH6AQgYlrzmvaBiXvnsa/ox3hMAAKD0Shv60ekHAAAAAO5D6AcgYOTmBXlBRXT5SVKIfbwnoR8AAECpZWVJZrMUFFT0PoR+AAAAAOBehH4AAkZuXo5nH+FZGHvoZzEkK+v6AQAAlEpWVvFdfhKhHwAAAAC4G6EfgIBhMeydfkXvkz8QzGVdPwAAgFLJypJCQorfh9APAAAAANyL0A9AwLDkhXjBxYz3DM53F+v6AQAAlE5pO/0yMiqnHgAAAAAIRIR+AAJGrr3Tr5hXPpPJ5Aj+chnvCQAAUCp0+gEAAACA5xH6AQgY9vGexXX6SRfW9aPTDwAAoHRKE/qFh9PpBwAAAADuROgHIGDYx3sW1+knXVjXjzX9AAAASqc0oV9oKKEfAAAAALgToR+AgOEY70mnHwAAgEtlZpa+048J6gAAAADgHoR+AAKGvdOvpPGewXmvjIR+AAAApZOVZevkK05oqGSxSDk5lVMTAAAAAAQaQj8AAcPR6VfCK1+IY7wnoR8AAEBpZGVJwcHF7xMebrtlxCcAAAAAuAehH4CAYQ/xSuz0MzHeEwAAoCxK0+kXFma7PX/e/fUAAAAAQCAi9AMQMCx5GV7pO/3cXBAAAICfyMoqeU0/e+hHpx8AAAAAuAehH4CAYTFK1+kXwpp+AAAAZVKW0I9OPwAAAABwD0I/AAHDkte5F1R85qdge6efQegHAABQGpmZhH4AAAAA4GmEfgAChj3Es4d6RbGP96TTDwAAoHQY7wkAAAAAnkfoByBgONb0K2G8Z7Aj9HN3RQAAAP4hK0sKDS1+n/Bw2y2dfgAAAADgHoR+AAJGbl7nXknjPe1r+uXS6QcAAFAqdPoBAAAAgOcR+gEIGI5OP8Z7AgAAuFRZQj86/QAAAADAPQj9AAQMe+decAmdfsF54z/p9AMAACidzMySQz/7+E86/QAAAADAPQj9AAQMi5E33rPUnX5uLwkAAMAvlGZNP5PJtq4fnX4AAAAA4B6EfgAChn28Z4mdfnmvjIz3BAAAKJ3s7JI7/STbiE86/QAAAADAPQj9AAQM+7jO0nb65RqEfgAAAKVRmk4/yRb60ekHAAAAAO5B6AcgYFzo9Cs+9At2jPck9AMAACiJxWL7Kk2nX3g4nX4AAAAA4C6EfgAChqPTr4Txno5OP9b0AwAAKFFWlu22tOM96fQDAAAAAPcg9AMQMOydfqUd70mnHwAAQMkI/QAAAADAOxD6AQgY9jX6gkvo9AvOe2Uk9AMAACiZPfQrzZp+oaGM9wQAAAAAdyH0AxAwLI7xniWs6Weyj/ck9AMAACgJnX4AAAAA4B2CPV0AAFSW3LwMz97Jd+bMGaWmphbYL9MqSVWVa0gHDx5SYRlhVFSUYmNj3VYrAACAryhL6BcaSugHAAAAAO5C6AcgYOTv9Dtz5owaNW6sc2fPFtgvNKKqXvz2oCTp8ubNlZNZcAZVterVtX/fPoI/AAAQ8MoS+oWHSykp7q0HAAAAAAIVoR+AgGFxdPqZdDo1VefOntWUxatVIy7eaT9Dkr3/b8aa/8lsOI/5PJ14TBPv6K3U1FRCPwAAEPDKsqZfWBhr+gEAAACAuxD6AQgIVsOQPboLyjeus0ZcvGrVu7TA/qkpOZKk2LhLFGIufg1AAACAQJaZabtlTT8AAAAA8CyzpwsAgMqQa73w7+BShHj2XS5q8gMAAMBFyjLek04/AAAAAHAfQj8AAcGSL70LKkXjnv3F0SpSPwAAgOKUdbwnnX4AAAAA4B6EfgACQm5e6GeSZDaVnPqZ6PQDAAAolbJ0+oWH0+kHAAAAAO5C6AcgIFjyxnsGl/JVzyxb6mcl9AMAAChWWTr9QkNtoR8frAIAAAAA1yP0AxAQ7J1+QaXo8pMurOlnLX43AACAgFfWTj/DuPAYAAAAAIDrEPoBCAiOTr9Shn6M9wQAACidrCzbtVNQUMn7hoXZbhnxCQAAAACuR+gHICBY7J1+pR7vaWMl9QMAAChWVpZtbGdpPltlD/3S091bEwAAAAAEIkI/AAEht7ydfm6qBwAAwF9kZZVutKckRUTYbgn9AAAAAMD1CP0ABIQyd/rlpX5WUj8AAIBi2Tv9SsMe+qWlua8eAAAAAAhUhH4AAkKuPfQrZaffhfGebioIAADAT9DpBwAAAADegdAPQECw5I33DCpd5pdvvCepHwAAQHEyM8se+tHpBwAAAACuR+gHICDYO/2CzaXs9MvbjU4/AACA4pVlvGd4uO2W0A8AAAAAXI/QD0BAsOSFd6Xu9BNr+gEAAJQGa/oBAAAAgHcg9AMQEHKt5ev0I/MDAAAoXlnW9AsKksLCCP0AAAAAwB0I/QAEBHunX7CprOM9if0AAACKk5UlBQeXfv+ICEI/AAAAAHAHQj8AAcGS1+lX+vGeNkR+AAAAxStLp59E6AcAAAAA7kLoByAg5OZ17AWVerwna/oBAACUBqEfAAAAAHgHQj8AAcFitd0Gl7LT78J4T/fUAwAA4C8yMwn9AAAAAMAbEPoBCAhl7fTLP97TYF0/AACAIpW10y88XEpPd189AAAAABCoCP0ABARLXm5X2jX98meDRH4AAABFy8qSQkNLvz+dfgAAAADgHoR+AAJCbt6czmBT2Tr9JEZ8AgAAFKc8a/qlprqvHgAAAAAIVIR+AAKCo9OvtOM9TSanEZ8AAAAoXFnX9AsPp9MPAAAAANyB0A9AQLAY9k6/0j/Gng/S6QcAAFC08nT6EfoBAAAAgOt5NPSbNm2aOnTooKioKNWuXVsDBgzQnj17SnzckiVL1KxZM4WHh6tVq1b6/PPPK6FaAL7MPt6ztJ1+0oURn4ZB6gcAAFAU1vQDAAAAAO/g0dDvq6++0sMPP6zvvvtOa9euVU5Ojnr27Kn09PQiH7N582YNGTJEI0eO1I8//qgBAwZowIAB2rVrVyVWDsDX2Md7lqvTz/XlAAAA+A1CPwAAAADwDsGePPnq1audvl+wYIFq166tbdu26brrriv0MbNnz1bv3r315JNPSpKmTp2qtWvX6s0339TcuXPdXjMA3+To9DOVPvUzm0ySDMZ7AgAAFCM7u+zjPdPTJcOQynBpBgAAAAAogVet6ZecnCxJio2NLXKfLVu2qEePHk7bevXqpS1btri1NgC+zd7pF1SGV70L4z1dXg4AAIDfKM+aflarlJnpvpoAAAAAIBB5tNMvP6vVqscee0xXX321WrZsWeR+iYmJqlOnjtO2OnXqKDExsdD9s7KylJWV5fg+JSXFNQUD8Cn2Tr+QMnX62W6tIvUDAAAojNUq5eaWPfSTbN1+9n8DAAAAACrOazr9Hn74Ye3atUuLFi1y6XGnTZummJgYx1f9+vVdenwAviE3r10vyFz60M+eDzLeEwAAoHD2z1eWJ/RjXT8AAAAAcC2vCP3GjBmjlStXauPGjbrkkkuK3TcuLk5JSUlO25KSkhQXF1fo/hMmTFBycrLj68iRIy6rG4DvsFhtt8FleNUz5w34ZLwnAABA4eyhX2ho6R9D6AcAAAAA7uHR0M8wDI0ZM0affPKJNmzYoIYNG5b4mM6dO2v9+vVO29auXavOnTsXun9YWJiio6OdvgAEHnunX3C5xnsCAACgMHT6AQAAAID38Gjo9/DDD+uDDz7QwoULFRUVpcTERCUmJiojI8Oxz9ChQzVhwgTH92PHjtXq1as1ffp07d69W5MnT9bWrVs1ZswYTzwFAD4i19HpV/bxnnT6Aahsc+bMUUJCgsLDw9WpUyf973//K3b/JUuWqFmzZgoPD1erVq30+eefO+7LycnR008/rVatWqlq1aqKj4/X0KFDdezYMadjnDlzRnfffbeio6NVrVo1jRw5Umm8Iw+gBJmZtls6/QAAAADA8zwa+r311ltKTk5Wt27dVLduXcfX4sWLHfscPnxYx48fd3zfpUsXLVy4UPPmzVObNm20dOlSLV++XC1btvTEUwDgIy50+pX+MfYXSKtI/QBUnsWLF2v8+PGaNGmStm/frjZt2qhXr146ceJEoftv3rxZQ4YM0ciRI/Xjjz9qwIABGjBggHbt2iVJOn/+vLZv364XXnhB27dv17Jly7Rnzx7179/f6Th33323fvnlF61du1YrV67U119/rQceeMDtzxeAbytP6Bcebrsl9AMAAAAA1wr25MmNUrTPbNq0qcC2QYMGadCgQW6oCIA/shqGrHkvN2Xp9DPntfpZyfwAVKIZM2Zo1KhRGjFihCRp7ty5WrVqld555x0988wzBfafPXu2evfurSeffFKSNHXqVK1du1Zvvvmm5s6dq5iYGK1du9bpMW+++aY6duyow4cP69JLL9Vvv/2m1atX64cfftCVV14pSXrjjTfUt29fvf7664qPj3fzswbgq+j0AwAAAADv4dFOPwCoDLn5FuULKsOafoz3BFDZsrOztW3bNvXo0cOxzWw2q0ePHtqyZUuhj9myZYvT/pLUq1evIveXpOTkZJlMJlWrVs1xjGrVqjkCP0nq0aOHzGazvv/++wo8IwD+rjyhX2ioZDYT+gEAAACAq3m00w8AKoMlX2oXXIaPOlwY7wkAlePUqVOyWCyqU6eO0/Y6depo9+7dhT4mMTGx0P0TExML3T8zM1NPP/20hgwZoujoaMcxateu7bRfcHCwYmNjizxOVlaWsrKyHN+npKQU/+QA+KXyhH4mk1SlipSe7p6aAAAAACBQ0ekHwO/l5s3nNOvCyM7SsO9qpdUPgJ/IycnR4MGDZRiG3nrrrQoda9q0aYqJiXF81a9f30VVAvAl9tAvLKxsj4uIoNMPAAAAAFyN0A+A38stx3p+0oUXSDI/AJWlZs2aCgoKUlJSktP2pKQkxcXFFfqYuLi4Uu1vD/wOHTqktWvXOrr87Mc4ceKE0/65ubk6c+ZMkeedMGGCkpOTHV9Hjhwp9fME4D/K0+knEfoBAAAAgDsQ+gHwe/ZOv7KM9pQudAUy3hNAZQkNDVX79u21fv16xzar1ar169erc+fOhT6mc+fOTvtL0tq1a532twd+e/fu1bp161SjRo0Cxzh37py2bdvm2LZhwwZZrVZ16tSp0POGhYUpOjra6QtA4CH0AwAAAADvwZp+APyexd7pV4bRntKF8Z50+gGoTOPHj9ewYcN05ZVXqmPHjpo1a5bS09M1YsQISdLQoUNVr149TZs2TZI0duxYde3aVdOnT1e/fv20aNEibd26VfPmzZNkC/wGDhyo7du3a+XKlbJYLI51+mJjYxUaGqrmzZurd+/eGjVqlObOnaucnByNGTNGd955p+Lj4z3zgwDgE8ob+oWHE/oBAAAAgKsR+gHwezl5nX5BZe30y7s1JBmGIVMZQ0MAKI877rhDJ0+e1MSJE5WYmKi2bdtq9erVqlOnjiTp8OHDMpsvvKB16dJFCxcu1PPPP69nn31WTZo00fLly9WyZUtJ0tGjR/Xpp59Kktq2bet0ro0bN6pbt26SpA8//FBjxoxR9+7dZTabdfvtt+vvf/+7+58wAJ+WmSkFBdm+yoJOPwAAAABwPUI/AH7PYh/vWcbQLv8SgFZJZXwvCwDKbcyYMRozZkyh923atKnAtkGDBmnQoEGF7p+QkCCjFC3LsbGxWrhwYZnqBIDMzLJ3+Um2Tr/UVNfXAwAA4Cpvv/220viUkpPIyEiNHj3a02UAKAahHwC/l2sf72kuf6eeYUii0Q8AAMBJZqYUFlb2x4WHS2fPur4eAAAAV0lLS1Mqn1IC4GMI/QD4vVz7eM8yhnYmk0lm2br8rKzrBwAAUEB5O/0iIqQjR1xfDwAAgDtERER4ugRJUkZGhuPflVlT/vMC8G6EfgD8Xm7eWLuQcnT6mUySDNu6fgAAAHBWkdAvPd319QAAALhaRESE+vXr5+kyJEmrVq1SRkZGpddkPy8A72f2dAEA4G65VtttUDlCP/tDrKVYDwsAACDQZGSUP/RjiRwAAAAAcC1CPwB+z97pF1yONfnMeQv5Md4TAACgIDr9AAAAAMB7EPoB8HuWvMQuuLzjPcV4TwAAgMJkZkohIWV/XESErUvQYnF9TQAAAAAQqAj9APi93LzELthUkfGeLiwIAADAT1Sk00+i2w8AAAAAXInQD4Dfy81L7ILK8YpnjwlZ0w8AAKCginT6SazrBwAAAACuROgHwO/ZQ7+QCnT6EfkBAAAUlJFRsU4/Qj8AAAAAcB1CPwB+zz7eszydfua8oJDxngAAAAVVdLwnoR8AAAAAuA6hHwC/Z+/0Y00/AAAA18rMlMLCyv648HDbLaEfAAAAALgOoR8Av2fJC+yCzeUI/RzHIPUDAAC4WEU7/dLTXVsPAAAAAAQyQj8Afs/R6VeOV7wgxnsCAAAUifGeAAAAAOA9CP0A+L3cvC69oIqM93RlQQAAAH6C0A8AAAAAvAehHwC/l5uX2IWUZ7ynY00/Wv0AAAAuVt7QLyjIthYgoR8AAAAAuA6hHwC/Zx/vGVT2zE9mxnsCAAAUqbyhnyRVqSKlpLi2HgAAAAAIZIR+APyefbxncIU6/VxZEQAAgH/IypJCQsr32MhIKTnZtfUAAAAAQCAj9APg9yx54z2DK7CmnyFGfAIAAORnGLbQr7ydfpGR0rlzLi0JAAAAAAIaoR8Av3eh06/sj83/ELr9AAAALsjKst2WN/SrWpXQDwAAAABcidAPgN+zr+lXnvGeJpPJ8UJJ6AcAAHBBRobttiKh39mzrqsHAAAAAAIdoR8Av5ebF9aVZ7ynlH9dP1I/AAAAu8xM2y3jPQEAAADAOxD6AfB79k6/oHK+4jlCPxfVAwAA4A8I/QAAAADAuxD6AfBrhmHIUuFOP9vjGO8JAABwAaEfAAAAAHgXQj8Afs2SL6gLrminH6EfAACAgytCv+RkiQnqAAAAAOAahH4A/FpuvqSuomv6WXhHCgAAwMEVoV9OjpSR4bqaAAAAACCQEfoB8Gu5eTmdSRfCu7IKYrwnAABAAa4I/SRGfAIAAACAqxD6AfBr9k6/YLNkKm+nX94toR8AAMAF9tAvLKx8jyf0AwAAAADXIvQD4Ndy80ZyBpUz8JPyr+lH6gcAAGBHpx8AAAAAeBdCPwB+Lddquw0u72xPSWb7eE9XFAQAAOAnCP0AAAAAwLsQ+gHwa5a87rzg8md++Tr9XFAQAACAn7CHfiEh5Xs8oR8AAAAAuBahHwC/dmFNv4qP97Qw3hMAAMAhM1MKDpaCgsr3+LAw2+MJ/QAAAADANQj9APg1x3jPCqzpZ18PkE4/AACACzIzbcFdeZlMUlQUoR8AAAAAuAqhHwC/lmsf71mBVzvGewIAABSUmVn+9fzsIiMJ/QAAAADAVQj9APg1+3jPoAp0+tlfKA1JBiM+AQAAJBH6AQAAAIC3IfQD4Ndy8zI6V3T6SXT7AQAA2GVkVDz0q1qV0A8AAAAAXIXQD4Bfs1jt4z3L3+lnMplkf7TVBTUBAAD4A1d0+lWtKp0965p6AAAAACDQEfoB8GuOTr8KjPeUWNcPAADgYoz3BAAAAADvEuzpAgDAnXIdnX4VO47ZJFkMycKafgAAAJJcF/rt2eOaegAA8Advv/220tLSFBkZqdGjR3u6HABehtcIlITQD4Bfs4d+QRXs9AsymZQjg04/AACAPJmZUkhIxY5Bpx8AAM7S0tKUmprq6TIAeCleI1ASxnsC8GuO8Z4VWNNPYrwnAADAxVzV6ZecLDFMAQAAAAAqjtAPgF9zjPesWObneLG08o4UAACAJCkjwzWdfjk5tmMBAAAAACqG0A+AX7OvwVfxTj/b4+n0AwAAsHFVp5/EiE8AAAAAcAVCPwB+Lddquw2qaKeffbxnxQ4DAADgNzIzpbCwih2D0A8AAAAAXIfQD4Bfy83r9Atx0Zp+FsZ7AgAASKLTDwAAAAC8DaEfAL9mX9MvqIKhXxDjPQEAAJwQ+gEAAACAdyH0A+DX7OM9g1013pPQDwAAQBKhHwAAAAB4G0I/AH7NPo4z2EXjPa2M9wQAAJDkmtAvLEwKDib0AwAAAABXIPQD4NcudPq5ak2/ChYEAADgJ7KyKh76mUy2bj9CPwAAAACoOEI/AH4t17Cv6Vex49jX9LMYErkfAACAazr9JEI/AAAAAHAVQj8Afi03bxG+kAqO9wxyengFFwgEAADwcRaLlJND6AcAAAAA3oTQD4Bfy81rywuq8HhPkyPqM0y8dAIAgMCWmWm7dUXoV7UqoR8AAAAAuALvXAPwa/ZOv2AXvNrZu/2shH4AACDAuTL0i4yUzp6t+HEAAAAAINDxzjUAv2bJW9MvuIKdftKFbkE6/QAU5o8//vB0CQBQaVwd+tHpBwAAAAAVxzvXAPyWYRjKtdr+HVzBNf0kKSjvFZPQD0BhGjdurOuvv14ffPCBMu3vhgOAn3Jl6BcVJZ0+XfHjAAAAAECg451rAH7LKilvST8FVzzzkz03NMy8dAIoaPv27WrdurXGjx+vuLg4jR49Wv/73/88XRYAuIUrQ7/q1aVTpyp+HAAAAAAIdLxzDcBv2dfzk1zU6cd4TwDFaNu2rWbPnq1jx47pnXfe0fHjx3XNNdeoZcuWmjFjhk6ePOnpEgHAZVwZ+sXESKmpUkZGxY8FAAAAAIGMd64B+C37aE9JCnJBp5/9GIR+AIoTHBys2267TUuWLNGrr76qffv26YknnlD9+vU1dOhQHT9+3NMlAkCFubrTT5L4bAQAAAAAVEy53rm+7LLLdLqQRRfOnTunyy67rMJFAYAr5Bq2Tr8gk2Qy0ekHoHJs3bpVDz30kOrWrasZM2boiSee0P79+7V27VodO3ZMt9xyi6dLBIAKs4d+YWEVP1a1arZbQj8AAAAAqJjg8jzo4MGDslgsBbZnZWXp6NGjFS4KAFzBPt7TFaM9pQudflZCPwCFmDFjhubPn689e/aob9++eu+999S3b1+Z89YBbdiwoRYsWKCEhATPFgoALuDKTj976HfiRMWPBQAAAACBrEyh36effur495dffqmYmBjH9xaLRevXr+eNLABeIydvvGeIi0M/Ov0AFOatt97Sfffdp+HDh6tu3bqF7lO7dm39+9//ruTKAMD13BH60ekHwNfk5uZq06ZN2r9/v+666y5FRUXp2LFjio6OVmRkpKfLAwAAAahMod+AAQMk2cbkDRs2zOm+kJAQJSQkaPr06S4rDgAqIiev0y/UVaGf2T7eM8glxwPgX9auXatLL73U0dlnZxiGjhw5oksvvVShoaEFrqEAwBe5MvQLDZWqVqXTD4BvOXTokHr37q3Dhw8rKytLN954o6KiovTqq68qKytLc+fO9XSJAAAgAJWpXcVqtcpqterSSy/ViRMnHN9brVZlZWVpz549uummm9xVKwCUSbbFFvqFuKgxz97pJ5NJIeFVXHNQAH6jUaNGOnXqVIHtZ86cUcOGDT1QEQC4jz30CwlxzfGqV6fTD4BvGTt2rK688kqdPXtWERERju233nqr1q9f78HKAABAICvXmn4HDhxwdR0A4HL2Tj9Xjfc05X0ZkqpWr+GSYwLwH4ZhFLo9LS1N4eHhlVwNALhXZqatQ8/kmsssxcTQ6QfAt3zzzTfavHmzQi9qeU5ISNDRo0c9VBUAAAh05Qr9JGn9+vVav369o+Mvv3feeafChQFARbl6vKfJZJLZJFkMKZLQD0Ce8ePHS7K9RkycOFFVqlzoBLZYLPr+++/Vtm1bD1UHAO5hD/1chdAPgK+xWq2yWCwFtv/555+KioryQEUAAADlDP1efPFFTZkyRVdeeaXq1q0rk6s+3gkALuTo9Aty3WtUUF7oV7V6TZcdE4Bv+/HHHyXZOv1+/vlnp097h4aGqk2bNnriiSc8VR4AuEV6uhQW5rrjVa8uJSW57ngA4G49e/bUrFmzNG/ePEm2D4ClpaVp0qRJ6tu3r4erAwAAgapcod/cuXO1YMEC3Xvvva6uBwBcJtvF4z0lKchkG/DJeE8Adhs3bpQkjRgxQrNnz1Z0dLSHKwIA90tPl/ItYVVhMTHSzz+77ngA4G7Tp09Xr1691KJFC2VmZuquu+7S3r17VbNmTX300UeeLg8AAASocoV+2dnZ6tKli6trAQCXcvWafpIUZJZkYU0/AAXNnz/f0yUAQKVxdehXvbp06pTrjgcA7nbJJZfop59+0qJFi7Rz506lpaVp5MiRuvvuuxXhyhdIAACAMihX6Hf//fdr4cKFeuGFFyp08q+//lqvvfaatm3bpuPHj+uTTz7RgAEDitx/06ZNuv766wtsP378uOLi4ipUCwDfc+bMGaWmphZ5/+nzoZJClJGWokOHTjvd9+eff5brnHT6Acjvtttu04IFCxQdHa3bbrut2H2XLVtWSVUBgPulpUnh4a47XkyMdP68LUysWtV1xwUAdwoODtY999zj6TIAAAAcyhX6ZWZmat68eVq3bp1at26tkJAQp/tnzJhRquOkp6erTZs2uu+++0p8oyy/PXv2OI3Oql27dqkfC8A/nDlzRo0aN9a5s2eL3GfAs6+p08DhenPWTK2f93qh++Tk5JbpvPblAVnTD4AkxcTEONY2jomJ8XA1AFB50tNdG/pVr267PXmS0A+Ab3jvvfeKvX/o0KGVVAkAAMAF5Qr9du7cqbZt20qSdu3a5XSf/Y2v0ujTp4/69OlT5vPXrl1b1apVK/PjAPiP1NRUnTt7VlMWr1aNuPhC98kIj1GOpH7D/6rb7nb+H679P/+oGWOGyWIpa+hne42j0w+A5DzSk/GeAAKJqzv97P97d+KElJDguuMCgLuMHTvW6fucnBydP39eoaGhqlKlCqEfAADwiHKFfhs3bnR1HWXStm1bZWVlqWXLlpo8ebKuvvrqIvfNyspSVlaW4/uUlJTKKBFAJakRF69a9S4t9L7E87nKyTUUVa2aYkKdQ7rTicfKdb4LnX6EfgCcZWRkyDAMValSRZJ06NAhffLJJ2rRooV69uzp4eoAwLXS0ly7pl/+0A8AfMHZQqbO7N27V3/961/15JNPeqAiAAAAyezpAsqibt26mjt3rj7++GN9/PHHql+/vrp166bt27cX+Zhp06YpJibG8VW/fv1KrBiAJ1kN261Zpe9ALonZHvpVI/QD4OyWW25xjHk6d+6cOnbsqOnTp+uWW27RW2+95eHqAMC10tNdG/rZJySfPOm6YwJAZWvSpIleeeWVAl2AAAAAlaVcnX7XX399sWM8N2zYUO6CitO0aVM1bdrU8X2XLl20f/9+zZw5U++//36hj5kwYYLGjx/v+D4lJYXgDwgQeZmfyjB1uEQXxnuyph8AZ9u3b9fMmTMlSUuXLlVcXJx+/PFHffzxx5o4caL++te/erhCAHAdV4/3DAmRoqLo9APg+4KDg3XsWPkmy1SmyZMne7oEAEAFpKam8lru5Tz136dcnX5t27ZVmzZtHF8tWrRQdna2tm/frlatWrm6xmJ17NhR+/btK/L+sLAwRUdHO30BCAxWwxb7mV0Z+uW9aoZHRsliFL8vgMBy/vx5RUVFSZLWrFmj2267TWazWVdddZUOHTpUpmPNmTNHCQkJCg8PV6dOnfS///2v2P2XLFmiZs2aKTw8XK1atdLnn3/udP+yZcvUs2dP1ahRQyaTSTt27ChwjG7duslkMjl9Pfjgg2WqG0DgcHWnnyRVr06nHwDf8emnnzp9rVixQnPnztU999xT7DI03oA3iX1Damqqp0sA4IV4bfAdnvp7W65OP/un2C82efJkpaWlVaigstqxY4fq1q1bqecE4BscnX4uPKZZkgxDMpmUZbjyyAB8XePGjbV8+XLdeuut+vLLLzVu3DhJ0okTJ8r0oaPFixdr/Pjxmjt3rjp16qRZs2apV69e2rNnj2rXrl1g/82bN2vIkCGaNm2abrrpJi1cuFADBgzQ9u3b1bJlS0lSenq6rrnmGg0ePFijRo0q8tyjRo3SlClTHN/b1ycEgIulp7u200+yjfik0w+ArxgwYIDT9yaTSbVq1dINN9yg6dOne6aoUiDw8y2TJ0/mvxkAB14PfI8nXsfLFfoV5Z577lHHjh31+uuvl2r/tLQ0py69AwcOaMeOHYqNjdWll16qCRMm6OjRo471cWbNmqWGDRvqiiuuUGZmpv71r39pw4YNWrNmjSufBgA/4VjTz4XzPU0mk0yGVYYpSJlWQj8AF0ycOFF33XWXxo0bp+7du6tz586SbF1/7dq1K/VxZsyYoVGjRmnEiBGSpLlz52rVqlV655139MwzzxTYf/bs2erdu7eefPJJSdLUqVO1du1avfnmm5o7d64k6d5775UkHTx4sNhzV6lSRXFxcaWuFUDgckfoV60anX4AfIfVanXLcbOyspSVleX4PiUlxS3nge/w5hDZ31V2c4svSEtL43cS8HIuDf22bNmi8DL8n9/WrVt1/fXXO763r703bNgwLViwQMePH9fhw4cd92dnZ+vxxx/X0aNHVaVKFbVu3Vrr1q1zOgYA2NlDP1dHcybDIkNByiD0A5DPwIEDdc011+j48eNq06aNY3v37t116623luoY2dnZ2rZtmyZMmODYZjab1aNHD23ZsqXQx2zZssVp/WJJ6tWrl5YvX17m5/Dhhx/qgw8+UFxcnG6++Wa98MILRXb78YYUELiys6XcXNeP96xWTfrzT9ceEwB8zbRp0/Tiiy96ugx4EUb5wZsYhsHvJODlyhX63XbbbU7fG4ah48ePa+vWrXrhhRdKfZxu3brJMIpeFGvBggVO3z/11FN66qmnylQrgMBkGIZjvKcr1/STJLPVKmuQdJ7QD8BF4uLiCnTKdezYsdSPP3XqlCwWi+rUqeO0vU6dOtq9e3ehj0lMTCx0/8TExFKfV5LuuusuNWjQQPHx8dq5c6eefvpp7dmzR8uWLSt0f96QAgKX/UPv7uj0+/FH1x4TAFzp4g9aFWfGjBnlOseECROczpOSkqL69euX61jwD/Z1w1H50tLSin3vOhCZTCZFRkZ6uoyAReCK0ihX6BcTE+P0vdlsVtOmTTVlyhT17NnTJYUBQEXkvyRzdehnMiySRKcfACfp6el65ZVXtH79ep04caLAyKc//vjDQ5WVzgMPPOD4d6tWrVS3bl11795d+/fvV6NGjQrszxtSQOBKT7fduqPT7+RJx/LJAOB1fizlJxNMFXgRCwsLU1hYWLkfD//z+OOPe7qEgDV9+nRClotERkbyO+lBrOmH0ihX6Dd//nxX1wEALpX/g1iufs/InBf60ekHIL/7779fX331le69917VrVu3XG/21KxZU0FBQUpKSnLanpSUVORae3FxcWXav7Q6deokSdq3b1+hoR9vSAGBy52hX1aWlJoqRUe79tgA4AobN270dAkVNnnyZN409iH8twKQH6/hvscT/70qtKbftm3b9Ntvv0mSrrjiCrVr184lRQFARdn7a0yq2KcsC2PK6945bzW79LgAfNsXX3yhVatW6eqrry73MUJDQ9W+fXutX79eAwYMkCRZrVatX79eY8aMKfQxnTt31vr16/XYY485tq1du1adO3cudx2StGPHDklS3bp1K3QcAP7HneM9JVu3H6EfALgPbxr7BsZ6AihMVFQUHag+wlN/a8sV+p04cUJ33nmnNm3apGp5/2d27tw5XX/99Vq0aJFq1arlyhoBoMzsnX7uGA1Fpx+AwlSvXl2xsbEVPs748eM1bNgwXXnllerYsaNmzZql9PR0jRgxQpI0dOhQ1atXT9OmTZMkjR07Vl27dtX06dPVr18/LVq0SFu3btW8efMcxzxz5owOHz6sY8eOSZL27Nkj6cIahPv379fChQvVt29f1ahRQzt37tS4ceN03XXXqXXr1hV+TgD8i7s6/ewvoceOSYU0GAOA19m6dav+85//6PDhw8rOzna6r6h1kb0FoZ/3YqQkgNKIiopi1CoKVa42lUceeUSpqan65ZdfdObMGZ05c0a7du1SSkqKHn30UVfXCABlZs1b1c8dvXgm64U1/VjQGYDd1KlTNXHiRJ0/f75Cx7njjjv0+uuva+LEiWrbtq127Nih1atXq06dOpKkw4cP6/jx4479u3TpooULF2revHlq06aNli5dquXLl6tly5aOfT799FO1a9dO/fr1kyTdeeedateunebOnSvJ1mG4bt069ezZU82aNdPjjz+u22+/XZ999lmFngsA/2QP/Vzd6Wf/7Oiff7r2uADgDosWLVKXLl3022+/6ZNPPlFOTo5++eUXbdiwQTExMZ4uDwAABKhydfqtXr1a69atU/PmzR3bWrRooTlz5qhnz54uKw4AyqsyOv1yZVKWxVB4MB1/AGyfyN2/f7/q1KmjhIQEhYSEON2/ffv2Uh9rzJgxRY7z3LRpU4FtgwYN0qBBg4o83vDhwzV8+PAi769fv76++uqrUtcHILC5a7xn1apSZKR05IhrjwsA7vDyyy9r5syZevjhhxUVFaXZs2erYcOGGj16NOPRAQCAx5Qr9LNarQXeyJKkkJAQWa3WQh4BAJXLmhf6meX6QM4k6fy5M6pSLVapOVaFB7O2HwA51uADAH/nrvGeklS7Np1+AHzD/v37HVMUQkNDlZ6eLpPJpHHjxumGG27Qiy++6OEKAQBAICpX6HfDDTdo7Nix+uijjxQfHy9JOnr0qMaNG6fu3bu7tEAAKA/70E13dPpJUvKJY47Qr5Yb3vAC4HsmTZrk6RIAoFKkpUmhoVJQkOuPXbMmnX4AfEP16tUd667Vq1dPu3btUqtWrXTu3LkKj3sHAAAor3K1p7z55ptKSUlRQkKCGjVqpEaNGqlhw4ZKSUnRG2+84eoaAaDMHJ1+7gr9kmzraaXm0N0M4IJz587pX//6lyZMmKAzZ85Iso31PHr0qIcrAwDXSU93T5efZFvX7/Bh9xwbAFxh165dkqTrrrtOa9eulWQbtT527FiNGjVKQ4YM4QPxAADAY8rV6Ve/fn1t375d69at0+7duyVJzZs3V48ePVxaHACUlzVvUT93Dd5MOZkX+mUT+gGw2blzp3r06KGYmBgdPHhQo0aNUmxsrJYtW6bDhw/rvffe83SJAOAS7g79fvjBPccGAFdo3bq1OnTooAEDBjjWVH7uuecUEhKizZs36/bbb9fzzz/v4SoBAECgKtP74Rs2bFCLFi2UkpIik8mkG2+8UY888ogeeeQRdejQQVdccYW++eYbd9UKAKXm9vGeScckSak5FvecAIDPGT9+vIYPH669e/cqPDzcsb1v3776+uuvPVgZALhWWpqU72XOpWrXlk6ckLKy3HN8AKior776SldccYWmTZum5s2ba9iwYfr222/1zDPP6NNPP9X06dNVvXp1T5cJAAACVJlCv1mzZmnUqFGKjo4ucF9MTIxGjx6tGTNmuKw4ACivC+M93ZP6JZ+g0w+Asx9++EGjR48usL1evXpKTEz0QEUA4B7u7vSTJKYiA/BW1157rd555x0dP35cb7zxhg4ePKiuXbvq8ssv16uvvsp1HwAA8KgyhX4//fSTevfuXeT9PXv21LZt2ypcFABUlKPTz03HT3F0+hH6AbAJCwtTSkpKge2///67atnfxQYAP5Ce7t5OP0n680/3HB8AXKVq1aoaMWKEvvrqK/3+++8aNGiQ5syZo0svvVT9+/f3dHkAACBAlSn0S0pKUkhISJH3BwcH6+TJkxUuCgAqyrGmn9vHexL6AbDp37+/pkyZopycHEmSyWTS4cOH9fTTT+v222/3cHUA4DppaVJYmHuObf+MxJEj7jk+ALhD48aN9eyzz+r5559XVFSUVq1a5emSAABAgCpT6FevXj3t2rWryPt37typunXrVrgoAKiovMzPbZ1+ySdsoV+mxVC2xShhbwCBYPr06UpLS1OtWrWUkZGhrl27qnHjxoqKitJLL73k6fIAwGXS0tw33jMiQoqKIvQD4Du+/vprDR8+XHFxcXryySd122236dtvv/V0WQAAIEAFl2Xnvn376oUXXlDv3r0VftE8l4yMDE2aNEk33XSTSwsEgPKw99+5a02/rPQ0BctQrkxKy7EqNijILecB4DtiYmK0du1affvtt/rpp5+Ulpamv/zlL+rRo4enSwMAl0pPl2Jj3Xf82rUJ/QB4t2PHjmnBggVasGCB9u3bpy5duujvf/+7Bg8erKpVq3q6PAAAEMDKFPo9//zzWrZsmS6//HKNGTNGTZs2lSTt3r1bc+bMkcVi0XPPPeeWQgGgLBydfu5q9ZNUxWwoxWpSSo5FseGEfkAgs1qtWrBggZYtW6aDBw/KZDKpYcOGiouLk2EYMrnzxQgAKllamhQf777j16rFmn4AvFefPn20bt061axZU0OHDtV9993neH8MAADA08oU+tWpU0ebN2/WX//6V02YMEFG3rvqJpNJvXr10pw5c1SnTh23FAoAZeHo9HPjOSLMhlKsUmo26/oBgcwwDPXv31+ff/652rRpo1atWskwDP32228aPny4li1bpuXLl3u6TABwmfR09433lGyh3+HD7js+AFRESEiIli5dqptuuklBTHwBAABepkyhnyQ1aNBAn3/+uc6ePat9+/bJMAw1adJE1atXd0d9AFAuVseHEtx3jipmq6QgpeYQ+gGBbMGCBfr666+1fv16XX/99U73bdiwQQMGDNB7772noUOHeqhCAHAtd67pJ9lCv82b3Xd8AKiITz/91NMlAAAAFKncTTDVq1dXhw4d1LFjRwI/AF7HPt7TnZ1+Vcy2kyRnW9x4FgDe7qOPPtKzzz5bIPCTpBtuuEHPPPOMPvzwQw9UBgDucf68dNES7y5Vq5Z0+rSUmem+cwAAAACAP3Ln++EA4DH23jt3rqMVHWQ7y5ksQj8gkO3cuVO9e/cu8v4+ffrop59+qsSKAMB9rFZb6OfOTr/atW23rOsHAAAAAGVD6AfALzk6/dw43jM6yHaS05mEfkAgO3PmTLFrGtepU0dnz56txIoAwH3On7fdurvTT5KOHHHfOQAAAADAHxH6AfA7hmEoL/Nz64tcVF6n3/lcQ5m5rOsHBCqLxaLg4KKXSQ4KClJubm4lVgQA7pOebrt195p+Ep1+AAAAAFBWRb9DBQA+ysj3bzdO91SISYoKMSs1x6rTWRbVC+ZzFEAgMgxDw4cPV1hYWKH3Z2VlVXJFAOA+9tDPnZ1+4eFSTAydfgAAAABQVoR+APyONV/q58bMT5IUGxZkC/0yLapXNcTNZwPgjYYNG1biPkOHDq2ESgDA/dLSbLfuDP0kqW5dad8+954DAAAAAPwNoR8Av2PP/EySTO5s9ZNUIzxIh9JydIZ1/YCANX/+fE+XAACVpjLGe0pSgwbSrl3uPQcAAAAA+Btm0QHwO/ZOP7O72/xkC/0k6XQWoR8AAPB/9k4/d4d+DRtKv/4qWVk2GQAAAABKjdAPgN8xDFvqVwmZn2qE2UI/Ov0AAEAgqIw1/SRb6JeeLh065N7zAAAAAIA/IfQD4HfsHwivjE6/2LxOv7NZFlkMo4S9AQAAfFtljfds2NB2y4hPAAAAACg9Qj8Afseevbl7PT9JigoxK8RsCxrPMeITAAD4ubQ0yWSSQkPde56aNaXISEI/AAAAACgLQj8AfsfR6VcJ5zKZTIq1j/gk9AMAAH4uPd3W5efuz1aZTLZuP0I/AAAAACg9Qj8AfudCp1/lnK9GeLAk6TTr+gEAAD9nD/0qQ0KC9PPPlXMuAAAAAPAHhH4A/I41L/WrjDX9JKlG3rp+hH4AAMDfpaVVXujXsKG0Z4+Uk1M55wMAAAAAX0foB8DvXBjvWTmpXw3GewIAgABRmZ1+DRtK2dnSvn2Vcz4AAAAA8HWEfgD8jjVvvGdldfrF5nX6ncywOLoMAQAA/FF6uhQeXjnnSkiw3bKuHwAAAACUTrCnCwAAV6us8Z5//vln3vmkEFMVZVulHX/8qRrB1hIeKUVFRSk2Nta9BQIAALhYWpoUFlY556pWTapRwxb6DRpUOecEAAAAAF9G6AfA71jymu2CTO5J/dJTkmUym3XNNdc4tt3z+gJdcUM/jX9pur6aP7vEY1SrXl379+0j+AMAAD6lMsd7SrZuPzr9AACBJDIy0ukWAPLjNQIlIfQD4HfcPd4z83y6DKtVz723QvENGkqSskOqKFNSv78+qcHDRxb7+NOJxzTxjt5KTU0l9AMAAD4lNbXyQ7+ffqq88wEA4GmjR4/2dAkAvBivESgJoR8Av2PJG+8Z5ObxnrF16qpWvUslSdkWQ0fSc2UNDlON+Poyu6nLEAAAwJPS06Xq1SvvfM2bSx9/LCUmSnFxlXdeAAAAAPBFZk8XAACudqHTr/KCtxCzLWQ0JGXa54sCAAD4meRkqWrVyjvfX/5iu123rvLOCQAAAAC+itAPgF8xDCPfmn6Vd16TyaSIYNsJM3IJ/QAAgH86fVqKjq6881WvLjVuTOgHAAAAAKVB6AfAr+SP29y1pl9RqgTZXlIJ/QAAgD/KzbV1+lVm6CdJ7dtLa9ZIBpdYAAAAAFAsQj8AfsXe5WfK+6pM9k6/LKvhWFcQAADAX5w9a7v1ROh3/Lj022+Ve14AAAAA8DWEfgD8yoX1/GwjNytTsNmkkLxX1Uy6/QAAgJ85fdp2W9mhX6tWUkiItHZt5Z4XAAAAAHwNoR8Av2LvsKvs0Z524XkLCWZaCP0AAIB/8VToFx5uC/7WrKnc8wIAAACAryH0A+BX7J1+QZXc5WcXbl/Xj9APAAD4GXvoFxNT+edu31766ispJ6fyzw0AAAAAvoLQD4BfsXf6BXmo08+xrp/FkJV1/QAAgB+xh35RUZV/7vbtpfR06fvvK//cAAAAAOArCP0A+JX8a/p5QrDpQuCYRbcfAADwI6dPS1Wr2tbXq2yNG9vGfP7wQ+WfGwAAAAB8BaEfAL9icYR+nkn9TCYT6/oBAAC/dPp05a/nZxcUJDVqJG3b5pnzAwAAAIAvIPQD4FesHh7vKYnQDwAA+CVPhn6S1KSJtHWr584PAAAAAN6O0A+AX7F4eLynJIXnreuXmWvIYF0/AADgJ86c8Wzod/nl0u+/S6mpnqsBAAAAALwZoR8Av2Jf0y/IQ+M9JSnMbJJJklVSjtVjZQAAALjUqVNSVJTnzn/55ZJhSD/+6LkaAAAAAMCbEfoB8CuWvM46T3b6mUwmhTHiEwAA+JnTp6WYGM+dPyFBCgtjXT8AAAAAKAqhHwC/4g2dflL+df1o9QMAAP7B02v6BQVJjRsT+gEAAABAUQj9APgNwzC8Yk0/SY5Ovyw6/QAAgB8wDM+v6SdJTZpIW7d6tgYAAAAA8FaEfgD8Rv54LchLQr8cqy2MBAAA8GXnz0tZWZ4P/S6/XPr9dyk11bN1AAAAAIA3IvQD4Des+bI1D2d+CjbZajBkC/4AAAB82enTtltvCP0MQ9qxw7N1AAAAAIA3IvQD4DcsjvX8JJOH1/QzmUwKzZsxmm2l0w8AAPg2e+gXE+PZOhISpLAw1vUDAAAAgMIQ+gHwG5a8MZqeXs/PLjTIdpvNun4AAMDHeUunX1CQ1KiRtH27Z+sAAAAAAG9E6AfAb1gdnX7ekfrR6QcAAPyFPfSLivJsHZKt2++XXzxdBQAAAAB4H0I/AH7Dnq15T6cfoR8AAPAPp09LwcFS1aqerkRq0EDavVuysm4yAAAAADgh9APgN+zjPYO8JfTLSx9zrJLVIPgDAAC+6/Rp22hPbxiokJAgnT8vHT7s6UoAAAAAwLsQ+gHwGxc6/bzg3SjZwkd71yHdfgAAwJfZQz9v0KCB7fbXXz1bBwAAAAB4G0I/AH7D2zr9TCbThXX9LB4uBgAAoAK8KfSrXVuqUoXQDwAAAAAuRugHwG9425p+khTGun4AAMAPnD4tRUV5ugobk0m69FJCPwAAAAC4GKEfAL9hycvVgrxkvKekfJ1+hH4AAMB3nTrlPZ1+ki30++UXT1cBAAAAAN6F0A+A37Dmjff0pk6/0LxXWTr9AACAL/Om8Z6SlJAg/fabZHCJBQAAAAAOhH4A/EauN3b65Y33tBiSheAPAAD4qDNnpJgYT1dxQYMGUmqqdPSopysBAAAAAO9B6AfAL1gNw7GmX7AXvbKZTSYF52WQdPsBAABfZLFIycne1enXoIHtlnX9AAAAAOACL3prHADKL9dquzXLuzr9pAvdfoR+AADAF509axuj6U2hX1ycFBZG6AcAAAAA+RH6AfALuXkLunhTl59daN4ig1kWQj8AAOB7Tp+23XpT6BcUJF16KaEfAAAAAOTnhW+PA0DZ2Tv9gs3e1eUnSWGOTj8PFwIAAFAOx47ZbmNjPVvHxS69VPrlF09XAQAAAADeI9jTBQCAK+Tkjc4M9rLRntKFTr9siyHDoNsPAAD4lkOHbLd16ni2joslJEhLl9pGj3rhJSAAAPATGRkZWrVqlafLkGSrxX5bmTXZzwvA+xH6AfAL3jzeMySvJkNSLpkfAADwMYcOSTVqSKGhnq7EWUKClJwsHT0qXXKJp6sBAAD+zBtDL2+sCYDneTT0+/rrr/Xaa69p27ZtOn78uD755BMNGDCg2Mds2rRJ48eP1y+//KL69evr+eef1/DhwyulXgDey5vHe5pMJoWabeM9s1nXDwAA+JiDB72vy0+SGje23f70E6EfAABwvcjISE+X4HX4mQDez6OhX3p6utq0aaP77rtPt912W4n7HzhwQP369dODDz6oDz/8UOvXr9f999+vunXrqlevXpVQMQBvlZs33jPE+zI/SVJokEnZVkPZVkI/AADgWw4elGrX9nQVBdWpI0VG2kK/fv08XQ0AAPA3o0eP9nQJAFBmHg39+vTpoz59+pR6/7lz56phw4aaPn26JKl58+b673//q5kzZxL6AQHMMAzH2Exv7PST7Ov6Gcq2GPLCCaQAAABFOnRI6tjR01UUZDJJjRpJO3Z4uhIAAAAA8A4+9d7zli1b1KNHD6dtvXr10pYtWzxUEQBvkH9iZpB3Zn55oZ+URacfAADwIRaL9Oef3jneU5Iuu4zQDwAAAADsfCr0S0xMVJ2L/m+zTp06SklJKXLh0qysLKWkpDh9AfAv9tGewSbb+nneKDQvjcyxSsR+AEoyZ84cJSQkKDw8XJ06ddL//ve/YvdfsmSJmjVrpvDwcLVq1Uqff/650/3Lli1Tz549VaNGDZlMJu0o5B3yzMxMPfzww6pRo4YiIyN1++23KykpyZVPC4APOn5cysmR4uI8XUnhGjeW9u2T0tM9XQkAAAAAeJ5PhX7lMW3aNMXExDi+6tev7+mSALhYjpeP9pRsgaT9Bddq9uhkZQBebvHixRo/frwmTZqk7du3q02bNurVq5dOnDhR6P6bN2/WkCFDNHLkSP34448aMGCABgwYoF27djn2SU9P1zXXXKNXX321yPOOGzdOn332mZYsWaKvvvpKx44dK9WaywD826FDtltvDf0aNZIMQ/r5Z09XAgAAAACe51OhX1xcXIFPnCclJSk6OloRERGFPmbChAlKTk52fB05cqQySgVQiRydfl78imYymRzdfhZziIerAeDNZsyYoVGjRmnEiBFq0aKF5s6dqypVquidd94pdP/Zs2erd+/eevLJJ9W8eXNNnTpVf/nLX/Tmm2869rn33ns1ceLEAmPS7ZKTk/Xvf/9bM2bM0A033KD27dtr/vz52rx5s7777ju3PE8AvsEe+nnreM+GDaWgIOmnnzxdCQAAAAB4nhe/RV5Q586dtX79eqdta9euVefOnYt8TFhYmKKjo52+APiXXKvtNthLR3vahdlDvyBCPwCFy87O1rZt25zCObPZrB49ehS5hrEr1jzetm2bcnJynI7TrFkzXXrppaydDAS4Q4ek6GipShVPV1K40FCpQQNCPwAAAACQPBz6paWlaceOHY51ZQ4cOKAdO3bo8OHDkmxdekOHDnXs/+CDD+qPP/7QU089pd27d+sf//iH/vOf/2jcuHGeKB+Al8g1bJ1+IV483lOSwgn9AJTg1KlTslgsha5hnJiYWOhjilrzuKj9izpGaGioqlWrVurjsG4yEBgOHvTeLj+7hg2lH3/0dBUAAAAA4HkeDf22bt2qdu3aqV27dpKk8ePHq127dpo4caIk6fjx444AUJIaNmyoVatWae3atWrTpo2mT5+uf/3rX+rVq5dH6gfgHXxhvKd0odPPag5RSLiXflweAEqJdZOBwOALoV/jxrY1/axWT1cCAAAAAJ4V7MmTd+vWTUZeh05hFixYUOhjfuRjnADy8ZXxnsEmKcgkWWTSJS3aerocAF6oZs2aCgoKKnQN47i4uEIfU9Sax0XtX9QxsrOzde7cOaduv+KOM2HCBI0fP97xfUpKCsEf4IcOHZJatvR0FcVr1EhKT5f275eaNPF0NQAAAADgOV7eFwMAxTNkkv1D3d7e6WcymRwjPi9tfaWHqwHgjUJDQ9W+fXunNYytVqvWr19f5BrG5Vnz+GLt27dXSEiI03H27Nmjw4cPF3kc1k0G/J9hSIcP+0ann8SITwAAAADwaKcfAFSU1RwkSTKbJLOXd/pJtnX90nMNQj8ARRo/fryGDRumK6+8Uh07dtSsWbOUnp6uESNGSJKGDh2qevXqadq0aZKksWPHqmvXrpo+fbr69eunRYsWaevWrZo3b57jmGfOnNHhw4d17NgxSbZAT7J1+MXFxSkmJkYjR47U+PHjFRsbq+joaD3yyCPq3Lmzrrrqqkr+CQDwFidPShkZ3h/6Va8u1asnffutNHiwp6sBAAAAAM8h9APg06xm28tYiA8EfpKcOv2KmW4MIIDdcccdOnnypCZOnKjExES1bdtWq1evVp28d90PHz4ss/lCa3OXLl20cOFCPf/883r22WfVpEkTLV++XC3zzeP79NNPHaGhJN15552SpEmTJmny5MmSpJkzZ8psNuv2229XVlaWevXqpX/84x+V8IwBeKtDh2y3ZZgW7DGtWklffeXpKgAAAADAswj9APg0S17oFxrk4UJKKSzIJBmGImNrKc163tPlAPBSY8aM0ZgxYwq9b9OmTQW2DRo0SIMGDSryeMOHD9fw4cOLPWd4eLjmzJmjOXPmlKVUAH7MHvp5e6efJLVuLX35pXTunJRvaVIAAAAACChevgIWABTP3ukXavaNTj+TyaQga44k6VSujySVAAAgIB06JEVESL6wZGfr1rY1CL/91tOVAAAAAIDnEPoB8GlWc4gkKTTIN0I/SQqyZEuSTuXyEgwAALzXvn1S3bqSL0xRj4+XatWSvv7a05UAAAAAgOfwjjMAnxUcGiar2dYt5yudfpIUZLF1+p3IodMPAAB4r59+khISPF1F6ZhMrOsHAAAAAIR+AHxWzQaNJZNJZkk+1Oin4NwsWXJzlWI161yWxdPlAAAAFGC1Srt2SY0be7qS0mvdWtr2/+3deXyU5bn/8e/zzJZ9JRCCLEEQUAREBVGstaJg1aq11raeyvG4daHWpXq0rRu2arV1rUttf9ZapS5t1WNVLMWtVURBkEVFZV8StiRkT2a5f388mUAggSwz82Qmn/frNa+BmWcmV4aZ5Ga+c133Yqmuzu1KAAAAAMAdhH4AklbxiNGSnNGeVjLMnWphyWj9R+9LktZUN7tcDQAAwL7WrZNqaqThw92upPPGjZNCIem999yuBAAAAADcQegHIGkNOHiMpOQa7Rm16j//kiStJvQDAAC90LJlzvnBB7tbR1cMHSrl5jLiEwAAAEDfRegHIGkNaO30c7mQblj1jhP6ra8JKhgxLlcDAADQ1kcfOQFaYaHblXSebTvdfq+/7nYlAAAAAOAOQj8ASWvA8FGSkrPTb+sXnyjdiihkpI21QbfLAQAAaGPZMqfLL4kmqEuSjj7aGe9ZWel2JQAAAACQeIR+AJJS0EgFBw2TlJyhnySV+MOSGPEJAAB6n6VLk2s/v6jJk6VwWJo3z+1KAAAAACDxCP0AJKXqsPPjy4qE5UnW0M/XEvrtapYxjPgEAAC9Q22ttGZNcu3nF9W/v1P3K6+4XQkAAAAAJB6hH4CkVNUS+tmRkMuVdN8AX1i2JVU1R1TZFHG7HAAAAEnS8uXOeTJ2+knSpElO6BdheQUAAACgjyH0A5CUqkLOjy9PEod+PksalOmVJK2rYcQnAADoHZYtkzweadgwtyvpnsmTpe3bpcWL3a4EAAAAABKL0A9A0jHGaHPQI0nyhJM7LCvN9kuS1tYEXa4EAADAsWyZNGSI5Pe7XUn3HHaYlJXFiE8AAAAAfQ+hH4CkU1YfUl3EVlN9nbyhRrfL6ZHSbJ8kaUNNUGH29QMAAL3A0qVSaanbVXSf1ysddZT08stuVwIAAAAAiUXoByDpfFrldPd9+u9/ynK5lp4akOFVmsdSU8SorC55R5UCAIDUUF0tLVkijRrldiU9M2mStGiRtHOn25UAAAAAQOIQ+gFIKsYYfVrZJElaPu9Fl6vpOduyNKyl228t+/oBAACXPfOM1NQknXii25X0zIQJkjHSggVuVwIAAAAAiUPoByCplNWHVB2MyCujVe/Md7ucmIju67eOff0AAIDL/vAHp0uuqMjtSnqmuFgqLJTefdftSgAAAAAgcQj9ACSVT1q6/Ab5wwo1Jfd+flHDcpxOvy11ITWGIi5XAwAA+qqVK6X335dmzHC7kp6zLOmww6R33nG7EgAAAABIHEI/AEkjFDGt+/kN9qfO/ne5fo8KAh4ZSetr6fYDAADueOwxKS9POvZYtyuJjcMOkz74QAqyvAIAAADQRxD6AUgaS3c0qiYYUZbXVokv7HY5MTW0ZV+/zXWpE2YCABBrf/iD9MADbleRmpqbpT/9SZo2TfL53K4mNsaOlRoapKVL3a4EAAAAABLD63YBQLJbuLVem+pCsi0p02vrhJIMBTzk6bHWFI7o3a31kqTjBqbLU1fjckWxNTDDqyWSyur5KDoAAO0xRrr1VikUkmbNcsY3Inaee07auVP66lfdriR2RoyQ/H5nX7+jj3a7GgAAAACIP5IJoAfqghG9saVen+9q1qqqZn24o1ErK5rcLislvb+tQfUho/yArXGFaW6XE3PFGc5nMLbWh2WMcbkaAAB6nxUrpA0bpC1bpNWr3a4mtYRC0i23OGM9S0vdriZ2/H5p1Cgn9AMAAACAvoDQD+iB6mZnxGSax9LIXL8kqaye8YyxVh+M6INtjZKkLw3MlCcFP9rfL80jryU1R4wqmlJrdCkAALHw0ktSerpk29Kbb7pdTWr5y1+kzz+XZs50u5LYO/RQ6Z133K4CAAAAABKD0A/ogZpgRJKUH/BoXGFAEqFfPCza3qDmiNGAdI9G5/ndLicubMvSgJZuv3KeQwAA7OOll5wRjaNGSW+84XY1qSPa5Td1qnTIIW5XE3tjx0qbN0sbN7pdCQAAAADEH6Ef0APR0C/bZ2tghk+StLMxrOYw4xljpTls9OEOp8tvSnGGrBTs8ouKjvgkOAYAoK1t26SFC6VjjpHGjXNCP6Zhx8aTTzrjUlOxy0+SDjvMOafbDwAAAEBfQOgH9EBr6Oe3leWzle2zZSSVNxDaxMqyikY1ho3y/LYOyU3NLr+ogXT6AQDQrldecc6POUY64giprMwZR4meMUb69a+l446TRoxwu5r4yM+XSkqkRYvcrgQAAAAA4o/QD+iBmubdnX4SoU2sRYzRB9saJEmT+qfLTuEuP2l3p9/WhpAitC8AANDqH/9w9mbLz3fGNXo87OsXC//+t7RypXT22W5XEl8jRkiLF7tdBQAAAADEH6Ef0AN7jveU9hjPWBd0raZUsqqqWbuaI0r3Wjq8MM3tcuKuIOCR37YUjDhjYgEAgLPn3GuvOV1+kpSZ6ew9x75+PffQQ9KQIdLEiW5XEl8jR0pLljASFgAAAEDqI/QDeqAm6AQz2T6PpN2dfuzJFhsf7XT28pvYL00+O7W7/CTJtiwNyHCeS3SLAgDg2LlTqq2VSkt3XzZhAvv69VR5ufS3v0lnnCGl+DAFjRgh7dolrVvndiUAAAAAEF+EfkA3GWN2j/f0tx3vWdUcUUMo4lptqaAxHNGGGqdj8rD81O/yiypObxkRy76QAABIknbscM5zc3dfdvjh0tathDg98Yc/SF6vNGOG25XE38iRzvmSJe7WAQAAAADxRugHdFNT2CjU8uny6HjPNK+t/IDzZzq1emZtdVAROSMvC9I8bpeTMAMzfJKksjqePwAASO2HfiNGOOfLlye+nlQQiUiPPCKddJKUleV2NfFXWOicCP0AAAAApDpCP6Cbqlv280v3WPLuMXoy2qnFiM+e+WJXsyRpRK7f5UoSa2Cm8/zZ2hBSKMLMMgAA2gv9+vWTsrMJ/brrk0+kzZulE090u5LEGTFCWrzY7SoAAAAAIL4I/YBuqg22He0ZNTCzpVOL0K/bIsZodbUT+o3sY6Ffnt9WutdS2EjbGPEJAIB27JBsu21HmmU5e/wR+nXP2287oz0PPdTtShJn5Eg6/QAAAACkPkI/oJta9/PztX0ZDUh3RlES2HTfprqQGsNGaR5Lg1o63/oKy7JU0rI35GZGfAIAoB07nC4/e6//uZSWSsuWuVNTsnv7bWnUKCk93e1KEmfECKm83DkBAAAAQKoi9AO6qToYliRl+9ruN9e/ZbznruaImsKRhNeVCqKjPQ/O8cu2rAMcnXoGtXSLbqkLulwJAADui4Z+exs+XPrsM6mpKfE1JTNjpLfeksaOdbuSxDrkEOecbj8AAAAAqYzQD+imjsZ7pnvt1u6/7Q3hhNeVCqKhX18b7RlVkkmnHwAAUR2FfqWlUjgsffpp4mtKZmvWSGVl0vjxbleSWMXFzj6QH37odiUAAAAAED99a24eEEPR8Z5Zvn2z8/7pHtUEI9reGNJBWb5El5bU6oIRVTSFZUkqzUntx27Tpk3tXh4ykqUMVQcj+mTtBmXYZp9jsrOzVVBQEO8SAQBw3Y4dUk7OvpeXljrny5f3vQCrJ95+29kTsa91+lmWM+KTTj8AAAAAqYzQD+immpZOv5x2Qr+idK9WVwe1jU6/LovuhZgf8CjgSc1m5LrqXbJsW1OnTu3wmMuffkMDDxmrcy/+gVa+/vI+1+fl52v1F1/02eBv9a5m2ZZUmtM3u0EBoC/Zvt3p0tpbVpZz+fLlia8pmb39tnTwwU7XW19zyCHSv//tjDjtgxPkAQAAAPQBhH5AN0VDv3Y7/dKcl1Y0wELnRR+z/umeAxyZvBrr62QiEf3siRdVMrS03WMaAjkKSvqf236rtKbb21y3s3yLbjxvhmpqavpk6PfRjka9urFWHku6/PCClA2HAQCOHTuk0aPbv27YMEK/rnrrLWnCBLercMeECdIzz0hffCGNHOl2Nb3DP/4hnXSSlJ7udiUAAAAAYoHQD+iGYMSoMeyMXNx7Tz9pd2C1vSEsY4wsPkrcadsbne7IovTU//FUMGCgigYNafe66uaItjeGZadnq6hffoIr670+rWrS3I21kqSwkSqbIirOIPQDgFS2c2f7e/pJ0vDhToiFztm8WVq7Vpo50+1K3DFunOTxSK+/TugnOfsbnnGGdM010p13ul0NAAAAgFhI/XfVgTiI7ufnty0FbEsVFRWqqalpvT5iJFsZao5IH6/dqCzPvnuy7Yn92XbrC51+nZHmcYLiprAhOG5RXh/SS+tqZCRZkoykqqawijP4VQYAqaqxUaqt7Tj0Ky2V5syRKiulfD4jc0DvvOOcH364u3W4JSNDGjPGCf0uu8ztatz33HPO+b33SpdcQhAKAAAApALeKQW6oSbodKNl+WxVVlbq4BEjVFVZ2eaYWU/N16Ax4/TNi76nj998db/319f3Z4sKG6Od0U6/tL7948lnS7blBMhNYaM0L6Hf0h2NChtpeI5P6R5bKyubVNnEvpkAkMp27HDO99fpJ0krVkjHH5+YmpLZ8uVSv35SX15yjh8vvfYa+/oZIz37rDRtmvP6ueoq6aWX3K4KAAAAQE/17XfVgW6K7ueX7bNVU1OlqspKzX5mrgqLS1qPaUjLVVDSxbc/qEBzbYf31df3Z9tTRWNYYeN0UOa2Mza1L7EsSxkeS7Uho7qQUR/PQBUxRqt2NUmSJhWla3O90xFaQegHACntQKHf4MGS1+uEWYR+B7ZypTR0qNtVuOuII6SnnnIei7Fj3a7GPR99JK1Z43Q8HnecdMstThg6fbrblQEAAADoiT7+NjLQPXUtoV+Wb3cwVVhc0mZ/tqqmsHY2ReTNzFFRUd8O8zpre4MT4PRP9zDOUlKG11ZtKKz6UESF6tvjTjfUBNUQMkr3WhqS7VN9yBmZS6cfAKS2A4V+Pp80ZIjTqYQDW7Gi7472jBo71nnevP563w79nnvOeV1NnOjsczh6tPToo4R+AAAAQLIj9AO6oTHsBA5pXkvqIHPwt+zJ1hzZ/35+fdneeyF+Xu+T5FdaqEHr1+/a7203bdoU5+rcl+GNPoekUMTIa/fdIPSTKqfLb1RuQLZlKT/gBO5VTRE3ywIAxNmBQj9JGjbM6fTD/jU2SqtXS2ec4XYl7goEpMMOk954Q7r8crercUd0tOexxzqdspLzOtq82dWyAAAAAMQAoR/QDa2hn6fj0C/QEtAEI85oQpvOtTYqKir22Qtx5n1zNPr4k/Xrm36qhX99vFP3EwyG4lSh+zy2pTSPpcawUV0oolx/3+z2ixijz6qaJUmj8/2SpPyA81jUhiJqDpvWkB0AkFp27HC6stLTOz6mtFT661/Zo+1AVq2SIhEn3OnrJkyQnn9eCoedLre+Ztky6YsvpIsv3n1Zfr706afu1QQAAAAgNgj9gG5oDDndRemejved89iWPJYUNlJz2DhdgWhVU1Ozz16INZn9ZSR954r/1QU/umq/t1+9fInunjVT4XDqhn6S0+3XGDaqDxnl+t2uxh3ra4JqCBtleC0NyfJJktK8ttI9lhrCRlXNYfVP59cZAKSiHTukvLz9h3mlpdKuXdKWLdKgQQkrLel8/LFzXlrqbh29wcSJ0uOPSx9+KB19tNvVJN5zz0nZ2c7jEJWfL23bRngOAAAAJDveJQW6oWHP8Z774bedUKI5IqUlorAkFN0LMWyMqmucAK//gGJ5DvBuw87yLYkoz3UZXlsVTRE1hEyf7Rj9NDraMy/Q5vvPD3jUUB9SRROhHwCkqh079j/aU5KGD3fOly8n9NuflSuloiIpK8vtStw3ZoyUmSm99lrfC/2ioz2PO87poo3Kz5fq66XaWicQBAAAAJCcOm5TAtCh3eM99/8SCrSMHGwKs6/fgTS3PEZeSwcM/PoSv+08JkZSQ6jvPY8ixujzXc5oz1F5bVsdoyM+q5o6mLELAEh6O3ZIOTn7P2bAAGf854oViakpWa1cKQ0Z4nYVvYPX63S5zZ3rdiWJt2yZ9Pnn0pe/3PbyggLnfOvWhJcEAAAAIIYI/YBuiI73TDvAPmL+ln39miN9L6zpqmgwyt5sbVmWpQyv86O6vg+GflvqQqoPGQU8lgZn+dpclxdwHpdKQj8ASFmdCf1s2xlZuXx5YmpKVitWsJ/fno46SnrvPWc0bF/y7LPOa2rP0Z6S0+knEfoBAAAAyY7QD+iGxs6O92wJsJrDRsb0vcCmK5pauycJ/faW0fI8awhHXK4k8aJdfiNy/Pt0gEY7/Sqb+t7jAgB9xfbtBx7vKTlhFqFfxxobpTVrCP32NGmSFA5L8+e7XUnidDTaU6LTDwAAAEgVhH5AFxljOj3e099ydURSH2zS6pKmlm7IAKHfPqLhcjAihfpQ16gxRp/tcvbzG5nr3+f63aEfnX4AkKo6s6ef5HT6ffKJE+JgX6tWSZEIod+eioudcaevveZ2JYnz0UfSF1/sO9pTcvbx83ql8vKElwUAAAAghgj9gC7ac3++A3WlWZbVGvw1s69fh8LGKNjSrEXoty+PZSnQMiq2L+3rt7MprMqmiDyWVJrj2+f6gpbQryYYUbAPhaEA0FcYI+3c2fnQr7FRWr06/nUlo5UrnXNCv7aOOkp69VXnudYXPPec83rae7Sn5IzJzc+n0w8AAABIdoR+QBdFu/y8luS1DxxQtY74JJToUDRI9dnaZ4QjHOkt3X71fWjE5+dVzmjPoVk+Bdrpqk3zWK0hcRXdfgCQcmprpaamzod+krNvHfa1cqXUv7+UleV2Jb3LpEnSxo1OJ2Rf8MIL0pQpTkdfewj9AAAAgORH6Ad0UTT0S/d27uXjt3fv64f2RR9Tuvw6Fg39GkJGfeWZFN3Pb2TevqM9JaeTlhGfAJC6duxwzvPyDnxsQYETWLCvX/uWL3dGWaKt8eMlv1+aO9ftSuKvqkr6+GPne+4IoR8AAACQ/Aj9gC5qDDmdVgca7RkVDbKa6PTrUFPrHomEfh1J81iyJIWNFLE9bpcTd/XBiLbUhyRJI9rZzy8qt2V+bnVz3+mABIC+Ihr6dabTT3JGV9Lpt69gUHrrLWnsWLcr6X3S0qTDDpPeeMPtSuLvgw+c80MP7fiY/HyprCwx9QAAAACID0I/oIu62pUW7fQLRqRIX9kwpAuM9nhMOzEuta+yLas1FA17Ai5XE3/RwK8wzaNsX8chZ0ZLx21DHxp7CgB9RVdDv9JSadmy+NWTrBYulKqrnVGW2Ne4cdLbb0uRFF9KLFgg5eRIBx3U8TF0+gEAAADJj9AP6KJouNDZ8Z4eS4pmWcEUfzOhO4zlUbQJ0k+n335FR3yG+kToF5QklWR0sOlMi3TP7rGnAIDUEg39cnI6d3xpqfTFF1JDQ/xqSkZz5zrB6SGHuF1J7zR+vDP6MtW7RBcskMaMkez9/BemoEDatk3ic4oAAABA8iL0A7qoMdS1UZSWZbV2sDWxr98+wh6fJKfLz7YI/fYnGnCFvH5Z+3vHJgWU1TmdfgMPEPqlRTv9QiTqAJBqKiqc8YuBTn7WZfhwp1vrk0/iW1eyefVV6cgjJU/qTwfvlkMPlbxep9svVRkjvfeeE/rtT36+VF8v1dYmpi4AAAAAsZfa7xoDcdDYjf3noh1szezrt4/W0I8uvwMKeCznh7Zla9DocW6XEzfGGJW1jPcsyfTt99jWTj8CdQBIOZWVUnZ2548fNsw5X748LuUkpW3bpA8/ZLTn/gQCThj21ltuVxI/n33mdDPubz8/yQn9JEZ8AgAAAMmM0A/oosaW8Z5pnRzvKe3e149Ov7bSsnMV9KZLIvTrDMuylNYy4vPgSV9yuZr4qWqOqDFs5LGkorT9tyWk0+kHACmrq6FfRoZUUkLot6d//tM5P/pod+vo7caNc0K/VB1r+d57kmV1rtNPIvQDAAAAkhmhH9BF3en0C+zR6WdS9d2ELjJGOnf2b2Vsj7yWlOUj9OuMjNbQ73iXK4mfLXXOfn4D0r3y2Pt/XkT3OaTTDwBST2WllJXVtduUlhL67WnuXGcvv4ICtyvp3caNk7Zvl1atcruS+HjvPacT9kCvp+jzhNAPAAAASF6EfkAXdXVPP0nytbzSIkYim3DGN37S6NOhJ8yQjFFxhpf9/Dop3eM8mYZNmJyyz6XoaM+Bmfvfz0/a/XhEX5cAgNRB6NczlZVO6EeX34GNHevseZiqIz4XLJBGjz7wcdnZzv6G5eXxrwkAAABAfBz4HVUAbbSO9/R0PjO3LUs+WwpGnG4/7wG6l5JJRUWFampqOnVsXdjSumav1jZ5VRPxS5LSmqoVyO0XzxJTis+WrEhYvrR07Qg1aLjbBcVB635+GZ0I/by7u2jDEXPAzkAAQPKoqOhe6FdW5ty2r3a3RSLSE09I11wjNTRIJ53kdkW9X0aG0xH51lvSZZe5XU1s1dY6Qfi0aQc+1radEZ90+gEAAADJi9AP6KLoGMHo3mqdFbAtBSNGTWGjTmQZSaGiokIHjxihqsrKfa4bMGKMLrj7Cdlen7asWi5fIE0HT/qSbNsJS5sb6vTOnEd16tnfkETo11mWZckbblbQTtfW4P73u0tGYWO0Ndrpl+E74PFpHkuWJCPntZlF6AcAKaOyUho4sGu3KS11zpcvl044IfY19WahkPTss9Jtt0krVzohz2WXSf1YZnXKuHHSG284I+hTaQDFhx86QfCB9vOLKigg9AMAAACSWYpED0DiNLWMEUzvQqefJPk9lhQyak6hmYw1NTWqqqzU7GfmqrC4pPXysO1VfXqBjO2EUnnFg1qv84Sa5As2aMdHC/XPB2/T9K+dleiyk54n1KSgL13lKRj6bW8IK2ScfTDzAwd+jVmWpTSPpYawUUMooiwfU6sBIFVUVjrjBrti8GBnPGGqh36ffSbdd5+0ZYu0ebO0bZuzJ119vTR5snT//dLhh7tdZXI5+mjpmWekZcuk8ePdriZ2Fi+W0tKcPf06Iy+P0A8AAABIZoR+QBdEjFFTpOt7+kmS3949hjDVFBaXqGjQEElSc9hoc31IxjjdjQVpdmvQmemz5bN9krJUU8jHzrvLG26SJFWEbTWGI10aNdvbldUHJUkDM7yyOvkx+3SvrYZwWA3s6wcAKaWqquvjPb1eJ9xYsSIeFfUeF13kdPMdcojTyTdypJSbKx1xhPNndN3hh0vp6dKrr6ZW6LdokTRihLNnYWfk5zsjcgEAAAAkJ0I/oAua9ujSC3R1vKcnGvpJxphOBxrJprIprIiR/LY0MNMjj2WlzDjT3sI2Ee1Yv1r9hh6sdTVBjc4LuF1SzJTVdX4/v6h0ryU1SQ0t+20CAJJfY6Nz6mqnn+SEfsuWxbykXuODD6T//Ee65RbpS19yu5rU4fdLEydKL78sXXed29XEzqJF0mGHdf74ggLp00/jVw8AAACA+Eqd9hAgAaKdRH7bkqeLoZ3H2v2Ca07RbCJijOpaHqOidE+XHyN03sdvzZUkfVbV7HIlsVUW3c8vs/OhX7Trlk4/AEgd0e2CuxP6lZY6XXAmRX8t/OY30qBB0nHHuV1J6pk0SVqwwOkyTQXV1c4o2EMO6fxt8vOdcbGp+voBAAAAUh2hH9AFjS2dRF0d7Sk5e4/5o91+KbSv357qQ0ZGktdyRnsifla+/rIkafWuZoVSZGRsUzii7Y1hSdLADF+nb5fudX6VNYRSNE0HgD4oGvp1dbyn5IR+1dXS+vWxrak3WL9e+utfpXPO6fy4RnTe5MlSOCzNm+d2JbGxZIlzPmpU52+Tl+fsDVlfH5eSAAAAAMQZoR/QBY0tYV1aF0d7RkVHfDalSEizt9qgE7pk+eyUHV/aW2xcvkjpVkRNEaP1NUG3y4mJrfVO4Jfjs5Xl6/yvp/SW11VjiobpANAX9aTTL9rVtHhx7OrpLe67T8rMlGbMcLuS1DRggBMav/KK25XExqJFUlqaNGRI52+Tk+OcR1+DAAAAAJJLrwj9HnzwQQ0bNkxpaWmaPHmy3n///Q6Pffzxx2VZVptTWlpaAqtFX9bYMj4wzdO9l47fTt1Ov4gxqm95fDJ9BH7xZozRQX4nJFtV1eRyNbFRVu+El10Z7SnR6QcAqagnoV9hodS/v7Sf/1IkpVBIeuwx6atfldLT3a4mdU2aJL36qhRJgWXF4sXSiBFd6wqNdtdWVMSnJgAAAADx5Xro98wzz+iqq67STTfdpA8//FDjx4/X9OnTtW3btg5vk5OTo7KystbT+lSc3YNeqSfjPaU9Ov3CRibFNspgtGfiHeR39r/7fFezIinwfNoS3c8vo6uhX8uefikYpgNAX9WT0E+SRo+WFi6MXT29wYIF0q5d0gknuF1JajvmGGnrVunDD92upOcWLZJGjuzabaKvOTr9AAAAgOTkeuh3991365JLLtGFF16oQw89VI888ogyMjL02GOPdXgby7JUXFzcehowYEACK0Zf1tPxnn5bsiRFJDWnwKeH98Roz8Tr740o3WOpIWy0oTb5R3yW1XUz9PPQ6YfU05UpCJL03HPPafTo0UpLS9Phhx+uV/aaTWeM0Y033qiBAwcqPT1d06ZN0+eff97mmGHDhu0zTeGOO+6I+fcGdEZlpRQISH5/924/erTT5RQOx7YuN738slRQsHt8KeJj7FgpN1f629/crqRndu2SPv+8688XxnsCAAAAyc3V0K+5uVmLFy/WtGnTWi+zbVvTpk3TggULOrxdbW2thg4dqsGDB+vMM8/UypUrOzy2qalJ1dXVbU5Ad0VDhe6O97Qsq7VLMNo1mAqMxGhPF9iWNDLXeTd0VVWzy9X0TG0wouqW4Li4i6FfGp1+SDFdnYLw7rvv6tvf/rYuuugiLVmyRGeddZbOOussrVixovWYO++8U/fff78eeeQRLVy4UJmZmZo+fboaGxvb3Nfs2bPbTFP40Y9+FNfvFehIZWX3u/wkacwYqbZW+vTT2NXktpdflo4+WrJd/9hmavN6palTpWeekZJ5kMKSJc75qFFdux3jPQEAAIDk5up/GXfs2KFwOLxPp96AAQNUXl7e7m1GjRqlxx57TC+++KKefPJJRSIRHXvssdq0aVO7x99+++3Kzc1tPQ0ePDjm3wf6jtZOv26O95R2BxTR/QFTQcgTYLSnS0bnByQ5+/qFk/idqeh+fv3SPAp0MVSn0w+ppqtTEO677z7NmDFD11xzjcaMGaNbb71VEydO1G9/+1tJTpffvffeq5///Oc688wzNW7cOD3xxBPasmWLXnjhhTb3lZ2d3WaaQmZmZry/XaBdPQ39DjlEsqzU2ddvwwZpxQpp8mS3K+kbTjxRWrs2uUd8LlokpaVJQ4Z07XYejxP80ekHAAAAJKek+5zolClTdMEFF2jChAk64YQT9Pe//11FRUX63e9+1+7x119/vXbt2tV62rhxY4IrRiqJhn7p3RzvKUnpnt1dSamyr1/ImyZJyvAy2jPRhmb7lOG1VB8yWl+TvCM+uzvaU9r9emwMpc5rCn1Xd6YgLFiwoM3xkjR9+vTW49euXavy8vI2x+Tm5mry5Mn73Ocdd9yhwsJCHXHEEbrrrrsUCoU6rJVpCoinysrdHUfdkZEhDRuWOqHfq686YczRR7tdSd8wYYKUny89+6zblXTf++874bfH0/XbZmcT+gEAAADJytXQr1+/fvJ4PNq6dWuby7du3ari4uJO3YfP59MRRxyhL774ot3rA4GAcnJy2pyA7oqO5OzueE9JCrSEfmEjpUKzn2XbCnmdbjNGeyaex7I0Os95/FdWNLlcTfeV1fck9HNejxFJTZEUeFGhT+vOFITy8vL9Hh89P9B9Xn755Xr66af1xhtv6LLLLtNtt92ma6+9tsNamaaAeOpp6Cc5Yw3fey829bjt5ZedveZ6+pigczwe6fjjk3vE53vvOXtbdkdWFuM9AQAAgGTV9XdXY8jv9+vII4/U/PnzddZZZ0mSIpGI5s+fr1mzZnXqPsLhsJYvX66vfvWrcawUcERHcvZkvKdtWQp4LDWFTUqM+Bw89kgZ2yNbu7sYkRjRscYFQVtSulZVNupQVehAjajZ2dkqKCiIf4EdqKioUE1NTevfjZE21WZIsmRV79D6+o7HdLZXu8+25LWcEL0xZJTWjU+0A5Cuuuqq1j+PGzdOfr9fl112mW6//XYFAoF9jr/++uvb3Ka6uprgDzFTUdHzgGvMGGnePKmhQUpPj01dbmhslObPl/7rv9yupG/58pel//s/6YMPpEmT3K6ma8rKpI0bpYsu6t7t6fQDAAAAkperoZ/kvME0c+ZMHXXUUZo0aZLuvfde1dXV6cILL5QkXXDBBRo0aJBuv/12SdLs2bN1zDHHaMSIEaqqqtJdd92l9evX6+KLL3bz20AfUd+yZ1i0s6i70qKhXzj5Q79DTzxVkpThtRjtmSB11btk2bamTp3aetk1Ly1SwaChOvvSH2v5vBf3e/u8/Hyt/uILV4K/iooKHTxihKr2eCepf+khuvJv76i5oU5HTRqhyH7GCXZUe7rXVk0wooZQRHkBUj8kr+5MQSguLt7v8dHzrVu3auDAgW2OmTBhQoe1TJ48WaFQSOvWrdOoUaP2uT4QCLQbBgKxUFkp7dWc2mWjR0vhsLRkiXTssbGpyw2vvy7V10vHHON2JX3LuHFSQYHT7Zdsod/Chc75mDHduz2dfgAAAEDycj30O++887R9+3bdeOONKi8v14QJEzR37tzWEVQbNmyQbe8OWCorK3XJJZeovLxc+fn5OvLII/Xuu+/q0EMPdetbQB9hjFFDS2deRg/29JOcjrhdkhrCESXxB88lSYee4IR+mb6k2yI0aTXW18lEIvrZEy+qZGipc5k/W82SLvjFb5Xx81s7vO3O8i268bwZqqmpcSX0q6mpUVVlpWY/M1eFxSWSpGZfuholpfu8emD+hx3edn+1p3st1QSdvTKBZNadKQhTpkzR/PnzdcUVV7ReNm/ePE2ZMkWSVFpaquLiYs2fP7815KuurtbChQv1/e9/v8Nali5dKtu21b9//5h8b0BXVFY63UY9MXy45Pc7Yw6TOfR75hlp6FBnj0IkjscjnXCC9Je/SHfe2b298dyycKHUr59UVNS922dnS3t9lgQAAABAknA99JOkWbNmdfhG1ptvvtnm7/fcc4/uueeeBFQFtNUUNooOHcyIQaefJAUjUsBK3rBsV9hS0bARkjE9DkLRdQUDBqpo0BBJzvNzU11IIV+aCvIHy2P37n+PwuKS1tq3NYTUGDTKzkhXYcGQbt1fuseWFFZDqOPRoECy6OoUhB//+Mc64YQT9Jvf/EannXaann76aS1atEiPPvqoJMmyLF1xxRX6xS9+oZEjR6q0tFQ33HCDSkpKWoPFBQsWaOHChTrxxBOVnZ2tBQsW6Morr9R//dd/KT8/35XHAX1bVVXPx3t6vdIRRzih2R6TaJNKY6P0/PPSOedIDFRIvGnTnMf/rbekr3zF7Wo67733nC6/7j5nsrOlTz+NbU0AAAAAEqNXhH5AMoh2EPltS94eBioe21LAttQUMWr2ZcaiPFesbXJ+hHjDTbItv8vV9G0BjyW/LTVHpJpgco24jI657clemektoXNDCuyTCXR1CsKxxx6rOXPm6Oc//7l++tOfauTIkXrhhRc0duzY1mOuvfZa1dXV6dJLL1VVVZWmTp2quXPnKi0tTZIzqvPpp5/WzTffrKamJpWWlurKK69ss2cfkChNTc4+fD3t9JOk00+XbrjBGfF5xBE9v79Ee/VVqaZGOvFEtyvpm8aMkQYNkp56KnlCv3BYWrRI+s53un8f7OkHAAAAJC9CP6CTdu/nF5uPWecHbJU3hNXsz1RWYddHp4WN0brqoAZlepXWw87D7ghHjNY0+SRJvmC9pBi8M4ceyfHb2tEYUU0woly/nRR7LIaNUbClOa9noZ/zGmgI0+mH1NCVKQiSdO655+rcc8/t8P4sy9Ls2bM1e/bsdq+fOHGi3nvvvW7VCsRaNGyIReg3ZYoz4vB3v5MeeaTn95doTz8tjRwpDeleIzx6yLKcsO+vf5UefFBq+ZxEr/bxx1Jtbff385OcLtuqKikSkezkHUoCAAAA9Eks4YFOioZ+PR3tGZXhtRTwWJJl6cT/uUKSFIwYra1u1vxNtXptY62aOggwaoMR/eXzXXpuTbVeWFcTk3q66rNdzWoylqq3l8sbanKlBrSV5bNlyen2a06S7KuxpTPPZ6tHI0nTPXT6AUCqiGXo5/FIp57qdGrVdGPJtG2bE/gYF3691NZKL71El5/bpk2Tqqull192u5LOWbjQCepGjer+feTkOIFfd14zAAAAANxFpx/QSfUtYUKsOv0sy1JBwFZZfViTzrlAb1R7tWPZTu2dWUwf3HZDm/L6kP66plq1Le1R62qCqmgMqyAtseMcl+5olCQteuEpHfStHswPQsx4LEuZXku1IaPq5oiK0nv/iM+mltGegS50+W3atGmfyxoavZIC2lFdq/Xrd3Z42+zsbBUUFHS5TgBA4kRDv57u6Rd12mnSk09Kc+ZIl10m1dc7f3/wQaeLq6Ptwpcskb72NWnTJmnBAumYY2JTT2e99JIz5pTQz11DhjgB2lNPOXsr9nbvvScNHy6lp3f/PqKBe2WllJsbm7oAAAAAJAadfkAnNcS40y96X55Qk7z+gMpDHoWMlO2zNSbP2R9vyY5Gratpbj0+GDF6fq0T+PVL82hQppPbL93ZGLOaOqOiMaz1tUFJRh+88GRCvzb2L9vvPD9rgxFF3GhL6KKu7OdXV71Llm1r6tSpGjZsWJvT9Vc7+47Nf+vf+1y35+ngESNUUVER1+8JANAzsez0k6T+/Z3A7uqrpZISqV8/6fvfl0Ih6d57pf/7v31v89JL0nHHSZmZzu0feyw2tXSWMdLDD0tjx0rFxYn92tjXtGnSP/4hlZe7XcmBvfdez7r8pN2BO0smAAAAIPnQ6Qd0UmunXw/2HWtPeuMuvTHvn7r0/HN15NABKgx4ZFmW0jfW6sMdjXplQ60uGp2ngMfWwq0N2tUcUbbP1ncPydX6mqD+vrZGyysa9aWBGfL2YDxiVyza3iBJGugLq6ps364ruCfdY8lrSSEj1QaNcvy9d18/Y8weod+Bw/TG+jqZSEQ/e+JFlQwtbXNd0BNQg6RRk6bqwbeWtXv7neVbdON5M1RTU0O3HwD0YrEO/SSnw++11ySfT8rIkI4/3gnTbrhBuugiacUKacAA59gdO6QLLpAmTnSunzPH2Vvv3nud2ybC/PnSv/8t/fKXifl62L8ZM5zg96GHpA62Ru0VKiqcPf1OP71n95OT45xHX4sAAAAAkgedfkAnxaPTT5JsE9bfb71So9NC6pfmlWU5Ic2XSzKV67dV3RzRc6urtb6mWe9trZckfWVQpgIeWyNy/cry2moIGX2+q3l/XyZm1lU368OW0Z6j0oIJ+ZroPMuylNvS7VfZFJaJUbdfxBh9WtmkV9bX6OGVFfrbmuoedxI2RyQjyZLk78LLqmDAQBUNGtLmVNCvSJJke337XBc9FRaX9KheAEBiVFZKfr8UCMTuPocMkS65RPrv/5a++U1p4EDJspzuv0hEmjlTam5ZSv30p1I4LP3kJ04NM2Y4e5v97W+xq2d/jHHCxjFjpClTEvM1sX9ZWc7z4KGHnJGrsRYKOc/DnnrnHef5M358z+4nGrjT6QcAAAAkH0I/oJPq4xT6dcTvsXT60Gz5bGlTXUh/+aJaISMNyfJpdMv4T9uyNK7QeUcsusdePNWHIvrH+lpJ0oTCNA30xeDdCcRcjt+Wp6XbrybY89DPGKNXNtTqhXU1WlbRpF3NEX2+q1kf9XCsbDRIT/NYrWF3d9kttw/3/ommAIADqKyMbZff/uTnS//7v9Lrr0unnCL985/SH/4gXXihlJfnHDNwoHTEEYkb8Tl3rjOi8b//2wkm0Tucc44Tgj0Zo8n2xkh//7t03nnO8/Cii3p+n2+/7Yyj7elI2IwM57lHpx8AAACQfAj9gE5qiI739Cbu3ZfBWT5dNDpfB7Xs3WdJOvmgzDYByVBvoySj9bVBrVizQevXr+/SqTP7mxljtLE26OwnGIqoMODRSQdlxum7Rk/ZlqW8GHb7vV1WrxUVTbIkHV2UpqOK0iRJb22pbw3uuiM6MjcjBq+p6HRQI8WsuxEA4I5Ehn6SNGmS9OtfS0uXStOnSwcfLH3ta22PmTFDevNNac2a+NayZYsTQh5+uHT00fH9WuiaQYOkqVOlu++OTVfenXc6QeJHHznPwccflxYs6Nl9vvWWsw9kT8Ni23ZGfBL6AQAAAMmHPf2ATop3p9+mTR3vjTfVL22QRwHbqH5bnda3XF5VVaUTvvxlnX3rIxp13En6yb1/0GsP3Nqlr5uXn6/VX3zR4R5n5fUhvbSuRjubwpIkjyWdMSxbvgTtH4juyfHbqmqOKGSk6mBEuX5Pt+5nyY4GLdjqzLGaMSRL4wvTFDFG62uC2t4Y1ltb6jVjSFaX79dIrfv5pcfgNbXnPYSNlMBsHgAQY4kO/SRp3DjpwQed0wUXSJ69fm1+6UvS/fc73X6/+EXsv344LD3yiDNa1OuVbruNLr/e6BvfkH78Y6dD7xvf6P79vPiidP310ne/K/3P/zj//ps2SZdfLi1c6IRuXVVbK334oXMfsZCdzXhPAAAAIBkR+gGd1NDalRTb0K+uepcs29bUqVO7fR/Dhg6WJJ0484c64xvnqrPvEe0s36Ibz5uhmpqadkO/svqgnv6iWk1hI58tjc4L6MiidBVn8KOjt7MtS/kBWzsaI9rZGFHAtpTWxefuZ1VN+ufGOknS1OIMjS9Ma73vkwdnac7nu7R0Z6Mm9Evr8nMi7PHLyAmRu7KfX0csy5JtSRHjnAAAyauyUsp0YaDAoEFO2NaetDRp2jRn9OdNN0k+X+y+7mefOeNE331XOv106dJLEx96onMOP1w67jjpe99zuv66M0bzo4+k88+Xjj/eGeEqOSHzrFlOYPfnPzt7THbVggVOeDhuXNdv256sLDr9AAAAgGTEO/dAJ4QjRk2R+Iz3bKyvk4lE9LMnXlTJ0NIu3Xb18iW6e9ZMZQV8ilhS2PYoo/9ByvL1PEXZUhfUM6udwG9QplfnDs/pcmgEd+X4bNWHjOpDRmUNYQ3K6Pxzd3NdUP+3rkZG0vjCgI4rTm+9rqKiQqamRkP8AW1o9urNtTs0JaupU/cb7WgNeZx9KdNjsJ9flKcl9AsbI3U6+gYA9DY7d/bO0OuMM5wOrZdekr7+9djc5xNPSJddJhUWSvfeK40fH5v7RXxYlnT11dLFFzsdei+/3LWOzPXrpVNPdQLm665r29F3+OHSV77iXP6tb0mBQNdqe/ttZx/KoUO7druOZGcT+gEAAADJiNAP6IT6sDPa05KU5olPmFAwYKCKBg3p0m12lm+R5NSV7XPGOVY3R3oc+jWFI3phbY2awkYHZXp17sE5CngI/JKNZVkakO7RlrqwmiJGm+tC8gRyNfr4kxXeTzfc5rqgnltdrZCRDs7xafrgrNZgrqKiQgePGKGqykoddOgE/fDJefqiLqJLvzxZNTu2drq2YDT0i2GQbFuWJLPf7w0A0PuVl0tHHeV2Ffs6+GBnv7RHHolN6PfZZ05X3/HHS1ddJaWnH/g2cF9+vvSTnzijWG+80RnTmZFx4Nvt3CmdcooTEt5+e/v/3jNnOqdnn3VGf3bFW285wWGsxsJmZTk1AwAAAEguhH5AJ0RHe6Z7Y9eVFGvRPdwawkZ1wYgyvJaaI1JtMKJgS5eibTnHpR0gwHtzS72qgxHl+W198+Bc+eMUdCL+bMvSwAyPNteHFIxIEX+GZt43R3+vNBphqjUmP6ARuX55Wp7XKysa9cqGWoWNNDDDqzOH5bSEaY6amhpVVVZq9jNzVVhcorpws+Tz6+aXFiitufaA9axevkQPXX+5TEvolxHDztno05TxngCQ3MrLpQ62GnbdaadJv/qVtHq1EwJ2VyTidIv16+d0jqWlxa5GxN+UKc6Izttuc/aBvOwy6ayznLB67/0gJamszOkU3bZNeuCBjp/fQ4Y49/HAA10L/Robpfffd55TsZKdLW3YELv7AwAAAJAYhH5AJ9SHnE6/WO/nF0s+21K6x1JD2Ki8ISyn52lfNcGwcv1GBYH2v5f1Nc1asqNRknTqkCwCvxTgsS0NzvSqIWy0o6paOyp3KXdAiT6tatanVc3K8toamOnVjsaQKpuc5/rIXL/OGJrd4b9/YXGJigYNUXowoq0NYYXTstWvX/4BQ/Gd5Vt08NFTJcuSz5a8duyeX9G7csZ7AgCSUU2NVFfnjLvsjU48UXroIenmm6Urr3TqfPFF6bnnpKYm6aCDpMmTnc69/e3794c/SP/+t/TrXxP4JauLL5a++lXp7393gr877nDCvO9+V7riCmnYMOe4hQudQDAcdgLjgw7a//2efbb0s585Id6kSZ2r5T//cZ5/sdrPT2K8JwAAAJCsem+CAfQie3b69Wb90z3K9lmyrd2BX6bXUr80W/3SbGW11L+rOaJNdSGFrbYfRd7VHNYrG5xurQmFaRqa7U9k+Ygjy7KU4bWV3lStO04dr1NyGjS5f7oyvJZqQxF9vqtZlU0RWZKO6Z+ur5d2HPjtKdNryWNJYSPVBDsXto2f7sxES4/xyNhotyKdfgCQvMrKnPPeGvoFAs5+a08+KR15pBPsXH2107nXr5+0aZP085874eDmze3fxyefSNdc4wRGRx6Z0PIRYyUl0qxZ0vPPS/ff74zvfPzx3aNgDzpIOu4457nx8MPSIYcc+D4nT3bu94EHOl/Hww87z8WRI7v7newrO1uqqIjd/QEAAABIDDr9gE5Ihk4/yema6p/ulTFGzRHJazldXlG5fikrGNH2xrCCESmY2U+HfeV0rdlUpm1BW/+pTVOTsZRhR3RweKfWr9//Rh6bNm2K97eEOGko36DhB0U0NFvaEvSoLmIpzxNRvieiQKiuw3FOe/+bW5alXL+tiqaIKprCyvBa++/eC6Tr8JO/JhmjHH+sQz/nnE4/AEhe0dCvt473lKTvfMfp3Fq3TtqxQ5owQcrJ2X39ihXS7NnO5X/+szRjxu7rNm6UTj5ZKiqSvv/9xNaN+PF4nP30Dj9cuuAC6Z//lNaskXJznX/r6dMlfyc/S+fxSGee6XSD3nWXVFy8/+PXr5deeEH68Y9jt5+f5OzpV1PjdCi2N7IUAAAAQO9E6Ad0QrKEflGWZSnQwX/OM322Ah5LWxvCagzb+q9f/1ELJanGuX7zJx/pz1ddoB9v3dLprxcMhnpcMxKjrnqXLNvW1KlTe3Q/e/6b5/pt1QQjCkakrQ1hlWR4Ohzz6SkcJEmym+oUyM3vUQ172z3eM6Z3CwBIoN7e6ReVkSEdemj7140dKz36qHT77dKppzpdfRdd5AR+l1/uhCh33OGEKkg96elOaNcTp54qPfWU87x56SXJ3s9/QR5+2Hk+nnxyz77m3qJBdlVV7389AgAAANiN0A/ohNbxnimyv53XtlSS4dHnGzarwdjKKihyLg82aPRB/XXbs3M7dT+rly/R3bNmKhwm9EsWjfV1MpGIfvbEiyoZWtrl27f3b25blorTvdpUF1Jj2GhHY0T90ux9gr+GUER2Zq7CwaB8dZWSYhv6Md4TAJJfWZmzx11GhtuV9ExenhP6PfecdM89TseW5HQw3nOPM+4R6Eh2trOv33XXSTfdJN16a/vH1dc7AfOppzphY6xrkJwRn4R+AAAAQPIg9AM6Idk6/TrDsixFdmzSL8+boV+/9r4GDR8pj5UjKeeAt43aWd75bkD0LgUDBqpo0JAu366jf3O/x1L/dI+2NoRVHYyoPhRRfsCjdK8lryXVhYwqmsKSpEUvPqXjTzihR/W3x2a8JwAkvbIyJxCL5ZhCt9i2dN550pQp0s6dUv/+zqjHzo55RN82aZJ08cXSL37h7Nf3P/+z7+vi0UedTryzzor91492olZWxv6+AQAAAMRP6iQYQBy1dvp5U+AdqHZY2t0lBXRXls9WUZpHHksKGWl7Y1gbakNaUxPS1gZnH0kTCur13/8mLl+fTj8ASH5lZb17P7/uGDJEOuIIadAgAj90zbe/7ewHePHFznNozhxp+XJnv8DvfEe68kpnz8iSkth/7eh4T0I/AAAAILnQ6Qd0Qip2+gHxkOO3leWztKs50rrPn+R04eX6bG1b87Gqt5fH5Wt79tjTzxjT4b6CAIDeq6xMyo/t9GcgaVmWM+JzxgzpiSek88/ffV1ennT99bHfyy9qz/GeAAAAAJIHoR/QCbs7/Qj9gAOxLUv5AY/yAx4ZYxQyTiBnW5a2xXH/R3uPjC8iyRO3rwQAiJctW6QxY9yuAuhdJkxwTjt2SFu3OuNix4+XcnPj9zXT0iSfz/laAAAAAJIHoR9wAMYY1YejnX50DgFdYVmWfAl62diWJUuSkTPi08PLFQCSTlmZNHWq21UAvVO/fs4pESzL6brdti0xXw8AAABAbBD6AZIqKipUU1PT7nXNESliMiVJ27dsUuVeQcKmTZviXR6ATrItZ7xn2Bj5ROoHAMmksVGqqkq9Pf2AZEXoBwAAACQfQj/0eRUVFTp4xAhVdbBLfeHgUv3kxffVVF+nEROHdXg/wWD8xhYC6BxPS+gXMW5XAgDoqvKWLV8LC92tA4AjL88ZJwoAAAAgeRD6oc+rqalRVWWlZj8zV4XFJftcH/L4VS8pPeDXg28t2+f61cuX6O5ZMxWO415lADrHYzkDPsOEfgCQdMrKnHNCP6B3IPQDAAAAkg+hH9CisLhERYOG7HP5ruaw6hsjSgv4VZS/7/U7y7ckojwAnWC3TPQM0+oHAEmH0A/oXfLzpc8/d7sKAAAAAF1hu10A0NsFI865z2Z/MKC3czr9GO8JAMmorEzyeqWcHLcrASA5od/27W5XAQAAAKArCP2AAwi2pAc+Xi1Ar9fa6UfoBwBJp6zM6fKz+JwV0Cvk5Uk1NVJDg9uVAAAAAOgsYgzgAHaHfrwDBfR2npaXacSQ+gFAsikrkwoK3K4CQFR+vnO+bZu7dQAAAADoPEI/YD+MMYz3BJJIdLwnnX4AkHwI/YDehdAPAAAASD6EfsB+hFqCA0uSl8wP6PXs1k4/d+sAAHTdli3OeE8AvUM09Nu61d06AAAAAHQeoR+wH9HRnl5bsthgBuj1PK17+pH6AUCyodMP6F1yc51zOv0AAACA5EHoB+wH+/kBycVmvCcAJKVQSNq+nU4/oDfxep3gj9APAAAASB6EfsB+sJ8fkFw8Lb/VjJw9OQEAyaG8XDKG0A/obfLzGe8JAAAAJBNCP2A/op1+fkI/ICns+UuNbj8ASB4ffeScl5a6WweAtvLy6PQDAAAAkgmhH7Afe+7pB6D3syxrj3393K0FANB5ixc7YwQHDHC7EgB7ys2l0w8AAABIJkQZQAeMMa3jPen0A5KHt2Vfv1CE1A8AksWiRdIhh0gWSy6gVykoIPQDAAAAkgmhH9CBUEteYEmtnUMAer9oZ26Q0A8AksYHHzihH4DehfGeAAAAQHIh9AM6EA0MfLYzMhBAcvC2dOaGyPwAICls2SKVlxP6Ab1Rfr60Y4cUDrtdCQAAAIDOIPQDOrA79CPwA5KJt+Uly3hPAEgOixc756NGuVsHgH3l50uRiFRR4XYlAAAAADqD0A/oQGOI0A9IRtHXbCjiciEAgE5ZtMgJFvr3d7sSAHvLy3PO2dcPAAAASA6EfkA7jDGqbwn9MryEfkAy2T3ek04/AEgGixZJI0dKTFMHep/8fOecff0AAACA5EDoB7SjMWwUkWRbUpqHd6CAZOJt+c0WNlKE4A8AejVjnNCP0Z5A70ToBwAAACQXQj+gHXV7dPlZfOwcSCq2pOirlhGfANC7bd7shAmHHOJ2JQDak54uBQKM9wQAAACSBaEfsBdjjOqCTlKQ6eUlAiQby7Jau/0Y8QkAvdvixc45nX5A72RZUkEBnX4AAABAsiDRAPYSjEgtjX7s5wckKW9Lhy6dfgDQu82bJxUVSf36uV0JgI7k5RH6AQAAAMmC0A/YS11LSpDusWQz2hNISj47GvrR6QcAvVVtrfTnP0unnOJ0EwHonfLyGO8JAAAAJAtCP2APzmhPJyTI9PHuE5CsGO8JAL3fnDlO8Hf66W5XAmB/+vWT1q1zuwoAAAAAnUHoB+yhIWzU1NIZxH5+QPLytnT6BRnvCQC9kjHSQw9JxxwjFRe7XQ2A/Rk6VPrsMykcdrsSAAAAAAdCqgG0MJJ2Njr/k831262hAYDkE92Ok/GeANA7vfee9NFH0te+5nYlAA5k2DCpqUlavdrtSgAAAAAcCKEf0CLoTVdzxHlR5Pt5aQDJLBrah4wzthcA0Ls89JBUUiIdfbTblQA4kNJS53zlSnfrAAAAAHBgJBuAJK8/oKZAliQpL2DLQ5cfkNS8e7yEw2R+ANCrvPuu9NRT0jnnSDb/GwF6vfx8KSeH0A8AAABIBvw3G32eMdLXrvuVjO2Vx3JGewJIbpZlMeITAHqhhgbpwgulMWOkM890uxoAnWFZzohPQj8AAACg9/O6XQDgttVNXh191vmSMeqf4ZVt0eUHpAKvbSkUNgqR+QFAr3HzzdLatdKjj0oej9vVAOisoUMJ/QAAAIBkQEsT+rRNtUEtrvdLkgLNNcrw8pIAUkW00y9Ipx8A9Ar/+pf0619LM2c6XUMAksewYdKqVVIo5HYlAAAAAPaHhAN91qbaoJ5dXa2ILC3/10vyN9e5XRKAGPJ7nNSvkU39AMB1S5ZIZ58tHX209K1vuV0NgK4aNkxqbpZWr3a7EgAAAAD7Q+iHPmljS+DXHDHq7w3ruRtniaGeQGpJb2n1awwZGUPwBwBuWbNGmjFDGjxYuukmxnoCySjancuITwAAAKB3I/RDn7OyolHPfLFLzRGjoVk+nZDdqGBjvdtlAYixgG3JlhSR1MSITwBwxbJl0nHHSYGAdNttUnq62xUB6I78fCk3l9APAAAA6O0I/dBnRIzRG5vr9NL6WoWMNCLHr28cnNO67xeA1GJZltJaXuANIUI/AEi0N9+Ujj9eysmR7r1XystzuSAA3WZZTrcfoR8AAADQu3ndLgCIlYqKCtXU1LR7XW3Y0oK6gHaEnHlSh6Y163BPnbZsrNSmTZsSWSaABEr3WKoPGTWEjHxuFwMAfYQx0v33Sz/5iTRhgnTLLVJGhttVAeipoUOlFSvcrgIAAADA/hD6ISVUVFTo4BEjVFVZ2eZyy7J01Fnn66tXzlZalkeNNdX6+y+v1vJ/vrDPfQSDoQRVCyBR0r221BRRY9jwCw8AEqCqSrr0Uum556RvfEO67DLJyw9gICUMGya9+qoUCvG6BgAAAHorlupICTU1NaqqrNTsZ+aqsLhEkhS2vWpMy1XY45ckeULN6mc16ns/my39bHbrbVcvX6K7Z81UOEzoB6Qavy3ZlhQxUthDrx8AxNPLL0uXXCJVVzvdfV/6ktsVAYilQw6RgkHp3/+WTjzR7WoAAAAAtIfQDymlsLhEucWDVdEUVl3LHl6WpIKArdzsDFlW5j632Vm+JcFVAkgUy7KU7rFUFzIKewJulwMAKWnDBum666S//EWaNEm6+mqpf3+3qwIQa4ce6oz4fPhhQj8AAACgtyL0Q8roP3yU6tPyVF23u2Mvy2upMM0jr225WBkAN6V7ndAv5CX0A4BYqqiQfv1r6Z57nD37/vd/penTJYtlF5CSLEs64wzpkUeksjJp4EC3KwIAAACwN9vtAoCe2lwX1L9rAvrxs28r5EuXJGV6LR2U6dWADC+BH9DHZXidX3Vhj1+Hn3ymy9UAQPKrqJBuuMHZ3+uee6RzzpH+/GdpxgwCPyDVTZ/u7Of3//6f25UAAAAAaA+dfkhKxhh9Ud2shVsbtKkuJMkr25a8wQYV52Ur4OEdJwAOn20p32+rsjmiM665Tc0RtysCgOS0bZv0m99IDz0khULSmWdK3/ymVFDgdmUAEiUrS/rKV5xuv+uucwJAAAAAAL0HnX5IKruaw3pva71+/0mV/ramRpvqQrItqdQf1D3fmKqMxioCPwD7yA/YssNBZffrryUNfrfLAYCksnq19IMfOHt5/fa30te+Js2ZI33vewR+QF905pnS5s3SX//qdiUAAAAA9sbn8tDr1QUj+rSqSR9XNmnzHvv1BTyWjihM05H901SxZZO2rVnlYpUAejPLspTWtEv1Gf20psmnuRtq9ZVBmfLzIQEAaFdzs/SPf0iPPir9859SXp70ne84b/bn5LhdHQA3HXKIdNxx0oUXSoWF0sknu10RAAAAgChCP/QaFRUVqqmpkTFSRdjWlqBHZc0e7QzbkqJvzBv190Y01B/S0EBIvlCtKrZImzZtcrN0AEnAGw7qtd/+UtNn/UxLdzZqfW2zvlySqZG5ftlsQgUAam6WXn9devZZ6e9/l3btkg49VLr6amnaNCkQcLtCAL3FjTc6pzPOkJ57zjkHAAAA4D5CP7gubIy+KK/QD342W/1HHqaDJx2vrIKiNsdsXL5YH732vJb98wXV7Nja4X0Fg6EOrwOANx+7V3dcf5UWNWaqsimi59fWKMdna1xhmkbn+9UvjV+LAPqW7dul116TXn5ZeuUVqbpaOugg5w38r3xFKi11u0IAvZHfL82e7Zy+9jVp+nTp1lulo492uzIAAACgb+PdTSRUxBhVNIa1tSGkrQ1hldUHVV4fUjAinfyjG3YfaCLyhpqcU7hJhw0r0WGX/VDfueyH7d7v6uVLdPesmQqHCf0A7F9o6wadUnKQPm70aXWTT9XBiP5TXq//lNcrx46o2BfWAF9Y/b1h+ffa+TY7O1sFbGAFIImVlUkLFkhvvy299Zb00UeSMc64vq9/XTr+eCfoowEawIFEg7+33pL+9Cdp0iRp4kTpggukc8+VSkrcrhAAAADoewj9EDPR8ZyS8+ZRo5Fqw7Z2hW1Vhm1VhmxVhW2Fte+7SF4T1sp33tC4oyerMD9PaR6vLKvzM6R2lm+J2fcBIDXVVe+SZduaOnVq62Vef0CHn3ymxp1ylkYcc4KqfX5VN9n6rMmnSCSislXLtW7Je9ry6XJtWbVczZXb9fmqTwn+ACSFqippyRLpgw+c08KF0saNznUDB0rjxknXXuu8Uc+PNQDdYdvSiSdKX/qS9O67zh6gP/mJdMUVTgB4+unSSSdJkyczIhgAAABIhF4R+j344IO66667VF5ervHjx+uBBx7QpEmTOjz+ueee0w033KB169Zp5MiR+tWvfqWvfvWrCawYYWNUG4yopjmimmBEW3fV6oHfP6a03EIVDi5V4eBSBTKz2r1tU32dyj5bqbJVy7X502XauGyRtq/7XMYY3fuvD5VexLtOAGKvsb5OJhLRz554USVD951XZxorFAoFFPL4Ffb4JY9Pg8aM16Ax41uPCTY16q+bgiqpqVFBwKOCNI9zHvDIa9MWg9iJ9drIGKObbrpJv//971VVVaXjjjtODz/8sEaOHNl6TEVFhX70ox/ppZdekm3bOuecc3TfffcpK6v93+foPRobpS++kD79VPr4Y6d7b+lSac0a5/r0dKeTb8oU6aKLnH36ior2e5cA0CUej9MpfPzxzpjghQudruJ773W6AdPTpSOPdH4OHX20NGGCdPDBTmgIAAAAIHZcD/2eeeYZXXXVVXrkkUc0efJk3XvvvZo+fbpWrVql/v3773P8u+++q29/+9u6/fbbdfrpp2vOnDk666yz9OGHH2rs2LEufAe7RYxRQ8go05d8/3MJRowaQxE1hI0aw3v8ORRx/h42qgs6AV9Nc0S1ocg+93H0Ny5se4ExskxYdiQsTzgoTyQoOxxUtgmr6ODBGnfwYKnlDUnGcwJIlIIBA1U0aMgBjwtFjBrCRk0tp8ZQWL5AmirCUkVF0z7Hp1kRZdhG6bZRRuvJuSzNNuqXk6niwgJZzMzDAcRjbXTnnXfq/vvv15/+9CeVlpbqhhtu0PTp0/Xxxx8rLS1NknT++eerrKxM8+bNUzAY1IUXXqhLL71Uc+bMSej3j7aMkSorpS1bpE2bnE69jRultWud05o1zsjOqNxcafhwp8PmvPOcsG/wYOcNeQBIhJwc6eSTnVM47PycWrJE+uQT6YknpLvuco7LypLGjJHGjpVGj5ZGjZJGjJCGDZMyM139FgAAAICk5Xrod/fdd+uSSy7RhRc6gdEjjzyil19+WY899piuu+66fY6/7777NGPGDF1zzTWSpFtvvVXz5s3Tb3/7Wz3yyCMJrX1vOxvD+n+fVinHZ2tgpleDMn0anu1TYZonZm/yGmMUkfNmdDgihYxRqOU8HDGq2FWtmvp6hYylkLEUNFLQWArtcd5srN2niPP39kZuHoit3W9uq7FOf5vzhE7+5neVn18gn23JZ0uW5e/UfTGeE0Bv47UtZduWsn3O39d+8onu/MEFKh55mIpKR6po6MEqGjpC/YaNUHp2rhqNrcawpHAHd7jLyLNxpzJ9tjJ8tjK9ljK9tgIeSwGPrTSP1fJnq/Wy6J/9tiWPJQLDPiLWayNjjO699179/Oc/15lnnilJeuKJJzRgwAC98MIL+ta3vqVPPvlEc+fO1QcffKCjjjpKkvTAAw/oq1/9qn7961+rpJdvzNTY6IyyLC52u5IDa2qSdu3afaqsdE47dzqnbduk8nIn5NuyxQn0Ght3396ypMJC53sdMECaNs3ZN2vQIGnIECf0A4DewuORRo50TlGVlU538urV0rp1zljQZ56R6ut3H9Ovn/OBhSFDnJ9vBx3knJeUOKcBA6T8fDoFAQAAgL25Gvo1Nzdr8eLFuv7661svs21b06ZN04IFC9q9zYIFC3TVVVe1uWz69Ol64YUX4llqp+xsdN7prQ5GVF3VrFVVzXpdUroVUabHyG8ZWZJM9GQsGUmR1r873YKyLEXUcp2RwkYKy1LYRI890Ju+6d2qPxwKqaG6SvW7KtVYU6X6XVVqqK5sPa+rqtCu8s3ata1Mu7ZuUX3VThlj2tzH9NPPVGb/ft36+gDQmzXV12nnxrX63i/vbTMe1KheprZBxvIoYnlk7Oi53fr3sLFkeTwKq+V3RHDfbunO8MjItpxzjyV5JNmWkUdy/t7y5z2PkSRLUsDvU3pamizLkiUnOLBbrrRlybKc46LXdfSbZs/gce9jrL3+0OH1rfe19/WWIsYoGDHOh1Uizp8DHktfGtg3PvIfj7XR2rVrVV5ermnTprVen5ubq8mTJ2vBggX61re+pQULFigvL6818JOkadOmybZtLVy4UGeffXYMv8vYKCuT/v536R//kN56S2pocLpDTjzR2T/qpJO6FwIaI4VCTjjX1OQEbg0Nzqm+fvefGxqc6/Y81ddLdXVSba0T6FVVSRUVu0+7drUN8Pbk8TjdMfn5u0+TJzsBX1FR23Ov6x/bA4Duy893RnweffTuy4xxfk5GP+xQXi5t3+6cr1zp/HnXrrb34/U64WD//s7Px4IC575zc51TXp5zys11fr5mZzvdhRkZzik93dlnkM9UAQAAIJW4+pbBjh07FA6HNWDAgDaXDxgwQJ9++mm7tykvL2/3+PLy8naPb2pqUlPT7jFsu1r+p1BdXd2T0ttV4pHOyavVWRdcrLzBI1Q68RgNPWKyGv1pqoz5V3OEgk0KNzUp2NykULBJoaZm5RYWymPbUiQiE4lIkbBMJCxF/2xCUjgiEw5J4ZBMxDnf9NknevKOG3Txrfeq38BBys30SZn9pYH7jhLb26YvPtWTd9ygTatXKdTcwbtZ+7F1wzpJUtm61U5dCby9m1+7p7endmqn9sTfvqmhXg11tZ26TfTD5+VrPtcDP/meMnMLlFXQTxn5hcrK76fMgn5Ky8pRWla20jKzFcjMVlpWtvyZLX/PylYgPVZhV6OkmhjdV2JleqUJmYUxv9/oWmDvD7C4KR5ro+j5gY7Ze3So1+tVQUFBr1hjSdKqVdJ//Zf02Wf7Xped7Yy0XLNG+uMfnVNv4/U6dRYWOmPrMjOdN52zspzL09Pbf+O5psY5RffnA4C+oqDAOUU1Ne3ujI5+sGLHDicY7KssywlMu8rnc4LQhx+Wpk+PfV29cY2VzKKPY7zWWAAAIDl0eo1lXLR582Yjybz77rttLr/mmmvMpEmT2r2Nz+czc+bMaXPZgw8+aPr379/u8TfddFNrYx0nTpw4ceLEidPep40bN8ZmYRMD8VgbvfPOO0aS2bJlS5tjzj33XPPNb37TGGPML3/5S3PIIYfsc99FRUXmoYceavfrssbixIkTJ06cOO3v1JvWWMls48aNrv9bcuLEiRMnTpx6z+lAayxXO/369esnj8ejrVu3trl869atKu5gHlNxcXGXjr/++uvbjLyKRCKqqKhQYWEheyMdQHV1tQYPHqyNGzcqJyfH7XL6BB7zxOLxTiwe78Ti8T4wY4xqamp61X518VgbRc+3bt2qgQMHtjlmwoQJrcds27atzX2EQiFVVFSwxkogXrfxx2OcGDzO8cdjHH88xt3XG9dYyaykpEQbN25UdnY2a6wD4HWbWDzeicXjnXg85onF431gnV1juRr6+f1+HXnkkZo/f77OOussSc4bRvPnz9esWbPavc2UKVM0f/58XXHFFa2XzZs3T1OmTGn3+EAgoEAg0OayvLy8WJTfZ+Tk5PBCSzAe88Ti8U4sHu/E4vHev9zcXLdLaCMea6PS0lIVFxdr/vz5rSFfdXW1Fi5cqO9///ut91FVVaXFixfryCOPlCS9/vrrikQimjx5crtflzVW/PC6jT8e48TgcY4/HuP44zHunt62xkpmtm3roIMOcruMpMLrNrF4vBOLxzvxeMwTi8d7/zqzxnI19JOkq666SjNnztRRRx2lSZMm6d5771VdXZ0uvPBCSdIFF1ygQYMG6fbbb5ck/fjHP9YJJ5yg3/zmNzrttNP09NNPa9GiRXr00Ufd/DYAAABiItZrI8uydMUVV+gXv/iFRo4cqdLSUt1www0qKSlpDRbHjBmjGTNm6JJLLtEjjzyiYDCoWbNm6Vvf+haf0gcAAAAAAEgSrod+5513nrZv364bb7xR5eXlmjBhgubOnasBAwZIkjZs2CDbtluPP/bYYzVnzhz9/Oc/109/+lONHDlSL7zwgsaOHevWtwAAABAz8VgbXXvttaqrq9Oll16qqqoqTZ06VXPnzlVaWlrrMU899ZRmzZqlk046SbZt65xzztH999+fuG8cAAAAAAAAPeJ66CdJs2bN6nBk1ZtvvrnPZeeee67OPffcOFeFQCCgm266aZ/RXYgfHvPE4vFOLB7vxOLxTm6xXhtZlqXZs2dr9uzZHR5TUFCgOXPmdLlWxA6v2/jjMU4MHuf44zGOPx5jIPnwuk0sHu/E4vFOPB7zxOLxjh3LGGPcLgIAAAAAAAAAAABA99kHPgQAAAAAAAAAAABAb0boBwAAAAAAAAAAACQ5Qj8AAAAAAAAAAAAgyRH6QZL0y1/+Uscee6wyMjKUl5fX7jEbNmzQaaedpoyMDPXv31/XXHONQqFQm2PefPNNTZw4UYFAQCNGjNDjjz8e/+JTwLBhw2RZVpvTHXfc0eaYZcuW6fjjj1daWpoGDx6sO++806VqU8ODDz6oYcOGKS0tTZMnT9b777/vdkkp4eabb97nuTx69OjW6xsbG/XDH/5QhYWFysrK0jnnnKOtW7e6WHFyefvtt3XGGWeopKRElmXphRdeaHO9MUY33nijBg4cqPT0dE2bNk2ff/55m2MqKip0/vnnKycnR3l5ebroootUW1ubwO8CAOsud7DeSgzWWLHDuio+WE8BqYH1lLtYVyUea6z4YL0VX6y73EHoB0lSc3Ozzj33XH3/+99v9/pwOKzTTjtNzc3Nevfdd/WnP/1Jjz/+uG688cbWY9auXavTTjtNJ554opYuXaorrrhCF198sV577bVEfRtJbfbs2SorK2s9/ehHP2q9rrq6WqeccoqGDh2qxYsX66677tLNN9+sRx991MWKk9czzzyjq666SjfddJM+/PBDjR8/XtOnT9e2bdvcLi0lHHbYYW2ey//5z39ar7vyyiv10ksv6bnnntNbb72lLVu26Otf/7qL1SaXuro6jR8/Xg8++GC719955526//779cgjj2jhwoXKzMzU9OnT1djY2HrM+eefr5UrV2revHn6xz/+obfffluXXnppor4FAGLd5SbWW/HFGiv2WFfFHuspIDWwnnIf66rEYY0VX6y34od1l0sMsIc//vGPJjc3d5/LX3nlFWPbtikvL2+97OGHHzY5OTmmqanJGGPMtddeaw477LA2tzvvvPPM9OnT41pzKhg6dKi55557Orz+oYceMvn5+a2PtTHG/O///q8ZNWpUAqpLPZMmTTI//OEPW/8eDodNSUmJuf32212sKjXcdNNNZvz48e1eV1VVZXw+n3nuuedaL/vkk0+MJLNgwYIEVZg6JJnnn3++9e+RSMQUFxebu+66q/WyqqoqEwgEzF/+8hdjjDEff/yxkWQ++OCD1mNeffVVY1mW2bx5c8JqB+Bg3ZVYrLfijzVWbLGuij/WU0DyYz3lDtZVicUaK35YbyUO667EodMPnbJgwQIdfvjhGjBgQOtl06dPV3V1tVauXNl6zLRp09rcbvr06VqwYEFCa01Wd9xxhwoLC3XEEUforrvuajNyYsGCBfrSl74kv9/fetn06dO1atUqVVZWulFu0mpubtbixYvbPFdt29a0adN4rsbI559/rpKSEg0fPlznn3++NmzYIElavHixgsFgm8d+9OjRGjJkCI99DKxdu1bl5eVtHt/c3FxNnjy59fFdsGCB8vLydNRRR7UeM23aNNm2rYULFya8ZgDtY90VP6y34oc1Vnywrkos1lNA6mA9FX+sqxKDNVb8sd5yB+uu+PG6XQCSQ3l5eZuFkqTWv5eXl+/3mOrqajU0NCg9PT0xxSahyy+/XBMnTlRBQYHeffddXX/99SorK9Pdd98tyXlsS0tL29xmz8c/Pz8/4TUnqx07digcDrf7XP30009dqip1TJ48WY8//rhGjRqlsrIy3XLLLTr++OO1YsUKlZeXy+/377PfwoABA1p/jqD7oo9he8/tPX9O9+/fv831Xq9XBQUF/BsAvQjrrvhgvRVfrLFij3VV4rGeAlIH66n4Yl2VOKyx4ov1lntYd8UPoV8Ku+666/SrX/1qv8d88sknbTYnRex05fG/6qqrWi8bN26c/H6/LrvsMt1+++0KBALxLhWImVNPPbX1z+PGjdPkyZM1dOhQPfvss/yHCUBKY93lDtZbSGWsqwD0Nayn3MW6Cn0R6y2kIkK/FHb11Vfrv//7v/d7zPDhwzt1X8XFxXr//ffbXLZ169bW66Ln0cv2PCYnJ6dP/pDsyeM/efJkhUIhrVu3TqNGjerwsZV2P/7onH79+snj8bT7ePJYxl5eXp4OOeQQffHFFzr55JPV3NysqqqqNp+S4rGPjehjuHXrVg0cOLD18q1bt2rChAmtx+y90XcoFFJFRQX/BkAPse5yB+ut3oM1Vvyxroo/1lOAu1hPuYt1Ve/EGiuxWG8lDuuu+CH0S2FFRUUqKiqKyX1NmTJFv/zlL7Vt27bWltp58+YpJydHhx56aOsxr7zySpvbzZs3T1OmTIlJDcmmJ4//0qVLZdt262M9ZcoU/exnP1MwGJTP55PkPLajRo1iJEIX+f1+HXnkkZo/f77OOussSVIkEtH8+fM1a9Ysd4tLQbW1tVq9erW++93v6sgjj5TP59P8+fN1zjnnSJJWrVqlDRs29NmfE7FUWlqq4uJizZ8/v3VxVF1drYULF+r73/++JOdnSVVVlRYvXqwjjzxSkvT6668rEolo8uTJbpUOpATWXe5gvdV7sMaKP9ZV8cd6CnAX6yl3sa7qnVhjJRbrrcRh3RVHBjDGrF+/3ixZssTccsstJisryyxZssQsWbLE1NTUGGOMCYVCZuzYseaUU04xS5cuNXPnzjVFRUXm+uuvb72PNWvWmIyMDHPNNdeYTz75xDz44IPG4/GYuXPnuvVtJYV3333X3HPPPWbp0qVm9erV5sknnzRFRUXmggsuaD2mqqrKDBgwwHz3u981K1asME8//bTJyMgwv/vd71ysPHk9/fTTJhAImMcff9x8/PHH5tJLLzV5eXmmvLzc7dKS3tVXX23efPNNs3btWvPOO++YadOmmX79+plt27YZY4z53ve+Z4YMGWJef/11s2jRIjNlyhQzZcoUl6tOHjU1Na0/nyWZu+++2yxZssSsX7/eGGPMHXfcYfLy8syLL75oli1bZs4880xTWlpqGhoaWu9jxowZ5ogjjjALFy40//nPf8zIkSPNt7/9bbe+JaBPYt2VeKy3EoM1VmyxrooP1lNAamA95R7WVYnHGit+WG/FF+sudxD6wRhjzMyZM42kfU5vvPFG6zHr1q0zp556qklPTzf9+vUzV199tQkGg23u54033jATJkwwfr/fDB8+3Pzxj39M7DeShBYvXmwmT55scnNzTVpamhkzZoy57bbbTGNjY5vjPvroIzN16lQTCATMoEGDzB133OFSxanhgQceMEOGDDF+v99MmjTJvPfee26XlBLOO+88M3DgQOP3+82gQYPMeeedZ7744ovW6xsaGswPfvADk5+fbzIyMszZZ59tysrKXKw4ubzxxhvt/qyeOXOmMcaYSCRibrjhBjNgwAATCATMSSedZFatWtXmPnbu3Gm+/e1vm6ysLJOTk2MuvPDC1v8YA0gM1l2Jx3orcVhjxQ7rqvhgPQWkBtZT7mFd5Q7WWPHBeiu+WHe5wzLGmLi3EwIAAAAAAAAAAACIG9vtAgAAAAAAAAAAAAD0DKEfAAAAAAAAAAAAkOQI/QAAAAAAAAAAAIAkR+gHAAAAAAAAAAAAJDlCPwAAAAAAAAAAACDJEfoBAAAAAAAAAAAASY7QDwAAAAAAAAAAAEhyhH4AAAAAAAAAAABAkiP0A9CnrVu3TpZlaenSpW6XAgAAkDJYYwEAAMQW6ysAnUHoB6BXMMZo2rRpmj59+j7XPfTQQ8rLy9OmTZtcqAwAACB5scYCAACILdZXAHozQj8AvYJlWfrjH/+ohQsX6ne/+13r5WvXrtW1116rBx54QAcddJCLFQIAACQf1lgAAACxxfoKQG9G6Aeg1xg8eLDuu+8+/eQnP9HatWtljNFFF12kU045Rd/97nf3Of473/mOzjvvvDaXBYNB9evXT0888YQkae7cuZo6dary8vJUWFio008/XatXr+6whscff1x5eXltLnvhhRdkWVaby1588UVNnDhRaWlpGj58uG655RaFQiFJzie+br75Zg0ZMkSBQEAlJSW6/PLLu/OQAAAA9BhrLAAAgNhifQWgt/K6XQAA7GnmzJl6/vnn9T//8z/6+te/rhUrVmjlypXtHnv++efr3HPPVW1trbKysiRJr732murr63X22WdLkurq6nTVVVdp3Lhxqq2t1Y033qizzz5bS5culW1373MP//73v3XBBRfo/vvv1/HHH6/Vq1fr0ksvlSTddNNN+tvf/qZ77rlHTz/9tA477DCVl5fro48+6tbXAgAAiAXWWAAAALHF+gpAb0ToB6DXefTRR3XYYYfp7bff1t/+9jcVFRW1e9z06dOVmZmp559/vvVTVHPmzNHXvvY1ZWdnS5LOOeecNrd57LHHVFRUpI8//lhjx47tVn233HKLrrvuOs2cOVOSNHz4cN1666269tprddNNN2nDhg0qLi7WtGnT5PP5NGTIEE2aNKlbXwsAACBWWGMBAADEFusrAL0N4z0B9Dr9+/fXZZddpjFjxuiss87q8Div16tvfvObeuqppyQ5n4h68cUXdf7557ce8/nnn+vb3/62hg8frpycHA0bNkyStGHDhm7X99FHH2n27NnKyspqPV1yySUqKytTfX29zj33XDU0NGj48OG65JJL9Pzzz7eOTQAAAHALaywAAIDYYn0FoLeh0w9Ar+T1euX1HvhH1Pnnn68TTjhB27Zt07x585Senq4ZM2a0Xn/GGWdo6NCh+v3vf6+SkhJFIhGNHTtWzc3N7d6fbdsyxrS5LBgMtvl7bW2tbrnlFn3961/f5/ZpaWkaPHiwVq1apX/961+aN2+efvCDH+iuu+7SW2+9JZ/P15lvHwAAIC5YYwEAAMQW6ysAvQmhH4Ckduyxx2rw4MF65pln9Oqrr+rcc89tXZTs3LlTq1at0u9//3sdf/zxkqT//Oc/+72/oqIi1dTUqK6uTpmZmZKkpUuXtjlm4sSJWrVqlUaMGNHh/aSnp+uMM87QGWecoR/+8IcaPXq0li9frokTJ/bguwUAAEgM1lgAAACxxfoKQCIQ+gFIet/5znf0yCOP6LPPPtMbb7zRenl+fr4KCwv16KOPauDAgdqwYYOuu+66/d7X5MmTlZGRoZ/+9Ke6/PLLtXDhQj3++ONtjrnxxht1+umna8iQIfrGN74h27b10UcfacWKFfrFL36hxx9/XOFwuPW+nnzySaWnp2vo0KHx+PYBAADigjUWAABAbLG+AhBv7OkHIOmdf/75+vjjjzVo0CAdd9xxrZfbtq2nn35aixcv1tixY3XllVfqrrvu2u99FRQU6Mknn9Qrr7yiww8/XH/5y1908803tzlm+vTp+sc//qF//vOfOvroo3XMMcfonnvuaV0Q5eXl6fe//72OO+44jRs3Tv/617/00ksvqbCwMObfOwAAQLywxgIAAIgt1lcA4s0yew/+BQAAAAAAAAAAAJBU6PQDAAAAAAAAAAAAkhyhHwAAAAAAAAAAAJDkCP0AAAAAAAAAAACAJEfoBwAAAAAAAAAAACQ5Qj8AAAAAAAAAAAAgyRH6AQAAAAAAAAAAAEmO0A8AAAAAAAAAAABIcoR+AAAAAAAAAAAAQJIj9AMAAAAAAAAAAACSHKEfAAAAAAAAAAAAkOQI/QAAAAAAAAAAAIAkR+gHAAAAAAAAAAAAJLn/D7NfkrZhMa8rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plotGraph(data.Y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "F6jSO3BCOVIm", + "outputId": "3b25c273-373e-490d-d604-6f7b6c4fe279" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJOCAYAAAB/dnBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4OklEQVR4nOzdd3xT9f7H8XfSDV2U0VIEylD2uiiIoqBsUC4qQxwMARc4wIkDEO6VnwOEq1wRr4ALQRRRAZHpBAcgIgjIHpa2zC46k/P7I01o6G7TJimv5+ORR8jJ95zzTcHmmHc+n6/JMAxDAAAAAAAAAAAAALya2d0TAAAAAAAAAAAAAFB2BH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8ASmXKlCkymUwVcq6uXbuqa9eujsfffPONTCaTPvnkkwo5/4gRIxQTE1Mh5yqtlJQUjR49WlFRUTKZTHr00UfdPSUAAMrs4msAb1eR108VwRuukUqrb9++GjNmjLunkceff/4pX19f7dy50+XHjomJ0YgRI1x+3LLYt2+fevbsqbCwMJlMJi1fvtzdUwIAoMIdPnxYJpNJCxcudPdUnKxevVpt27ZVYGCgTCaTzp075+4pAchB8AdACxculMlkctwCAwMVHR2tXr166T//+Y+Sk5Ndcp7Y2FhNmTJF27dvd8nxXMmT51YcL774ohYuXKgHHnhA77//vu6+++58x9k/cCzqBgCoHOzv8Vu2bHHanpiYqA4dOigwMFCrV6920+xcJyYmxvEeZjabFR4erlatWunee+/Vzz//7O7pFerFF190eZhh/5JUQbfFixcX+1ieeo20aNEizZo1q1yO/eOPP2rNmjV66qmnHNsK+uJZZmambrrpJpnNZs2fP19S6a6ti7pGi4uLkyQ1b95c/fr106RJk8rltZdGef4bGT58uP744w/9+9//1vvvv68rr7wy33Fdu3Yt8vq2Mn2JAABQOhe/R5tMJtWqVUs33HCDvvrqqwqfz8XXbH5+fmrYsKGGDRumgwcPuuQcmzZt0pQpU1weyp0+fVqDBw9WUFCQ5syZo/fff19Vq1bNd2xxPoeaMmWKS+cHXOp83T0BAJ5j6tSpatCggbKyshQXF6dvvvlGjz76qGbOnKkvvvhCrVu3dox97rnn9PTTT5fo+LGxsXrhhRcUExOjtm3bFnu/NWvWlOg8pVHY3N5++21ZrdZyn0NZbNiwQVdffbUmT55c6Lhbb71VjRs3zve5HTt26JVXXlHHjh3LY4oAAA+RlJSknj17aseOHfrss8/Uu3dvd0/JJdq2bavHHntMkpScnKzdu3dr6dKlevvttzV+/HjNnDnTzTPM//rpxRdf1MCBAzVgwACXn+/hhx/WVVddlWd7p06din0MT71GWrRokXbu3FkuXQ5eeeUVdevWrcBrJrusrCwNHDhQq1at0ttvv6177rnH6fmSXFvbvfnmmwoODs6zPTw83PHn+++/X3379tWBAwfUqFGj0r1IFyrtNX5R0tLStHnzZj377LMaN25coWOfffZZjR49Ot/nlixZohUrVujqq6922dwAAN7N/h5tGIbi4+O1cOFC9e3bV19++aVuuummCp+P/ZotKytL27Zt07x587Ry5Ur98ccfio6OLtOxN23apBdeeEEjRoxwup4oq19//VXJycmaNm2aunfvXujY999/v8DnpkyZogMHDvBZFOBiBH8AHPr06eP0LdqJEydqw4YNuummm9S/f3/t3r1bQUFBkiRfX1/5+pbvr5Dz58+rSpUq8vf3L9fzFMXPz8+t5y+OhIQENW/evMhxrVu3zvdDptTUVP3rX/9SWFiYPvroo/KYIgDAAyQnJ6tXr17avn27li1bpj59+pT5mOnp6fL395fZ7N5mInXq1NFdd93ltO2ll17SHXfcoddee02XX365HnjgATfNzqYirp9yu+666zRw4MByO743XCOVVEJCglauXKm5c+cWOi4rK0uDBw/WihUr9NZbb2nUqFF5xpTk2tpu4MCBqlGjRqHn7t69u6pVq6Z3331XU6dOLcGr8y4nT56UpGJ9SNmjR498t//xxx8aM2aM2rdvX6l/VgCAkrn4PXrUqFGKjIzURx995JbgL/c128iRI3XFFVfo4Ycf1rvvvquJEydW+HyKIyEhQVLx3qcvvka3+9///qcDBw7ooYcecsn/lwC4gFafAAp144036vnnn9eRI0f0wQcfOLbnt0bN2rVr1blzZ4WHhys4OFhNmjTRM888I8nWvsD+jfORI0c6Svnt/cm7du2qli1bauvWrbr++utVpUoVx74Fre9jsVj0zDPPKCoqSlWrVlX//v117NgxpzEFrVWS+5hFzS2/9WtSU1P12GOPqW7dugoICFCTJk306quvyjAMp3Emk0njxo3T8uXL1bJlSwUEBKhFixbFbquWkJDguAANDAxUmzZt9O677zqet7eFOHTokFauXOmY++HDh4t1fLsHH3xQe/fu1bx589SgQYMS7QsA8A4pKSnq3bu3tm3bpk8//VT9+vVzev7vv//WPffco8jISMf7lb11oZ39fWfx4sV67rnnVKdOHVWpUkVJSUkaMWKEgoOD9ffff2vAgAEKDg5WzZo19fjjj8tisTgdx2q1atasWWrRooUCAwMVGRmp++67T2fPnnXpaw4KCtL777+viIgI/fvf/3Z6ny7uHGJiYnTTTTfphx9+cLRHbdiwod577z2ncVlZWXrhhRd0+eWXKzAwUNWrV1fnzp21du1ax5iLr59MJpNSU1P17rvvOt7DR4wYoY0bN8pkMumzzz7L85oWLVokk8mkzZs3u+RnVJbrt4uvkezrz7z66quaM2eOGjZsqCpVqqhnz546duyYDMPQtGnTdNlllykoKEj//Oc/debMGaf5fP755+rXr5+io6MVEBCgRo0aadq0aU7/hrp27aqVK1fqyJEjjjnlnkdGRoYmT56sxo0bKyAgQHXr1tWTTz6pjIyMIn8eK1euVHZ2dqHfXM/Oztbtt9+uzz//XG+++WaJ1gIs6Nq6JPz8/NS1a1d9/vnnRY61/5vbs2ePBg8erNDQUFWvXl2PPPKI0tPTi9z/4MGDGjRokCIiIlSlShVdffXVWrlypeP5ov6NFOS3335Tnz59FBoaquDgYHXr1k0//fST07zr168vSXriiSfy/B0XR2pqqoYMGSI/Pz8tWbLE7V8mBAB4rvDwcAUFBeX5glZRn/2kpaWpadOmatq0qdLS0hz7nTlzRrVr19Y111yT5zq4OG688UZJ0qFDhwodt2HDBl133XWqWrWqwsPD9c9//lO7d+92PD9lyhQ98cQTkqQGDRoU+zOjpUuXqn379goKClKNGjV011136e+//3Y837VrVw0fPlySdNVVVzmuYUti165devjhh9WuXTu98sorJdoXQNGo+ANQpLvvvlvPPPOM1qxZU+AHG7t27dJNN92k1q1ba+rUqQoICND+/fv1448/SpKaNWumqVOnatKkSbr33nt13XXXSZKuueYaxzFOnz6tPn366Pbbb9ddd92lyMjIQuf173//WyaTSU899ZQSEhI0a9Ysde/eXdu3b8/z7enCFGduuRmGof79+2vjxo0aNWqU2rZtq6+//lpPPPGE/v77b7322mtO43/44QctW7ZMDz74oEJCQvSf//xHt912m44eParq1asXOK+0tDR17dpV+/fv17hx49SgQQMtXbpUI0aM0Llz5/TII4+oWbNmev/99zV+/HhddtlljhZnNWvWLPbrf/fdd/Xee+9pzJgxGjx4cLH3AwB4j9TUVPXp00e//vqrPvnkkzzfZI6Pj9fVV1/t+MJKzZo19dVXX2nUqFFKSkrK005x2rRp8vf31+OPP66MjAzHB+oWi0W9evVSx44d9eqrr2rdunWaMWOGGjVq5FRtd99992nhwoUaOXKkHn74YR06dEhvvPGGfvvtN/34448urSQLDg7WLbfconfeeUd//vmnWrRoUeI57N+/XwMHDtSoUaM0fPhwzZ8/XyNGjFD79u0dx5syZYqmT5+u0aNHq0OHDkpKStKWLVu0bdu2AquR3n//fcf4e++9V5LUqFEjXX311apbt64+/PBD3XLLLU77fPjhh2rUqFGx2nUmJyfr1KlTebZXr15dJpPJJddv+fnwww+VmZmphx56SGfOnNHLL7+swYMH68Ybb9Q333yjp556Svv379frr7+uxx9/3ClgXrhwoYKDgzVhwgQFBwdrw4YNmjRpkpKSkhwfCj377LNKTEzU8ePHHddd9vaYVqtV/fv31w8//KB7771XzZo10x9//KHXXntNf/31V5HrKW7atEnVq1d3hE4Xy87O1tChQ/XZZ59pzpw5uu+++wo9Xn4Ku7a+OAiVbJWiF3+bvn379vr888+VlJSk0NDQIs85ePBgxcTEaPr06frpp5/0n//8R2fPns0TYOcWHx+va665RufPn9fDDz+s6tWr691331X//v31ySef6JZbbinVv5Fdu3bpuuuuU2hoqJ588kn5+fnprbfeUteuXfXtt9+qY8eOuvXWWxUeHq7x48dr6NCh6tu3b74tUAszbtw47d692/HfDAAAdomJiTp16pQMw1BCQoJef/11paSkOFWmFeezn6CgIL377ru69tpr9eyzzzpay48dO1aJiYlauHChfHx8Sjy/AwcOSFKhnxmtW7dOffr0UcOGDTVlyhSlpaXp9ddf17XXXqtt27YpJiZGt956q/766y999NFHeu211xxdBQr7zMh+fXzVVVdp+vTpio+P1+zZs/Xjjz/qt99+U3h4uJ599lk1adJE8+bNc7RNLcl77fnz5zV48GD5+Pho8eLFCggIKPa+AIrJAHDJW7BggSHJ+PXXXwscExYWZrRr187xePLkyUbuXyGvvfaaIck4efJkgcf49ddfDUnGggUL8jzXpUsXQ5Ixd+7cfJ/r0qWL4/HGjRsNSUadOnWMpKQkx/aPP/7YkGTMnj3bsa1+/frG8OHDizxmYXMbPny4Ub9+fcfj5cuXG5KMf/3rX07jBg4caJhMJmP//v2ObZIMf39/p22///67Icl4/fXX85wrt1mzZhmSjA8++MCxLTMz0+jUqZMRHBzs9Nrr169v9OvXr9Dj5Wf37t1G1apVjRYtWhjnz58v8f4AAM9mf4+vX7++4efnZyxfvjzfcaNGjTJq165tnDp1ymn77bffboSFhTneI+zvwQ0bNszzvjF8+HBDkjF16lSn7e3atTPat2/vePz9998bkowPP/zQadzq1avzbL/4/bogRb0P2q9TPv/88xLPoX79+oYk47vvvnNsS0hIMAICAozHHnvMsa1NmzZFvhdffP1kGIZRtWrVfK9VJk6caAQEBBjnzp1zOq+vr68xefLkQs9j/3sq6HbixAmnn0tpr98uvkY6dOiQIcmoWbOm07wnTpxoSDLatGljZGVlObYPHTrU8Pf3N9LT0x3b8rseue+++4wqVao4jevXr5/Tue3ef/99w2w2G99//73T9rlz5xqSjB9//LHA12oYhtG5c2enf6929p+p/d/DnDlzCjxGWa6t87s1adIkz/6LFi0yJBk///xzoa/Hftz+/fs7bX/wwQcNScbvv//u2HbxdfOjjz5qSHL6WSYnJxsNGjQwYmJiDIvFYhhG4f9G8jNgwADD39/fOHDggGNbbGysERISYlx//fWObfZ/T6+88kqxjpvb+++/b0gyRo4cWeJ9AQCVl/09+uJbQECAsXDhQqexJfnsZ+LEiYbZbDa+++47Y+nSpYYkY9asWUXOx359MX/+fOPkyZNGbGyssXLlSiMmJsYwmUyOawn7e2Lu99q2bdsatWrVMk6fPu3Y9vvvvxtms9kYNmyYY9srr7xiSDIOHTpU5HwyMzONWrVqGS1btjTS0tIc21esWGFIMiZNmuTYVpzrnYLcc889hiTj3XffLfG+AIqHVp8AiiU4OFjJyckFPm//FvLnn38uq9VaqnMEBARo5MiRxR4/bNgwhYSEOB4PHDhQtWvX1qpVq0p1/uJatWqVfHx89PDDDzttf+yxx2QYhr766iun7d27d3f65lPr1q0VGhqqgwcPFnmeqKgoDR061LHNz89PDz/8sFJSUvTtt9+W6XWkp6dryJAhslqtWrJkSYmqJAEA3iU+Pl6BgYGqW7dunucMw9Cnn36qm2++WYZh6NSpU45br169lJiYqG3btjntM3z48ALfN+6//36nx9ddd53Te97SpUsVFhamHj16OJ2rffv2Cg4O1saNG13wip3ZK4Xs1zIlnUPz5s0dlUyS7VvSTZo0cXpd4eHh2rVrl/bt2+eSOQ8bNkwZGRn65JNPHNuWLFmi7OzsAtdJudikSZO0du3aPLeIiAjHnKWyXb/lZ9CgQQoLC3M87tixoyTb+i65W2h17NhRmZmZTq2jcv+7slcsXnfddTp//rz27NlT5LmXLl2qZs2aqWnTpk5/t/aWWUX9+zp9+rSqVatW4PPx8fHy9fUtc2v0gq6tP/300zx/XwsWLMgzzj7H/Co68zN27Finxw899JAkFXrdvGrVKnXo0EGdO3d2mve9996rw4cP688//yzWuXOzWCxas2aNBgwYoIYNGzq2165dW3fccYd++OEHJSUllfi4uf3111964IEH1LRpU73++utlOhYAoHKaM2eO4332gw8+0A033KDRo0dr2bJljjEl+exnypQpatGihYYPH64HH3xQXbp0ybNfYe655x7VrFlT0dHR6tevn6MVfO51CHM7ceKEtm/frhEjRjiu6yTb5009evQo9ediW7ZsUUJCgh588EEFBgY6tvfr109NmzZ1avddWosWLdL8+fN19913a9iwYWU+HoD8EfwV4bvvvtPNN9+s6OhomUymIlvD5McwDL366qu64oorFBAQoDp16ujf//636ycLlKOUlBSnkO1iQ4YM0bXXXqvRo0crMjJSt99+uz7++OMSfYhUp06dEq29cfnllzs9NplMaty4cYnXtyupI0eOKDo6Os/Po1mzZo7nc6tXr16eY1SrVq3IdYyOHDmiyy+/XGaz86/qgs5TUo8++qh27NjhWN8IAFB5vfXWW/L391fv3r21d+9ep+dOnjypc+fOad68eapZs6bTzf6FnISEBKd9Cgo9AgMD87QOuvg9b9++fUpMTFStWrXynC8lJSXPuVwhJSVFkhzv3SWdQ3Hey6dOnapz587piiuuUKtWrfTEE09ox44dpZ5z06ZNddVVV+nDDz90bPvwww919dVXq3HjxsU6RqtWrdS9e/c8N/v1liuu3/Jz8c/LHgJeHDzbt+f+Oe7atUu33HKLwsLCFBoaqpo1azqCzsTExCLPvW/fPu3atSvP3+sVV1whKe+/5fwYF63ZnNvLL7+sevXqaeDAgY6WqKVR0LX19ddfn+fvK7+2rvY5XrzmdkEuvm5u1KiRzGZzodfNR44cUZMmTfJsL8u16MmTJ3X+/PkCj2u1WvOs2V0SGRkZGjx4sLKzs7VkyRJVrVq11McCAFReHTp0cLzP3nnnnVq5cqWaN2+ucePGKTMzU1LJPvvx9/fX/PnzdejQISUnJ2vBggXFfo+WLnxZa8OGDdqxY4diY2N19913Fzjefu6C3k9PnTql1NTUYp+/OMdt2rRpmT+H2rdvn+6//35dccUV+u9//1umYwEoHGv8FSE1NVVt2rTRPffco1tvvbVUx3jkkUe0Zs0avfrqq2rVqpXOnDmT79oNgKc6fvy4EhMTC/2QKSgoSN999502btyolStXavXq1VqyZIluvPFGrVmzplg9zcuj4qygCy2LxVKqPuulUdB5CvtQqbwtXbpUb731lgYPHuxYUwgAUHk1b95cq1atUrdu3dSjRw/9+OOPjhDGHvLcddddGj58eL77t27d2ulxQe/ZxXlvtVqtqlWrllOglVtJ1qktrp07d0qS41qmpHMoznv59ddfrwMHDujzzz/XmjVr9L///U+vvfaa5s6dq9GjR5dq3sOGDdMjjzyi48ePKyMjQz/99JPeeOONUh0rP664fstPQfsV9XM8d+6cunTpotDQUE2dOlWNGjVSYGCgtm3bpqeeeqpYgaTValWrVq0ca+xcLL+q19yqV69e6JezateurbVr16pz587q16+fvv32W7Vp06bIeeVWnGvrotjnaF+rp6RK8mGkN5kwYYJ+//13zZkzJ8/vLQAACmI2m3XDDTdo9uzZ2rdvX6m+HP31119LsnVX2rdvX4m6A9i/rFWZZWRkaMiQIcrMzNTixYtLvHYvgJIh+CtCnz591KdPnwKfz8jI0LPPPquPPvpI586dU8uWLfXSSy+pa9eukqTdu3frzTff1M6dOx3flihrWxigor3//vuSpF69ehU6zmw2q1u3burWrZtmzpypF198Uc8++6w2btyo7t27u/wDhotbaRmGof379zv9T361atV07ty5PPseOXLEqb1QSeZWv359rVu3TsnJyU7f/LK3n6pfv36xj1XUeXbs2CGr1epU9VfW8xw8eFBjxoxRgwYNNG/ePJfMFQDg+Tp06KDly5erX79+6tGjh77//ntHNVRISIgsFkuFfODQqFEjrVu3Ttdee22FtJlOSUnRZ599prp16zq+oV1ec4iIiNDIkSM1cuRIpaSk6Prrr9eUKVMKDf4Kuwa5/fbbNWHCBH300UdKS0uTn5+fhgwZ4rL5ShV//VaYb775RqdPn9ayZct0/fXXO7YfOnQoz9iC5tWoUSP9/vvv6tatW6nm3rRpU3366aeFjmnYsKG+/vprdenSRb169dL333+fp6KuMMW9ti7MoUOHZDabHZWMRbn4A8j9+/fLarUqJiamwH3q16+fp0JYynstWpKfc82aNVWlSpUCj2s2m4sMZwvy6aef6r///a9uvfVWPfjgg6U6BgDg0pWdnS3pQqeIknz2s2PHDk2dOlUjR47U9u3bNXr0aP3xxx9Orc9dyX7ugt5Pa9So4ah6L+nnXfbj2tuk2+3du7dMn3c9/vjj+u233zR79my1a9eu1McBUDy0+iyjcePGafPmzVq8eLF27NihQYMGqXfv3o5A4ssvv1TDhg21YsUKNWjQQDExMRo9ejQVf/AaGzZs0LRp09SgQQPdeeedBY7L799027ZtJdkCckmOi478grjSeO+995zWRvnkk0904sQJp7C+UaNG+umnnxytGiRpxYoVeVoIlWRuffv2lcViyfON+9dee00mk6nQLwuURN++fRUXF6clS5Y4tmVnZ+v1119XcHCwunTpUuJjZmVl6fbbb9f58+f10UcfldtFKADAM3Xr1k0fffSR9u/fr969eyspKUk+Pj667bbb9Omnnzoq43I7efKkS+cwePBgWSwWTZs2Lc9z2dnZLrtOkKS0tDTdfffdOnPmjJ599lnHBx/lMYfTp087PQ4ODlbjxo0d10EFqVq1aoHnq1Gjhvr06aMPPvhAH374oXr37l3qCq/8uOP6rTD2isDclZSZmZn5toKqWrVqvq0/Bw8erL///ltvv/12nufS0tKKbHvVqVMnnT17tsi1mFu1aqWVK1cqJSVFPXr0cFqnsDDFvbYuytatW9WiRYtiX8vNmTPH6bF97bvCrlv79u2rX375RZs3b3ZsS01N1bx58xQTE6PmzZtLKtm/ER8fH/Xs2VOff/65U5vR+Ph4LVq0SJ07d1ZoaGixXlNuhw8f1ujRo1W/fn3973//K/H+AIBLW1ZWltasWSN/f3/HF8WK+9lPVlaWRowYoejoaM2ePVsLFy5UfHy8xo8fX27zrV27ttq2bat3333X6f13586dWrNmjfr27evYVpL36SuvvFK1atXS3Llzna5hv/rqK+3evVv9+vUr1Xw/++wzvfHGG+rfv3+J1j4EUHpU/JXB0aNHtWDBAh09elTR0dGSbN9eWL16tRYsWKAXX3xRBw8e1JEjR7R06VK99957slgsGj9+vAYOHKgNGza4+RUAzr766ivt2bNH2dnZio+P14YNG7R27VrVr19fX3zxhdPCvhebOnWqvvvuO/Xr10/169dXQkKC/vvf/+qyyy5T586dJdlCuPDwcM2dO1chISGqWrWqOnbsWOoq2IiICHXu3FkjR45UfHy8Zs2apcaNG2vMmDGOMaNHj9Ynn3yi3r17a/DgwTpw4IA++OADNWrUyOlYJZnbzTffrBtuuEHPPvusDh8+rDZt2mjNmjX6/PPP9eijj+Y5dmnde++9euuttzRixAht3bpVMTEx+uSTT/Tjjz9q1qxZha65WJDnn39ev/76q2688Ubt27cvT9Wk3S233MKaKABQSd1yyy16++23dc8996h///5avXq1/u///k8bN25Ux44dNWbMGDVv3lxnzpzRtm3btG7dOpd+aa1Lly667777NH36dG3fvl09e/aUn5+f9u3bp6VLl2r27NkaOHBgiY/7999/64MPPpBk+6b2n3/+qaVLlyouLk6PPfaY7rvvvnKdQ/PmzdW1a1e1b99eERER2rJliz755BONGzeu0P3at2+vdevWaebMmYqOjlaDBg3UsWNHx/PDhg1zzCW/oLIw33//vdLT0/Nsb926tVq3bu2W67fCXHPNNapWrZqGDx+uhx9+WCaTSe+//36+7dHbt2+vJUuWaMKECbrqqqsUHBysm2++WXfffbc+/vhj3X///dq4caOuvfZaWSwW7dmzRx9//LG+/vprXXnllQXOoV+/fvL19dW6deuKbIfeqVMnLVu2TDfffLOjirZ69eqO50tzbf3JJ5/k2/qqR48eioyMlGT7gPHbb78tUVXboUOH1L9/f/Xu3VubN2/WBx98oDvuuKPQNqVPP/20PvroI/Xp00cPP/ywIiIi9O677+rQoUP69NNPHR0pSvpv5F//+pejXeqDDz4oX19fvfXWW8rIyNDLL79c7NeU2+23365z58451mnKT3BwsAYMGFCq4wMAKhf7e7RkW/930aJF2rdvn55++mnHF1CK+9nPv/71L23fvl3r169XSEiIWrdurUmTJum5557TwIEDnUI4V3rllVfUp08fderUSaNGjVJaWppef/11hYWFacqUKY5x7du3lyQ9++yzuv322+Xn56ebb7453898/Pz89NJLL2nkyJHq0qWLhg4dqvj4eM2ePVsxMTGlCjNPnDihUaNGycfHR926dXNcr1+sUaNG+a5rDKCUDBSbJOOzzz5zPF6xYoUhyahatarTzdfX1xg8eLBhGIYxZswYQ5Kxd+9ex35bt241JBl79uyp6JcA5GvBggWGJMfN39/fiIqKMnr06GHMnj3bSEpKyrPP5MmTjdy/QtavX2/885//NKKjow1/f38jOjraGDp0qPHXX3857ff5558bzZs3N3x9fQ1JxoIFCwzDMIwuXboYLVq0yHd+Xbp0Mbp06eJ4vHHjRkOS8dFHHxkTJ040atWqZQQFBRn9+vUzjhw5kmf/GTNmGHXq1DECAgKMa6+91tiyZUueYxY2t+HDhxv169d3GpucnGyMHz/eiI6ONvz8/IzLL7/ceOWVVwyr1eo0TpIxduzYPHOqX7++MXz48Hxfb27x8fHGyJEjjRo1ahj+/v5Gq1atHPO6+Hj9+vUr8nhdunRx+rsu6Hbo0KEijwUA8Hz29/hff/01z3OvvvqqIcm46aabjKysLCM+Pt4YO3asUbduXcPPz8+IiooyunXrZsybN8+xj/09eOnSpXmON3z4cKNq1ap5tl98zWA3b948o3379kZQUJAREhJitGrVynjyySeN2NhYx5j83q/zU79+fcd7mMlkMkJDQ40WLVoYY8aMMX7++ecC9yvOHAp6j714bv/617+MDh06GOHh4UZQUJDRtGlT49///reRmZlZ6M9iz549xvXXX28EBQUZkvJcH2RkZBjVqlUzwsLCjLS0tCJ/FoZx4e+poNvkyZMNwyj79dvF10iHDh0yJBmvvPJKvvO5+N9Nfv8+f/zxR+Pqq682goKCjOjoaOPJJ580vv76a0OSsXHjRse4lJQU44477jDCw8MNSU7zyMzMNF566SWjRYsWRkBAgFGtWjWjffv2xgsvvGAkJiYW+fPr37+/0a1bt2K9BsMwjCVLlhhms9m46qqrjKSkpDJdWxd0y/3av/rqK0OSsW/fviJfi/24f/75pzFw4EAjJCTEqFatmjFu3Lg8/57yuz49cOCAMXDgQCM8PNwIDAw0OnToYKxYsSLPeQr6N1KQbdu2Gb169TKCg4ONKlWqGDfccIOxadMmpzEF/XvKT3Guby++ngcAXHoufo+WZAQGBhpt27Y13nzzzTyf6RT12c/WrVsNX19f46GHHnLaLzs727jqqquM6Oho4+zZswXOp7Dri9zs74kXv7+uW7fOuPbaa42goCAjNDTUuPnmm40///wzz/7Tpk0z6tSpY5jN5mJ95rNkyRKjXbt2RkBAgBEREWHceeedxvHjx53GFPb/Gfm9xqJuxfmMDEDxmQwjn69PIl8mk0mfffaZ41uCS5Ys0Z133qldu3blWag+ODhYUVFRmjx5sl588UVlZWU5nktLS1OVKlW0Zs0a9ejRoyJfAgAAAAAvkp2drejoaN18881655133D2dS8L333+vrl27as+ePSVau6+iDBgwwPH/pkWZMmWKXnjhBZ08edKlbWIBAAAAeC5afZZBu3btZLFYlJCQoOuuuy7fMddee62ys7N14MABRwn4X3/9JUllWhAVAAAAQOW3fPlynTx5UsOGDXP3VC4Z1113nXr27KmXX34537UC3Wn37t1asWKFtm/f7u6pAAAAAPBQBH9FSElJ0f79+x2PDx06pO3btysiIkJXXHGF7rzzTg0bNkwzZsxQu3btdPLkSa1fv16tW7dWv3791L17d/3jH//QPffco1mzZslqtWrs2LHq0aOHrrjiCje+MgAAAACe6ueff9aOHTs0bdo0tWvXTl26dHH3lC4pX331lbunkK9mzZopOzvb3dMAAAAA4MHM7p6Ap9uyZYvatWundu3aSZImTJigdu3aadKkSZKkBQsWaNiwYXrsscfUpEkTDRgwQL/++qvq1asnSTKbzfryyy9Vo0YNXX/99erXr5+aNWumxYsXu+01AQAAAPBsb775ph544AHVqlVL7733nrunAwAAAADwEqzxBwAAAAAAAAAAAFQCVPwBAAAAAAAAAAAAlQDBHwAAAAAAAAAAAFAJ+Lp7Ap7IarUqNjZWISEhMplM7p4OAAAoB4ZhKDk5WdHR0TKb+S5UReAaCwCAyo9rrIrHNRYAAJVfSa6xCP7yERsbq7p167p7GgAAoAIcO3ZMl112mbuncUngGgsAgEsH11gVh2ssAAAuHcW5xiL4y0dISIgk2w8wNDTUzbMBAADlISkpSXXr1nW876P8cY0FAEDlxzVWxeMaCwCAyq8k11gEf/mwt0UIDQ3lggkAgEqOdkgVh2ssAAAuHVxjVRyusQAAuHQU5xqLZusAAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJUDwBwAAAAAAAAAAAFQCBH8AAAAAAAAAAABAJeDW4G/69Om66qqrFBISolq1amnAgAHau3dvkfstXbpUTZs2VWBgoFq1aqVVq1Y5PW8YhiZNmqTatWsrKChI3bt31759+8rrZQAAAAAAAAAAAABu59bg79tvv9XYsWP1008/ae3atcrKylLPnj2Vmppa4D6bNm3S0KFDNWrUKP32228aMGCABgwYoJ07dzrGvPzyy/rPf/6juXPn6ueff1bVqlXVq1cvpaenV8TLAgCUsz1nM/TN36kyDMPdUwEAAAAAAAAAj2EyPOhT05MnT6pWrVr69ttvdf311+c7ZsiQIUpNTdWKFSsc266++mq1bdtWc+fOlWEYio6O1mOPPabHH39ckpSYmKjIyEgtXLhQt99+e5HzSEpKUlhYmBITExUaGuqaFwcAcJk5O88oOcuqEU3CFVXF193TgZfi/b7i8TMHAM/0xRfSxo3Sa6+5eyaoDHi/r3j8zAEAqPxK8n7vUWv8JSYmSpIiIiIKHLN582Z1797daVuvXr20efNmSdKhQ4cUFxfnNCYsLEwdO3Z0jLlYRkaGkpKSnG4AAM9kGIZSs6ySpHSL1c2zAQAA8H6ffCItXeruWQAAAABwBY8J/qxWqx599FFde+21atmyZYHj4uLiFBkZ6bQtMjJScXFxjuft2woac7Hp06crLCzMcatbt25ZXgoAoBylWwzZ474Mi8cUrQMAAHitPXuk8+fdPQsAAAAAruAxwd/YsWO1c+dOLV68uMLPPXHiRCUmJjpux44dq/A5AACK53z2hSq/TII/AACAMjEMae9eKT3d3TMBAAAA4AoesTDSuHHjtGLFCn333Xe67LLLCh0bFRWl+Ph4p23x8fGKiopyPG/fVrt2bacxbdu2zfeYAQEBCggIKMMrAABUlPPZF8K+DCvBHwAAQFnEx0v21S4MQzKZ3DsfAAAAAGXj1oo/wzA0btw4ffbZZ9qwYYMaNGhQ5D6dOnXS+vXrnbatXbtWnTp1kiQ1aNBAUVFRTmOSkpL0888/O8YAALxXKhV/uATMmTNHMTExCgwMVMeOHfXLL78UOn7p0qVq2rSpAgMD1apVK61atcrxXFZWlp566im1atVKVatWVXR0tIYNG6bY2FinY5w5c0Z33nmnQkNDFR4erlGjRiklJcVpzI4dO3TdddcpMDBQdevW1csvv+y6Fw0AcIu9ey/8mao/AAAAwPu5NfgbO3asPvjgAy1atEghISGKi4tTXFyc0tLSHGOGDRumiRMnOh4/8sgjWr16tWbMmKE9e/ZoypQp2rJli8aNGydJMplMevTRR/Wvf/1LX3zxhf744w8NGzZM0dHRGjBgQEW/RACAi6UR/KGSW7JkiSZMmKDJkydr27ZtatOmjXr16qWEhIR8x2/atElDhw7VqFGj9Ntvv2nAgAEaMGCAdu7cKUk6f/68tm3bpueff17btm3TsmXLtHfvXvXv39/pOHfeead27dqltWvXOjox3HvvvY7nk5KS1LNnT9WvX19bt27VK6+8oilTpmjevHnl98MAAJS73MEf6/wBAAAA3s9kGIbbPjU1FdBDZMGCBRoxYoQkqWvXroqJidHChQsdzy9dulTPPfecDh8+rMsvv1wvv/yy+vbt63jeMAxNnjxZ8+bN07lz59S5c2f997//1RVXXFGseSUlJSksLEyJiYkKDQ0t9esDALjeDyfO64c426dS7WoEqlfdYDfPCN7KU9/vO3bsqKuuukpvvPGGJMlqtapu3bp66KGH9PTTT+cZP2TIEKWmpmrFihWObVdffbXatm2ruXPn5nuOX3/9VR06dNCRI0dUr1497d69W82bN9evv/6qK6+8UpK0evVq9e3bV8ePH1d0dLTefPNNPfvss4qLi5O/v78k6emnn9by5cu1Z8+eYr02T/2ZA8Cl7LHHpJkzbX8+dkwqYvUNoEi831c8fuYAAFR+JXm/d3urz/xu9tBPkr755hun0E+SBg0apL179yojI0M7d+50Cv0kW6A4depUxcXFKT09XevWrSt26AcA8GznqfhDJZaZmamtW7eqe/fujm1ms1ndu3fX5s2b891n8+bNTuMlqVevXgWOl6TExESZTCaFh4c7jhEeHu4I/SSpe/fuMpvN+vnnnx1jrr/+ekfoZz/P3r17dfbs2RK/VgCAZ9i7V6pSxfbnXM13AAAAAHgptwZ/AACUVO7gL4PgD5XMqVOnZLFYFBkZ6bQ9MjJScXFx+e4TFxdXovHp6el66qmnNHToUMc3xOLi4lSrVi2ncb6+voqIiHAcp6Dz2J/LT0ZGhpKSkpxuAADPsmeP1Lix7c+0+gQAAAC8H8EfAMCrnM++EPZlWK2FjARwsaysLA0ePFiGYejNN98s9/NNnz5dYWFhjlvdunXL/ZwAgOLLzJQOH5YaNbI9puIPAAAA8H4EfwAAr0KrT1RmNWrUkI+Pj+Lj4522x8fHKyoqKt99oqKiijXeHvodOXJEa9eudeoHHxUVpYSEBKfx2dnZOnPmjOM4BZ3H/lx+Jk6cqMTERMft2LFjBb10AIAbHDggWSzS5ZfbHlPxBwAAAHg/gj8AgFdxCv6sBH+oXPz9/dW+fXutX7/esc1qtWr9+vXq1KlTvvt06tTJabwkrV271mm8PfTbt2+f1q1bp+rVq+c5xrlz57R161bHtg0bNshqtapjx46OMd99952ysrKcztOkSRNVq1Yt37kFBAQoNDTU6QYA8Bx799ru7a0+qfgDAAAAvB/BHwDAa1gNQ2m5W31S8YdKaMKECXr77bf17rvvavfu3XrggQeUmpqqkSNHSpKGDRumiRMnOsY/8sgjWr16tWbMmKE9e/ZoypQp2rJli8aNGyfJFvoNHDhQW7Zs0YcffiiLxaK4uDjFxcUpMzNTktSsWTP17t1bY8aM0S+//KIff/xR48aN0+23367o6GhJ0h133CF/f3+NGjVKu3bt0pIlSzR79mxNmDChgn9CAABX2btXCg6Wate2PabiDwAAAPB+vu6eAAAAxZWebSh31EerT1RGQ4YM0cmTJzVp0iTFxcWpbdu2Wr16tSIjIyVJR48eldl84btb11xzjRYtWqTnnntOzzzzjC6//HItX75cLVu2lCT9/fff+uKLLyRJbdu2dTrXxo0b1bVrV0nShx9+qHHjxqlbt24ym8267bbb9J///McxNiwsTGvWrNHYsWPVvn171ahRQ5MmTdK9995bjj8NAEB52rtXuuwyKSDA9piKPwAAAMD7EfwBALxGak6bT7Mkq6RsQ7IYhnxMJrfOC3C1cePGOSr2LvbNN9/k2TZo0CANGjQo3/ExMTEyjKJD8oiICC1atKjQMa1bt9b3339f5LEAAN5hzx5b8OfrK5nNVPwBAAAAlQGtPgEAXsO+vl+o/4W3L6r+AAAASic2VqpVSzKZpMBAKv4AAACAyoDgDwDgNc7nrO8X4m+Wb06RH+v8AQAAlE5qqhQUZPtzQAAVfwAAAEBlQPAHAPAa9oq/Kr5mBfjYkr9MK8EfAABAaeQO/qj4AwAAACoHgj8AgNfIHfz55wR/VPwBAACUnMViC/oCA22P/f2p+AMAAAAqA4I/AIDXsLf6rOJrkr85p+KP4A8AAKDE7CEfFX8AAABA5ULwBwDwGs6tPm1vYRm0+gQAACixlBTbvT34o+IPAAAAqBwI/gAAXiM1K2+rTyr+AAAASu7i4C8ggIo/AAAAoDIg+AMAeI20XK0+A8z2Nf6s7pwSAACAV0pNtd1T8QcAAABULgR/AACvkZrT6rOqr1kB9oo/Wn0CAACUmL3iLzDwwj3BHwAAAOD9CP4AAF7BahhKt9gr/szyd1T8EfwBAACUVH5r/NHqEwAAAPB+BH8AAK9wPqfNp0lSoK+JNf4AAADK4OJWn1T8AQAAAJUDwR8AwCucz2nzGeRrktlkotUnAABAGVzc6jMggIo/AAAAoDIg+AMAeAV7S89AH9tbF60+AQAASi81VfL1lfz8bI8DAqj4AwAAACoDgj8AgFfIyqns88t556LiDwAAoPRSUqQqVS48puIPAAAAqBwI/gAAXsG+lp9fTqWffY0/Kv4AAABKLiXlQptPieAPAAAAqCwI/gAAXsFe2WcP/AJyAsBMgj8AAIASS02VgoIuPLYHfwaXVgAAAIBXI/gDAHiFC60+L6r4o9UnAABAieVX8SdJ6enumQ8AAAAA1yD4AwB4BXvw558T/AX42N7CMi2GDL6aDgAAUCIpKXkr/iTafQIAAADejuAPAOAV8qzxl3NvSMqyumtWAAAA3ik1Nf+Kv/Pn3TMfAAAAAK5B8AcA8AoXV/z5mSVTznOZtPsEAAAokYJafVLxBwAAAHg3gj8AgFewh3t+OWv7mUymC+v8WSj5AwAAKImCWn1S8QcAAAB4N4I/AIBXsLfztFf8SVJAzp/tbUABAABQPBcHf/bqPyr+AAAAAO9G8AcA8Ar2cC938Oeo+KPVJwAAQIlc3OrT3992T8UfAAAA4N0I/gAAXsG+xp9f7oo/Hyr+AAAASiM1lYo/AAAAoDIi+AMAeIULa/xd2Gav/ssg+AMAACiRi4M/1vgDAAAAKgeCPwCAV7BX/PnnV/FHq08AAIBis1hslX25W33agz8q/gAAAADvRvAHAPAKmfm0+qTiDwAAoOTsVX25K/58fSWzmYo/AAAAwNsR/AEAvEKWJW/Fn19OxV8WFX8AAADFlpJiu88d/JlMtgpAKv4AAAAA70bwBwDwChfW+LsQ/PmabH+m4A8AAKD4UlNt97mDP8nW7pPgDwAAAPBuBH8AAI9nNQxHuJe74s+eAVoMkj8AAIDiyq/iT7JV/NHqEwAAAPBuBH8AAI+XmauVZ+41/nxy/myxVviUAAAAvJY9+AsMdN7u70/FHwAAAODtCP4AAB7Pvr6fWReq/CQq/gAAAEqjoFafVPwBAAAA3o/gDwDg8XKv72cyXUj+zKzxBwAAUGIFtfqk4g8AAADwfgR/AACPl5XTyjP3+n4SFX8AAAClUVCrz4AAKv4AAAAAb0fwBwDweI6Kv4uCP18q/gAAAEosNVXy9ZX8/Jy3U/EHAAAAeD+CPwCAx7Ov8XdxxZ/9odVK8gcAAFBcKSlSlSp5twcGXlj/DwAAAIB3IvgDAHi8LMcaf87bfXKSv2xyPwAAgGJLTc3b5lOi4g8AAACoDAj+AAAez97qs6A1/qys8QcAAFBsKSlSUFDe7YGBrPEHAAAAeDuCPwCAxytojT8f1vgDAAAosZSU/Cv+AgKo+AMAAAC8HcEfAMDj2df4yxv82e4tVPwBAAAUW2pq/hV/AQFU/AEAAADejuAPAODx7Gv8+ftQ8QcAAFBWVPwBAAAAlRfBHwDA4xW4xl/Ou5jFSvIHAABQXMnJBH8AAABAZeXW4O+7777TzTffrOjoaJlMJi1fvrzQ8SNGjJDJZMpza9GihWPMlClT8jzftGnTcn4lAIDyxBp/AAAArlNYq8+0NIku6gAAAID3cmvwl5qaqjZt2mjOnDnFGj979mydOHHCcTt27JgiIiI0aNAgp3EtWrRwGvfDDz+Ux/QBABWkoDX+zKzxBwAAUGIpKQUHf5KUnl6x8wEAAADgOr7uPHmfPn3Up0+fYo8PCwtTWFiY4/Hy5ct19uxZjRw50mmcr6+voqKiXDZPAIB7ZRa4xp/tnoo/AACA4ktNLbjVp2Sr+ssvGAQAAADg+bx6jb933nlH3bt3V/369Z2279u3T9HR0WrYsKHuvPNOHT16tNDjZGRkKCkpyekGAPAcWVbbfZ41/nJafVqp+AMAACi2gir+7GEg6/wBAAAA3strg7/Y2Fh99dVXGj16tNP2jh07auHChVq9erXefPNNHTp0SNddd52Sk5MLPNb06dMd1YRhYWGqW7dueU8fAFACBa7xl/Mulm2t6BkBAAB4r4LW+PP3t92fP1+x8wEAAADgOl4b/L377rsKDw/XgAEDnLb36dNHgwYNUuvWrdWrVy+tWrVK586d08cff1zgsSZOnKjExETH7dixY+U8ewBASWQ5gj/n7faKP0NU/QEAABSHxWKr6Cuq1ScAAAAA7+SVwZ9hGJo/f77uvvtu+du/kliA8PBwXXHFFdq/f3+BYwICAhQaGup0AwB4jixL4Wv8SZKV3A+VyJw5cxQTE6PAwEB17NhRv/zyS6Hjly5dqqZNmyowMFCtWrXSqlWrnJ5ftmyZevbsqerVq8tkMmn79u1Ozx8+fFgmkynf29KlSx3j8nt+8eLFLnvdAIDyZ6/my6/iz8/Pdp+ZWXHzAQAAAOBaXhn8ffvtt9q/f79GjRpV5NiUlBQdOHBAtWvXroCZAQDKQ4GtPk0XHluo+EMlsWTJEk2YMEGTJ0/Wtm3b1KZNG/Xq1UsJCQn5jt+0aZOGDh2qUaNG6bffftOAAQM0YMAA7dy50zEmNTVVnTt31ksvvZTvMerWrasTJ0443V544QUFBwerT58+TmMXLFjgNO7i7gsAAM+WkmK7zy/48/W13RP8AQAAAN7L150nT0lJcarEO3TokLZv366IiAjVq1dPEydO1N9//6333nvPab933nlHHTt2VMuWLfMc8/HHH9fNN9+s+vXrKzY2VpMnT5aPj4+GDh1a7q8HAFA+7K0+/fMEfxf+bCH3QyUxc+ZMjRkzRiNHjpQkzZ07VytXrtT8+fP19NNP5xk/e/Zs9e7dW0888YQkadq0aVq7dq3eeOMNzZ07V5J09913S7JV9uXHx8dHUVFRTts+++wzDR48WMHBwU7bw8PD84wFAHiP1FTbfWEVf1lZFTcfAAAAAK7l1oq/LVu2qF27dmrXrp0kacKECWrXrp0mTZokSTpx4oSOHj3qtE9iYqI+/fTTAqv9jh8/rqFDh6pJkyYaPHiwqlevrp9++kk1a9Ys3xcDACgXFqvhCPUuDv5MJpPjjYyKP1QGmZmZ2rp1q7p37+7YZjab1b17d23evDnffTZv3uw0XpJ69epV4Pji2Lp1q7Zv357v9dbYsWNVo0YNdejQQfPnz5fBf3sA4FXsFX/5rfHn42O7p+IPAAAA8F5urfjr2rVroR8WLVy4MM+2sLAwnbcvSpAP1pkBgMolK9fifRe3+pQkH7NktUoWa0XOCigfp06dksViUWRkpNP2yMhI7dmzJ9994uLi8h0fFxdX6nm88847atasma655hqn7VOnTtWNN96oKlWqaM2aNXrwwQeVkpKihx9+ON/jZGRkKCMjw/E4KSmp1HMCALiGPfirUiXvc1T8AQAAAN7PrcEfAABFsa/vZzZJPvkEf2aTSZJBxR/gImlpaVq0aJGef/75PM/l3tauXTulpqbqlVdeKTD4mz59ul544YVymysAoORY4w8AAACo3Nza6hMAgKIUtL6fnX2dP9b4Q2VQo0YN+fj4KD4+3ml7fHx8gevqRUVFlWh8UT755BOdP39ew4YNK3Jsx44ddfz4caeqvtwmTpyoxMREx+3YsWOlmhMAwHUI/gAAAIDKjeAPAODRMosI/nxNtu1Wgj9UAv7+/mrfvr3Wr1/v2Ga1WrV+/Xp16tQp3306derkNF6S1q5dW+D4orzzzjvq379/sdZH3r59u6pVq6aAgIB8nw8ICFBoaKjTDQDgXoWt8UerTwAAAMD70eoTAODRMnNK+fJb30+ytQCVRKtPVBoTJkzQ8OHDdeWVV6pDhw6aNWuWUlNTNXLkSEnSsGHDVKdOHU2fPl2S9Mgjj6hLly6aMWOG+vXrp8WLF2vLli2aN2+e45hnzpzR0aNHFRsbK0nau3evJFu1YO7KwP379+u7777TqlWr8szryy+/VHx8vK6++moFBgZq7dq1evHFF/X444+X288CAOB6KSmSv/+F6r7cfHxs91T8AQAAAN6L4A8A4NGyrLZ7P58CWn3mJH/ZlPyhkhgyZIhOnjypSZMmKS4uTm3bttXq1asVGRkpSTp69KjM5gtNG6655hotWrRIzz33nJ555hldfvnlWr58uVq2bOkY88UXXziCQ0m6/fbbJUmTJ0/WlClTHNvnz5+vyy67TD179swzLz8/P82ZM0fjx4+XYRhq3LixZs6cqTFjxrj6RwAAKEcpKfm3+ZRswZ/ZTMUfAAAA4M1MhkGJxMWSkpIUFhamxMREWlIBgJvtPpuhzw8nq16wn+64PCzP8/P3nFVCmkVDGoWqQai/G2YIb8X7fcXjZw4A7vfcc9L8+dKiRfk/36uXNGOGNG5cxc4LlQfv9xWPnzkAAJVfSd7vWeMPAODR7Gv8+RXwjuWTs8afha+xAAAAFKmwij/Jts4frT4BAAAA70XwBwDwaFk5iZ5/AWv8+bDGHwAAQLGlpEiBgQU/7+tLq08AAADAmxH8AQA8mqPir6A1/qj4AwAAKLaiKv58fan4AwAAALwZwR8AwKNlOVp9FlHxZyX5AwAAKEpRFX9+flT8AQAAAN6M4A8A4NEyckr5AgoI/sxmKv4AAACKKzlZqlKl4Oep+AMAAAC8G8EfAMCj2Vt9+hfY6tN2zxp/AAAARaPVJwAAAFC5EfwBADxaZk4pn3+BrT6p+AMAACiu4gR/tPoEAAAAvBfBHwDAoxW34s9KxR8AAECRqPgDAAAAKjeCPwCAR6PiDwAAwHWKCv78/Kj4AwAAALwZwR8AwKMVWfGX805msZL8AQAAFMYwpNRUKTCw4DE+PlT8AQAAAN6M4A8A4NHsFX8BVPwBAACUSUaGZLHQ6hMAAACozAj+AAAeLaOYa/xZWOMPAACgUCkptvuigj9afQIAAADei+APAOCxDMNgjT8AAAAXSU623VPxBwAAAFReBH8AAI+VbUj2PI+KPwAAgLIpbsUfwR8AAADgvQj+AAAeKzNXGV9BFX/2zRZrRcwIAADAexH8AQAAAJUfwR8AwGNl5qzv52eWTKYCKv7M9lafVPwBAAAUhuAPAAAAqPwI/gAAHiujiPX9pNytPitiRgAAAN6ruMFfVlbFzAcAAACA6xH8AQA8lr3iL8Cn4Lcrn5xKQCsVfwAAAIUqTvDn50fFHwAAAODNCP4AAB4rk4o/AAAAl0lJsVX0+fkVPIaKPwAAAMC7EfwBADyWveLP36ew4M/2XLaV5A8AAKAwKSm2ar8Clk6WxBp/AAAAgLcj+AMAeKxiVfzlvJOR+wEAABTOHvwVhuAPAAAA8G4EfwAAj1WSij8La/wBAAAUqrjBH60+AQAAAO9F8AcA8Fis8QcAAOA6xQn+/Pyo+AMAAAC8GcEfAMBjZViskqj4AwAAcIXiBH8+PlJ2dsXMBwAAAIDrEfwBADyWo9UnFX8AAABllpIiBQYWPoaKPwAAAMC7EfwBADyWvdVnQCEVf2Z7xZ+V5A8AAKAwycnFW+OP4A8AAADwXgR/AACP5aj4K6zVZ847GRV/AAAAhStOq09fX8kwJIulYuYEAAAAwLUI/gAAHqt4rT5tz1HwBwAAULjiBn8SVX8AAACAtyL4AwB4LHurz+Kt8UfyBwAAUJiSBH9ZWeU/HwAAAACuR/AHAPBYxWr1aV/jz5AMwj8AAIACFSf48/Oz3VPxBwAAAHgngj8AgMcqScWfRLtPAACAwqSm0uoTAAAAqOwI/gAAHisjJ/gLKKziL1coaCH4AwAAyFdmpu1Gq08AAACgciP4AwB4JKthKDsnyCtuxR/r/AEAAOQvNdV2T8UfAAAAULkR/AEAPFJmrvK9wtb4M5tMsj9LxR8AAED+UlJs91T8AQAAAJUbwR8AwCNl5izYZzZJvoVU/EkXqv6o+AMAAMhfcYM/Pz/bPRV/AAAAgHci+AMAeCR7xV9hbT7tfEy2MRZruU4JAADAa5W04o/gDwAAAPBOBH8AAI9kr/grrM2nnTnn3YyKPwAAgPzR6hMAAAC4NBD8AQA8kr3iL6AkFX/kfgAAAPmi4g8AAAC4NBD8AQA8UkYJKv7sQ6xU/AEAAOSLij8AAADg0kDwBwDwSKVa44/cDwAAIF8pKZLJJAUEFD7Oz892T8UfAAAA4J0I/gAAHqkka/zZh1isJH8AAAD5SU6WqlSxhX+FodUnAAAA4N0I/gAAHomKPwAAANdJSrIFf0Wh1ScAAADg3dwa/H333Xe6+eabFR0dLZPJpOXLlxc6/ptvvpHJZMpzi4uLcxo3Z84cxcTEKDAwUB07dtQvv/xSjq8CAFAeSlTxl/NuZmGNPwAAgHzFx0vVqhU9joo/AAAAwLu5NfhLTU1VmzZtNGfOnBLtt3fvXp04ccJxq1WrluO5JUuWaMKECZo8ebK2bdumNm3aqFevXkpISHD19AEA5Sgjp3wvgIo/AACAMouNlSIiih5HxR8AAADg3XzdefI+ffqoT58+Jd6vVq1aCg8Pz/e5mTNnasyYMRo5cqQkae7cuVq5cqXmz5+vp59+uizTBQBUoFKt8UfFHwAAQL7+/luKiip6nNks+fhQ8QcAAAB4K69c469t27aqXbu2evTooR9//NGxPTMzU1u3blX37t0d28xms7p3767Nmze7Y6oAgFIqyRp/ZkfwV54zAgAA8F4nTkjVqxdvrK8vwR8AAADgrbwq+Ktdu7bmzp2rTz/9VJ9++qnq1q2rrl27atu2bZKkU6dOyWKxKDIy0mm/yMjIPOsA5paRkaGkpCSnGwDAvUpW8ZfT6tNK8gcAAHAxi8W2xl9xgz8/P1p9AgAAAN7Kra0+S6pJkyZq0qSJ4/E111yjAwcO6LXXXtP7779f6uNOnz5dL7zwgiumCABwkZJU/PlQ8QcAAFCgU6ds4R8VfwAAAEDl51UVf/np0KGD9u/fL0mqUaOGfHx8FB8f7zQmPj5eUYUsZjBx4kQlJiY6bseOHSvXOQMAilaiir+ccNDKGn+oJObMmaOYmBgFBgaqY8eO+uWXXwodv3TpUjVt2lSBgYFq1aqVVq1a5fT8smXL1LNnT1WvXl0mk0nbt2/Pc4yuXbvKZDI53e6//36nMUePHlW/fv1UpUoV1apVS0888YSys7PL/HoBAOUrNtZ2X6NG8cb7+lLxBwAAAHgrrw/+tm/frtq1a0uS/P391b59e61fv97xvNVq1fr169WpU6cCjxEQEKDQ0FCnGwDAvVKyrJKkKr5Fv1VR8YfKZMmSJZowYYImT56sbdu2qU2bNurVq5cSEhLyHb9p0yYNHTpUo0aN0m+//aYBAwZowIAB2rlzp2NMamqqOnfurJdeeqnQc48ZM0YnTpxw3F5++WXHcxaLRf369VNmZqY2bdqkd999VwsXLtSkSZNc88IBAOXGHvxFRBRvvJ8fFX8AAACAt3Jrq8+UlBRHtZ4kHTp0SNu3b1dERITq1auniRMn6u+//9Z7770nSZo1a5YaNGigFi1aKD09Xf/73/+0YcMGrVmzxnGMCRMmaPjw4bryyivVoUMHzZo1S6mpqRo5cmSFvz4AQOlkWKxKz0nxwvyLE/zlrPFHxR8qgZkzZ2rMmDGOa5e5c+dq5cqVmj9/vp5++uk842fPnq3evXvriSeekCRNmzZNa9eu1RtvvKG5c+dKku6++25J0uHDhws9d5UqVQrskrBmzRr9+eefWrdunSIjI9W2bVtNmzZNTz31lKZMmSJ/f//SvmQAQDk7cUIymYof/Pn4EPwBAAAA3sqtFX9btmxRu3bt1K5dO0m20K5du3aOb46fOHFCR48edYzPzMzUY489platWqlLly76/ffftW7dOnXr1s0xZsiQIXr11Vc1adIktW3bVtu3b9fq1asVGRlZsS8OAFBqiZm2ar9AH5MCfEpQ8Wctz1kB5S8zM1Nbt25V9+7dHdvMZrO6d++uzZs357vP5s2bncZLUq9evQocX5gPP/xQNWrUUMuWLTVx4kSdP3/e6TytWrVyuqbq1auXkpKStGvXrhKfCwBQcWJjbaGfj0/xxvv50eoTAAAA8FZurfjr2rWrjEKqMxYuXOj0+Mknn9STTz5Z5HHHjRuncePGlXV6AAA3Scy0SCpetZ9ExR8qj1OnTsliseT5wlJkZKT27NmT7z5xcXH5jo+LiyvRue+44w7Vr19f0dHR2rFjh5566int3btXy5YtK/Q89ufyk5GRoYyMDMfjpKSkEs0JAOAaJ05I1asXf7yvLxV/AAAAgLdya/AHAEB+7BV/4QHF+1q6OScfZI0/oPTuvfdex59btWql2rVrq1u3bjpw4IAaNWpUqmNOnz5dL7zwgqumCAAoJXvFX3H5+lLxBwAAAHgrt7b6BAAgP4kZ9oq/4gV/vlT8oZKoUaOGfHx8FB8f77Q9Pj6+wLX3oqKiSjS+uDp27ChJjvWYCzqP/bn8TJw4UYmJiY7bsWPHyjQnAEDp/P03FX8AAADApYLgDwDgcewVf8Vv9Wm7p+IP3s7f31/t27fX+vXrHdusVqvWr1+vTp065btPp06dnMZL0tq1awscX1zbt2+XJNWuXdtxnj/++EMJCQlO5wkNDVXz5s3zPUZAQIBCQ0OdbgCAikerTwAAAODSQatPAIDHubDGXzFbfdor/qwkf/B+EyZM0PDhw3XllVeqQ4cOmjVrllJTUzVy5EhJ0rBhw1SnTh1Nnz5dkvTII4+oS5cumjFjhvr166fFixdry5YtmjdvnuOYZ86c0dGjRxUbGytJ2rt3ryRbpV5UVJQOHDigRYsWqW/fvqpevbp27Nih8ePH6/rrr1fr1q0lST179lTz5s1199136+WXX1ZcXJyee+45jR07VgEBARX5IwIAlIDFIsXHlzz4o9UnAAAA4J0I/gAAHoeKP1zKhgwZopMnT2rSpEmKi4tT27ZttXr1akVGRkqSjh49KrP5wn8b11xzjRYtWqTnnntOzzzzjC6//HItX75cLVu2dIz54osvHMGhJN1+++2SpMmTJ2vKlCny9/fXunXrHCFj3bp1ddttt+m5555z7OPj46MVK1bogQceUKdOnVS1alUNHz5cU6dOLe8fCQCgDE6dsoV/VPwBAAAAlwaCPwCAR0m3WJWek+CFFjf4M7PGHyqXcePGady4cfk+98033+TZNmjQIA0aNKjA440YMUIjRowo8Pm6devq22+/LXJe9evX16pVq4ocBwDwHDnF3lT8AQAAAJcI1vgDAHiUpJxqvyAfkwJ8SlbxR6dPAAAAZ6UN/jIyymc+AAAAAMoXwR8AwKM41vcLKN76fpLkY1/jj+APAADAyYkTkskkRUQUfx9afQIAAADei+APAOBREjNKtr6flHuNP5I/AACA3GJjbaGfT/G/U0WrTwAAAMCLEfwBADyKo+LPvxQVf9ZymRIAAIDXOnGiZG0+JSr+AAAAAG9G8AcA8CjnMqn4AwAAcBV7xV9JUPEHAAAAeC+CPwCARylNxZ/ZzBp/AAAA+Tl+vOTBn58fFX8AAACAtyL4AwB4lEQq/gAAAFwiO1vavVuqX79k+9HqEwAAAPBeBH8AAI+Rnm1VRk7ZXmnW+LOS+wEAADj8+aeUliY1aVKy/Wj1CQAAAHgvgj8AgMewr+9Xxdckf3sZXzHkdPqUlYo/AAAAhy1bJJNJuvzyku1HxR8AAADgvQj+AAAeIz4tW5JUM9C3RPtdaPXp6hkBAAB4ry1bbG0+q1Qp2X5U/AEAAADeq2SfrAIA4EJnzpxRcnKy4/GBVH9JfgrMPq8jR84Vum9ISIgiIiIkSWZafQIAAOTx66/SFVeUfD8/P4I/AAAAwFsR/AEA3OLMmTNq1Lixzp0969h27/++UIN/dNK0Jx7RbyuXFrp/eLVqOrB/vyIiIhytPi20+gQAAJBka9W5Y4d0330l39fHh1afAAAAgLci+AMAuEVycrLOnT2rqUtWq3pUtAxJycGRkqSRT7+g0U8+X+C+p+NiNWlIbyUnJysiIkI+VPwBAAA42bnTFt41aVLyfe0Vf4ZhWyMQAAAAgPcg+AMAuFX1qGjVrFNPWVZDySm2Nf4io2rLVIJPmexr/BmSrIbhaP0JAABwqdqyxVa516hRyff1zfmkIDvbFgICAAAA8B5md08AAABJyrDYyvX8zSpR6CfJ0epTouoPAABAsq3v17ChFBhY8n3twR/r/AEAAADeh+APAOARMnOCvwCfklfr5a7wY50/AAAAW/B3+eWl29de5cc6fwAAAID3IfgDAHiEDGvpgz8fKv4AAAAc0tKkXbtKt76fZGsRKhH8AQAAAN6I4A8A4BEutPosa8Wfy6YEAADglQ4dsq3P16BB6fa3V/zR6hMAAADwPr7ungAAABar4QjsSlPxJ9mq/iyGZKXVJwAAuMQlJNjuIyJKt799jT8q/gAA8E5vvfWWUlJS3D2NSiM4OFj33Xefu6cBFBvBHwDA7extPn1NztV7JeFjMsliGFT8AQCAS549+AsLK93+9uCPij8AALxTSkqKkpOT3T0NAG5C8AcAcLtMS+nX97Ozdwil4g8AAFzqEhJs7TqrVi3d/lT8AQBQeQQFBbl7Cg5paWmOP3vSvAqSe76ANyH4AwC4XXZOVudXivX97Oy7UvEHAAAudSdPStWqSaVspEDwBwBAJREUFKR+/fq5exoOK1euVFpamsfNqyD2+QLexuzuCQAAYMlp9VmGgj/55HyyZSX4AwAAl7iEBCk8vPT7+/nZ7mn1CQAAAHgfgj8AgNvZq/R8Svu1dOWu+CP5AwAAl7ayBn9U/AEAAADei+APAOB29rDOpwzvSlT8AQAA2MTHS2Fhpd/fHvxR8QcAAAB4H4I/AIDbUfEHAADgOvY1/kqLij8AAADAexH8AQDcylDu4K/0x7HvS8UfAAC41NHqEwAAALh0EfwBANzsQtpXluDPnFMtSMUfAAC4lGVlSefOlS348/O7cCwAAAAA3oXgDwDgVlaz7a3ILMlUhlafVPwBAABIp07Z7qn4AwAAAC5NBH8AALcyTD6SJJ8yviNdqPgr64wAAAC8V0KC7d4VwR8VfwAAAID3IfgDALiVYbK9FfmUodrPtr/t3kqrTwAAcAmzB3/VqpX+GFT8AQAAAN6L4A8A4FYXgr+yHcecsz8VfwAA4FJ28qTtPiys9McwmWzhHxV/AAAAgPch+AMAuJXVZRV/tv2p+AMAAJeyhAQpKMh2KwtfXyr+AAAAAG9E8AcAcCsq/gAAAFwnIaFs6/vZEfwBAAAA3ongDwDgVo7gr4zvSBcq/so6IwAAAO+VkFC29f3s/Pxo9QkAAAB4I4I/AIBbGS5q9Wmv+KPVJwAAuJSdPFm29f3sqPgDAAAAvBPBHwDArQyTj6Syt/q0B4e0+gQAAJey+HjXBX9U/AEAAADex9fdEwAAeK8zZ84oOTm5VPseP35ckmSYXVvxZ6HiDwAAXMISEqSGDct+HB8fgj8AAADAGxH8AQBK5cyZM2rUuLHOnT1b6mOYfX1ztfos23wutPos23EAAAA8yW+/Sa1a2SrwiuPUKSk8vOzn9fOj1ScAAADgjQj+AAClkpycrHNnz2rqktWqHhVd4v0P/PGb3p7ypOOx2VWtPkn+AABAJbFtm9S+vbRokTR0aNHj09Kk5GTXBH+0+gQAAAC8E8EfAKBMqkdFq2adepKkTIuh0xkWhfubFeRb+DKyp+NiVbVaDUm2aj9TGVt92isGrWU6CgAAgOd49VXb/ebNxQv+Tp603bsi+KPVJwAAAOCdCP4AAC5hNQzFpWUryyoZhrXI4E+SgiMuBH9lZc4JDin4AwAAlcGRI9LHH0tVqki//FK8fezBX7VqZT8/FX8AAACAdyr6U1kAAIrhdLpVWTnldhkWQ4ZRdAJ3Ifgre/JnDw9p9QkAACqDWbOkqlWlO+6Qtm8v3np7CQm2eyr+AAAAgEuXW4O/7777TjfffLOio6NlMpm0fPnyQscvW7ZMPXr0UM2aNRUaGqpOnTrp66+/dhozZcoUmUwmp1vTpk3L8VUAAFKzrErKutBk0yopqxg9N6u6tOLPdm8h9wMAAF7u7Fnp7bel/v2ldu2kjAzpjz+K3s8e/IWFlX0OVPwBAAAA3smtrT5TU1PVpk0b3XPPPbr11luLHP/dd9+pR48eevHFFxUeHq4FCxbo5ptv1s8//6x27do5xrVo0ULr1q1zPPb1paMpgPJ35swZJScnl2rfkJAQRUREuHhGFedcpi3lC/M3K8NiKD3n5l9EohdcraYkycdc9uTvQqtPkj8AAODdPv9cOn9euuUWKTjYFsL98ovUvn3h+8XH28b7+5d9DlT8AQAAAN7JrYlYnz591KdPn2KPnzVrltPjF198UZ9//rm+/PJLp+DP19dXUVFRrpomABTpzJkzatS4sc6dPVuq/cOrVdOB/fu9NvzLzmmvWdXXFr6lWwxlFKP0zpUVfz5U/AEAgEri2DEpIsJ2k6RGjWzB3wMPFL7f4cNS7dqumQMVfwAAAIB38upSOKvVquTk5DwflO/bt0/R0dEKDAxUp06dNH36dNWrV89NswRwKUhOTta5s2c1dclqVY+KLtG+p+NiNWlI73x/n3kDQxfCNl+zSYE+UqKkdItVkk+h+7p2jT97xV+ZDwUAAOBWcXEXQj9JatJE+vnnovc7cEBy1XdgfXyKt64gAAAAAM/i1cHfq6++qpSUFA0ePNixrWPHjlq4cKGaNGmiEydO6IUXXtB1112nnTt3KiQkJN/jZGRkKCMjw/E4KSmp3OcOoHKqHhWtmnUutS8amGTP2nxMUkBO6V2m1dZ201xIqBdczfVr/NHqEwAAeLu4OKlatQuPmzWTvvxSSkqSQkML3u/gQekf/3DNHPz8CP4AAAAAb2R29wRKa9GiRXrhhRf08ccfq1atWo7tffr00aBBg9S6dWv16tVLq1at0rlz5/Txxx8XeKzp06crLCzMcatbt25FvAQAqBSsZttbiVm2dfZ8TReCvKLafVbLCUl9XbDGn73ij1afqAzmzJmjmJgYBQYGqmPHjvrll18KHb906VI1bdpUgYGBatWqlVatWuX0/LJly9SzZ09Vr15dJpNJ27dvd3r+zJkzeuihh9SkSRMFBQWpXr16evjhh5WYmOg0zmQy5bktXrzYJa8ZAHBBXJwUHn7hcdOmkmFIW7cWvI/FIh054rpWn6zxBwAAAHgnrwz+Fi9erNGjR+vjjz9W9+7dCx0bHh6uK664Qvv37y9wzMSJE5WYmOi4HTt2zNVTBoBKyzDZ2nn65LyjmEwmR9VfocGf2UfBETUlSX4ueDcyO9b4I/mDd1uyZIkmTJigyZMna9u2bWrTpo169eqlhISEfMdv2rRJQ4cO1ahRo/Tbb79pwIABGjBggHbu3OkYk5qaqs6dO+ull17K9xixsbGKjY3Vq6++qp07d2rhwoVavXq1Ro0alWfsggULdOLECcdtwIABLnndAIALLm71WbeuVKWKbZ2/gvz9ty2oiy5Z1/kCscYfAAAA4J28rtXnRx99pHvuuUeLFy9Wv379ihyfkpKiAwcO6O677y5wTEBAgAICAlw5TQC4ZBgmW2qXe52+QB+TzmcbhQZ/Jr+c37uWbJlNfmWex4VWn2U+FOBWM2fO1JgxYzRy5EhJ0ty5c7Vy5UrNnz9fTz/9dJ7xs2fPVu/evfXEE09IkqZNm6a1a9fqjTfe0Ny5cyXJcR10+PDhfM/ZsmVLffrpp47HjRo10r///W/dddddys7Olq/vhUvG8PBwRblqASkAQL7i452DPx8fW7vPtWulp57Kf5+DB233rqr4I/gDAAAAvJNbK/5SUlK0fft2R7upQ4cOafv27Tp69KgkWyXesGHDHOMXLVqkYcOGacaMGerYsaPi4uIUFxfn1Ibq8ccf17fffqvDhw9r06ZNuuWWW+Tj46OhQ4dW6GsDgEuFNafizzdXt057xV+6xZBRUAWef6AkyWRxzSdK9uCR4A/eLDMzU1u3bnXqaGA2m9W9e3dt3rw53302b96cpwNCr169ChxfXImJiQoNDXUK/SRp7NixqlGjhjp06KD58+cX/N+4bOsoJyUlOd0AAIVLSZFSU52DP0nq1k3asEEq4DscOnhQMpmkyEjXzIPgDwAAAPBObg3+tmzZonbt2qldu3aSpAkTJqhdu3aaNGmSJOnEiROOEFCS5s2bp+zsbI0dO1a1a9d23B555BHHmOPHj2vo0KFq0qSJBg8erOrVq+unn35SzZo1K/bFAcAlwshZ48/H7FzxZ5KUbRTc7tNe8ee64M92T6tPeLNTp07JYrEo8qJPbSMjIxUXF5fvPnFxcSUaX9x5TJs2Tffee6/T9qlTp+rjjz/W2rVrddttt+nBBx/U66+/XuBxWEcZAErO/uu7WjXn7V27SkFB0oIF+e938KBUq5bk7++aebDGHwAAAOCd3Nrqs2vXroV+S3zhwoVOj7/55psij7l48eIyzgoAUBL5VfyZTSYF+5mUnGUoMcuqQN+83zMxubjiz0zFH+ASSUlJ6tevn5o3b64pU6Y4Pff88887/tyuXTulpqbqlVde0cMPP5zvsSZOnKgJEyY4HZvwD0B5MQwpI0MKDHT3TMomPt52f3HFX1CQdMMN0vz50qRJtmAut4MHXdfmU6LiDwAAAPBWbq34A4BLkcVqyFqJqtIca/zlqviTpFB/2/aULEOWfNK4CxV/2S6Zh5mKP1QCNWrUkI+Pj+Ltn/rmiI+PL3BdvaioqBKNL0xycrJ69+6tkJAQffbZZ/LzK3z9zY4dO+r48ePKyMjI9/mAgACFhoY63QCgvDz8sNSggXTypLtnUjb2ir+Lgz9J6ttXOn5cWrcu73MHDkiuXIKV4A8AAADwTgR/AFCBsq2GjqRk61hKtjILaIHpbYx8Kv4kKcBsUkBOGpeUZXXexzBcv8ZfzjsaFX/wZv7+/mrfvr3Wr1/v2Ga1WrV+/Xp16tQp3306derkNF6S1q5dW+D4giQlJalnz57y9/fXF198ocBilMxs375d1apVU0BAQInOBQCutmKF9MYb0qlT0vjx7p5N2cTF2UK3kJC8zzVrZgs3//e/vM8dPChFR7tuHgR/AAAAgHdya6tPALjUJGZaZci29l3s+WxFV/H+X8NW+xp/Jufkz2QyKdTfrJPpFiVlWhXub5YpZ4zFkExmH1ktFslVrT5lPzbJH7zbhAkTNHz4cF155ZXq0KGDZs2apdTUVI0cOVKSNGzYMNWpU0fTp0+XJD3yyCPq0qWLZsyYoX79+mnx4sXasmWL5s2b5zjmmTNndPToUcXGxkqS9u7dK8lWLRgVFeUI/c6fP68PPvhASUlJSkpKkiTVrFlTPj4++vLLLxUfH6+rr75agYGBWrt2rV588UU9/vjjFfnjAYA84uOlkSOlTp2k66+XXnpJuvNOqU8fd8+sdOLibNV+F11aSbJt69dPmjtX2rNHatrUtj052RZ60uoTAFAcb731llJSUhQcHKz77rvP3dMBALeprL8Pvf8TZwDwElbDcFS+mU228Ovv89mqYvLe4mu/wCDJ0eoz7/PBfiadTrcFnanZhoL9bJ9gZeWU5Z2NParaLlqHxyfnwzEq/uDthgwZopMnT2rSpEmKi4tT27ZttXr1akVGRkqSjh49KrP5wn9w11xzjRYtWqTnnntOzzzzjC6//HItX75cLVu2dIz54osvHMGhJN1+++2SpMmTJ2vKlCnatm2bfv75Z0lS48aNneZz6NAhxcTEyM/PT3PmzNH48eNlGIYaN26smTNnasyYMeX2swCA4njoIclikR5/XKpWTVq/Xrr3Xmn3bik42N2zK7n4+PzbfNrdfLO0bJmtsvGrr2zbDh2y3bu64i8z03XHAwB4jpSUFCUnJ7t7GgDgdpX19yHBHwBUkNQsQ1bDFlBdVtVXJ85nK9MqpQd475pXITVsQYRJ+feONptMCgsw62yGVafSLaria5LZZJK98+epIwdUu0kjl8zFvsZgJemgikvcuHHjNG7cuHyf++abb/JsGzRokAYNGlTg8UaMGKERI0YU+HzXrl1tLXgL0bt3b/Xu3bvQMQBQ0U6etIVg48ZdCMsmTLBVAL74ou3mbeLibAFmQfz9pfvvlyZNklautFUAHjxoe86VFX8+PlK2a5ZiBgAAAFCBvLfMBAC8TGJO2hXmb5av2aRaQbbvXmT7Baluq/bunFqp2YM/H5McbTwvFu5vlm9OhePZDNvPIDOnLO/U0QMum4vZUfFH8gcAwKVi6VJb+8sbbriwrXZtafBgaebMC5Vw3uTEicIr/iSpc2epfXvp0UeljAxb8BcUJIWHu24etPoEAAAAvBPBHwBUgAyLoYycUrQQP9uv3gAfk0JyWl/e9Pi/5I15lT348zXnH/pJtqq/GoE+kqRzmVZlWgxHq89TR1wf/FHxBwDApePDD6Urr5TCwpy3Dx0qhYZKTzzhvN1ikTZvlkdfdxVV8SfZws6xY6UjR6TrrpO+/dbW5rOA72GViq+vreLPk39WAAAAAPIi+AOACnAuwyLJtuZd7pAsIsBHMqyq1+pKHcx07r5cVNs9TxCaq+KvMFX9zKriaxsUez7bEYKedGHw55PzSZch7/jZAQCA4jl3zta68/HHpfT0C9sPH5Y2bZJuvDHvPkFB0pgx0qefSh9/bAuvzp6V+vSRrrlGWrOmomZfMoYhJSQUXfEnSQ0aSLNnS7Gx0hdfSFFRrp2Lb86lKe0+AQAAAO9C8AcALlK7SSudD6qmMxkWZVsvBE+ZFkMp2bbH4f4+Tvv4mk0KyEyRJG1J9dfRlCwlZ1q0aF+i5uw6q+Mpnt1fqTgVf3Y1A33kZ7ZV5Nmr8sqj1adE1R8AAJXFzz9LbdvaWnq+/rrUsaO0e7ftucWLpcBAW9vL/HTvbhs/ZIjUqpWtMvDnn6Xq1W2BoCc6d07KzCxe8CdJzZpJ8+ZJAwdKvXq5di4+OZettPsEAAAAvAvBHwC4wMkss+6dt1zZvoE6m2HVkZRsJaRly2oYOpdpq/ar4mtSQD6lcf6Zqdq5foWsMunTg0lasPecjqZkKSXLqsX7E3UgMbOiX06xhRSz4k+yhYN1qvoqMGewYbUoKT7WZXPxydXbykrwBwCA1zt+XOrSRapaVfrf/6Q5c6TERFuIN2CA9PbbUqdOtuq+/JhM0vTp0quv2ta+Cw+X/vtfqUcP6bPPbG0/PU1cnO2+uMGfJFWpYmv7ed11rp2LveKP4A8AAADwLgR/AFBGR5IztTE5UIEhofKxZDqCreQsQ7GpFiVn2VKoav75/8o1SVry3AOq7mNRhsXQ+WxDNQN91CDET9mG9OnBJB1J9szwL6SmPfgr3oIyPiaToqv4KCLALEv8YZe25Mxd8Wel1ScAAF7vvfds4d3LL9vaWDZuLM2dK40bJ/35p3TwYNFVbiaT1L699K9/STNmSHXq2AKyU6ekH3+smNdREvbgr6g1/ioCwR8AAADgnXyLHgIAKMza46myyKS9P67Xla2bq1a1ekrLtiruvEUZOaVnQT4mBfoW/F2L7Ix0XR+Srh3WcIUH+KhrdFWZTdLyQ8nal5ipnWcyVD/Ev6JeUrGFOlp9Fn8fk8mkagE+ik8559K55J4CrT4BAPBuhiEtXGgL6apWvbA9MNBW7ffPf0qnT0s1apT82E2bSjVrSsuWSddf76oZu0ZpKv7KC8EfAAAA4J2o+AOAMjidnq1T6RaZZWjxxHtlLzoL8jWrTlVf+eX8lq0WUPSv20CzNKhRmHpcFiw/s0k+JpNaRgRIkhLSssvpFZTNhVafxav4K08mk8lR9Weh4g8AAK/200/Svn0FV/SZTKUL/STJbLatC/jpp7aA0ZPEx9vCzYLal1Ykgj8AAADAOxH8AUAZ7D1na8EZ6WdRekqS03P+PibVreqr+sG+CipJSVwukUG2T1xOpVs8LsyyGFLVatUlSb7uz/0kXVhrkDX+AADwbgsXSpGRUrt25XP8666zrSG4dWv5HL+04uKk6tVtwaa72YO/TM/sOA8AAACgAAR/AFAGf+UEf3X9LPk+bzKZ5Gsu/Sc3Yf5mBZhNshjS6fT8z+Eu6dac12UYKsNLdClzzqdknhaSAgCA4ktLkxYvlnr2tFXnlYfWraWwMGnFivI5fmnFxXnG+n4SFX8AAACAtyL4A4BSSsy0KC4tWyZJdfzLpxWnyWRSzSAfSZ7X7jPNsIVsJsMqkyd8LV1U/AEAUBmsXCklJdmCv/Li4yM1bizt3Fl+5ygNTwr+fGyXoAR/AAAAgJch+AOAUrJX+10W7KvAcvxtWiun3WdCmmdW/JkMz5nXhYo/N08EAACU2tattjafl11Wvue57DJpz57yPUdJxcZKERHunoUNFX8AAACAdyL4A4BS2nsuQ5LUJDygXM8T6Qj+PKziLyf4M1utbp7JBRcq/kj+UPEOHjzo7ikAQKWwd2/5h36SVK+etH+/ZPGc7zDpxAmCPwAAAABlQ/AHAKWQnm3V8VRbEHdFmH+5nqtWFVufpfi0bBkeFGileWTFn+2eij+4Q+PGjXXDDTfogw8+UHp6urunAwBea88eqW7d8j9P3bpSRoZ05Ej5n6s4srKk06el6tXdPRMbgj8AAADAOxH8AUApnM6whV2hfmaF+vuU67lqBPrKJCkt21BKtudU16XnrPFnNjxnTj45rT6p+IM7bNu2Ta1bt9aECRMUFRWl++67T7/88ou7pwUAXsVikQ4cqJjgr149272ntPtMSJAMw3Mq/ljjDwAAAPBOBH8AUApn0m3BX7WA8g39JMnPbFJEoO08Cec9p7rOkyv+rOR+cIO2bdtq9uzZio2N1fz583XixAl17txZLVu21MyZM3Xy5El3TxEAPN6RI1JmZsUEfzVrSoGBttainuDECdu9p1T8+fnZ7gn+AAAAAO9C8AcApXAmp+LPHsiVN09c588R/HnUGn+2OdHqE+7k6+urW2+9VUuXLtVLL72k/fv36/HHH1fdunU1bNgwnbB/sgsAyMMewlVE8Gc2287jKRV/nhb80eoTAAAA8E6lCv4aNmyo06dP59l+7tw5NWzYsMyTAgBP5wj+KqDiT5JqBeVU/Hlg8Gf2wIo/C60+4UZbtmzRgw8+qNq1a2vmzJl6/PHHdeDAAa1du1axsbH65z//6e4pAoDH2rtXCgiQatWqmPNddpm0e3fFnKsoJ07YwsjwcHfPxIZWnwAAAIB38i3NTocPH5bFkveD3oyMDP39999lnhQAeDp7q8+KC/5sv67j0zwjZLMahjIMe6tPz6n4o9Un3GnmzJlasGCB9u7dq759++q9995T3759ZTbbvmfVoEEDLVy4UDExMe6dKAB4sL17bWGcuYJ609SrJ331VcWcqygnTkjVql0I3NzNXvGXmeneeQAAAAAomRIFf1988YXjz19//bXCwsIcjy0Wi9avX8+HWQAqPcMwdLaCW33WzDnP2QyLsq2GfO0Jl5uczzZkyCSrxeJRwd+FVp8kf6h4b775pu655x6NGDFCtWvXzndMrVq19M4771TwzADAe9iDv4pSt66UkCCdO+f+Sru4OCkiwr1zyI1Wn4BrZGdn65tvvtGBAwd0xx13KCQkRLGxsQoNDVVwcLC7pwcAACqhEgV/AwYMkCSZTCYNHz7c6Tk/Pz/FxMRoxowZLpscAHii5Cyrsg1br+Qw/4r5Onqwn1kBZpMyrLbQsWZQqQq2XSYlyxb2pZw5pfBAt07FiQ8Vf3CjtWvXql69eo4KPzvDMHTs2DHVq1dP/v7+ea6hAAAX7N0r3XhjxZ2vXr0L5+3YseLOm58TJwj+gMrmyJEj6t27t44ePaqMjAz16NFDISEheumll5SRkaG5c+e6e4oAAKASKtEn1larVVarVfXq1VNCQoLjsdVqVUZGhvbu3aubbrqpvOYKAB7Bvr5feICPzKaKqbwzmUyqnlP1dzrd/e0+7cFf8ql4N8/Emf3vg+AP7tCoUSOdOnUqz/YzZ86oQYMGbpgRAHiXlBQpNtZWhVdR7NWFe/ZU3DkLEhvrWcGf/XssBH9A6T3yyCO68sordfbsWQUFBTm233LLLVq/fr0bZwYAACqzUpWMHDp0yNXzAACvUdHr+9lVD/RR7PlsnfKA4C81d/B3WU03z+YCe8UfrT7hDkYB/+5SUlIUGOhBpbEA4KH++st2X5HBX1CQFBlpq/hztxMnpCZN3D2LC0wmW9UfwR9Qet9//702bdokf39/p+0xMTH6+++/3TQrAABQ2ZW6V9z69eu1fv16R+VfbvPnzy/zxADAU1X0+n52NXLOdyo9u0LPm5+U7NwVfy3dO5lczI41/tw8EVxSJkyYIMlWmTtp0iRVqVLF8ZzFYtHPP/+stm3buml2AOA97OFbRQZ/kq3qz90Vf4Yhxcd7VsWfRPAHlJXVapXFkveLm8ePH1dISIgbZgQAAC4FpQr+XnjhBU2dOlVXXnmlateuLVMFtboDAE9gb/VZ0RV/NQJtv7Jp9Vkws2ONP5I/VJzffvtNkq3i748//nD6Rre/v7/atGmjxx9/3F3TAwCvsXevLfgKDq7Y89arJ/35Z8We82JnztgCNk8L/vz8CP6AsujZs6dmzZqlefPmSbJ9USwlJUWTJ09W37593Tw7AABQWZUq+Js7d64WLlyou+++29XzAQCPZw/+qgWUaJnUMnOs8ZdhkdUwKmx9wfzYg7+kk3Fum0N+LrT6dO88cGnZuHGjJGnkyJGaPXu2QkND3TwjAPBOf/1V8dV+khQTI33xhZSRIQUEVPz5JVubT0mqXt095y8IFX9A2cyYMUO9evVS8+bNlZ6erjvuuEP79u1TjRo19NFHH7l7egAAoJIqVfCXmZmpa665xtVzAQCPZzEMncuwhV4V3eozzN8sP7OUZbW1G60eWOpuzWXmqRV/PjlhKBV/cIcFCxa4ewoA4NV277a13axojRpJFovt/O7qzEzwB1ROl112mX7//XctXrxYO3bsUEpKikaNGqU777xTQUFB7p4eAACopEr1qfHo0aO1aNEiPf/8866eDwB4tMQMqwxJfmYp2LdiK/5MJpOqB/gqLi1bp9LdG/ylemjwd6HVp3vngUvHrbfeqoULFyo0NFS33nproWOXLVtWQbMCAO9jtdpafbrj+6UNGtjud+wg+LsYwR9Qdr6+vrrrrrvcPQ0AAHAJKdWnxunp6Zo3b57WrVun1q1by8/Pz+n5mTNnumRyAOBpLrT59HHL+qbVA30Ul5bt1nX+DMNQSnZOq083B3/Hjx93epxy3k+Sv84mJulI1qkC9wsJCVGEpy2iA68UFhbm+F0QFhbm5tkAgPc6ckRKS5Pq16/4c1epItWuLf3xR8Wf2+7ECSkkRMq1TKxH8PGRMjPdPQvAe7333nuFPj9s2LAKmgkAALiUlCr427Fjh9rmfBVy586dTs+544NwAKgop9OzJUkRAa5v83lxiJUf33RbsHXkdJLqZJyUVPEhVprFcFTUpZxKqLDz5paalCiT2azOnTs7be859hndMGq83pm/QCtefbbA/cOrVdOB/fsJ/1Bmudt70uoTAEpv927bfb167jl/w4bS77+759ySLfjzxMsSKv6AsnnkkUecHmdlZen8+fPy9/dXlSpVCP4AAEC5KFXwt3HjRlfPAwC8QkKardKuVpDr2mwWFGLlp9n1vTRs1gfavGO37rjjRkkVH2LZ1/fzNxmyZLvnk6D086kyrFY9+97niq7f4MJ2/2BlSuo68E71ufnmfPc9HRerSUN6Kzk5meAPLpWWlibDMFSlShVJ0pEjR/TZZ5+pefPm6tmzp5tnBwCebfduKShIqlXLPedv0EBat84955akuDiCP6AyOnv2bJ5t+/bt0wMPPKAnnnjCDTMCAACXAvctEAUAXighzVbxVzPIdRV/BYVY+bGYfJQqKbpJS73x7Q6dcUOIZV/fL8js/oX0IiJrq2adC6UBZzMsOpNhVWDVYNWsEe6+ieGS9M9//lO33nqr7r//fp07d04dOnSQv7+/Tp06pZkzZ+qBBx5w9xQBwGP9+aet2s9csUsoOzRsaAvfTp2SatSo+PPHxnpm8OfjQ/AHuNrll1+u//u//9Ndd92lPXv2uHs6AACgEipV8HfDDTcU2tJzw4YNpZ4QAHgqi2HodIbrK/7sLg6x8mMYhg4lZ8swmVStdl25o7lysj34M7k/+CuI584Mldm2bdv02muvSZI++eQTRUVF6bffftOnn36qSZMmEfwBQCHswZ+7NGxou//jD+mGGyr+/CdOSP/4R8WftyhU/AHlw9fXV7Gxse6eRpGmTJni7ikAAFAhkpOTy+V9z13vpaX65Nq+vp9dVlaWtm/frp07d2r48OGumBcAeJwz6RZZDSnAbFKon3u+jm4ymeRvNinDaijD4p5461xO+FnVx+qW8xfGEYSS/MENzp8/r5CQEEnSmjVrdOutt8psNuvqq6/WkSNH3Dw7APBchmFr9TlwoPvmcNllkr+/+4K/uDipevWKP29RCP6Asvniiy+cHhuGoRMnTuiNN97Qtdde66ZZFQ+h36UhOTnZ3VMAALcq79+DU6ZMcct7aqmCP/u32S82ZcoUpaSklGlCAOCpcrf5LKzqubwF+NiCv3Q3BX9ncoK/ULMHBn85fy3kfnCHxo0ba/ny5brlllv09ddfa/z48ZKkhIQEhYaGunl2AOC54uKkxEQpJsZ9c/DxsZ1/x46KP3diopSSQvAHVEYDBgxwemwymVSzZk3deOONmjFjhnsmVQyEfpcWd30oDQDuVlG/+9zxe9alveruuusudejQQa+++qorDwsAHuFkWvm1+SyJAB+TlCVlWAz5u+H8p9NtP4cQH8+L10w5NX+eNzNcCiZNmqQ77rhD48ePV7du3dSpUydJtuq/du3auXl2AOC5du+23buz1ackNWjgnuBv717b/WWXVfy5i8Iaf0DZWK3l82XJjIwMZWRkOB4nJSWVy3lw6fDkIBqlQ3GOa6WkpPDfCbyKSz+93rx5swIDA115SADwGAnpFyr+3CnQxxZuZVgM+VXwuQ3D0Fl7xZ8HtvoE3GngwIHq3LmzTpw4oTZt2ji2d+vWTbfccosbZwYAnm33bltlWZ067p1Hw4bS999LVqtkrsCu7p4SfOaHij/AM02fPl0vvPCCu6eBSoSWn0DhDMPgvxN4lVIFf7feeqvTY3uP8i1btuj55593ycQAwNPYK/5qBrq34s/PbFvLzpBkNVfsXJKyrMo2JLOkqmbPq6tztPr0vKnhEhEVFaWoqCinbR06dHDTbADAO+zeLdWta6suc6eGDaXz56X9+6Urrqi48+7eLUVFSUFBFXfO4qLiDyi5CRMmFHvszJkzS3WOiRMnOp0nKSlJdevWLdWxAEmOtcpReaSkpMjgwxGXMZlMCg4Odvc04GKVOcwt1SfGYWFhTo/NZrOaNGmiqVOnqmfPni6ZGAB4krRsq5KzbBVu7q74M5lMCvAxKd1iyOJTsTV/Z3PafIYH+MjsvmUOC2SfEpe2cIfU1FT93//9n9avX6+EhIQ8rZ0OHjzoppkBgGfbtcsW/Llb06a2LxFt2lTxwZ8nVvtJtoq/XN0EARTDb7/9VqxxZVk3PiAgQAEBAaXeH7jYY4895u4pwMVmzJhRqUONihYcHMx/J5VQZV7ftFTB34IFC1w9DwDwaAlptjafYf5mBfhUYO+nAgTagz9zxQZ/p3PafEYEuvkr+QUg+IM7jR49Wt9++63uvvtu1a5du0wf5gDApWT3bskTvj8aHCw1amRr9zliRMWd988/pbZtK+58JeHrK6WluXsWgHfZuHGju6dQZlOmTKnUH4bCGX/XAC5VFfV+547fs2XqEbd161btzlmQoEWLFmrXrp1LJgUAnsbe5rNWkHvbfNoF5KzzZ/Hxr9DznrEHfwE+UnaFnrpkSP7gBl999ZVWrlypa6+91t1TAQCvsWOHFB9va7PpCVq0sAV/FSUjQzp4UOrfv+LOWRK0+gQuXYR/lwZafAK41IWEhJRrday73ktL9Ql2QkKCbr/9dn3zzTcKDw+XJJ07d0433HCDFi9erJo1a7pyjgDgdgnptpTL3W0+7QJzgj+r2Vd+gRW3IMyZnFaf1T00+HOs8UfyBzeoVq2aIiIi3D0NAPAahiE9+KAUEyN5yncmWreWPv/cFkZGRpb/+fbtk6xWqX798j9Xafj6EvwBZbVlyxZ9/PHHOnr0qDIzM52eW7ZsmZtmVTwEf5UXbSABwFlISEilaudaqn51Dz30kJKTk7Vr1y6dOXNGZ86c0c6dO5WUlKSHH37Y1XMEALc6lZ6tP8/YFjepXcUzKv58TLabTCbVvqJlhZ33DK0+gQJNmzZNkyZN0vnz5909FQDwCh98IP34o/TQQ5JfxXYvL1CrVrb7H36omPPlNNDx2ODPz4/gDyiLxYsX65prrtHu3bv12WefKSsrS7t27dKGDRsUFhbm7ukBAIBKqlSfYK9evVrr1q1Ts2bNHNuaN2+uOXPmqKcnLM4AAC6SbTX0xeFkZRtSTIifGodWbGvNgphMJgX4mHQ+21C9Vu11/PjxUh8rJCSkWFVK2VZDiZlWSbZWn6dKfUagcpoxY4YOHDigyMhIxcTEyO+iT7G3bdvmppkBgOc5d0567DHpxhulf/zD3bO5oGZNqXZtW/B3223lf749e6TwcMlTP/+n1SdQNi+++KJee+01jR07ViEhIZo9e7YaNGig++67T7Vr13b39AAAQCVVquDParXm+TBLkvz8/GS1Wot9nO+++06vvPKKtm7dqhMnTuizzz7TgAEDCt3nm2++0YQJE7Rr1y7VrVtXzz33nEZctPL6nDlz9MorryguLk5t2rTR66+/rg4dOhR7XgBg901sqhLSLAryNemm+iEy2XtJeoCgnOCvSece6ty5c6mPE16tmg7s319k+Hc2p9ovwMekKr6e83PIzdHqk5I/uEFR1zAAgAvmzJGSk6X773f3TPJq2VL67ruKOdfu3Z5b7SfR6hMoqwMHDqhfv36SJH9/f6WmpspkMmn8+PG68cYb9cILL7h5hgAAoDIqVfB344036pFHHtFHH32k6OhoSdLff/+t8ePHq1u3bsU+Tmpqqtq0aaN77rlHt956a5HjDx06pH79+un+++/Xhx9+qPXr12v06NGqXbu2evXqJUlasmSJJkyYoLlz56pjx46aNWuWevXqpb1796pWrVqlebkALlHnMizacjJdktSvXoiC/UrVHbncVPUz63SGVQ3aX6NnP1ih6Lr1SnyM03GxmjSkt5KTk4sM/hxtPgN8PCoAzc2U0+yT3A/uMHnyZHdPAQC8gsUizZsn3XCDrcLO07RuLb32mi2YDAkp33P9+adUt275nqMsCP6AsqlWrZpjHbU6depo586datWqlc6dO0d7eAAAUG5KFfy98cYb6t+/v2JiYlQ35/9Sjh07ppYtW+qDDz4o9nH69OmjPn36FHv83Llz1aBBA82YMUOS1KxZM/3www967bXXHMHfzJkzNWbMGI0cOdKxz8qVKzV//nw9/fTTxT4XAPxxxhb6xYT4qXGYZ7T4zM3PbJKRkSafgCCFXdZANevUKdfznUm/EPx5Ktb4g7udO3dOn3zyiQ4cOKAnnnhCERER2rZtmyIjI1WnnP8bBQBvsXatdPSo9NRT7p5J/lq1kqxWafNmqTxXsrBapb/+kq69tvzOUVYEf0Dp7Ny5Uy1bttT111+vtWvXqlWrVho0aJAeeeQRbdiwQWvXri3RF+cBAABKolTBX926dbVt2zatW7dOe/bskWQL4bp37+7SyV1s8+bNec7Rq1cvPfroo5KkzMxMbd26VRMnTnQ8bzab1b17d23evLlc5wagcjEMQ3+czpAktY4IdPNsCmZNPSefgCBZA6qW+7lO2yv+Aj03+HMg+YMb7NixQ927d1dYWJgOHz6sMWPGKCIiQsuWLdPRo0f13nvvuXuKAOAR3npLatxYyrVkvEepV0+KiJCWLSvf4O/IESktzbNbfbLGH1A6rVu31lVXXaUBAwZo0KBBkqRnn31Wfn5+2rRpk2677TY999xzbp4lAACorErUt27Dhg1q3ry5kpKSZDKZ1KNHDz300EN66KGHdNVVV6lFixb6/vvvy2uuiouLU2RkpNO2yMhIJSUlKS0tTadOnZLFYsl3TFxcXIHHzcjIUFJSktMNwKXtSHKWkrKsCvAx6fJwz6v2szNSztnu/YNkLceF7QzD0PEU26c+NT04+HOs8efeaeASNWHCBI0YMUL79u1TYOCFLwz07dtX35Vwsag5c+YoJiZGgYGB6tixo3755ZdCxy9dulRNmzZVYGCgWrVqpVWrVjk9v2zZMvXs2VPVq1eXyWTS9u3b8xwjPT1dY8eOVfXq1RUcHKzbbrtN8fHxTmOOHj2qfv36qUqVKqpVq5aeeOIJZWdnl+i1Abi0xcZKX34p9et34X3b05hM0sCB0jvvSAcPlt95/vzTdl+v5N3aK4yvr5SZ6e5ZAN7n22+/VYsWLTR9+nQ1a9ZMw4cP148//qinn35aX3zxhWbMmKFq1aq5e5oAAKCSKlHwN2vWLI0ZM0ahoaF5ngsLC9N9992nmTNnumxyFWX69OkKCwtz3Op68iILACrEjjO2ar/m1QLkZ/bQT6UkGRnnlRgfK5nMSssuv7jrZLpF5zKt8jVJMSGeG4TS6hPu9Ouvv+q+++7Ls71OnTqFfgHpYvb1iidPnqxt27apTZs26tWrlxISEvIdv2nTJg0dOlSjRo3Sb7/9pgEDBmjAgAHauXOnY0xqaqo6d+6sl156qcDzjh8/Xl9++aWWLl2qb7/9VrGxsU5rMFssFvXr10+ZmZnatGmT3n33XS1cuFCTJk0q9msDgPnzJT8/qZybxZTZLbdI4eFS7uVbLRbXnmPFCikyUvLkpeh9fSW+3wGU3HXXXaf58+frxIkTev3113X48GF16dJFV1xxhV566aUSXRsCAACUVImCv99//129e/cu8PmePXtq69atZZ5UQaKiovJ88zw+Pl6hoaEKCgpSjRo15OPjk++YqKioAo87ceJEJSYmOm7Hjh0rl/kD8A7p2Vb9dS6nzWf1ADfPpmh/frtakpScZZVhGDIMQ6fSLTqSnKW0bKtLzrE35+fRINRf/j6eG4TmZpRjBSSQn4CAgHy7Bvz111+qWbNmsY+Te73i5s2ba+7cuapSpYrmz5+f7/jZs2erd+/eeuKJJ9SsWTNNmzZN//jHP/TGG284xtx9992aNGlSgW3ZExMT9c4772jmzJm68cYb1b59ey1YsECbNm3STz/9JElas2aN/vzzT33wwQdq27at+vTpo2nTpmnOnDnKpBwEQDF9/bXUsaMUHOzumRQuMFC66y7pww+lL76QhgyR/P2lbt2k994rexiWni599JEtADWX6P/KKxatPoGyqVq1qkaOHKlvv/1Wf/31lwYNGqQ5c+aoXr166t+/v7unBwAAKqkS/S9GfHy8/Pz8Cnze19dXJ0+eLPOkCtKpUyetX7/eadvatWvVqVMnSZK/v7/at2/vNMZqtWr9+vWOMfkJCAhQaGio0w3ApWt/UqayDVtLy6igUi2FWqH+WPO5JCk129Dx1GwdT81WYqZV2YaUkGZxSQD21znbh/pXhHlutZ/kuS3DcGno37+/pk6dqqycT0hNJpOOHj2qp556SrfddluxjmFfrzh3QFfUesUFrYFckvWNt27dqqysLKfjNG3aVPXq1XMcZ/PmzWrVqpVTS/VevXopKSlJu3btyve4tFMHcLG//pJiYtw9i+Lp21eKjpb++U9p40Zp2DDp7Flp+HBpxoyyHfvLL6XExPJdQ9AVfH1twR/fpwLKrnHjxnrmmWf03HPPKSQkRCtXrnT3lAAAQCVVouCvTp06Tm2jLrZjxw7Vrl272MdLSUnR9u3bHevMHDp0SNu3b9fRo0cl2Srxhg0b5hh///336+DBg3ryySe1Z88e/fe//9XH/9/enYdHVd7vH7/PzGQmCZAEEsiCLFEQXFgUIQVxa9HgUqVVfmBVkKJYKlVL6wJVUNCCqLhULHVB9FtRarVoFVFE0SoRlUXcQNm3JCxJyEK2mTm/P04yEElCAsmcmcn7dV1zDcycOfOZQxgezn0+z/Ovf+mPf/xjYJuJEyfqmWee0QsvvKDvv/9e48ePV0lJicaMGdOYjwqgBdtXZs3j1Kl1lIwwSJK2rF4hZ9FeOQypwm/dHIbkNCSvKRVUHF/XX365T3vLfDIkdQv14O+wX3N+CsH2yCOPqLi4WO3bt1dpaanOO+88devWTW3atNEDDzzQoH0cy3rFda2B3JgppHJycuR2u5WQkFDnfup6n+rnasN06gAOd+CAtGePdMIJdlfSMFFR0qRJ0s03W11+o0dLs2dL554rvfHG8e17/nzp1FNDe30/yToGUtNPcwq0NB9//LGuv/56paSk6Pbbb9evf/1rffrpp3aXBQAAIlSjWlkuueQS3XPPPRo6dKiio6NrPFdaWqqpU6fqsssua/D+vvzyS11wwQWB30+cOFGSNHr0aM2fP1/Z2dmBEFCS0tPT9fbbb+uPf/yjHn/8cZ1wwgl69tlnlZmZGdhmxIgR2rt3r6ZMmaKcnBz17dtXS5YsOeJEFQD8VF5enoqKirSzyCPJJR08oG3b9jfotTt37mze4o7CWVastNRU5Vf45TNNJXqcKvWa2lPmU365X22iHHId41qF1dOedmkTpRhXCM9FJYI/2Cs+Pl5Lly7Vp59+qq+++krFxcU688wz65xesyWYNGlSYHwnSYWFhYR/QAv244/WfTh9DZx2mnU7XP/+0qOPWt1/bds2fp+5udaUp3/4Q9PU2JycTuu+stLq/gPQcLt379b8+fM1f/58bdy4UYMGDdITTzyh//f//p9atWpld3kAACCCNWrofvfdd+v111/XySefrAkTJqhHjx6SpPXr12vOnDny+Xz6y1/+0uD9nX/++fVOQTd//vxaX7NmzZp69zthwgRNmDChwXUAQF5enk7q1k0F+fm67dX/Kfmknpow5jr9mPVho/ZTWXmcC74cB6fDUFK0M/D71lHSgUpD5T5TeeU+dTjGaUs3hMk0nz9lmqqZBALNyO/3a/78+Xr99de1detWGYah9PR0paSkyDTNBncPH8t6xXWtgVzf+sa17aOiokIFBQU1uv4O309KSoo+//zzI96n+rnaeDweeTyhv1YqgOD44QfrvmNHe+s4Xv37S36/tGyZdNVVjX/9Sy9Z6/oddg1syKoO+yorpZgYe2sBwsnFF1+s999/X0lJSRo1apR++9vfBs6hAQAANLdGnQVOTk7WihUrNH78eE2aNCkQ2hmGoczMTM2ZM4fOOgBhqaioSAX5+Zq2cImiTrT+Q3bLg0/KYTZsXqNNX6/R7Amj5fPZF/z9lGEYSvQ4tPugTyWVpszohocP1XaVVGr3QeszdU8I/eAvHKZmReQxTVOXX365Fi9erD59+qhXr14yTVPff/+9rr/+er3++utatGhRg/Z1+HrFw4YNk3RoveK6LmqqXgP5tttuCzx2+BrIDdGvXz9FRUVp2bJlgfUIN2zYoO3btwf2M3DgQD3wwAPas2ePOnToEHifuLg4nXrqqQ1+LwAt1w8/SImJUuvWdldyfJKTrXUKlyxpfPDn9UpPPikNHiyFw9Lyhwd/ABouKipK//73v3XZZZfJ6XQe/QUAAABNqNHtH126dNHixYuVn5+vjRs3yjRNde/eXW2PZY4TAAgxbVM7qdgwZEjqkJrW4CBpf87u5i3sGEU7DTkMyW9KZT5TMa6GB2Omaer9nSWSpF7tPGoTFR7/YTVkTfPJVJ8Ilvnz5+vjjz/WsmXLakxhLkkffPCBhg0bphdffLHGusX1mThxokaPHq2zzjpLAwYM0GOPPVZjveJRo0apY8eOmjFjhiTp1ltv1XnnnadHHnlEl156qV555RV9+eWXevrppwP7zMvL0/bt27V7t/VdtWHDBklWp15KSori4+M1duxYTZw4Ue3atVNcXJz+8Ic/aODAgfrZz34mSbrooot06qmn6rrrrtOsWbOUk5Oju+++WzfffDNdfQAa5Icfwmd9v6M56yzpnXesGQYac93RggXSli3S5MnNV1tTIvgDjs2bb75pdwkAAKAFO+bFmtq2bav+/ftrwIABhH4AIobPYZ3diHJERveYYRiKdVqfo9TbuCjsm7xyZR/0yu0wdF5a+KxBUf2nVs9M0kCTevnllzV58uQjQj9J+vnPf6677rpLL730UoP3N2LECD388MOaMmWK+vbtq7Vr19ZYr3j79u3Kzs4ObD9o0CAtWLBATz/9tPr06aN///vfWrRokU4//fTANm+++abOOOMMXXrppZKkkSNH6owzztDcuXMD2zz66KO67LLLdOWVV+rcc89VSkqKXn/99cDzTqdTb731lpxOpwYOHKhrr71Wo0aN0rRp0xp+sAC0aBs2RE7wN2CAtHu39N13DX+NzydNn251+3Xr1ny1NaXqRqWKCnvrAAAAANBwLM8NAIfxO6yzG1GO8A/9qsW4HCr2+nTQa6pdA19T7vPro90HJUmDUmLUOuqYrxMJvuqWPyBI1q1bp1mzZtX5/MUXX6wnnniiUfusb73i5cuXH/HY8OHDNXz48Dr3d/311+v666+v9z2jo6M1Z84czZkzp85tqmd+AIDGMk2r469/f7sraRq9e0sejzXd52mnNew1CxdKGzdKf/5z89bWlOj4AwAAAMJPGJ3JBYDm5w90/EVO8BdbNb1nud+Uz9+wROy7/HIVe/1KcDt0VvuY5iyvyQU6/mytAi1JXl5evWscJycnKz8/P4gVAUDoycmRiosjp+PP45H69JH++9+GbW+aVrffwIFSjx7NW1tTIvgDAAAAwg/BHwAcpjr4c0dQ8OdyGHJXfdsf9DUsDtt4wJrPqU9itFxhdiwOBX9EfwgOn88nl6vuSRScTqe8Xm8QKwKA0PPDD9Z9p0721tGULrhA+ugj6ccfj77tt99K69dLw4Y1e1lNiuAPAAAACD9M9QkAh/EftsZfJIlxOVRR4Vep1682R/lwFT5TW4usszvd4t3BKK9JGVVTfbLGH4LFNE1df/318ng8tT5fXl4e5IoAIPT88IPkcEipqXZX0nQuuED6+9+lp5+WHnqo/m3ffdfqEuzbNyilNRmCPwAAACD8EPwBQBV3bCuZ1Wv8OcOry+1oYl2GDlRIB72mTNOUYdT9+bYVV8hnSvFuh5KinUGsEghPo0ePPuo2o0aNCkIlABC6fvjBCv3c4XdNUZ08HikzU5o3z5rGMzq67m3ffdeaGjTcPj/BHwAAABB+CP4AoEpSl5MkSU5DctYTjIWjaKchQ5LPlIq9ptpE1f35Nh2wzuycFOeuNyAMVazxh2B7/vnn7S4BAELeDz9IHTvaXUXTu/xy6dVXrdt119W+TWmp9L//Sb/9bXBrawoEfwAAAED4ibDJ7ADg2LXv0k2SFBVma9o1hMMw1NZjfeXvK/PJV8c8mKZpamOhtb5fOE7zKUlGVfTHVJ8AAISODRsia32/aiecIJ11lvTUU3Vv87//SWVlUv/+waurqTirJn8g+AMAAADCB8EfAFRp37U6+LO5kGaS4HYoyiH5TWl/ma/WbXJLfSqu9CvKIXVuHRXkCptGdZMiuR8AAKHB65U2b47Mjj9JuuIK6bPPpLoawN99V+rQQerSJbh1NQU6/gAAAIDwE6GntwGg8ZI6W1N9uiOw40+SDMNQ+6o1+4oqTR30+o/YZuMBq9uvaxu3XGF6HJjqEwCA0LJzpxUcRWrwd/bZ0mWXSePGSR98cOTzS5ZI/fodujgpnBD8AQAAAOGH4A8AqiR2SpcUmVN9VotxORRX1dK4p9Qnv3HonwG/aerrvDJJUvcwneazBpI/AABCwubN1n1amr11NBfDkG69VerbV/r1r61pTavt2iV99501HWg4qg7+KirsrQMAAABAwxH8AUCV6uAvXDvdGiox2iG3Q/KZUml0ghxVi7f8UFChAxV+xTgNndLWY3OVx46pPgEACC2bN1v/Picn211J83G5pKlTpfh46eqrD3XIzZwpRUVZHX/hiDX+AAAAgPBD8AcAksr9UkxcgqTIXeOvmsMwlBzjkiHJ5/Lo4lunyjSllXtKJUlnto8O667HQ1N9Ev0BABAKNm+2Qr+o8Fw+uMFat5YmT5bWrZPuv1967TXpySel8eOtQDAcMdUnAAAAEH5cdhcAAKGg2G+lfYbfJ4cR4WelJLmdhtrHOLWn1KfB147X/4q9yq70ymlIZybF2F3ecQkEf+R+AACEhM2bpdRUu6sIjh49pOuukx54QIqNlc47Txo2zO6qjl11WEvwBwAAAISPCO9rAYCGKfZZcZHD77W5kuBpE+VQdNkBSdKuSus6kNPbedQq3FsemeoTAICQsmlTywn+JOmaa6STT5bi4qQ///nQNOThyFE1LCT4AwAAAMIHHX8AoEMdfw7TZ3MlweWuPKgFD9+nX989W5Kpjt58bduW16DX7ty5s3mLO0ZhfG4NAICItHmz1KeP3VUEj8slPfqo5PNZXX/hzDCsz0PwBwAAAIQPgj8AkFQU6PhrWcFfSeEBfbnoJeXt3CqHw6lJny1v9D4qK0OrS9KQIclkqk8AAELAgQNSXp6UlmZ3JcHl8dhdQdMh+AMAAADCC8EfAOiwjr8WNNWnJJUdLJHp92vkhD8rrUt6o1676es1mj1htHy+0DpmBlN9AgAQMrZsse5b0lSfkYbgDwAiT+vWrWvcA0BLFanfhwR/AKDD1/hrWR1/1dolp6p9x86Nes3+nN3NVM3xqZ7qk+APAAD7bd5s3be0jr9IQvAHAJHnpptusrsEAAgJkfp96LC7AACwW6XfVKnZMjv+AAAAmtPmzVKrVlJcnN2V4FgR/AEAAADhheAPQItXUG51+ZUWFsigTyzsBab65I8SAADbbd5sdftV//uM8ONySRUVdlcBAAAAoKEI/gC0eAUVVvC3f+dWewtBkzg01SfJHwAAdtu0SUpJsbsKHA86/gAAAIDwQvAHoMXLL/dLkvII/iICa/wBABA6Nm+WUlPtrgLHg+APAAAACC8EfwBavOqpPun4iwwGyR8AACHB55O2bSP4C3cEfwAAAEB4IfgD0OLlVwV/eTu22lsImhS5HwAA9tq1ywqM0tLsrgTHw+kk+AMAAADCCcEfgBYvsMbfji02V4KmYFRN9knwBwCAvTZtsu7p+AtvdPwBAAAA4YXgD0CL5jdNHaha42//ToK/SBCY6ZPkDwAAW/3wg9UtlpxsdyU4HgR/AAAAQHgh+APQou0v88kvySVTRXtz7C4HTaB6jT9yPwAA7LVundSli+R2210JjgdTfQIAAADhheAPQIu2p9QrSUpw+WXSIgYAANBkvvpK6trV7ipwvAj+AAAAgPBC8AegRdtTaq3v19bpt7kSNBWm+gQAwH6mKX39tXTiiXZXguPFVJ8AAABAeCH4A9CiBTr+CP4ixqGpPkn+AACwy44dUmEhwV8kcLmkigq7qwAAAADQUAR/AFq0vVUdfwkugr9IEej4s7UKAABatnXrrHuCv/BH8AcAAACEF4I/AC3WwUq/ir1W4BdPx1/EMI6+CQAAaGZffy21bi116GB3JTheTPUJAAAAhBeCPwAtVvU0n209DkWRFkWO6qk+afkDAMA269ZJJ510aApuhC+nk+APAAAACCcEfwBarNyq4K9DjMvmStCUjKrkj9wPAAD7fPWV1LWr3VWgKdDxBwAAAIQXgj8ALdaeqvX9CP4iC2v8AQBgr/Jy6YcfWN8vUhD8AQAAAOGF4A9Ai7W3zOr4ax/ttLkSNCWDqT4BALDV999LPp811SfCn8slVVTYXQUAAACAhiL4A9Ai+fym9pXR8QcAANDU1q2z7tPT7a0DTSMqio4/AAAAIJwQ/AFokfaX++Q3JY/DULybr8JIwlSfAADYa906KS1Nio21uxI0BTr+AAAAgPDC2W4ALVL2wappPmOcMqrnhkREOPyP02S+TwAAgi4rS+rWze4q0FSiogj+AAAAgHBC8AegRdpSaJ296NImyuZK0NQOj3GJ/QAACK4DB6SVK6V+/eyuBE2Fjj8AAAAgvBD8AWhx/KaprUXWQiXpbdw2V4OmRvAHAIB9PvhA8vmk/v3trgRNhY4/AAAAILy47C4AAJpSXl6eioqK6t1mn9ehMl+MogxTlft2a9t+aefOnUGqEEFlqmYSCAAAmtV770mdOkmpqXZXgqZCxx8AAAAQXgj+AESMvLw8ndStmwry8+vd7hfj/qwhv7tTq9/7r/5859gaz1VWepuzRATB4Ws20vEHAEDwmKa0ZAnTfEaaqCipstL682VpbAAAACD0EfwBiBhFRUUqyM/XtIVLlJiSVud2JbGJ8knqf865OvujdZKkTV+v0ewJo+XzEfxFAkNW6EfwBwBA8GzaJG3dKt14o92VoClFVS2JXVkpuZklHwAAAAh5BH8AIk5iSprad+xc63M+01RhkRXuJSclyeWwLlven7M7aPWh+QWCP5I/AACC5t13rWkh+/a1uxI0JVfVWYOKCoI/AAAAIBw47C4AAIKp1GslQVEOBUI/RCD+aAEACLr33pNOP12KjbW7EjSl6o4/1vkDAAAAwkNIBH9z5sxR165dFR0drYyMDH3++ed1bnv++efLMIwjbpdeemlgm+uvv/6I54cOHRqMjwIgxB30+iVJsa6Q+PpDM6nO/Wj4AwAgOMrLpQ8+YH2/SHR4xx8AAACA0Gf7VJ8LFy7UxIkTNXfuXGVkZOixxx5TZmamNmzYoA4dOhyx/euvv66Kw/7HsX//fvXp00fDhw+vsd3QoUP1/PPPB37v8Xia70MACAumaaqkquMv1kVLWCQLBH+mKdr/AABofsuWScXF0tln210JmhodfwAAAEB4sb3lZfbs2brxxhs1ZswYnXrqqZo7d65iY2M1b968Wrdv166dUlJSArelS5cqNjb2iODP4/HU2K5t27bB+DgAQlipz5TflJyGFOMkDIpkRtUfLx1/AAAEx2uvSZ06SV272l0JmhodfwAAAEB4sTX4q6io0KpVqzRkyJDAYw6HQ0OGDFFWVlaD9vHcc89p5MiRatWqVY3Hly9frg4dOqhHjx4aP3689u/fX+c+ysvLVVhYWOMGIPIUV1rTfLZyOWQYBH+RjKk+Ee4aMw26JL366qvq2bOnoqOj1atXLy1evLjG86ZpasqUKUpNTVVMTIyGDBmiH3/8MfD88uXLa51K3TAMffHFF5KkrVu31vr8Z5991vQHAEBY8XqlRYukc845dPENIkd1x195ub11AAAAAGgYW4O/ffv2yefzKTk5ucbjycnJysnJOerrP//8c33zzTe64YYbajw+dOhQvfjii1q2bJkefPBBffTRR7r44ovl8/lq3c+MGTMUHx8fuHXq1OnYPxSAkGSapkoqrRiodRRnpACErupp0KdOnarVq1erT58+yszM1J49e2rdfsWKFbr66qs1duxYrVmzRsOGDdOwYcP0zTffBLaZNWuWnnjiCc2dO1crV65Uq1atlJmZqbKyMknSoEGDlJ2dXeN2ww03KD09XWeddVaN93v//fdrbNePBb2AFu9//5Py8qzgD5GHjj8AAAAgvNg+1efxeO6559SrVy8NGDCgxuMjR47U5Zdfrl69emnYsGF666239MUXX2j58uW17mfSpEk6cOBA4LZjx44gVA8gmEp9pvyypvmMZprPiFfd0WnS8ocw1Nhp0B9//HENHTpUt99+u0455RRNnz5dZ555pp588klJ1oUPjz32mO6++25dccUV6t27t1588UXt3r1bixYtkiS53e4aU6QnJibqjTfe0JgxY47okE5MTKyxbVR1KwiAFuu116TkZKlHD7srQXNgjT8AAAAgvLjsfPOkpCQ5nU7l5ubWeDw3N1cpKSn1vrakpESvvPKKpk2bdtT3OfHEE5WUlKSNGzfqF7/4xRHPezweeTyexhUPIKwwzWfLwlSfCFfV06BPmjQp8NjRpkHPysrSxIkTazyWmZkZCPW2bNminJycGlOrx8fHKyMjQ1lZWRo5cuQR+3zzzTe1f/9+jRkz5ojnLr/8cpWVlenkk0/WHXfcocsvv7zOz1NeXq7yw+aGYzp1IPL4/dLrr0uDBzPNZ6Si4w8AgPBVWlqqt99+2+4yAkpLSwP3oVRXXarrBcKNrcGf2+1Wv379tGzZMg0bNkyS5Pf7tWzZMk2YMKHe17766qsqLy/Xtddee9T32blzp/bv36/U1NSmKBtAmGGaz5aH4A/hqr5p0NevX1/ra3JycuqdNr36vjFTqz/33HPKzMzUCSecEHisdevWeuSRR3T22WfL4XDotdde07Bhw7Ro0aI6w78ZM2bovvvuq+cTAwh3n38uZWczzWckc7ute4I/AADCU6iGV6FaFxAJbA3+JGnixIkaPXq0zjrrLA0YMECPPfaYSkpKAleYjxo1Sh07dtSMGTNqvO65557TsGHDlJiYWOPx4uJi3XfffbryyiuVkpKiTZs26Y477lC3bt2UmZkZtM8FIHSUVU3z6WCazxaHqT6Bxtu5c6feffdd/etf/6rxeFJSUo3Owv79+2v37t166KGH6gz+Jk2aVOM1hYWFrKUMRJj//leKj5dOP93uStBc6PgDACD8tG7d2u4SIgrHE+HG9uBvxIgR2rt3r6ZMmaKcnBz17dtXS5YsCVyVvn37djkcNZci3LBhgz755BO99957R+zP6XRq3bp1euGFF1RQUKC0tDRddNFFmj59OtN5Ai1UiddKf1q5DKb5bCH4Y0a4OpZp0FNSUurdvvo+Nze3xuwHubm56tu37xH7e/7555WYmFjvFJ7VMjIytHTp0jqfZzp1IPL997/SgAGS02l3JWgurPEHAED4uemmm+wuAYCNbA/+JGnChAl1Tu25fPnyIx7r0aOHzDraOGJiYvTuu+82ZXkAwpg1zae1vl+sy3GUrREpDk31ScsfwsuxTIM+cOBALVu2TLfddlvgsaVLl2rgwIGSpPT0dKWkpGjZsmWBoK+wsFArV67U+PHja+zLNE09//zzGjVqlKKqz/TWY+3atUylDrRgO3ZIX38tVX1dIULR8QcAAACEl5AI/gCguVT6paqGP8W6aANrKQLBH7kfwlBjp0G/9dZbdd555+mRRx7RpZdeqldeeUVffvmlnn76aUmSYRi67bbbdP/996t79+5KT0/XPffco7S0tEC4WO2DDz7Qli1bdMMNNxxR1wsvvCC3260zzjhDkvT6669r3rx5evbZZ5vxaAAIZW+/bXX6DRhgdyVoTtXXgZSX21sHAAAAgIYh+AMQ0Uq8VrdfjNOQg/kfW4zqP2pyP4Sjxk6DPmjQIC1YsEB33323Jk+erO7du2vRokU6/bAFt+644w6VlJRo3LhxKigo0ODBg7VkyRJFR0fXeO/nnntOgwYNUs+ePWutbfr06dq2bZtcLpd69uyphQsX6qqrrmqGowAgHLz1ltSrl8SSJ5GtehpXOv4AAACA8EDwByCiHaxe3y+K0A9A+GjsNOjDhw/X8OHD69yfYRiaNm2apk2bVu/7LliwoM7nRo8erdGjR9f7egAtR2mp9MEH0qhRdleC5uZ0WjeCPwAAACA8sOAVgIjl85sq81UFf6zv16IYVZN9MtUnAADN48MPrfDvZz+zuxIEQ1QUwR8AAAAQLjgTDiBiFVVa03y6HZLLQcdfS8JUnwAANK/XX5dSU6UuXeyuBMHgchH8AQAAAOGC4A9ARDJNUwcqrOAvzs1XXUtTHfMS/AEA0PR27JD+7/+kSy45dLENIhsdfwAAAED44Gw4gIhU7DXlNSWHIbWJ4qsOAACgqcyYIcXESL/+td2VIFgI/gAAAIDwwdlwABHHlFRQ7pMkxbsdcnApeosTmOqTlj8AAJrUjh3Ss89K/+//SbGxdleDYCH4AwAAAMIHwR+AiONzulXht6Z7jKfbr0U6NNUnyR8AAE1pxgwr8Bs2zO5KEEys8QcAAACED86IA4gobdM6qzQ6QZK1tp/TQbdfS8QafwAANL0lS6Snn5ZGjqTbr6WJipLKy+2uAgAAAEBDEPwBiBgH/YZumPuaTIdTUQ6prZuvuJaKqT4BAGhaX39tTe85YIA0fLjd1SDY6PgDAAAAwgdnxQFEBNM09XGRR+1O6CrD71VarItuPwAAgCawf7906aVScrJ0992S02l3RQg21vgDAAAAwofL7gIAoCnsPuhVvs+p8oMlSvSXyJXQ0e6SYCOjarJPGv4AADh+CxdK2dnSP//JFJ8tFR1/AAAAQPig4w9ARPgu31p05Lvli+UwfTZXA7sF1vgj+QMA4Li9/bbUq5fV8YeWieAPAAAACB8EfwDCnt809X1V8Ld28Ws2V4NQEFjjz94yAAAIe2Vl0ocfWmv7oeUi+AMAAADCB8EfgLC3tahSB72mPIapjZ9/ZHc5CAGs7ggAQNP46COptFTKyLC7EtjJ5ZLKy+2uAgAAAEBDEPwBCHvf5llnITq7vfJ7vTZXg1DCVJ8AAByfxYutKT67drW7EtgpKoqOPwAAACBcEPwBCGuVflM/HrDOQnRxE/rBcmiqT5I/AACOx+LF1jSfBu30LRrBHwAAABA+CP4AhLVtRZWq8JuKczuU5PLbXQ5CRPW5SWI/AACO3Y8/Shs3sr4fmOoTAAAACCcEfwDCWvbBSklSp1ZRXImOgEDwR/IHAMAxe+cdK/Dp18/uSmA3Ov4AAACA8EHwByCs5Ry0pvdMiXXZXAlCCiEwAADH7X//k047TYqJsbsS2M3lIvgDAAAAwgXBH4Cwllvqk0Twh5qMquSPhj8AAI7dmjVS9+52V4FQQMcfAAAAED4I/gCEreJKv4orrXX9kmMI/nAIa/wBAHB8CgulTZukbt3srgShgI4/AAAAIHwQ/AEIW9XTfCZGO+V2MrcjDqle75E1/gAAODbr1ln3BH+Q6PgDAAAAwgnBH4CwFVjfj24//AQdfwAAHJ+1a62wp3NnuytBKKDjDwAAAAgfBH8AwlZOaVXwx/p+qIdJ2x8AAI22dq2Unm6Ff0BUlFRZaXcVAAAAABqC4A9A2Mo9SPCH2hnM/AoAwHFZs0Y68US7q0CoYKpPAAAAIHwQ/AEISyWVfhVV+iVJyUz1iZ84PPej3w8AgMaprJS+/Zb1/XCIy2X9XPj9dlcCAAAA4GgI/gCEper1/RI9TrmdtHehJoI/AACO3YYNUnm51L273ZUgVFRP+cp0nwAAAEDoI/gDEJZY3w8NRvIHAECjrFlj3TPVJ6q5qobcTPcJAAAAhD6CPwBhKbuE4A91Mw5b5I/cDwCAxlm7VurYUWrd2u5KECqqO/4I/gAAAIDQR/AHIOyYpqndB615htJaEfyhdtXRH8EfAACNs2aNdNJJdleBUELHHwAAABA+CP4AhJ2CCr8Oek05DSk5huAPtQsEfyR/AAA0mN9P8Icj0fEHAAAAhA+CPwBhZ3eJ1e2XHOOSy2EcZWu0WFU/GuR+AAA03Pr1UkGBdNppdleCUELHHwAAABA+CP4AhJ1dVev7Mc0n6kMkDABA4336qeRwSKecYnclCCV0/AEAAADhg+APQNjZfdAK/jq2irK5EoSyQ1N90vMHAEBDrVghdesmxcbaXQlCSXXwV15ubx0AAAAAjo7gD0BYqfSb2nOQjj8cncFUnwAANNonnzDNJ45Exx8AAAAQPgj+AISV3INe+SW1djkUF8VXGOoW6PiztQoAAMLHnj3Sxo0EfzgSa/wBAAAA4YOz5gDCyq6SSklWt59hsIobjo6ZPgEAaJgVK6z700+3tw6EHjr+AAAAgPBB8AcgrOxmmk80EMEwAACN8+mnUocOUnKy3ZUg1NDxBwAAAIQPgj8AYcM0Te0qrg7+omyuBqGOqT4BAGgc1vdDXej4AwAAAMIHwR+AsJFb6lOx168oh5QWS8cf6kfwBwBAw5WVSatXM80nakfHHwAAABA+CP4AhI0fD5RLktLbuOVyMI0j6lc90ydr/AEAcHQrV1qhDsEfakPHHwAAABA+CP4AhI2NB6wzDd3j3TZXAgAAEFn++1+pXTupWze7K0Eocjqte4I/AAAAIPQR/AEIC4UVPuWW+iRJJ8UR/OHoDk31ScsfAAD1MU3pP/+RBg2SHPwPEbVwOq1bebndlQAAAAA4Gv5bByAsVHf7ndDKpdgovrpwdIHgj9wPAIB6ffuttHmzNHiw3ZUglEVF0fEHAAAAhAPOngMICz9WBX/dmOYTDRRY48/eMgAACHlvvCHFxkpnnGF3JQhlBH8AAABAeCD4AxDyyn1+bS+ulMT6fmg8gj8AAOr3n/9IAwZIboZZqAfBHwAAABAeCP4AhLwthZXymVJbj0PtPE67y0GYcFS1/DHVJwAAddu5U1q1Sjr7bLsrQahzuQj+AAAAgHAQEsHfnDlz1LVrV0VHRysjI0Off/55ndvOnz9fhmHUuEVHR9fYxjRNTZkyRampqYqJidGQIUP0448/NvfHANBMNhSUS5JOjvfIqJ6/ETiKwBp/tlYBAEBoe/NNK9D52c/srgShjo4/AAAAIDzYHvwtXLhQEydO1NSpU7V69Wr16dNHmZmZ2rNnT52viYuLU3Z2duC2bdu2Gs/PmjVLTzzxhObOnauVK1eqVatWyszMVFlZWXN/HADHKS8vT9u2bQvcNm/dph+rgr+4sprP/fS2c+dOm6tHKAms8UfyhzDUmIuiJOnVV19Vz549FR0drV69emnx4sU1nm/IRVFdu3Y94uKqmTNn1thm3bp1OueccxQdHa1OnTpp1qxZTfOBAdjmzTelPn2k1q3trgShjo4/AAAAIDzYHvzNnj1bN954o8aMGaNTTz1Vc+fOVWxsrObNm1fnawzDUEpKSuCWnJwceM40TT322GO6++67dcUVV6h379568cUXtXv3bi1atCgInwjAscrLy9NJ3bqpa9eugdulo26UV4YKcnapf/cuNZ776W3w4MGSpMpKr82fBKHgUMcfyR/CS2MvilqxYoWuvvpqjR07VmvWrNGwYcM0bNgwffPNN4FtGnpR1LRp02pcXPWHP/wh8FxhYaEuuugidenSRatWrdJDDz2ke++9V08//XTzHAgAza64WPrwQ7r90DB0/AEAAADhwWXnm1dUVGjVqlWaNGlS4DGHw6EhQ4YoKyurztcVFxerS5cu8vv9OvPMM/XXv/5Vp512miRpy5YtysnJ0ZAhQwLbx8fHKyMjQ1lZWRo5cuQR+ysvL1d5eXng94WFhU3x8QA0UlFRkQry8zVt4RIlpqRJkkqj41UpqUO7BD25/Kt6X7/p6zWaPWG0fD6CP0iOquTPT+6HMHP4RVGSNHfuXL399tuaN2+e7rrrriO2f/zxxzV06FDdfvvtkqTp06dr6dKlevLJJzV37twjLoqSpBdffFHJyclatGhRjbFRmzZtlJKSUmtdL730kioqKjRv3jy53W6ddtppWrt2rWbPnq1x48Y19WEAEATvv28FOQMH2l0JwgEdfwAAAEB4sLXjb9++ffL5fDU69iQpOTlZOTk5tb6mR48emjdvnt544w3985//lN/v16BBgwJT/FW/rjH7nDFjhuLj4wO3Tp06He9HA3AcElPS1L5jZyWldZLPHStJSkqIU/uOneu9JbRPPsqe0ZIYVT1/5H4IJ9UXRR1+AdPRLorKysqqsb0kZWZmBrY/2kVRh5s5c6YSExN1xhln6KGHHpLXe+hCiqysLJ177rlyu9013mfDhg3Kz88/9g8NwDZvvSV16SJ17Gh3JQgHLpd02PWyAAAAAEKUrR1/x2LgwIEaeNglqYMGDdIpp5yif/zjH5o+ffox7XPSpEmaOHFi4PeFhYWEf0AIKPWZ8ptW51a00zj6C4DDsMYfwlF9F0WtX7++1tfk5OTUe8FTQy+KuuWWW3TmmWeqXbt2WrFihSZNmqTs7GzNnj07sJ/09PQj9lH9XNu2bY+ojVkVgNDl90v//a90wQV2V4JwwVSfAAAAQHiwNfhLSkqS0+lUbm5ujcdzc3PrnGbqp6KionTGGWdo48aNkhR4XW5urlJTU2vss2/fvrXuw+PxyOPxHMMnANCcSiqtxKaVy5BhEPyhcQ6t8QegIQ6/CKp3795yu9266aabNGPGjGMeJ82YMUP33XdfU5UIoAmtWiXt2cM0n2g4pvoEAAAAwoOtU3263W7169dPy5YtCzzm9/u1bNmyGl199fH5fPr6668DIV96erpSUlJq7LOwsFArV65s8D4B2M80TR30+iVJrVy2flUhTFUHf35a/hBGjuWiqJSUlHq3P/yiqIbuU5IyMjLk9Xq1devWet/n8Pf4qUmTJunAgQOB244dO+p8PwDB9dZbUlycdPrpdleCcEHHHwAAABAebD+bPnHiRD3zzDN64YUX9P3332v8+PEqKSnRmDFjJEmjRo3SpEmTAttPmzZN7733njZv3qzVq1fr2muv1bZt23TDDTdIkgzD0G233ab7779fb775pr7++muNGjVKaWlpGjZsmB0fEcAxqPRLXtMKb2JcdPuh8RzVU33aWwbQKMdyUdTAgQNrbC9JS5cuDWx/rBdFrV27Vg6HQx06dAi8z8cff6zKysoa79OjR49ap/mUrFkV4uLiatwAhIY335QGDJCcTrsrQbhgjT8AAAAgPNi+xt+IESO0d+9eTZkyRTk5Oerbt6+WLFkSWDNm+/btcjgO5ZP5+fm68cYbA2vJ9OvXTytWrNCpp54a2OaOO+5QSUmJxo0bp4KCAg0ePFhLlixRdHR00D8fgGNTUtXtF+005GCaTxyDwFSfJH8IMxMnTtTo0aN11llnacCAAXrssceOuCiqY8eOmjFjhiTp1ltv1XnnnadHHnlEl156qV555RV9+eWXevrppyXVvCiqe/fuSk9P1z333FPjoqisrCytXLlSF1xwgdq0aaOsrCz98Y9/1LXXXhsI9X7zm9/ovvvu09ixY3XnnXfqm2++0eOPP65HH300+AcJwHHJzpbWrpUmT7a7EoQTpvoEAAAAwoPtwZ8kTZgwQRMmTKj1ueXLl9f4/aOPPnrUE0yGYWjatGmaNm1aU5UIIMgOeqvW94si9MOxqV4XktwP4aaxF0UNGjRICxYs0N13363Jkyere/fuWrRokU4/bP6+o10U5fF49Morr+jee+9VeXm50tPT9cc//rHGun/x8fF67733dPPNN6tfv35KSkrSlClTNG7cuCAdGQBNZckSyTCsjj+goaKipKIiu6sAAAAAcDQhEfwBwOFMGSrzWXFNLOv74RgdWuPP1jKAY9KYi6Ikafjw4Ro+fHid+zvaRVFnnnmmPvvss6PW1bt3b/3vf/876nYAQts770innCLFx9tdCcIJHX8AAABAeOCMOoCQ43V5JElRDinKQccfjg1r/AEAcCSvV3r3Xbr90HhRUQR/AAAAQDgg+AMQcqqDP7r9cDwOj4xNFvoDAECSlJUlFRYS/KHxXC6pvNzuKgAAAAAcDWfVAYQUw+GQ11kd/NHth2NnHPbjQ+wHAIDlnXekhASpRw+7K0G4oeMPAAAACA8EfwBCSufe/WU6nHJIinES/OHYHf7Twzp/AABYFi+WzjpLcvA/QTQSwR8AAAAQHvjvHoCQcur5F0uSYqMMGQbBH46dYRiB8I/cDwAAKTtb+uorKSPD7koQjgj+AAAAgPBA8AcgZJimdNoFl0iSWrG+H5pAIPgj+QMAQG+8ITmdUv/+dleCcORyEfwBAAAA4YAz6wBCxgGfocRO6ZJpsr4fmkR10yi5HwAA0muvSX37SvHxdleCcORySZWVdlcBAAAA4GgI/gCEjJ2VLkmSy1cuB9N8oglU/xT5afkDALRweXnS8uXSOefYXQnCFVN9AgAAAOGB4A9AyNhV4ZQkubxlNleCSOGg4w8AAEnSf/8r+XzS4MF2V4Jw5XJJXq/k99tdCQAAAID6EPwBCAkHKnzK8znl9/vl8pbbXQ4ihFHV80fDHwCgpfv3v6XTT5cSE+2uBOEqKsq6Z7pPAAAAILQR/AEICV/ts7r8tqz6VA6Ty4jRNFjjDwAAqahIWrqUbj8cH5c1K7/KuUYPAAAACGkEfwBs5/WbWrvfCv4++9fzNleDSHJojT9bywAAwFaLF1thzbnn2l0Jwll1xx/r/AEAAAChjeAPgO02FJTroNdUjOHXdx+9Y3c5iCCH1vgj+QMAtFxPPSWdeqqUkmJ3JQhn1R1/BH8AAABAaCP4A2C71VXTfHaL9srv9dpcDSJJdccfa/wBAFqqTz+VPv5YGjnS7koQ7txu657gDwAAAAhtBH8AbJVz0KtdJV45DOkkD6EfmhZr/AEAWrr775fS06Wzz7a7EoQ71vgDAAAAwgPBHwBbrcg5KEnqEe9WjIN4Bk3LqOr5o+MPANASrV4tLVkiXX215OB/fjhO0dHW/cGD9tYBAAAAoH789w+AbbYXVeqHAxUyJA1KibW7HESg6jX+/PaWAQCALf76V6ljR+nnP7e7EkSCmBjrvrjY3joAAAAA1I/gD4AtTNPUsl3WWYO+SdFqH+OyuSJEItb4AwC0VKtXS6+9ZnX7OZ12V4NIQPAHAAAAhAfOtANocnl5eSoqKqp3m83lLuWWehRlmOrq3a9t2/Zr586dQaoQLcWhNf5I/gAALcvkyVLnztLQoXZXgkhB8AcAAACEB4I/AE0qLy9PJ3XrpoL8/Dq3cbk9+vMbnys+OU1vPHqf/vzinBrPV1Z6m7tMtBB0/AEAWqKPP5befVeaOpVuPzSd6jX+SkrsrQMAAABA/Qj+ADSpoqIiFeTna9rCJUpMSat1m/KoViqPjpPh92nE2Js0cuxNkqRNX6/R7Amj5fMR/KFpOKpa/ljjDwDQUpimdNdd0sknS+eea3c1iCQulxQVRccfAAAAEOoI/gA0i8SUNLXv2PmIx/2mqW3FXsmUkmLdiks4tM3+nN3BLBEtAB1/AICW5u23paws6cEHJQcruqOJxcYS/AEAAAChjv8KAgiqAxV++U0pyiG1iTKO/gLgOBxa4w8AgMjn91tr+/XtK/Xvb3c1iEQxMQR/AAAAQKgj+AMQND6/qYJya9LFth6nDIPgD82Ljj8AQEuycKH09dfS2LGHLn4BmlJMDGv8AQAAAKGO4A9A0Owv98kvye2QWrs4G4XmV33S00/PHwAgwlVWSnffLQ0cKJ1+ut3VIFJFR9PxBwAAAIQ6gj8AQVHq9auo0gpf2kfT7YfgqP5Hjo4/AECkmztX2rLF6vYDmgvBHwAAABD6CP4ANDu/aWpvmU+SFBflULSLrx4ER3XATO4HAIhk69dLd94p/fKX0kkn2V0NIhlr/AEAAAChj7PvAJqVaZraV+ZTpV9yGlK7aL52EDys8QcAiHQVFdLVV0vt20vjx9tdDSIdHX8AAABA6HPZXQCAyGWapvaX15zi08kUnwiiQ2v8AQAQeUxTuv126ZtvpDlzrFAGaE4xMVJurt1VAAAAAKgPwR+AZmFK2l/u14EKK3JpH+1Uqyi6/RBch//EmabJ2pIAgIhRVibdcIP00kvSLbdIJ59sd0VoCZjqEwAAAAh9BH8Amlxaz94qiU2Svyr0S/Q4FOcm9EPwHZ7zmTo09ScAAOEsJ0e64grpq6+kKVOkCy6wuyK0FAR/AAAAQOgj+APQpPZWOjR+/mL5nVFyGFanX2s6/WCTw4M+k+QPABAB1q6VfvlLq+Pvsceknj3trggtSXS0VFJidxUAAAAA6sPZeABNpqDcp/8VR8vl9sjpLVPnVi5CP9jq8Kk9WecPABDuPv5YGjxYio2VnnqK0A/BFxND8AcAAACEOs7IA2gSZT6//r25UOWmoV3ff6XY0gI5HbRXwX7V/9CZpq1lAABwXLxe6aabpPR06fHHpfbt7a4ILVFMjFRRIVVW2l0JAAAAgLoQ/AFoEitySrWvzKcYw68Xb7tWhkhZEBqqm/74iQQAhLNnn5U2bJD+8AdrukXADjEx1j1dfwAAAEDoIvgDcNzKvH6t3VcmSerfqkKFe3Nsrgg4pLrv1KTlDwAQpgoLpXvukS66SDr5ZLurQUtWHToXF9tbBwAAAIC6EfwBOG5r9pWpwm+qfbRTaVE+u8sBaqju+GONPwBAuHrwQStoGTvW7krQ0lV3/BH8AQAAAKGL4A/AcfH6TX25t1SSlJEcEwhZgFDhqOr5o+EPABCODh6UnnxSuuIK1vWD/Qj+AAAAgNBH8AfguHydV6YSr6m4KIdOaeuxuxzgCKzxBwAIZ//6lzXV5xVX2F0JwBp/AAAAQDgg+ANwzEzT1Bd7qtb26xAjJ+1+CEGH1viztQwAAI7JP/4h9e8vpabaXQnAGn8AAABAOCD4A3DMthZVKq/cJ4/DUJ/EaLvLAWpFxx8AIFx9/bX02WfSpZfaXQlgYapPAAAAIPQR/AE4Zqv2Wd1+pyd65HbS7YfQVP0PnZ+WPwBAmHnmGaldO+nss+2uBLDQ8QcAAACEPoI/AMekoNynjQcqJElnJtHth9BFxx8AIBwdPCi9+KI0dKjkctldDWBxOq3wjzX+AAAAgNBF8AfgmKyp6vbr2iZKidGcjULoMqpW+aPhDwAQTubOtcKVX/7S7kqAmqKj6fgDAAAAQhnBH4BGK/f59dV+K/jr155uP4S26o4/v71lAADQYAcPSg8+KF14oZSSYnc1QE0xMQR/AAAAQCgj+APQaB9nH1SZz1Rbj0MnxbntLgeoV/U/dHT8AQDCxdNPS/v3S9dea3clwJEI/gAAAIDQRvAHoFF2l1Rq1V6r2y/zhNZyVLdTASHq0Bp/JH8AgNBXWirNnGl1+6Wl2V0NcKSYGNb4AwAAAEJZSAR/c+bMUdeuXRUdHa2MjAx9/vnndW77zDPP6JxzzlHbtm3Vtm1bDRky5Ijtr7/+ehmGUeM2dOjQ5v4YQMTzmabe2W5d3nt6O4+60u2HMFAdTdPxBwAIB9OnS3v3StdcY3clQO1Y4w8AAAAIbbYHfwsXLtTEiRM1depUrV69Wn369FFmZqb27NlT6/bLly/X1VdfrQ8//FBZWVnq1KmTLrroIu3atavGdkOHDlV2dnbg9vLLLwfj4wARy2+aWrK9WHvLfIpxGvp5x1Z2lwQ0yKGOPyB8NOaiKEl69dVX1bNnT0VHR6tXr15avHhxjedN09SUKVOUmpqqmJgYDRkyRD/++GPg+a1bt2rs2LFKT09XTEyMTjrpJE2dOlUVFRU1tvnphVWGYeizzz5r2g8PtGDz5kkzZkg33CCdcILd1QC1I/gDAAAAQpvtwd/s2bN14403asyYMTr11FM1d+5cxcbGat68ebVu/9JLL+n3v/+9+vbtq549e+rZZ5+V3+/XsmXLamzn8XiUkpISuLVt2zYYHweISH7T1NvbivV1XrkMSUM7t1asy/avD6BBjKqePz/JH8JEYy+KWrFiha6++mqNHTtWa9as0bBhwzRs2DB98803gW1mzZqlJ554QnPnztXKlSvVqlUrZWZmqqzMmrp5/fr18vv9+sc//qFvv/1Wjz76qObOnavJkycf8X7vv/9+jYur+vXr1zwHAmhh3ntPGjdOuvxyaeRIu6sB6hYTIxUV2V0FAAAAgLq47HzziooKrVq1SpMmTQo85nA4NGTIEGVlZTVoHwcPHlRlZaXatWtX4/Hly5erQ4cOatu2rX7+85/r/vvvV2JiYpPWD0SyvLw8FVX9j/6LErc2lkfJkKlBrcsVfaBE2w7U/rqdO3cGsUrg6Bx0/CHMHH5RlCTNnTtXb7/9tubNm6e77rrriO0ff/xxDR06VLfffrskafr06Vq6dKmefPJJzZ07V6Zp6rHHHtPdd9+tK664QpL04osvKjk5WYsWLdLIkSM1dOjQGtOin3jiidqwYYP+/ve/6+GHH67xfomJiUpJSWmujw+0SD/8IA0fLg0YIN1yy6FudSAUxcRIeXl2VwEAAACgLra27Ozbt08+n0/Jyck1Hk9OTlZOTk6D9nHnnXcqLS1NQ4YMCTw2dOhQvfjii1q2bJkefPBBffTRR7r44ovl8/lq3Ud5ebkKCwtr3ICWLC8vTyd166auXbvqwpHXa2N5lPx+v/7vz2N07smd1LVr1zpvgwcPliRVVnpt/hSAhTX+EE6qL4o6fFxztIuisrKyamwvSZmZmYHtt2zZopycnBrbxMfHKyMjo94LrQ4cOHDEhVWSdPnll6tDhw4aPHiw3nzzzUZ9PgBHKiqShg2TEhKkv/xFcjrtrgioH1N9AgAAAKHN1o6/4zVz5ky98sorWr58uaKjowOPjzxsbpxevXqpd+/eOumkk7R8+XL94he/OGI/M2bM0H333ReUmoFwUFRUpIL8fE3713tyn9hLpqRob6l+P3WGNHVGva/d9PUazZ4wWj4fwR9CQ3XHn5+eP4SB+i6KWr9+fa2vycnJqfciqur7xlxotXHjRv3tb3+r0e3XunVrPfLIIzr77LPlcDj02muvadiwYVq0aJEuv/zyWvdTXl6u8vLywO+5uAqoyTSlMWOk7dulp56SWrGEMsJATAzBHwAAABDKbA3+kpKS5HQ6lZubW+Px3Nzco04h9fDDD2vmzJl6//331bt373q3PfHEE5WUlKSNGzfWGvxNmjRJEydODPy+sLBQnTp1asQnASJTbOeTVelwyWVIHRPj5TASjvqa/Tm7m78woBGcVfOl+fw2FwKEiV27dmno0KEaPny4brzxxsDjSUlJNcZL/fv31+7du/XQQw/VGfxxcRVQvw8+kF57TZoyRerc2e5qgIYh+AMAAABCm61TfbrdbvXr10/Lli0LPOb3+7Vs2TINHDiwztfNmjVL06dP15IlS3TWWWcd9X127typ/fv3KzU1tdbnPR6P4uLiatyAlq59126qjIq1fh3jlIPFZhCmnFX/0vkl+ZnvEyHuWC6KSklJqXf76vuG7HP37t264IILNGjQID399NNHrTcjI0MbN26s8/lJkybpwIEDgduOHTuOuk+gJXnwQenkk6Xzz7e7EqDhYmKkgweZRh0AAAAIVbYGf5I0ceJEPfPMM3rhhRf0/fffa/z48SopKdGYMWMkSaNGjdKkSZMC2z/44IO65557NG/ePHXt2lU5OTnKyclRcdUlh8XFxbr99tv12WefaevWrVq2bJmuuOIKdevWTZmZmbZ8RiAcDb7295JhKNZlKNZl+1cFcMwO/+n1cYIKIe5YLooaOHBgje0laenSpYHt09PTlZKSUmObwsJCrVy5ssY+d+3apfPPP1/9+vXT888/L4fj6N/9a9eurfPCKomLq4D6rF0rLV0qjRghcX0Vwkl0tOT1ShUVdlcCAAAAoDa2r/E3YsQI7d27V1OmTFFOTo769u2rJUuWBNah2b59e40TT3//+99VUVGhq666qsZ+pk6dqnvvvVdOp1Pr1q3TCy+8oIKCAqWlpemiiy7S9OnT5fF4gvrZgHBV6jd05mX/T5KU4Cb0Q3gzDEMuQ/Kaks9P8ofQN3HiRI0ePVpnnXWWBgwYoMcee+yIi6I6duyoGTOsNVdvvfVWnXfeeXrkkUd06aWX6pVXXtGXX34Z6NgzDEO33Xab7r//fnXv3l3p6em65557lJaWpmHDhkk6FPp16dJFDz/8sPbu3Ruop7or8IUXXpDb7dYZZ5whSXr99dc1b948Pfvss8E6NEBEeeghKTVVOu88uysBGicmxrovLpb4LzYAAAAQemwP/iRpwoQJmjBhQq3PLV++vMbvt27dWu++YmJi9O677zZRZUDL9GOZSy63W05fhWJcrewuBzhuTsOQ1zTp+ENYaOxFUYMGDdKCBQt09913a/LkyerevbsWLVqk008/PbDNHXfcoZKSEo0bN04FBQUaPHiwlixZoujoaElWh+DGjRu1ceNGnXDCCTXqMQ+by2369Onatm2bXC6XevbsqYULFx5xMRaAo9u6VVq4ULr5ZsnptLsaoHEOD/4SE+2tBQAAAMCRQiL4AxA6KnymfiyPkiS5K4olEfwh/DkdkvxM9Ynw0ZiLoiRp+PDhGj58eJ37MwxD06ZN07Rp02p9/vrrr9f1119fb02jR4/W6NGj690GQMPMmiW1aSNdfLHdlQCNVx38lZTYWwcAAACA2jGHH4AaVu8rVYVpaN+2TXJ5y+0uB2gSzqq1k7wmyR8AwF47d0rPPScNH26tlQaEm+qf2+Jie+sAAAAAUDuCPwABByv9ysoplSR98OxsGTbXAzQVp2H9NPv8NhcCAGjxZs60OqaqltgEws7hU30CAAAACD0EfwACPsk5qHK/qbZOn9YuftXucoAm46r6185Hxx8AwEa7dknPPCNddZUUG2t3NcCxYapPAAAAILQR/AGQJO0v82rNvjJJ0hmxFTIJSBBBAh1//FgDAGw0c6bk8Ui/+pXdlQDHjo4/AAAAILQR/AGQaZr6YFeJTEnd4txKjmI+RESW6jX+6PgDANjlm2+kv/9duvpqqVUru6sBjp3HY90T/AEAAAChieAPgH48UKFNhZVyGNIFHZl3CpGnuuPPS6YNALCBaUo33yx17GhN8wmEM4fD6voj+AMAAABCE8Ef0MJV+Ey9v9NaoCOjQ4wSo102VwQ0PWfVv3Zm1Q0AgGB6+WXp44+lCROkqCi7qwGOX5s20r59dlcBAAAAoDYEf0AL92nOQRVW+hXvdmhQCt1+iEwOSVWzfco0nHaWAgBoYQoLpT/9STr3XKl/f7urAZpGaqq0ZYvdVQAAAACoDa09QITKy8tTUVFRvdvs9zr0eWG0JEN93Ae1e4e1/c6dO4NQIRA8hmHIaUheU/IbXPMCAAieKVOkggLp97+3uxKg6aSmShs32l0FAAAAgNoQ/AERKC8vTyd166aC/Pw6t4mKjtGEl5apQ3p3rXtvkSbddeMR21RWepuzTCConIYhr2nKdBD8AQCCY/Vq6W9/k8aNk5KT7a4GaDppadIXX9hdBQAAAIDaEPwBEaioqEgF+fmatnCJElPSat2mzBOnCncrGX6fzh74Mw3+aF3guU1fr9HsCaPl8xH8IXI4HZL8kknHHwAgCHw+6aabpK5dpSuvtLsaoGmlpkr791tT2cbF2V0NAAAAgMMR/AERLDElTe07dq7xmNdvKr/cr4pKvyQppbVbsQmdamyzP2d30GoEgsVZtcgfa/wBAJpbUZE0frz05ZfSE09ILv7XhQiTVnVt4ebNUt++tpYCAAAA4CdoewBaiEq/qb2lPm0v9qqwKvRLcDsU6+JrAC2Dy7CSP9b4AwA0F9OUli+XzjxTev11afJkqVcvu6sCmt7hwR8AAACA0MK1p0CEM01T+8r8gbBPkqKdhtp5HIoh9EML4qz6cWeqz/CyvqBcPr+pLm3cah3Fnx2A0GSa0iOPSE89JW3ZIvXoIT39tHTCCXZXBjSP+HgpNlbatMnuSgAAAAD8FMEfEOEKKg6FfjFOQwkeh2Kchoyq7iegpXBW/cwz1Wd4yco5qNxSn648sY26x3vsLgcAajVrlnTXXdJFF0l/+IPUp4/k4FoFRDDDkDp2pOMPAAAACEUEf0AE8zqjVFhuhX7to52Kc3MGCi1XYI0/zsSGlYIK6zusrZvAFkBoeucdadIk6dprpbFj7a4GCJ6UFGnjRrurAAAAAPBTnP0EIlRsQjuVRreVJLWOMtQmig4/tGxO1vgLO6Vev8p9piQp3kPwByD0bN4sXX219LOfSWPG2F0NEFxpaXT8AQAAAKGIs59AhLrktvtkOpyKcljdfkztiZaueo0/GQ5FRcfYWgsapqDCJ0lq7XIoysF3GIDQ84c/SDEx0uTJTO2Jlic1Vdq+XfJ67a4EdfH7pb/+Vdq/3+5KAAAAEEz89xSIQHsqHep3+UjJNNUh2ikHoR8gh6TqvwkJKR3tLAUNVFA1VXGCh+EKgNDz9tvS4sXS+PFS69Z2VwMEX1qaFfrt2GF3JajLpk3SX/4iPfqo3ZUAAAAgmDiTBkQYn9/UFyUeSVJU5UFFu/hrDkiSYRjyVC3016Xvz2yuBg1RUG51/CUwzSeAEFNeLt16q9Svn3TOOXZXA9gjLc26Z7rP0JWdbd0/84xUUWFvLQAAAAgeEgEgDB2s9GvV3lJ9l1euHcWVqvRba2CZpqkPd5eo0O9Q0f49ii4vsrlSILTEVAV/J541yOZK0BDVU30muAn+AISWBx6Qtm2TJkyQmFgBLVVysjXF7aZNdleCulQHf3v2SIsW2VoKAAAAgojgDwgzpmlq0dYiLd1Zoje3FemlHw/oH9/l66v9ZXprW7G+3FsmSXr74btlyLS5WiC0RLuqgr9+Z8vkr0fIY6pPAHa6/36pTx9p7Fjp2WelkhLr8TlzpOnTpeuuk7p2tbVEwFYulxX+0fEXunbvlqKjre+yOXPsrgYAAADBwpk0IMx8m1+u7cWVchlSp9YuxboMFVf69c72Yn2bXy5D0oBW5frq3f/YXSoQcqKdhmSaik9OU7GfFo1Ql0/HHwCbfPONdO+9ktMpffKJ9LvfSZ07S6NHW11+w4dbwR/Q0qWmEvyFsuxsKSlJuvxy6eOPpe++s7siAAAABIPL7gIANFyZ168PdlmXm5+dEquBKbHy+k2t3lemT3MOyjSlYelt5MzPtrlSIDQ5DENOX4V8Lo9yK5063e6CUCef31RRRXXHH8EfgOAxTenmm6WOHaUHH5SioqScHOlf/5IWLpR+9Stp/Him+AQk6YQTpHXr7K4CdcnOltq1s9YibddOev556aGH7K4KAAAAzY3gDwgTpmlq2a4SHfSaSvQ4NaBDjCTJ5TA0oEOMzkiKlt805XE6tC3f5mKBEFYd/O3xEiaFssJKv0xJUQ6plYuz6wCC55VXrM6YWbOs0E+SUlKkW26xAr/qxwBI/ftLb74pbdgg9ehhdzX4qexsqW1b63vr5JOlH36wuyIAAAAEA8EfEMLy8vJUVFSkUr+hrGKPcquCij7uYu3cUVjn63bu3BmsEoGw4/JVqELSnkqHTNOUQctGSMovPzTNJ39GAILlww+tqTzPPdcKNH6K0A+oqX9/aw2511+XJk2yuxr81K5d0qmnWr9OTJT4byIAAEDLQPAHhKjsvft19Z/uVuqpZ+rkgRcoJi5WFaUlemPGnZr01sIG7aOy0tvMVQLhx+mrkLeiXKVuj/LL/WoXTedfKCqoCv7imeYTQBAUF0uPPmqt63fGGdLEiXZXBIQHj0fKyJBee43gLxRlZ1sXMkjWWn+rVtlbDwAAAIKD4A8IMQcr/Vq1r1Sf5/o19I/TA487fJVq6z+osbf/RWNv/0u9+9j09RrNnjBaPh/BH/BThqTtX6/Sif0GaUtRhdpFx9hdEmpRUL2+n9thcyUAIlVlpfTii9YtK0vyeqXrrpNGjZKcXHMANNg550j33y9t3y517mx3NahWWiodOGCt7SdZHX979ljfdS7OBAEAAEQ0hntACCj3+fVZbqk2HqjQ3jJf1aOGcjZ+ry6dTlBi2wRFO10yjNgG7W9/zu7mKxaIAN8tX6wT+w3Smn1lOjMpmqkkQ1B1x19bOv4ANLGtW6V33pEeekjassXqVho/XhowQOrY0e7qgPDzs59Z0+C+/rp02212V4NqOTnWfWKidZ+UJPn9VviXlmZfXQAAAGh+XEYP2Gx3SaWeX1+grNzSQOiXEuPS2a3L9MSI8+SpKFaMy0EwATShL99YIJdM7SvzaWtRpd3loBYFFYfW+AOApvDhh1K3blJ6unTzzdIJJ0jPPSfNnCn96leEfsCxatVKOussa7pPhI7sbOv+8OBPknZzjSgAAEDEo+MPsNH6/HK9ubVIfklxUQ6dlxarrm3cahXl0LZtB2Sapt0lAhGpvLhIJ3q8+qE8Sl/uLVV6nNvuknAY0zRVUF411aeHa5QAHL/586Ubb5R69ZKmT5f69JHatLG7KiByDB4sPfww032GkuqA7/CpPg9/HAAAAJGLs2mATQ5U+PTOjmL5JfVIcOu3PRN0WrtotYriryUQDCdHW51+mworlReYYhehoNRrqsJvXfgQT8cfgOM0Z440Zow0dKg0a5YVUBD6AU3r/POluDjr7xhCQ3a2NQVrXJz1+4QEa/3SXbtsLQsAAABBQMcf0Izy8vJUVFR0xOOmKX1QFK1yn1OJTp/6GvnK3ZVfY5udO3cGq0ygRWrjNNUtzq2NhRX6Ym+pMju1trskVKme5rNNlEMuB9McAzh2GzZIf/qTNZXnH/4gMXM60DxiY6WrrpKeeUaaNImpc0NBdrY1vWf1957DYXX90fEHAAAQ+Qj+gGaSl5enk7p1U0F+/hHPnf2bm3TZn+9XRWmJJo38ucbt2Fznfiorvc1ZJtCiDegQo42FFVq7r0xnJEWrQwz/LIYCpvkE0BR8PqvTr0MH6aabCP2A5varX0mvvio9+KD0xBN2V4Ps7EPTfFZLSiL4AwAAaAk4wwk0k6KiIhXk52vawiVKTEkLPO5zuFQSa62sHmd4Ne2fi2p9/aav12j2hNHy+Qj+gObSuU2UeiS4taGgQu/uKNa13eNlcGbYdvlVHX8JTPMJ4Dj87W/SZ59Jjz0meTx2VwNEvlatpCuvlJ5+2ur6S021u6KWbdeuI4M/Ov4AAABaBoI/oJklpqSpfUdrhXufaWpnsVcypViXoZT2iTKMpFpftz+H/5EBwfCLjq20ubBCu0q8WpdXrj6J0XaX1OIVlFcFfx6CPwDH5quvpLvusjqQeve2uxqg5fj1r6XXXpP+/GfppZfsrqZly86WunWr+VhiorRpkz31AAAAIHiYQwsIEtM0tbfUJ68puQypQ4yTziIgBMS5nRqcEitJ+nBXSSB0gn0KAh1/DFMANF5RkTR8uNSpkzXFJ4Dgad1amjBBWrDAmvYT9snOtoK+w9HxBwAA0DJwRg0Ikvxyv0q8piQpOdYpJ6EfEDLO6hCjlBiXynym/r25UOU+v90ltWjVa/y1peMPQCOZphX27dolTZ0qud12VwS0PEOGSOeeK/3ud1b4hOCrqJD27699jb/9+6XycnvqAgAAQHAw1ScQBIUVfuVXWCey20c7Fe0kcwfstnPnzhq/z/AYeq8sWvvKpFe+36NzW5fLUUc+36ZNG7X76ZkUNAmv31RRpfV9yRp/ABrroYekl1+W7rlHOuEEu6sBWibDkCZOlH77W+m666S332adzWDLzbXua+v4k6xAtmvXoJYEAACAICL4A5pZpcujwjJr2rq2bofimLoOsFVJ4QEZDocGDx58xHMdT+mjcc++qWzF6u5X39HCv/xOvsqKI7ZLaNtWmzZuJPxrhLy8PBUVFR11u0KfISlWLpnas2uHDIOgFUDDvPyydOedVtDw85/bXQ3QssXHWwH8nXdK11wjvfKK5OLsQ9BUT+f50+AvKenQ8wR/AAAAkYuhN9BMTFMafO14lUa3lSS1jjLU1kPoB9it7GCJTL9ff3nxDaV1ST/i+UqzTKVmjHoN+aX6nn+RYkvzZcgMPL8/Z7emjBiqoqIiwqgGysvL00nduqkgP/+o2/Y4e4iu/9vL2r7hW6VffYEkglYAR/fee9L110uZmdKYMXZXA0CS+vaVpkyxpt298Ubp2WclJ838QVE9xWp9wR8AAAAiF8Ef0AzKfX6tLHHr0onTJElxUQ4lRTtksK4fEDLaJaeqfcfOtT530OtXzkGffC6PyuNTlBLrUlRd837iqIqKilSQn69pC5coMSWt3m0romJVJqnzid0056N1BK0A6mWa0hNPSH/6k9S/v3XPcAsIHWefbXX9zZwpFRZK//ynFBNjd1WRb+dOq8MyPr7m461bW9OuEvwBAABENoI/oIltK6rQ29uLVVgRJb/fr5iKIiW1SST0A8JIrMuhtFgpp9SnCr+0s9ir9jFOtY6ia/d4JKak1Rm2VttX5lNZhV+tWsUqKbFNkCoDEI4OHJAmTLCChBEjrI4iuomA0HPhhVKrVtL06dY0vIsWScnJdlcV2b78UjrpJMnxk6GrYVhdfwR/AAAAkY0zmEATqfSben9nsV7eWKjCCr9aOfx6ZtwweSoPEvoBYSja5dAJrVyKdhryS8ot9Sn7oFd+g7PKzanSb02rSsYKoD7vvy+dfrr0n/9IkydLv/sdoR8QygYNkh59VPrhB+vv7ptv2l1RZPv0U+nUU2t/LjFR2rUruPUAAAAguDitBjSB3SWVen59gb7cWyZJ6psYrYvjS7V1dZbNlQE4Hi6HobRYpxLc1j+XB72milu11y/vmKESH4F+c/AGgj+OL4AjVVZKd9xhdRB16GCtGXbhhXZXBaAhevaUnnlGOvlk6YorpOuuk7Zvt7uqyLNvn7RxY93BX7t2dPwBAABEOoI/4Dj4/KY+3l2i//vhgPLKfWrtcmj4iXEa2rm1ojhnDUQEwzCUGO1Up1YuxTgNyTA0aOQN+u+BGL2xpVBbCytkmqbdZUYE0zRV6bd+7aJTGsBPbNsmnXuu1TX0u99JDz0kpaTYXRWAxmjXTrr/fun226XFi60QcOJEaccOuyuLHFlV156efnrtzycl0fEHAAAQ6VjjDziKvLw8FRUV1XjMb0pbK1z6tjRKxX4rP+/i9qpfbLlcBUXaViDt3LnThmoBNBe301BqrFM5ubla9/U36pZxnr4vqND3BRVqE+VQ93i3use71bl1lJx0qx0TnylVR6hM9Qmgmt8v/f3v0l13Sa1bS489Jp12mt1VAThWhiFdcol0/vnSq69KTz8tPfGEdNVV0g03SBdcwNS9xyMry5rOs651FJOTpbfekoqLre9UAAAARB6CP6AeeXl5OqlbNxXk58vhdKrT6f10+pBfqteQyxWfnCZJKs7bqzdm3qVv3q99oYrKSm8wSwbQjAzDkMtXoefGX6Uln36h4oSO2lrhUlGlX6v3lWn1vjJFGabSonxKifKpvcun1g5ThzevtWnTRu3atbPvQ4Sw6mk+XYZYGxWAvF5rDb9Zs6Qvv5Quv1waN05q1cruygA0hdhYafRoafhwackS6Y03pIULrWBqxAjpV7+SBg+WXJy1aJRPP7UujqhrKHX22dKcOdb363XXBbc2AAAABEdIXE8/Z84cde3aVdHR0crIyNDnn39e7/avvvqqevbsqejoaPXq1UuLFy+u8bxpmpoyZYpSU1MVExOjIUOG6Mcff2zOj4AI4zdN7Svz6tt9B9X/6t/pgf9t1AOf79bvnn9bg6/5neKT02T4ffKUFSo1yqfx99yvOR+tq3Gb+OQLkiSfj+APiCQlhQdkOBwaenZ/XXVamu7K6KT5t/xGn7/+fyrav0eVpqFtFS6tLPHorQOxmrelXA8s/Uq3zF2oEX++V+f9aqR27tnP9KC1CEzzScekLWOjvLw8XXPNNYqLi1NCQoLGjh2r4uLiGtusW7dO55xzjqKjo9WpUyfNmjWraT4wUKW8XPrgA+m226T0dOn//T/J57Om9/zjHwn9gEgUGyv9+tfS/PnSU09ZwdTLL1udfx06WCHgs89K335rXRCAunm91oUSda3vJ0mpqVKfPtKLLwavLgAAAASX7dfOLVy4UBMnTtTcuXOVkZGhxx57TJmZmdqwYYM6dOhwxPYrVqzQ1VdfrRkzZuiyyy7TggULNGzYMK1evVqnV01iP2vWLD3xxBN64YUXlJ6ernvuuUeZmZn67rvvFB0dHeyPiBBimqbKfKZKKv0q8fpVUmlW3fsD90WVfuWV++QzJSlaP79hYuD1DkmxUYZauxyKcbnkMKIlJdb6XvtzWDEdiERlB0tk+v36y4tvKK1Leo3nTPnkK9knrytaPqdbPmeUYhPa6cR+g3Riv0GB7f65y5Rr937Fu51K8DgU53aqdZRDrVwOtar6jmlV9fuWMm2o3zSVX+GTJHmcLeMz18WusdE111yj7OxsLV26VJWVlRozZozGjRunBQsWSJIKCwt10UUXaciQIZo7d66+/vpr/fa3v1VCQoLGjRsXvAOEiFFaKm3cKK1bJ61dK332mfTFF1b416GD9LOfSffcY60BBiDyGYZ0yinW7eabpQ0brGkrV62S/v1va9rfmBhr7bpevayutlNOkXr2lDp1ojNQsr5PDx48+nTIF14oPfKItdZfx47BqQ0AAADBY/vQePbs2brxxhs1ZswYSdLcuXP19ttva968ebrrrruO2P7xxx/X0KFDdfvtt0uSpk+frqVLl+rJJ5/U3LlzZZqmHnvsMd1999264oorJEkvvviikpOTtWjRIo0cOTJ4H64WftOUg+nLjso0TZmy1nvym6b8pvVrn2nK55cq/aZ8pimvX/Kaprx+UxV+U2VeK9gr9fmrfu23gr4Kr8q8flWYhvxq2PF3yVSMr0zL3vi3zr3kciUlJsrtYPo5AJZ2yalq37Fzvdv4TVOVfqnCZ31HFR88qL179qhtaid5ZWh/uU/7y32SKuvch9swFeMwFW2YijJMxbpdiouNlsdpyON0WPcOQy6HIZchOWvcG3I5JJdhyFl17wjBaTRN09TeMp8q/ZLTkBLcITEhgW3sGBt9//33WrJkib744gudddZZkqS//e1vuuSSS/Twww8rLS1NL730kioqKjRv3jy53W6ddtppWrt2rWbPnk3whwDTlIqKpD17rNvevdat+tfZ2dLOndL27dZ9dfNzaqrUvbu1vlefPlK3bnVPUwcg8jkch0LA3/5WKimRfvxR+uEHafNmazrLBQuksjJre6fTCrA6d5ZOOKHmLTXVmj60QwdrTbtI/m5ZscIKQI92wcR550l/+5v00kvSHXcEpzYAAAAEj63BX0VFhVatWqVJkyYFHnM4HBoyZIiysrJqfU1WVpYmTpxY47HMzEwtWrRIkrRlyxbl5ORoyJAhgefj4+OVkZGhrKws24O/Z78vUGmlT9GGTzEOU7EO64SuS6ZkKBBJHX5fPRlc9b3HE62Y2NjANHGB582a21afSDFlhWgyD3uu6hdmjdebdbzeUlZWporKyiOeP7SNEdifv2rfPkmmacgvK7STrF/7qx6r3tYfeLzqsQaGc41z6ERyaWGBivbvUfH+vTXv8/aqeN8e7d22Ufm7tgWO8Xnnny9Ph6RmqAlAJHMYhjzOQx1sRVu26qErzpPD4VR8Ske1Teusdh07KyHlBLVObK82Sclqk9hBrRM7qE1iBzmjolRhGqrwGTpQvdNKSSVlx1GVKaesgM0h0woCZd0csk6GGTKtX0uB52Wacjh06PHAthZD5qFfH7ZPSSoprtAvb/+ryjxx2lfmq9q+uhprbb8Sr/V9mxzjbNFTfdo1NsrKylJCQkIg9JOkIUOGyOFwaOXKlfrVr36lrKwsnXvuuXK73TXe58EHH1R+fr7atm3bFIegWVRWWrfYWLsrsZ/Xa50or6g4dFwqK63fl5dbz5WXH/n70lLr1yUlUnGxVFgo5edLBQXS/v3Wr/fvl/LyrNf+VHy81LatdUtKks4559BJ+fR062Q8ANSlVSupb1/rVs3vty4q2L5dysmRcnOt369fL33yiXWxQXl5zf14PFJi4qFb27ZSQoLUpo31PdSqldVVGBtr3VffoqOtW/XjHo91c7ulqKiaN7uCxc2brTUSTz7Zqqs+rVtLgwZJL7wg3X57ZIehAAAALZGtwd++ffvk8/mUnJxc4/Hk5GStX7++1tfk5OTUun1OTk7g+erH6trmp8rLy1V+2P8IDhywTq8WFhY24tMcnWmays0rqJpC8nhUSGra2sKFt7Jc3vIyecsr5K0sU2V5uXzl5fJWlqv8YInKigpVWlSgsqJCHSwsUFnRAZUWHVBZUYEuuX684uITJJ9XMk15JHkcUmL7tlL7tpKOvCxy58b1+ufMe7Rz0wZ5Kxp3oj13+1ZJUvbWTTKPYZ2/43l9uL53uNZt53uHa912vreddW9b/61Mv19j7putpNQ65lUqPyDtPqDi3T9KDqcMV5TkipLhilJRQb5Wf/S+olu1kadVa+u+TRt5YtvI5XbL6fbIFeWRy+OWK8qjKLdHTo/1mL1cOvOXI1VY4Vdh3oE6t/JUFGpvzsEaj+XlZkuSioqKmvzf5er9hdJ6i3aNjXJyco6YRtTlcqldu3Y1tklPTz9iH9XP1Rb8BWuMZb2XNGmS9NxzTb5rNJDLJcXFWbe2ba37+HjrhLrTeeT2OTnW7csvg18rgMjjcklpadZNsi5ULS62LkzIy7MuWDhwwPre2R3BqzKceKL0/PNH3y4nR/r+e2nlyvrXBDwWoTjGinTVx7o5xlgAACA0NGaMZftUn6FgxowZuu+++454vFOnTjZUg+by1JqVx/zah2+62pbXttT3Dte67XzvcK3bzve2s+5n77ntuN67JerVq1ez7buoqEjx8fHNtv+WjDFWy+L1WifX8/KkrVvtrgYAWqbNm61bQw0c2Hy1MMYKnqKiIkmMsQAAaAkaMsayNfhLSkqS0+lUbm5ujcdzc3OVkpJS62tSUlLq3b76Pjc3V6mpqTW26Xv4vCCHmTRpUo0psvx+v/Ly8pSYmBhy6yCFksLCQnXq1Ek7duxQXFyc3eVELI5z8HCsg4djHRwc5/qZpqmioiKlVbcGhAC7xkYpKSnas2dPjX14vV7l5eXV2E9t73P4e/wUY6ymwd/l5scxbl4c3+bF8W1eHN/GC8UxVqRLS0vTjh071KZNG8ZY9eDvc3BwnIOHYx0cHOfg4VjXrzFjLFuDP7fbrX79+mnZsmUaNmyYJOuE0LJlyzRhwoRaXzNw4EAtW7ZMt912W+CxpUuXamDVZWrp6elKSUnRsmXLAiezCgsLtXLlSo0fP77WfXo8Hnk8NadBS0hIOK7P1pLExcXxFzEIOM7Bw7EOHo51cHCc6xZqV6HbNTYaOHCgCgoKtGrVKvXr10+S9MEHH8jv9ysjIyOwzV/+8hdVVlYqKioq8D49evSoc30/xlhNi7/LzY9j3Lw4vs2L49u8OL6NE2pjrEjncDh0wgkn2F1G2ODvc3BwnIOHYx0cHOfg4VjXraFjLEcz13FUEydO1DPPPKMXXnhB33//vcaPH6+SkhKNGTNGkjRq1ChNmjQpsP2tt96qJUuW6JFHHtH69et177336ssvvwycDDMMQ7fddpvuv/9+vfnmm/r66681atQopaWlBU6gAQAAhCo7xkannHKKhg4dqhtvvFGff/65Pv30U02YMEEjR44MXEn2m9/8Rm63W2PHjtW3336rhQsX6vHHH6/R0QcAAAAAAAB72b7G34gRI7R3715NmTJFOTk56tu3r5YsWaLk5GRJ0vbt2+VwHMonBw0apAULFujuu+/W5MmT1b17dy1atEinn356YJs77rhDJSUlGjdunAoKCjR48GAtWbJE0dHRQf98AAAAjWHX2Oill17ShAkT9Itf/EIOh0NXXnmlnnjiicDz8fHxeu+993TzzTerX79+SkpK0pQpUzRu3LggHBUAAAAAAAA0hO3BnyRNmDChzumrli9ffsRjw4cP1/Dhw+vcn2EYmjZtmqZNm9ZUJaIWHo9HU6dOPWIKLzQtjnPwcKyDh2MdHBzn8GXH2Khdu3ZasGBBvXX17t1b//vf/+rdBk2Pv8vNj2PcvDi+zYvj27w4vkDk4O9zcHCcg4djHRwc5+DhWDcdwzRN0+4iAAAAAAAAAAAAABwf29f4AwAAAAAAAAAAAHD8CP4AAAAAAAAAAACACEDwBwAAAAAAAAAAAEQAgj8c1QMPPKBBgwYpNjZWCQkJtW6zfft2XXrppYqNjVWHDh10++23y+v11thm+fLlOvPMM+XxeNStWzfNnz+/+YsPc127dpVhGDVuM2fOrLHNunXrdM455yg6OlqdOnXSrFmzbKo2/M2ZM0ddu3ZVdHS0MjIy9Pnnn9tdUli79957j/j57dmzZ+D5srIy3XzzzUpMTFTr1q115ZVXKjc318aKw8fHH3+sX/7yl0pLS5NhGFq0aFGN503T1JQpU5SamqqYmBgNGTJEP/74Y41t8vLydM011yguLk4JCQkaO3asiouLg/gpANSGcVfwMd5qXoyvmgbjqqbHeAqIXIyn7MO4KngYYzU9xlvNgzGXPQj+cFQVFRUaPny4xo8fX+vzPp9Pl156qSoqKrRixQq98MILmj9/vqZMmRLYZsuWLbr00kt1wQUXaO3atbrtttt0ww036N133w3Wxwhb06ZNU3Z2duD2hz/8IfBcYWGhLrroInXp0kWrVq3SQw89pHvvvVdPP/20jRWHp4ULF2rixImaOnWqVq9erT59+igzM1N79uyxu7Swdtppp9X4+f3kk08Cz/3xj3/Uf//7X7366qv66KOPtHv3bv3617+2sdrwUVJSoj59+mjOnDm1Pj9r1iw98cQTmjt3rlauXKlWrVopMzNTZWVlgW2uueYaffvtt1q6dKneeustffzxxxo3blywPgKAOjDusgfjrebB+KppMa5qWoyngMjFeMpejKuaH2Os5sN4q+kx5rKJCTTQ888/b8bHxx/x+OLFi02Hw2Hm5OQEHvv73/9uxsXFmeXl5aZpmuYdd9xhnnbaaTVeN2LECDMzM7NZaw53Xbp0MR999NE6n3/qqafMtm3bBo6zaZrmnXfeafbo0SMI1UWWAQMGmDfffHPg9z6fz0xLSzNnzJhhY1XhberUqWafPn1qfa6goMCMiooyX3311cBj33//vSnJzMrKClKFkUGS+Z///Cfwe7/fb6akpJgPPfRQ4LGCggLT4/GYL7/8smmapvndd9+ZkswvvvgisM0777xjGoZh7tq1K2i1A6gb467gYbzVfBhfNR3GVc2L8RQQmRhPBR/jquBgjNU8GG81P8ZcwUPHH45bVlaWevXqpeTk5MBjmZmZKiws1LfffhvYZsiQITVel5mZqaysrKDWGo5mzpypxMREnXHGGXrooYdqTD2RlZWlc889V263O/BYZmamNmzYoPz8fDvKDUsVFRVatWpVjZ9Rh8OhIUOG8DN6nH788UelpaXpxBNP1DXXXKPt27dLklatWqXKysoax7xnz57q3Lkzx/w4bdmyRTk5OTWObXx8vDIyMgLHNisrSwkJCTrrrLMC2wwZMkQOh0MrV64Mes0AGo5xV/NgvNX0GF81PcZVwcN4CohsjKeaF+Oq5sUYq3kx3gouxlzNx2V3AQh/OTk5NQZLkgK/z8nJqXebwsJClZaWKiYmJjjFhplbbrlFZ555ptq1a6cVK1Zo0qRJys7O1uzZsyVZxzU9Pb3Gaw4/9m3btg16zeFo37598vl8tf6Mrl+/3qaqwl9GRobmz5+vHj16KDs7W/fdd5/OOeccffPNN8rJyZHb7T5ivYXk5OTA9waOTfXxq+3n+fDv5A4dOtR43uVyqV27dhx/IMQx7mp6jLeaB+OrpsW4KrgYTwGRjfFU82Fc1fwYYzUfxlvBx5ir+RD8tVB33XWXHnzwwXq3+f7772ssYIqm0ZhjP3HixMBjvXv3ltvt1k033aQZM2bI4/E0d6nAcbn44osDv+7du7cyMjLUpUsX/etf/+I/SQBaFMZdwcd4C5GGcRWAlo7xlH0YV6GlYLyFSELw10L96U9/0vXXX1/vNieeeGKD9pWSkqLPP/+8xmO5ubmB56rvqx87fJu4uLgW98V5PMc+IyNDXq9XW7duVY8ePeo8rtKhY4+jS0pKktPprPVYchybTkJCgk4++WRt3LhRF154oSoqKlRQUFDjaimO+fGrPn65ublKTU0NPJ6bm6u+ffsGtvnpot9er1d5eXkcf6AZMO4KPsZb9mN81bwYVzUvxlNA6GE8ZR/GVaGFMVbwMN5qfoy5mg/BXwvVvn17tW/fvkn2NXDgQD3wwAPas2dPoO126dKliouL06mnnhrYZvHixTVet3TpUg0cOLBJaggnx3Ps165dK4fDETjOAwcO1F/+8hdVVlYqKipKknVce/TowfQIjeB2u9WvXz8tW7ZMw4YNkyT5/X4tW7ZMEyZMsLe4CFJcXKxNmzbpuuuuU79+/RQVFaVly5bpyiuvlCRt2LBB27dvb5HfC00pPT1dKSkpWrZsWWCQVFhYqJUrV2r8+PGSrO+OgoICrVq1Sv369ZMkffDBB/L7/crIyLCrdCBiMe4KPsZb9mN81bwYVzUvxlNA6GE8ZR/GVaGFMVbwMN5qfoy5mpEJHMW2bdvMNWvWmPfdd5/ZunVrc82aNeaaNWvMoqIi0zRN0+v1mqeffrp50UUXmWvXrjWXLFlitm/f3pw0aVJgH5s3bzZjY2PN22+/3fz+++/NOXPmmE6n01yyZIldHyvkrVixwnz00UfNtWvXmps2bTL/+c9/mu3btzdHjRoV2KagoMBMTk42r7vuOvObb74xX3nlFTM2Ntb8xz/+YWPl4emVV14xPR6POX/+fPO7774zx40bZyYkJJg5OTl2lxa2/vSnP5nLly83t2zZYn766afmkCFDzKSkJHPPnj2maZrm7373O7Nz587mBx98YH755ZfmwIEDzYEDB9pcdXgoKioKfBdLMmfPnm2uWbPG3LZtm2mapjlz5kwzISHBfOONN8x169aZV1xxhZmenm6WlpYG9jF06FDzjDPOMFeuXGl+8sknZvfu3c2rr77aro8EoArjruBivNW8GF81HcZVTY/xFBC5GE/Zg3FV8DDGah6Mt5oHYy57EPzhqEaPHm1KOuL24YcfBrbZunWrefHFF5sxMTFmUlKS+ac//cmsrKyssZ8PP/zQ7Nu3r+l2u80TTzzRfP7554P7QcLMqlWrzIyMDDM+Pt6Mjo42TznlFPOvf/2rWVZWVmO7r776yhw8eLDp8XjMjh07mjNnzrSp4vD3t7/9zezcubPpdrvNAQMGmJ999pndJYW1ESNGmKmpqabb7TY7duxojhgxwty4cWPg+dLSUvP3v/+92bZtWzM2Ntb81a9+ZWZnZ9tYcfj48MMPa/1eHj16tGmapun3+8177rnHTE5ONj0ej/mLX/zC3LBhQ4197N+/37z66qvN1q1bm3FxceaYMWMC/xEGYB/GXcHFeKv5Mb5qGoyrmh7jKSByMZ6yB+Oq4GKM1fQYbzUPxlz2MEzTNJu9rRAAAAAAAAAAAABAs3LYXQAAAAAAAAAAAACA40fwBwAAAAAAAAAAAEQAgj8AAAAAAAAAAAAgAhD8AQAAAAAAAAAAABGA4A8AAAAAAAAAAACIAAR/AAAAAAAAAAAAQAQg+AMAAAAAAAAAAAAiAMEfAAAAAAAAAAAAEAEI/gCgFoZhaNGiRXaXAQAAEFEYYwEAADQtxlcAforgD0BIWr58uQzDqPN2wQUX2F0iAABA2GGMBQAA0LQYXwEINS67CwCA2gwaNEjZ2dlHPP7mm2/qd7/7nX7/+9/bUBUAAEB4Y4wFAADQtBhfAQg1dPwBCElut1spKSk1bvn5+frzn/+syZMna/jw4bW+bvLkycrIyDji8T59+mjatGmSpC+++EIXXnihkpKSFB8fr/POO0+rV6+us5bqK7cKCgoCj61du1aGYWjr1q2Bxz755BOdc845iomJUadOnXTLLbeopKQk8PxTTz2l7t27Kzo6WsnJybrqqqsaeVQAAACOD2MsAACApsX4CkCoIfgDEBYKCgp0xRVX6Pzzz9f06dPr3O6aa67R559/rk2bNgUe+/bbb7Vu3Tr95je/kSQVFRVp9OjR+uSTT/TZZ5+pe/fuuuSSS1RUVHTM9W3atElDhw7VlVdeqXXr1mnhwoX65JNPNGHCBEnSl19+qVtuuUXTpk3Thg0btGTJEp177rnH/H4AAABNgTEWAABA02J8BcBuTPUJIOT5/X795je/kcvl0ksvvSTDMOrc9rTTTlOfPn20YMEC3XPPPZKkl156SRkZGerWrZsk6ec//3mN1zz99NNKSEjQRx99pMsuu+yYapwxY4auueYa3XbbbZKk7t2764knntB5552nv//979q+fbtatWqlyy67TG3atFGXLl10xhlnHNN7AQAANAXGWAAAAE2L8RWAUEDHH4CQN3nyZGVlZemNN95QmzZtjrr9NddcowULFkiSTNPUyy+/rGuuuSbwfG5urm688UZ1795d8fHxiouLU3FxsbZv337MNX711VeaP3++WrduHbhlZmbK7/dry5YtuvDCC9WlSxedeOKJuu666/TSSy/p4MGDx/x+AAAAx4sxFgAAQNNifAUgFNDxByCkvfLKK3r44Yf19ttvq3v37g16zdVXX60777xTq1evVmlpqXbs2KERI0YEnh89erT279+vxx9/XF26dJHH49HAgQNVUVFR6/4cDusaCdM0A49VVlbW2Ka4uFg33XSTbrnlliNe37lzZ7ndbq1evVrLly/Xe++9pylTpujee+/VF198oYSEhAZ9LgAAgKbCGAsAAKBpMb4CECoI/gCErLVr12rs2LGaOXOmMjMzG/y6E044Qeedd55eeukllZaW6sILL1SHDh0Cz3/66ad66qmndMkll0iSduzYoX379tW5v/bt20uSsrOz1bZt20BthzvzzDP13XffBaZiqI3L5dKQIUM0ZMgQTZ06VQkJCfrggw/061//usGfDQAA4HgxxgIAAGhajK8AhBKCPwAhad++fRo2bJjOP/98XXvttcrJyanxvNPpDAxmanPNNddo6tSpqqio0KOPPlrjue7du+v//u//dNZZZ6mwsFC33367YmJi6txXt27d1KlTJ91777164IEH9MMPP+iRRx6psc2dd96pn/3sZ5owYYJuuOEGtWrVSt99952WLl2qJ598Um+99ZY2b96sc889V23bttXixYvl9/vVo0ePYzg6AAAAx4YxFgAAQNNifAUg1LDGH4CQ9Pbbb2vbtm1avHixUlNTj7j179+/3tdfddVV2r9/vw4ePKhhw4bVeO65555Tfn6+zjzzTF133XW65ZZbalxN9VNRUVF6+eWXtX79evXu3VsPPvig7r///hrb9O7dWx999JF++OEHnXPOOTrjjDM0ZcoUpaWlSZISEhL0+uuv6+c//7lOOeUUzZ07Vy+//LJOO+20YztAAAAAx4AxFgAAQNNifAUg1Bjm4RP+AgAAAAAAAAAAAAhLdPwBAAAAAAAAAAAAEYDgDwAAAAAAAAAAAIgABH8AAAAAAAAAAABABCD4AwAAAAAAAAAAACIAwR8AAAAAAAAAAAAQAQj+AAAAAAAAAAAAgAhA8AcAAAAAAAAAAABEAII/AAAAAAAAAAAAIAIQ/AEAAAAAAAAAAAARgOAPAAAAAAAAAAAAiAAEfwAAAAAAAAAAAEAEIPgDAAAAAAAAAAAAIsD/B55s2HeHrHq+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plotGraph(data.Z)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOTRRIy2O6-8", + "outputId": "691bda82-0bea-4264-c83f-62fed04285bb" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJOCAYAAAB/dnBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvRElEQVR4nOzde5yMdf/H8ffMHrEswjq0WYdOksOtSCfkTKRuEcXaIne1cdu675Jy6qDuIt3dSupmK0RE9YuQRQrdheikQk45LBJ7wK6duX5/7M7szs5hZ2fnsNbr+XjMg7nmmpnPjr2b677e1+fzNRmGYQgAAAAAAAAAAADAec0c6gIAAAAAAAAAAAAAlB3BHwAAAAAAAAAAAFABEPwBAAAAAAAAAAAAFQDBHwAAAAAAAAAAAFABEPwBAAAAAAAAAAAAFQDBHwAAAAAAAAAAAFABEPwBAAAAAAAAAAAAFQDBHwAAAAAAAAAAAFABEPwBAAAAAAAAAAAAFQDBHwAHEydOlMlkCsp7dezYUR07drTfX7dunUwmkxYvXhyU9x82bJgSEhKC8l6+ysrK0vDhw1W3bl2ZTCb9/e9/D3VJAAB4rfh3/fkumMdJwXA+HAv5qlevXhoxYkSoy3Dy008/KTw8XD/88IPfXzshIUHDhg3z++uWxc6dO9WtWzfFxsbKZDLpww8/DHVJAAAEzN69e2UymZSamhrqUhysWLFCrVq1UnR0tEwmk06ePBnqkgAEGMEfUIGlpqbKZDLZb9HR0apfv766d++uf//738rMzPTL+xw6dEgTJ07Utm3b/PJ6/lSea/PGc889p9TUVD3wwAN69913NWTIELf7JiQkOPx7F7316NHDvp/tpKXtVrlyZV1yySXq06eP5syZo5ycHLfvYbFYVL9+fZlMJn366ad+/VkBAM5s3+WbN2922H7q1Cm1bdtW0dHRWrFiRYiq85+i32Fms1nVq1fX1Vdfrfvvv1//+9//Ql2eR88995zfwwzbxVDubgsWLPD6tcrrsdD8+fM1ffr0gLz2hg0btGrVKj322GP2be4uMMvNzdWtt94qs9ms2bNnS/LtGLr48VXx25EjRyRJzZo1U+/evTV+/PiA/Oy+COTvSGJior7//ns9++yzevfdd3XNNde43M92otTd7fnnn7fv27FjR4f/XlSrVk2XX365hgwZos8++8xjPTt27LD/m3LSEwDKr+LfxSaTSXXq1FGnTp1Cci6i+LFZRESEGjdurKFDh+q3337zy3ts3LhREydO9Pv30x9//KEBAwaoUqVKmjFjht59911VqVLF5b6uPveit6+++sq+b9Ht4eHhqlmzptq0aaPRo0frp59+8ljTa6+9JpPJpHbt2vn1ZwVQKDzUBQAIvMmTJ6tRo0Y6d+6cjhw5onXr1unvf/+7pk2bpo8//lgtWrSw7/vkk0/q8ccfL9XrHzp0SJMmTVJCQoJatWrl9fNWrVpVqvfxhafa3nzzTVmt1oDXUBZr1qzRddddpwkTJni1f6tWrfTII484ba9fv77Tttdff10xMTHKycnRwYMHtXLlSt17772aPn26PvnkE8XHx7us5/Dhw0pISNC8efPUs2fP0v9QAIAyycjIULdu3fTdd99p6dKlDhd3nM+KfodlZmZqx44dWrRokd58802NGTNG06ZNC3GFro+TnnvuOfXv31/9+vXz+/uNGjVK1157rdP29u3be/0a5fVYaP78+frhhx8CMs3gxRdfVOfOndW0aVOP+507d079+/fX8uXL9eabb+ree+91eLw0x9A2tuOr4qpXr27/+9/+9jf16tVLu3fvVpMmTXz7If3I12P5kpw5c0abNm3SuHHjlJyc7NVzBg0apF69ejltb926tcP9iy++WFOmTJEkZWdna9euXVqyZInmzp2rAQMGaO7cuYqIiHB6nblz56pu3br6888/tXjxYg0fPtyHnwwAECy272LDMJSenq7U1FT16tVL//d//6dbb7016PXYjs3OnTunrVu3atasWVq2bJm+//57l+ddSmPjxo2aNGmShg0b5nDcUFbffPONMjMz9fTTT6tLly5ePcf2uRdX/Niqa9euGjp0qAzD0KlTp7R9+3a9/fbbeu211/TCCy8oJSXF5evPmzdPCQkJ+vrrr7Vr164Sj9kAlB7BH3AB6Nmzp8PVtWPHjtWaNWt06623qm/fvtqxY4cqVaokSQoPD1d4eGD/03D69GlVrlxZkZGRAX2fkrg6GVDeHD16VM2aNfN6/wYNGuiee+7xat/+/furVq1a9vvjx4/XvHnzNHToUN15550OV3LZzJ07V3/5y1+UmJioJ554QtnZ2W6vFAMA+F9mZqa6d++ubdu2acmSJX65AOPs2bOKjIyU2RzaYSCuvsNeeOEFDR48WC+//LIuvfRSPfDAAyGqLl8wjpOKuummm9S/f/+Avf75cCxUWkePHtWyZcs0c+ZMj/udO3dOAwYM0CeffKI33nhD9913n9M+pTmGtil+fOVKly5dVKNGDb399tuaPHlyKX6688uxY8ckqVQnL//yl794dSwbGxvrtN/zzz+vUaNG6bXXXlNCQoJeeOEFh8cNw9D8+fM1ePBg7dmzR/PmzSP4A4Byrvh38X333ae4uDi99957IQn+ih6bJSUl6bLLLtOoUaP09ttva+zYsUGvxxtHjx6VVLrv4+KfuzuXXXaZy+/jPn366JFHHtEVV1zhdEHPnj17tHHjRi1ZskQjR47UvHnzvL7YHYD3GPUJXKBuueUWPfXUU9q3b5/mzp1r3+5q7ZrPPvtMN954o6pXr66YmBhdfvnleuKJJyTljzuwXYmelJRkb/O3zTPv2LGjmjdvri1btujmm29W5cqV7c91t+6PxWLRE088obp166pKlSrq27evDhw44LCPuzVMir5mSbW5WtcmOztbjzzyiOLj4xUVFaXLL79cL730kgzDcNjPZDIpOTlZH374oZo3b66oqChdddVVXo9bO3r0qP2ANTo6Wi1bttTbb79tf9w2RmLPnj1atmyZvfa9e/d69fq+uvvuuzV8+HD973//cxqVdObMGS1dulR33XWXBgwYoDNnzuijjz4KaD0AgEJZWVnq0aOHtm7dqg8++EC9e/d2ePzgwYO69957FRcXZ/9eso0utLF9vyxYsEBPPvmkGjRooMqVKysjI0PDhg1TTEyMDh48qH79+ikmJka1a9fWo48+KovF4vA6VqtV06dP11VXXaXo6GjFxcVp5MiR+vPPP/36M1eqVEnvvvuuatasqWeffdbh+9jbGhISEnTrrbfqyy+/tI9Hbdy4sd555x2H/c6dO6dJkybp0ksvVXR0tC666CLdeOONDt+HxY+TTCaTsrOz9fbbb9u/q4cNG6a1a9fKZDJp6dKlTj/T/PnzZTKZtGnTJr98RmU5Tit+LGQbt/jSSy9pxowZaty4sSpXrqxu3brpwIEDMgxDTz/9tC6++GJVqlRJt912m06cOOFQz0cffaTevXurfv36ioqKUpMmTfT00087/A517NhRy5Yt0759++w1Fa0jJydHEyZMUNOmTRUVFaX4+Hj985//9DiO3GbZsmXKy8vzeEV7Xl6e7rrrLn300Ud6/fXXS7UWoLtj6NKIiIhQx44dvTqOsv3O/fzzzxowYICqVaumiy66SKNHj9bZs2dLfP5vv/2mO++8UzVr1lTlypV13XXXadmyZfbHS/odcefbb79Vz549Va1aNcXExKhz584OF41NnDhRDRs2lCT94x//cPo3DoSwsDD9+9//VrNmzfSf//xHp06dcnh8w4YN2rt3r+666y7dddddWr9+vX7//feA1gQA8K/q1aurUqVKThdilXQu58yZM7riiit0xRVX6MyZM/bnnThxQvXq1dP111/vdLzrjVtuuUVSfpjlyZo1a3TTTTepSpUqql69um677Tbt2LHD/vjEiRP1j3/8Q5LUqFEjr88BLVq0SG3atFGlSpVUq1Yt3XPPPTp48KD98Y4dOyoxMVGSdO2119qPVQPpoosu0oIFCxQeHq5nn33W6fF58+apRo0a6t27t/r376958+YFtB7gQkXHH3ABGzJkiJ544gmtWrXK7QmPH3/8UbfeeqtatGihyZMnKyoqSrt27dKGDRskSVdeeaUmT56s8ePH6/7779dNN90kSbr++uvtr/HHH3+oZ8+euuuuu3TPPfcoLi7OY13PPvusTCaTHnvsMR09elTTp09Xly5dtG3bNqerqj3xpraiDMNQ3759tXbtWt13331q1aqVVq5cqX/84x86ePCgXn75ZYf9v/zySy1ZskQPPvigqlatqn//+9/661//qv379+uiiy5yW9eZM2fUsWNH7dq1S8nJyWrUqJEWLVqkYcOG6eTJkxo9erSuvPJKvfvuuxozZowuvvhi++iz2rVre/yZz507p+PHjzttr1Klitef3ZAhQzRr1iytWrVKXbt2tW//+OOPlZWVpbvuukt169ZVx44dNW/ePA0ePNir1wUA+C47O1s9e/bUN998o8WLFztd4Zyenq7rrrvOfmFK7dq19emnn+q+++5TRkaG0zjFp59+WpGRkXr00UeVk5Nj78K3WCzq3r272rVrp5deekmrV6/W1KlT1aRJE4duu5EjRyo1NVVJSUkaNWqU9uzZo//85z/69ttvtWHDBr92ksXExOj222/Xf//7X/3000+66qqrSl3Drl271L9/f913331KTEzU7NmzNWzYMLVp08b+ehMnTtSUKVM0fPhwtW3bVhkZGdq8ebO2bt3q8H1Y1Lvvvmvf//7775ckNWnSRNddd53i4+M1b9483X777Q7PmTdvnpo0aeLVuM7MzEyX3+sXXXSRTCaTX47TXJk3b55yc3P18MMP68SJE/rXv/6lAQMG6JZbbtG6dev02GOPadeuXXr11Vf16KOPOgTMqampiomJUUpKimJiYrRmzRqNHz9eGRkZevHFFyVJ48aN06lTp/T777/bj69s4zGtVqv69u2rL7/8Uvfff7+uvPJKff/993r55Zf166+/lrie4saNG3XRRRfZQ6fi8vLyNGjQIC1dulQzZszQyJEjPb6eK56OoYsHoVJ+p2jxq+zbtGmjjz76SBkZGapWrVqJ7zlgwAAlJCRoypQp+uqrr/Tvf/9bf/75p1OAXVR6erquv/56nT59WqNGjdJFF12kt99+W3379tXixYt1++23+/Q78uOPP+qmm25StWrV9M9//lMRERF644031LFjR33++edq166d7rjjDlWvXl1jxoyxj+90NQK1uNOnT7v8na9evbpX3bZhYWEaNGiQnnrqKX355ZcOF0jY/rd37bXXqnnz5qpcubLee+89+4lWAED5c+rUKR0/flyGYejo0aN69dVXlZWV5dBl5s25nEqVKuntt9/WDTfcoHHjxtlHyD/00EM6deqUUlNTFRYWVur6du/eLUkezwGtXr1aPXv2VOPGjTVx4kSdOXNGr776qm644QZt3bpVCQkJuuOOO/Trr7/qvffe08svv2yfHuDpHJDtOPjaa6/VlClTlJ6erldeeUUbNmzQt99+q+rVq2vcuHG6/PLLNWvWLPv4Tm/GjNs+96JMJpPHn7OoSy65RB06dNDatWudjnXmzZunO+64Q5GRkRo0aJBef/11ffPNNy7H2wMoAwNAhTVnzhxDkvHNN9+43Sc2NtZo3bq1/f6ECROMov9pePnllw1JxrFjx9y+xjfffGNIMubMmeP0WIcOHQxJxsyZM10+1qFDB/v9tWvXGpKMBg0aGBkZGfbt77//viHJeOWVV+zbGjZsaCQmJpb4mp5qS0xMNBo2bGi//+GHHxqSjGeeecZhv/79+xsmk8nYtWuXfZskIzIy0mHb9u3bDUnGq6++6vReRU2fPt2QZMydO9e+LTc312jfvr0RExPj8LM3bNjQ6N27t8fXK7qvJJe3KVOm2Pez/Ru7+zf9888/DUnG7bff7rD91ltvNW644Qb7/VmzZhnh4eHG0aNHvaoPAFB6tu/yhg0bGhEREcaHH37ocr/77rvPqFevnnH8+HGH7XfddZcRGxtrnD592jCMwu/axo0b27fZJCYmGpKMyZMnO2xv3bq10aZNG/v9L774wpBkzJs3z2G/FStWOG0v/r3sTknfd7bjkY8++qjUNdi+H9evX2/fdvToUSMqKsp45JFH7NtatmxZ4ndu8eMkwzCMKlWquDwmGTt2rBEVFWWcPHnS4X3Dw8ONCRMmeHwf27+Tu9vhw4cdPhdfj9OKHwvt2bPHkGTUrl3boe6xY8cakoyWLVsa586ds28fNGiQERkZaZw9e9a+rfjvlWEYxsiRI43KlSs77Ne7d2+H97Z59913DbPZbHzxxRcO22fOnGlIMjZs2OD2ZzUMw7jxxhsdfl9tbJ+p7fdhxowZbl+jLMfQrm6XX3650/Pnz59vSDL+97//efx5bK/bt29fh+0PPvigIcnYvn27fVvx4+O///3vhiSHzzIzM9No1KiRkZCQYFgsFsMwPP+OuNKvXz8jMjLS2L17t33boUOHjKpVqxo333yzfZvt9+nFF18s8TVt+7q7bdq0yb5vhw4djKuuusrtay1dutTp/zvk5uYaF110kTFu3Dj7tsGDBxstW7b06mcGAASX7bu4+C0qKspITU112Lc053LGjh1rmM1mY/369caiRYsMScb06dNLrMd2HDF79mzj2LFjxqFDh4xly5YZCQkJhslksh8z2L7Pin6ntmrVyqhTp47xxx9/2Ldt377dMJvNxtChQ+3bXnzxRUOSsWfPnhLryc3NNerUqWM0b97cOHPmjH37J598Ykgyxo8fb9/mzXFN8X3dffZFSTIeeught681evRop2OVzZs3G5KMzz77zDAMw7BarcbFF19sjB49usTaAJQOoz6BC1xMTIwyMzPdPm67Ovmjjz6S1Wr16T2ioqKUlJTk9f5Dhw5V1apV7ff79++vevXqafny5T69v7eWL1+usLAwjRo1ymH7I488IsMw9Omnnzps79Kli8OVUi1atFC1atX022+/lfg+devW1aBBg+zbIiIiNGrUKGVlZenzzz/3+Wdo166dPvvsM6db0fcqie1q7KK/F3/88YdWrlzp8Dp//etfZTKZ9P777/tcLwDAO+np6YqOjlZ8fLzTY4Zh6IMPPlCfPn1kGIaOHz9uv3Xv3l2nTp3S1q1bHZ6TmJjothP8b3/7m8P9m266yeG7bdGiRYqNjVXXrl0d3qtNmzaKiYnR2rVr/fATOyr+3VTaGpo1a2bvZJLyr56+/PLLHX6u6tWr68cff9TOnTv9UvPQoUOVk5OjxYsX27ctXLhQeXl5Xq/HO378eJff6zVr1rTXLJXtOM2VO++8U7Gxsfb77dq1kyTdc889Dl1X7dq1U25ursNIqaK/V7aOxZtuukmnT5/Wzz//XOJ7L1q0SFdeeaWuuOIKh39b2yitkn6//vjjD9WoUcPt4+np6QoPD1ejRo1KrMUTd8fQH3zwgdO/15w5c5z2s9XoqrvNlYceesjh/sMPPyxJHo+Ply9frrZt2+rGG290qPv+++/X3r179dNPP3n13kVZLBatWrVK/fr1U+PGje3b69Wrp8GDB+vLL79URkZGqV/X5v7773f5O1+aNa9dHct++umn+uOPPxyOZQcNGqTt27frxx9/9LleAEBgzZgxw/5dMHfuXHXq1EnDhw/XkiVL7PuU5lzOxIkTddVVVykxMVEPPvigOnTo4PQ8T+69917Vrl1b9evXV+/eve0j392th3f48GFt27ZNw4YNsx+/Sfnnj7p27erzea7Nmzfr6NGjevDBBxUdHW3f3rt3b11xxRUOY719UfRzt92KnxMriavv43nz5ikuLk6dOnWSlN9FOHDgQC1YsMCnUasA3LugR32uX79eL774orZs2aLDhw9r6dKl6tevn9fPnzhxoiZNmuS0vXLlysrOzvZjpUDgZGVlqU6dOm4fHzhwoN566y0NHz5cjz/+uDp37qw77rhD/fv3l9ns3bUDDRo0sI8Q88all17qcN9kMqlp06YBX99u3759ql+/vkPoKOWPybI9XtQll1zi9Bo1atQocX2jffv26dJLL3X6/Ny9T2nUqlXL45o23sjKypIkh89h4cKFOnfunFq3bq1du3bZt7dr107z5s1zOhkFAPCvN954QykpKerRo4e++OILXX755fbHjh07ppMnT2rWrFmaNWuWy+cfPXrU4b670CM6OtpppFDx77adO3fq1KlTbo8fir+XPxT/biptDd58Z0+ePFm33XabLrvsMjVv3lw9evTQkCFD1KJFC59qvuKKK3Tttddq3rx5uu+++yTln+y47rrr1LRpU69e4+qrr/b4ve6P4zRXin9ethCwePBs2170c/zxxx/15JNPas2aNU4BUPE111zZuXOnduzY4Xa0lTe/X0axtZmL+te//qXp06erf//+WrVqlW644YYSX88Vd8fQN998s308lzc1Fl9b253ix8dNmjSR2Wz2eHy8b98+e2hbVNFjzubNm3v1/jbHjh3T6dOnHf4bVPR1rVarDhw4YB+hW1qXXnppQI5l586dq0aNGtnH4Ur5n2HlypU1b948Pffcc2V6TwBAYLRt29YhVBs0aJBat26t5ORk3XrrrYqMjCzVuZzIyEjNnj1b1157raKjozVnzhyvv4ul/IuybrrpJoWFhalWrVq68sorPY6itr23u+/NlStXKjs7W1WqVPG6hpJe94orrtCXX35Zqtcrrvjn7ovi38cWi0ULFixQp06dHNZEbNeunaZOnaq0tDR169atTO8JoNAFHfxlZ2erZcuWuvfee3XHHXeU+vmPPvqo0xXRnTt3ZiYxzhu///67Tp065fHkU6VKlbR+/XqtXbtWy5Yt04oVK7Rw4ULdcsstWrVqlVcz0EuzLp+33B2YWSwWn+ay+8Ld+3g62XQ++OGHHyTJ4ffCttiyu5Njv/32m8NV3wAA/2rWrJmWL1+uzp07q2vXrtqwYYM9hLF1et1zzz1KTEx0+fzi4ZW772ZvvkOtVqvq1Klj/24orqT1aH1R/LuptDV485198803a/fu3froo4+0atUqvfXWW3r55Zc1c+ZMDR8+3Ke6hw4dqtGjR+v3339XTk6OvvrqK/3nP//x6bVc8cdxmivunlfS53jy5El16NBB1apV0+TJk9WkSRNFR0dr69ateuyxx7zqSrRarbr66qvta+8U56rrtaiLLrrI40VY9erV02effaYbb7xRvXv31ueff66WLVuWWFdR3hxDl8RWozchoSulOUl5oSn+34uMjAz93//9n86ePesUoErS/Pnz7WuMAwDKN7PZrE6dOumVV17Rzp07fbrQZOXKlZKks2fPaufOnaWaAlDSRVko9MMPPygsLMz++a5Zs0aHDx/WggULtGDBAqf9582bR/AH+NEFHfz17NlTPXv2dPt4Tk6Oxo0bp/fee08nT55U8+bN9cILL6hjx46S8luWiy5Qvn37dv3000+aOXNmoEsH/OLdd9+VJHXv3t3jfmazWZ07d1bnzp01bdo0Pffccxo3bpzWrl2rLl26+P3/JBcfsWUYhnbt2uVw0rJGjRo6efKk03P37dvnEECVpraGDRtq9erVyszMdLhSzDaWqmHDhl6/Vknv891338lqtTpcje/v9/FV8d+LPXv2aOPGjUpOTlaHDh0c9rVarRoyZIjmz5+vJ598Mui1AsCFpG3btvrwww/Vu3dvde3aVV988YVq166t2rVrq2rVqrJYLEE5EdGkSROtXr1aN9xwQ0Au7ikuKytLS5cuVXx8vP3K7UDVULNmTSUlJSkpKUlZWVm6+eabNXHiRI/Bn6djjbvuukspKSl67733dObMGUVERGjgwIF+q1cK/nGaJ+vWrdMff/yhJUuW6Oabb7ZvL3pVt427upo0aaLt27erc+fOPtV+xRVX6IMPPvC4T+PGjbVy5Up16NBB3bt31xdffOEyEHLH22NoT/bs2SOz2azLLrvMq/2Ln5jctWuXrFarEhIS3D6nYcOG+uWXX5y2Fz/mLM3nXLt2bVWuXNnt65rN5hLD2UCyWCyaP3++KleubB9xumTJEp09e1avv/66U9D6yy+/6Mknn9SGDRscRqICAMqvvLw8SYUdZaU5l/Pdd99p8uTJSkpK0rZt2zR8+HB9//33DiPO/cn23u6+N2vVqmXv9ivt+Svb69rGodv88ssvIT+vtH//fn3++edq3769/d9k3rx5qlOnjmbMmOG0/5IlS7R06VLNnDkzKP//ArgQsMafB8nJydq0aZMWLFig7777Tnfeead69Ojhdt2Pt956S5dddpnD+iFAebVmzRo9/fTTatSoke6++263+504ccJpW6tWrSTlh+OS7AcproI4X7zzzjsOM8AXL16sw4cPOwT1TZo00VdffaXc3Fz7tk8++UQHDhxweK3S1NarVy9ZLBanK/FffvllmUwmjxcKlEavXr105MgRLVy40L4tLy9Pr776qmJiYpzCtWCaP3++3nrrLbVv316dO3eWVNjt989//lP9+/d3uA0YMEAdOnRw23EBAPCvzp0767333tOuXbvUo0cPZWRkKCwsTH/961/1wQcf2Dtdijp27JhfaxgwYIAsFouefvppp8fy8vL8djwgSWfOnNGQIUN04sQJjRs3zn5CJBA1/PHHHw73Y2Ji1LRpU/vxjjtVqlRx+361atVSz549NXfuXM2bN089evTwucPLlVAcp3li6wgs2kmZm5ur1157zWnfKlWquBz9OWDAAB08eFBvvvmm02NnzpwpcUmF9u3b688//yxxzeWrr75ay5YtU1ZWlrp27eqwTqEn3h5Dl2TLli266qqrvD7RWPwk2auvvipJHo9Pe/Xqpa+//lqbNm2yb8vOztasWbOUkJBgXzevNL8jYWFh6tatmz766COHMaPp6emaP3++brzxRlWrVs2rn8nfLBaLRo0apR07dmjUqFH2OubOnavGjRvrb3/7m9Ox7KOPPqqYmBiOZQHgPHHu3DmtWrVKkZGR9gvCvD2Xc+7cOQ0bNkz169fXK6+8otTUVKWnp2vMmDEBq7devXpq1aqV3n77bYfv2R9++EGrVq1Sr1697NtK8318zTXXqE6dOpo5c6bDseqnn36qHTt2qHfv3n77GUrrxIkTGjRokCwWi8aNGycp/xhuyZIluvXWW52+i/v376/k5GRlZmbq448/DlndQEVzQXf8ebJ//37NmTNH+/fvV/369SXlj/ZcsWKF5syZ47QGwNmzZzVv3jw9/vjjoSgX8OjTTz/Vzz//rLy8PKWnp2vNmjX67LPP1LBhQ3388ccOCwEXN3nyZK1fv169e/dWw4YNdfToUb322mu6+OKL7VfFNmnSRNWrV9fMmTNVtWpVValSRe3atSvVuISiatasqRtvvFFJSUlKT0/X9OnT1bRpU40YMcK+z/Dhw7V48WL16NFDAwYM0O7duzV37lw1adLE4bVKU1ufPn3UqVMnjRs3Tnv37lXLli21atUqffTRR/r73//u9Nq+uv/++/XGG29o2LBh2rJlixISErR48WJt2LBB06dPd5pLXxoHDx7U3LlznbbHxMQ4rWG6ePFixcTEKDc3VwcPHtTKlSu1YcMGtWzZUosWLbLvN2/ePLVq1crt1dt9+/bVww8/rK1bt+ovf/mLz7UDALxz++23680339S9996rvn37asWKFXr++ee1du1atWvXTiNGjFCzZs104sQJbd26VatXr3YZEPmqQ4cOGjlypKZMmaJt27apW7duioiI0M6dO7Vo0SK98sor6t+/f6lft+h3WFZWln766SctWrRIR44c0SOPPKKRI0cGtIZmzZqpY8eOatOmjWrWrKnNmzdr8eLFSk5O9vi8Nm3aaPXq1Zo2bZrq16+vRo0aOayrNnToUHstroJKT7744gudPXvWaXuLFi3UokWLkByneXL99derRo0aSkxM1KhRo2QymfTuu++6HIPepk0bLVy4UCkpKbr22msVExOjPn36aMiQIXr//ff1t7/9TWvXrtUNN9wgi8Win3/+We+//75Wrlzpcc2Z3r17Kzw8XKtXr9b999/vsd727dtryZIl6tOnj72L9qKLLrI/7ssxtO34qriuXbsqLi5OUv6Jx88//1wPPvigx/qK2rNnj/r27asePXpo06ZNmjt3rgYPHuxxTOnjjz+u9957Tz179tSoUaNUs2ZNvf3229qzZ48++OAD++SJ0v6OPPPMM/ZxqQ8++KDCw8P1xhtvKCcnR//617+8/plc2bp1q8tj2SZNmqh9+/b2+6dOnbLvd/r0ae3atUtLlizR7t27ddddd9n/t3bo0CGtXbtWo0aNcvl+UVFR6t69uxYtWqR///vfioiIKFP9AAD/sn0XS/nr/M6fP187d+7U448/br/Aw9tzOc8884y2bdumtLQ0Va1aVS1atND48eP15JNPqn///g4hnD+9+OKL6tmzp9q3b6/77rtPZ86c0auvvqrY2FhNnDjRvl+bNm0kSePGjdNdd92liIgI9enTx+X6fxEREXrhhReUlJSkDh06aNCgQUpPT9crr7yihISEMoeZRT/3oq6//nqHKVu//vqr5s6dK8MwlJGRoe3bt2vRokXKysrStGnT1KNHD0nSxx9/rMzMTPXt29fl+1133XWqXbu25s2b5/fpGMAFy4BhGIYhyVi6dKn9/ieffGJIMqpUqeJwCw8PNwYMGOD0/Pnz5xvh4eHGkSNHglg14NmcOXMMSfZbZGSkUbduXaNr167GK6+8YmRkZDg9Z8KECUbR/zSkpaUZt912m1G/fn0jMjLSqF+/vjFo0CDj119/dXjeRx99ZDRr1swIDw83JBlz5swxDMMwOnToYFx11VUu6+vQoYPRoUMH+/21a9cakoz33nvPGDt2rFGnTh2jUqVKRu/evY19+/Y5PX/q1KlGgwYNjKioKOOGG24wNm/e7PSanmpLTEw0GjZs6LBvZmamMWbMGKN+/fpGRESEcemllxovvviiYbVaHfaTZDz00ENONTVs2NBITEx0+fMWlZ6ebiQlJRm1atUyIiMjjauvvtpeV/HX6927d4mvZ9u36L930VvRn9P2b2y7RUdHGxdffLFx6623GrNnzzbOnj1r33fLli2GJOOpp55y+7579+41JBljxozxqk4AgPds3+XffPON02MvvfSSIcm49dZbjXPnzhnp6enGQw89ZMTHxxsRERFG3bp1jc6dOxuzZs2yP8f2Xbto0SKn10tMTDSqVKnitL34sYHNrFmzjDZt2hiVKlUyqlatalx99dXGP//5T+PQoUP2fVx9L7tS9DvMZDIZ1apVM6666ipjxIgRxv/+9z+3z/OmBnffpcVre+aZZ4y2bdsa1atXNypVqmRcccUVxrPPPmvk5uZ6/Cx+/vln4+abbzYqVapkSHI6DsjJyTFq1KhhxMbGGmfOnCnxszCMwn8nd7cJEyYYhlH247Tix0J79uwxJBkvvviiy3qK/964+v3csGGDcd111xmVKlUy6tevb/zzn/80Vq5caUgy1q5da98vKyvLGDx4sFG9enWnY5Xc3FzjhRdeMK666iojKirKqFGjhtGmTRtj0qRJxqlTp0r8/Pr27Wt07tzZq5/BMAxj4cKFhtlsNq699lojIyOjTMfQ7m5Ff/ZPP/3UkGTs3LmzxJ/F9ro//fST0b9/f6Nq1apGjRo1jOTkZKffJ1fHobt37zb69+9vVK9e3YiOjjbatm1rfPLJJ07v4+53xJ2tW7ca3bt3N2JiYozKlSsbnTp1MjZu3Oiwj7vfJ1ds+7q7Ff25OnTo4PBYTEyMcemllxr33HOPsWrVKofXnTp1qiHJSEtLc/veqamphiTjo48+KrFOAEBwFP8utp27aNWqlfH66687naMp6VzOli1bjPDwcOPhhx92eF5eXp5x7bXXGvXr1zf+/PNPt/V4Oo4oyvZ9Vvx7dPXq1cYNN9xgVKpUyahWrZrRp08f46effnJ6/tNPP200aNDAMJvNhiRjz549Ht9v4cKFRuvWrY2oqCijZs2axt133238/vvvDvt4+v8Txbn63Iveiv5cRbebzWajevXqRuvWrY3Ro0cbP/74o8Pr9unTx4iOjjays7PdvvewYcOMiIgI4/jx4yXWCaBkJsNwcfnlBchkMmnp0qX2jpiFCxfq7rvv1o8//ui0iH1MTIzq1q3rsK1z586qVq2ali5dGqySAQAAAJRzeXl5ql+/vvr06aP//ve/oS7ngvDFF1+oY8eO+vnnn0u1dl+w9OvXz/7/P0syceJETZo0SceOHfPrmFgAAAAAFRejPt1o3bq1LBaLjh49WuKafXv27NHatWuZQwwAAADAwYcffqhjx45p6NChoS7lgnHTTTepW7du+te//uVyrcBQ2rFjhz755BNt27Yt1KUAAAAAqKAu6OAvKytLu3btst/fs2ePtm3bppo1a+qyyy7T3XffraFDh2rq1Klq3bq1jh07prS0NLVo0cJhkdTZs2erXr16HhdWBwAAAHDh+N///qfvvvtOTz/9tFq3bq0OHTqEuqQLyqeffhrqEly68sorlZeXF+oyAAAAAFRg5lAXEEqbN29W69at1bp1a0lSSkqKWrdurfHjx0uS5syZo6FDh+qRRx7R5Zdfrn79+umbb77RJZdcYn8Nq9Wq1NRUDRs2zGkkKAAAAIAL0+uvv64HHnhAderU0TvvvBPqcgAAAAAAFwjW+AMAAAAAAAAAAAAqgAu64w8AAAAAAAAAAACoKAj+AAAAAAAAAAAAgAogPNQFBJvVatWhQ4dUtWpVmUymUJcDAADOE4ZhKDMzU/Xr15fZfOFeO8WxFAAA8AXHUvk4lgIAAL4ozbHUBRf8HTp0SPHx8aEuAwAAnKcOHDigiy++ONRlhAzHUgAAoCw4luJYCgAA+M6bY6kLLvirWrWqpPwPp1q1aiGuBgAAnC8yMjIUHx9vP5a4UHEsBQAAfMGxVD6OpQAAgC9Kcyx1wQV/tjEK1apV4wALAACU2oU+koljKQAAUBYcS3EsBQAAfOfNsdSFO1QdAAAAAAAAAAAAqEAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAPAAAAAAAAAAAAqAAI/gAAAAAAAAAAAIAKgOAvQM5ZDX32e5b2ZuaGuhQAAAAAAAAAAABcAAj+AmRvZq62HDurDUdOh7oUAACACiM1VfrXv0JdBQAAAAAAQPlE8Bcg56z5f1qsoa0DAACgIlm1Svrkk1BXAQAAAAAAUD6FNPhbv369+vTpo/r168tkMunDDz/0+rkbNmxQeHi4WrVqFbD6ysJiNSRJRojrAAAAqEjy8iSLJdRVAAAAAAAAlE8hDf6ys7PVsmVLzZgxo1TPO3nypIYOHarOnTsHqLKyszX6WQ2iPwAAAH+xWAj+AAAAAAAA3AkP5Zv37NlTPXv2LPXz/va3v2nw4MEKCwsrVZdgMNHxBwAA4H90/AEAAAAAALh33q3xN2fOHP3222+aMGGCV/vn5OQoIyPD4RYMloLEj4Y/AAAA/7FYJCtrKAMAAAAAALh0XgV/O3fu1OOPP665c+cqPNy7ZsUpU6YoNjbWfouPjw9wlflsIz7J/QAAAPzn3Dk6/gAAAAAAANw5b4I/i8WiwYMHa9KkSbrsssu8ft7YsWN16tQp++3AgQMBrLIQHX8AAAD+xxp/AAAAAAAA7oV0jb/SyMzM1ObNm/Xtt98qOTlZkmS1WmUYhsLDw7Vq1SrdcsstTs+LiopSVFRUsMtVwRJ/stLzBwAA4Des8QcAAAAAAODeeRP8VatWTd9//73Dttdee01r1qzR4sWL1ahRoxBV5prFNuqT3A8AAMBv8vJY4w8AAAAAAMCdkAZ/WVlZ2rVrl/3+nj17tG3bNtWsWVOXXHKJxo4dq4MHD+qdd96R2WxW8+bNHZ5fp04dRUdHO20vD+yjPkNbBgAAQIXCqE8AAAAAAAD3Qhr8bd68WZ06dbLfT0lJkSQlJiYqNTVVhw8f1v79+0NVXplY6fgDAADwO0Z9AgAAAAAAuBfS4K9jx44yPCRjqampHp8/ceJETZw40b9F+QkdfwAAAP5nsTDqEwAAAAAAwB1zqAuoqOj4AwAA8D86/gAAAAAAANwj+AsQW8eflZ4/AAAAvyH4AwAAAAAAcI/gL0As1oKOvxDXAQAAUJFYLAR/AAAAAAAA7hD8BYht6RlGfQIAAPhPXh5r/AEAAAAAALhD8BcgloITUgR/AAAA/kPHHwAAAAAAgHsEfwFiNRj1CQAA4G+s8QcAAAAAAOAewV+AWAoSPystfwAAAH5jsTBRAQAAAAAAwB2CvwCx0PEHAADgd3T8AQAAAAAAuEfwFyDWgsSPK9IBAAD8h+APAAAAAADAPYK/AKHjDwAAwP8sFoI/AAAAAAAAdwj+AsTe8SfJoO0PAADALywWyWoNdRUAAAAAAADlE8FfgFjI+gAAAPzOFvxxXRUAAAAAAIAzgr8AsRQ5G8VF6QAAIFBmzJihhIQERUdHq127dvr666897n/y5Ek99NBDqlevnqKionTZZZdp+fLlQaq27PLy8v+k6w8AAAAAAMBZeKgLqKisRa5CNwxJppCVAgAAKqiFCxcqJSVFM2fOVLt27TR9+nR1795dv/zyi+rUqeO0f25urrp27ao6depo8eLFatCggfbt26fq1asHv3gfGEbh+n5WqxQWFtp6AAAAAAAAyhuCvwAp2vHHJCoAABAI06ZN04gRI5SUlCRJmjlzppYtW6bZs2fr8ccfd9p/9uzZOnHihDZu3KiIiAhJUkJCQjBLLpOiXX4Wi1TwIwAAAAAAAKAAoz4DpOgaf1YWoQEAAH6Wm5urLVu2qEuXLvZtZrNZXbp00aZNm1w+5+OPP1b79u310EMPKS4uTs2bN9dzzz0ni62NrpyzjfmUCjv/AAAAAAAAUIiOvwCx0vEHAAAC6Pjx47JYLIqLi3PYHhcXp59//tnlc3777TetWbNGd999t5YvX65du3bpwQcf1Llz5zRhwgSXz8nJyVFOTo79fkZGhv9+iFIqGvYR/AEAAAAAADij4y9ALEVGUdHwBwAAygOr1ao6depo1qxZatOmjQYOHKhx48Zp5syZbp8zZcoUxcbG2m/x8fFBrNhR0Y6/omM/AQAAAAAAkI/gLwAMw1DRc1HkfgAAwN9q1aqlsLAwpaenO2xPT09X3bp1XT6nXr16uuyyyxQWFmbfduWVV+rIkSPKzc11+ZyxY8fq1KlT9tuBAwf890OUEh1/AAAAAAAAnhH8BYC1WNJHxx8AAPC3yMhItWnTRmlpafZtVqtVaWlpat++vcvn3HDDDdq1a5esRdrlfv31V9WrV0+RkZEunxMVFaVq1ao53EKFNf4AAAAAAAA8I/gLAEvx4C80ZQAAgAouJSVFb775pt5++23t2LFDDzzwgLKzs5WUlCRJGjp0qMaOHWvf/4EHHtCJEyc0evRo/frrr1q2bJmee+45PfTQQ6H6EUqFUZ8AAAAAAACehYe6gIrIWqzFr/h9AAAAfxg4cKCOHTum8ePH68iRI2rVqpVWrFihuLg4SdL+/ftlNhde5xUfH6+VK1dqzJgxatGihRo0aKDRo0frscceC9WPUCqM+gQAAAAAAPCM4C8A6PgDAADBkpycrOTkZJePrVu3zmlb+/bt9dVXXwW4qsBg1CcAAAAAAIBnjPoMAEuxDj8a/gAAAMqOjj8AAAAAAADPCP4CwErHHwAAgN+xxh8AAAAAAIBnBH8BQMcfAACA/9HxBwAAAAAA4BnBXwAUX+PPSs8fAABAmbHGHwAAAAAAgGcEfwHgNOqT3A8AAKDMGPUJAAAAAADgGcFfADiN+gxRHQAAABUJoz4BAAAAAAA8I/gLgOKjPun4AwAAKDtGfQIAAAAAAHhG8BcAVjr+AAAA/K5o2MeoTwAAAAAAAGcEfwFgKXYiyqDlDwAAoMzo+AMAAAAAAPCM4C8Aiq/xxwXpAAAAZUfwBwAAAAAA4BnBXwBYWeMPAADA74qGfQR/AAAAAAAAzgj+AqB4xx+5HwAAQNkV7fhjjT8AAAAAAABnBH8BULzjz0rLHwAAQJnR8QcAAAAAAOAZwV8AWIqP+gxNGQAAABUKa/wBAAAAAAB4RvAXAE6jPkn+AAAAyqxo2MeoTwAAAAAAAGcEfwFQfNQnuR8AAEDZ0fEHAAAAAADgGcFfANDxBwAA4H8EfwAAAAAAAJ4R/AUAHX8AAAD+VzTsI/gDAAAAAABwRvAXAMU7/qy0/AEAAJRZ0Y4/1vgDAAAAAABwRvAXABY6/gAAAPyOjj8AAAAAAADPCP4CwGnUJ8kfAABAmbHGHwAAAAAAgGcEfwFQfNQnuR8AAEDZFQ37GPUJAAAAAADgjOAvAOj4AwAA8L+8PCk8PP/vdPwBAAAAAAA4I/gLAEux5M9Kzx8AAECZ5eVJkZH5fyf4AwAAAAAAcEbwFwAWOv4AAAD8zmKRIiIK/w4AAAAAAABHBH8BYGWNPwAAAL8rOuqTNf4AAAAAAACcEfwFgFPHX2jKAAAAqFAsFiksTDKb6fgDAAAAAABwheAvACzFO/5I/gAAAMosL4/gDwAAAAAAwBOCvwCwOnX8kfwBAACUVdHgj1GfAAAAAAAAzgj+AqD4qM/iQSAAAABKz2LJD/3o+AMAAAAAAHCN4C8ArAWzPc2m/PuM+gQAACg7W8dfWBjBHwAAAAAAgCsEfwFg6/gLN+Unf+R+AAAAZWfr+DOZCP4AAAAAAABcIfgLAEtBi194wadrpeUPAACgzIp2/LHGHwAAAAAAgLOQBn/r169Xnz59VL9+fZlMJn344Yce91+yZIm6du2q2rVrq1q1amrfvr1WrlwZnGJLwVqs4w8AAABlxxp/AAAAAAAAnoU0+MvOzlbLli01Y8YMr/Zfv369unbtquXLl2vLli3q1KmT+vTpo2+//TbAlZaOreMvzN7xF8JiAAAAKghbxx/BHwAAAAAAgGvhoXzznj17qmfPnl7vP336dIf7zz33nD766CP93//9n1q3bu3n6nzHGn8AAAD+VzT4Y9QnAAAAAACAs/N6jT+r1arMzEzVrFkz1KU4sJ2ICjcT/AEAAPgLoz4BAAAAAAA8C2nHX1m99NJLysrK0oABA9zuk5OTo5ycHPv9jIyMgNdlKYj6wgtiVYPkDwAAoMwY9QkAAAAAAODZedvxN3/+fE2aNEnvv/++6tSp43a/KVOmKDY21n6Lj48PeG32jr+CUZ9Wev4AAADKjI4/AAAAAAAAz87L4G/BggUaPny43n//fXXp0sXjvmPHjtWpU6fstwMHDgS8PktBi1+YbdQnuR8AAECZscYfAAAAAACAZ+fdqM/33ntP9957rxYsWKDevXuXuH9UVJSioqKCUFkhS0HQF56f+9HvBwAA4Ad0/AEAAAAAAHgW0uAvKytLu3btst/fs2ePtm3bppo1a+qSSy7R2LFjdfDgQb3zzjuS8sd7JiYm6pVXXlG7du105MgRSVKlSpUUGxsbkp+hOMMw7EFfOB1/AAAAfsMafwAAAAAAAJ6FdNTn5s2b1bp1a7Vu3VqSlJKSotatW2v8+PGSpMOHD2v//v32/WfNmqW8vDw99NBDqlevnv02evTokNTviqVIyGdb44/cDwAAoOzOnSvs+GPUJwAAAAAAgLOQdvx17NhRhod2uNTUVIf769atC2xBfmAp8vOEF8SqVlr+AAAAysxioeMPAAAAAADAk5B2/FVEVjr+AAAAAoJRnwAAAAAAAJ4R/PlZ0VGfBUv8scYfAACAH1gshaM+Cf4AAAAAAACcEfz5mW3UZ5hJMtmCvxDWAwAAUFEU7fhjjT8AAAAAAABnBH9+Zhv1GWYyyWwb9UnyBwAAUGZ5eXT8AQAAAAAAeELw52e2jj+zSSpo+JOVnj8AAIAys1hY4w8AAAAAAMATgj8/sxSMnQorEvzR8QcAAFB2jPoEAAAAAADwjODPz2zdfWEmE2v8AQAA+JHFwqhPAAAAAAAATwj+/MzW8Wem4w8AAMCvinb8EfwBAAAAAAA4I/jzM2tByBdmNslU0PJH7gcAAFB2tjX+TCZGfQIAAAAAALhC8OdnloL2PrMKP1yDlj8AAIAyo+MPAAAAAADAM4I/P7M4dPzl/50L0gEAAMouL481/gAAAAAAADwh+PMza0F3Xxhr/AEAAPiVbdQnwR8AAAAAAIBrBH9+Zuv4M5skM2v8AQAA+A2jPgEAAAAAADwj+POzwo4/Ex1/AAAAfmSxMOoTAAAAAADAE4I/P7Ov8WeSfY0/g54/AACAMmPUJwAAAAAAgGcEf35mKWjvMxfp+LOS+wEAAJRZ0Y4/qzXU1QAAAAAAAJQ/BH9+ZnXZ8QcAAICyYo0/AAAAAAAAzwj+/Kxw1Cdr/AEAAPhTXh5r/AEAAAAAAHhC8OdnVvuoz/xxnxIdfwAAAGVlteZfTEXHHwAAAAAAgHsEf37mquPPSssfAABAmdiCPlvwxxp/AAAAAAAAzgj+/MxiLez4s63xBwAAgLIpHvzR8QcAAAAAAOCM4M/PrPaOPxXp+AtZOQAA4AIwY8YMJSQkKDo6Wu3atdPXX3/tdt/U1FSZTCaHW3R0dBCr9U1eXv6fBH8AAAAAAADuEfz5maVgrGeYyWTv+CP3AwAAgbJw4UKlpKRowoQJ2rp1q1q2bKnu3bvr6NGjbp9TrVo1HT582H7bt29fECv2jS34M5sZ9QkAAAAAAOAOwZ+f2db4M5slc0HPH0v8AQCAQJk2bZpGjBihpKQkNWvWTDNnzlTlypU1e/Zst88xmUyqW7eu/RYXFxfEin3DqE8AAAAAAICSEfz5WeGoz8KOPys9fwAAIAByc3O1ZcsWdenSxb7NbDarS5cu2rRpk9vnZWVlqWHDhoqPj9dtt92mH3/80e2+OTk5ysjIcLiFQtFRn2FhBH8AAAAAAACuEPz5WeGoz8I1/uj4AwAAgXD8+HFZLBanjr24uDgdOXLE5XMuv/xyzZ49Wx999JHmzp0rq9Wq66+/Xr///rvL/adMmaLY2Fj7LT4+3u8/hzdsQZ/ZLJlMBH8AAAAAAACuEPz5ma3jz8wafwAAoBxq3769hg4dqlatWqlDhw5asmSJateurTfeeMPl/mPHjtWpU6fstwMHDgS54nxFO/5Y4w8AAAAAAMC18FAXUNG47PgLXTkAAKACq1WrlsLCwpSenu6wPT09XXXr1vXqNSIiItS6dWvt2rXL5eNRUVGKiooqc61lVbTjj1GfAAAAAAAArtHx52cWhzX+8qM/Rn0CAIBAiIyMVJs2bZSWlmbfZrValZaWpvbt23v1GhaLRd9//73q1asXqDL9omjHH6M+AQAAAAAAXKPjz8+sBSmf2VSYqhr0/AEAgABJSUlRYmKirrnmGrVt21bTp09Xdna2kpKSJElDhw5VgwYNNGXKFEnS5MmTdd1116lp06Y6efKkXnzxRe3bt0/Dhw8P5Y9RIkZ9AgAAAAAAlIzgz88KO/5kX+PPSu4HAAACZODAgTp27JjGjx+vI0eOqFWrVlqxYoXi4uIkSfv375fZXDjk4c8//9SIESN05MgR1ahRQ23atNHGjRvVrFmzUP0IXrF1+IWFMeoTAAAAAADAHYI/P6seGaY6layqFG5mjT8AABAUycnJSk5OdvnYunXrHO6//PLLevnll4NQlX8x6hMAAAAAAKBkBH9+1uOSGPvfj5zOP0PFGn8AAABlYwv6zOb8G8EfAAAAAACAM3PJu6CsCP4AAADKpmjHX1gYa/wBAAAAAAC4QvAXQOaCWZ8Gwz4BAADKpHjHH8EfAAAAAACAM4K/ALKt8cd5KQAAgLJhjT8AAAAAAICSEfwFkMnW8UfDHwAAQJnYgj86/gAAAAAAANwj+AsgW8cfuR8AAEDZ2Dr8bGv80fEHAAAAAADgjOAvgMwFLX90/AEAAJQNoz4BAAAAAABKRvAXQIUdfyR/AAAAZVG0489ccATLuE8AAAAAAABHBH8BxBp/AAAA/lG04y8sLP/vBH8AAAAAAACOCP4CyNbxxzkpAACAsrEFf2ZzYccf4z4BAAAAAAAcEfwFEB1/AAAA/lF01KftGIvgDwAAAAAAwBHBXwCZC3r+yP0AAADKpmjHH6M+AQAAAAAAXCP4CyBTkb8btP0BAAD4rGjHH6M+AQAAAAAAXCP4CyBTkeSP2A8AAMB3to4/Rn0CAAAAAAC4R/AXQEU7/qwkfwAAAD6zhXxFR30S/AEAAAAAADgi+AsgOv4AAAD8Iy9PCg/P/7tt1Cdr/AEAAAAAADgi+Asgc5HkjyX+AAAAfJeXVxj4scYfAAAAAACAawR/AVR01KdBzx8AAIDPLJbCEZ8EfwAAAAAAAK4R/AWQw6hPcj8AAACf5eU5B3+M+gQAAAAAAHBE8BdAjh1/AAAA8BUdfwAAAAAAACUj+AugosGfleQPAADAZ646/gj+AAAAAAAAHBH8BZCpyKxPcj8AAADfWSyFgR+jPgEAAAAAAFwj+Asw2wdssMgfAACAz+j4AwAAAAAAKBnBX4DZmv64IB0AAMB3eXnOHX8EfwAAAAAAAI4I/gLMNuyThj8AAADfWSx0/AEAAAAAAJQkpMHf+vXr1adPH9WvX18mk0kffvhhic9Zt26d/vKXvygqKkpNmzZVampqwOssC3NByx+5HwAAgO9cjfpkjT8AAAAAAABHIQ3+srOz1bJlS82YMcOr/ffs2aPevXurU6dO2rZtm/7+979r+PDhWrlyZYAr9R0dfwAAAGVHxx8AAAAAAEDJwkP55j179lTPnj293n/mzJlq1KiRpk6dKkm68sor9eWXX+rll19W9+7dA1VmmdjW+DPo+QMAAPCZq44/gj8AAAAAAABH59Uaf5s2bVKXLl0ctnXv3l2bNm0KUUUlo+MPAACg7PLyCgM/Rn0CAAAAAAC4FtKOv9I6cuSI4uLiHLbFxcUpIyNDZ86cUaVKlZyek5OTo5ycHPv9jIyMgNdZlK3jj/NSAAAAvmPUJwAAAAAAQMnOq44/X0yZMkWxsbH2W3x8fFDfn44/AACAsnPV8UfwBwAAAAAA4Oi8Cv7q1q2r9PR0h23p6emqVq2ay24/SRo7dqxOnTplvx04cCAYpdqZC1r+yP0AAAB8R8cfAAAAAABAyc6rUZ/t27fX8uXLHbZ99tlnat++vdvnREVFKSoqKtCluVXY8Uf0BwAA4CvW+AMAAAAAAChZSDv+srKytG3bNm3btk2StGfPHm3btk379++XlN+tN3ToUPv+f/vb3/Tbb7/pn//8p37++We99tprev/99zVmzJhQlO8V2xp/xH4AAAC+s1gKAz9b5x8dfwAAAAAAAI5CGvxt3rxZrVu3VuvWrSVJKSkpat26tcaPHy9JOnz4sD0ElKRGjRpp2bJl+uyzz9SyZUtNnTpVb731lrp37x6S+r1h6/izkvwBAAD4LC+vMPCzXVhF8AcAAAAAAOAopKM+O3bs6HEEZmpqqsvnfPvttwGsyr/o+AMAACg7Rn0CAAAAAACULKQdfxcCc0HPH0v8AQAA+M5iKez4Y9QnAAAAAACAawR/AVbY8UfyBwAA4KuiHX+M+gQAAAAAAHCN4C/AbGv80fEHAADgu6Jr/NkCQII/AAAAAAAARwR/AcYafwAAAGVXNPiz/ckafwAAAAAAAI7CQ11ARWfr+LOS/AEAAPjMYpEiI/P/TscfAACAZ2+88YaysrJCWkNMTIxGjhwZ0hoAALgQEfwFmKmg5Y/cDwAAwHdFO/5Y4w8AAMCzrKwsZWZmhroMAAAQAgR/AWabpWoQ/QEAAPiMUZ8AAAC+qVSpktO2M2fOeHy8LIq+NgAACD6CvwCzXZHOqE8AAADfWSyFgR+jPgEAALxTqVIl9e7d22n7smXLdObMGbePl4XttQEAQGiYS94FZWFb44/cDwAAwHd5eYWBH6M+AQAAAAAAXCP4CzDbiSmD5A8AAMBnRTv+pPy/E/wBAAAAAAA4IvgLMFNBzx+5HwAAgO+KrvEn5Xf/scYfAAAAAACAI4K/ADPbO/6I/gAAAHxVdNSnlP93Ov4AAAAAAAAcEfwFGGv8AQAAlF3xUZ8EfwAAAAAAAM4I/gLMtsafleQPAADAZ8U7/sLCGPUJAAAAAABQHMFfgNHxBwAAUHZ0/AEAAAAAAJSM4C/ATAUtfyzxBwAA4Lu8PMfgz2Qi+AMAAAAAACiO4C/AbB+wQc8fAACAz4p3/IWFEfwBAAAAAAAUR/AXYLY1/uj4AwAA8F3xjj+zmTX+AAAAAAAAiiP4CzDbGn+clwIAAPCdxZIf9tmwxh8AAAAAAIAzgr8AswV/dPwBAAD4rvioT4I/AAAAAAAAZwR/AWYumPVJ7gcAAOC7vDznjj9GfQIAAAAAADgi+AsSg5Y/AAAAnxgGHX8AAAAAAADeIPgLMHPBrE9iPwAAAN/YOvtY4w8AAAAAAMAzgr8AK5j0KSvJHwAAgE9sAR8dfwAAAAAAAJ4R/AVYQe5Hxx8AAICP8vLy/ywe/LHGHwAAAAAAgCOCvwAzF7T8scQfAACAb2zBH6M+AQAAAAAAPCP4C7DCjj+SPwAAAF/YOvsY9QkAAAAAAOAZwV+A2db4o+MPAADAN7aAz3ZcJTHqEwAAAAAAwBWCvwBjjT8AABBoM2bMUEJCgqKjo9WuXTt9/fXXXj1vwYIFMplM6tevX2ALLCNbwFd01KfJRMcfAAAAAABAcQR/AWYL/qwkfwAAIAAWLlyolJQUTZgwQVu3blXLli3VvXt3HT161OPz9u7dq0cffVQ33XRTkCr1navgLyyM4A8AAAAAAKA4gr8AMxXMpCL3AwAAgTBt2jSNGDFCSUlJatasmWbOnKnKlStr9uzZbp9jsVh09913a9KkSWrcuHEQq/UNoz4BAAAAAAC8Q/AXYLYP2GCRPwAA4Ge5ubnasmWLunTpYt9mNpvVpUsXbdq0ye3zJk+erDp16ui+++4r8T1ycnKUkZHhcAs2Vx1/ZjMdfwAAAAAAAMUR/AWY7cp0Yj8AAOBvx48fl8ViUVxcnMP2uLg4HTlyxOVzvvzyS/33v//Vm2++6dV7TJkyRbGxsfZbfHx8mesuLdb4AwAAAAAA8A7BX4Cxxh8AACgvMjMzNWTIEL355puqVauWV88ZO3asTp06Zb8dOHAgwFU6o+MPAAAAAADAO+GhLqCio+MPAAAESq1atRQWFqb09HSH7enp6apbt67T/rt379bevXvVp08f+zZrQaoWHh6uX375RU2aNHF4TlRUlKKiogJQvfdY4w8AAAAAAMA7dPwFmKmg548l/gAAgL9FRkaqTZs2SktLs2+zWq1KS0tT+/btnfa/4oor9P3332vbtm32W9++fdWpUydt27YtJGM8vUHHHwAAAAAAgHfo+Asws73jj+QPAAD4X0pKihITE3XNNdeobdu2mj59urKzs5WUlCRJGjp0qBo0aKApU6YoOjpazZs3d3h+9erVJclpe3lC8AcAAAAAAOAdgr8As02kouMPAAAEwsCBA3Xs2DGNHz9eR44cUatWrbRixQrFxcVJkvbv3y+z+fwe8sCoTwAAAAAAAO8Q/AWY7QQV56UAAECgJCcnKzk52eVj69at8/jc1NRU/xfkZ7aALyyscBsdfwAAAAAAAM7O78u/zwN0/AEAAJSNLfgr3vGXlxeaegAAAAAAAMorgr8AMxWcoSL3AwAA8I2ts481/gAAAAAAADwj+Asw2wds0PIHAADgE1vHX/HgjzX+AAAAAAAAHLHGX4DZRlIR+wEAAPjG3ahPOv4AAAAcvfHGG8rKylJ2dnaoSzkv2T6/mJgYjRw5MtTlAADgE4K/ALOdn7KS/AEAAPiEUZ8AAADeycrKUmZmpn3pGZSO7fMDAOB8xqjPAKPjDwAAoGzcdfwx6hMAAAAAAMARwV+AmQt6/ljiDwAAwDe2gC8srHAbHX8AAAAAAADOCP4Czd7xR/IHAADgC9b4AwAAAAAA8A7BX4DZPmA6/gAAAHzDGn8AAAAAAADeIfgLMNb4AwAAKBtbx1/x4I81/gAAAAAAABwR/AWYbSKVleQPAADAJ4z6BAAAAAAA8A7BX4CZC85QkfsBAAD4hlGfAAAAAAAA3iH4CzDbhekG0R8AAIBPGPUJAAAAAADgHYK/ALOv8UfuBwAA4BN3wR8dfwAAAAAAAI4I/gKssOMPAAAAvrAFfKzxBwAAAAAA4BnBX4DZTlBZSf4AAAB8QscfAAAAAACAdwj+AsxU0PNH7gcAAOAbV8FfWBhr/AEAAAAAABRH8BdgZvsaf0R/AAAAvnA16tNkouMPAAAAAACguJAHfzNmzFBCQoKio6PVrl07ff311x73nz59ui6//HJVqlRJ8fHxGjNmjM6ePRukakuPNf4AAEBxv/32W6hLOK/YOvvCwgq3MeoTAAAAAADAWUiDv4ULFyolJUUTJkzQ1q1b1bJlS3Xv3l1Hjx51uf/8+fP1+OOPa8KECdqxY4f++9//auHChXriiSeCXLn3TPaOv9DWAQAAyo+mTZuqU6dOmjt3brm+gKm8sAV/RTv+GPUJAAAAAADgLKTB37Rp0zRixAglJSWpWbNmmjlzpipXrqzZs2e73H/jxo264YYbNHjwYCUkJKhbt24aNGhQiV2CoUTHHwAAKG7r1q1q0aKFUlJSVLduXY0cObJcH8+Emqs1/hj1CQAAAAAA4CxkwV9ubq62bNmiLl26FBZjNqtLly7atGmTy+dcf/312rJli/3E2G+//ably5erV69eQanZF6aCS9OtJH8AAKBAq1at9Morr+jQoUOaPXu2Dh8+rBtvvFHNmzfXtGnTdOzYsVCXWK64WuPPbKbjDwAAAAAAoLiQBX/Hjx+XxWJRXFycw/a4uDgdOXLE5XMGDx6syZMn68Ybb1RERISaNGmijh07ehz1mZOTo4yMDIdbMNk+YIOePwAAUEx4eLjuuOMOLVq0SC+88IJ27dqlRx99VPHx8Ro6dKgOHz4c6hLLBVcdf6zxBwAAAAAA4Myn4K9x48b6448/nLafPHlSjRs3LnNR7qxbt07PPfecXnvtNW3dulVLlizRsmXL9PTTT7t9zpQpUxQbG2u/xcfHB6w+V1jjDwAAuLN582Y9+OCDqlevnqZNm6ZHH31Uu3fv1meffaZDhw7ptttuC3WJ5YKr4I81/gAAAAAAAJyF+/KkvXv3yuLiEuucnBwdPHjQq9eoVauWwsLClJ6e7rA9PT1ddevWdfmcp556SkOGDNHw4cMlSVdffbWys7N1//33a9y4cTKbnXPMsWPHKiUlxX4/IyMjqOGfbSIV56UAAIDNtGnTNGfOHP3yyy/q1auX3nnnHfXq1ct+LNOoUSOlpqYqISEhtIWWE65GfbLGHwAAAAAAgLNSBX8ff/yx/e8rV65UbGys/b7FYlFaWprXJ6giIyPVpk0bpaWlqV+/fpIkq9WqtLQ0JScnu3zO6dOnncK9sLAwSZLhpqUuKipKUVFRXtUUCPYTVHT8AQCAAq+//rruvfdeDRs2TPXq1XO5T506dfTf//43yJWVT1ZrfodfUYz6BAAA/paXl6d169Zp9+7dGjx4sKpWrapDhw6pWrVqiomJCXV5AAAAXilV8GcL6EwmkxITEx0ei4iIUEJCgqZOner166WkpCgxMVHXXHON2rZtq+nTpys7O1tJSUmSpKFDh6pBgwaaMmWKJKlPnz6aNm2aWrdurXbt2mnXrl166qmn1KdPH3sAWN6YCnr+6PgDAAA2n332mS655BKnC5oMw9CBAwd0ySWXKDIy0ul460JltTp2+0n5QaBh5N+KPwYAAFBa+/btU48ePbR//37l5OSoa9euqlq1ql544QXl5ORo5syZoS4RAADAK6UK/qwFC6k0atRI33zzjWrVqlWmNx84cKCOHTum8ePH68iRI2rVqpVWrFihuLg4SdL+/fsdTog9+eSTMplMevLJJ3Xw4EHVrl1bffr00bPPPlumOgLJ3vDHIn8AAKBAkyZNdPjwYdWpU8dh+4kTJ9SoUSOXI9UvZBaL4/p+UmHY56obEAAAoLRGjx6ta665Rtu3b9dFF11k33777bdrxIgRIawMAACgdHxa42/Pnj1+KyA5OdntaM9169Y53A8PD9eECRM0YcIEv71/oJkLTkoR+wEAABt3FwRlZWUpOjo6yNWUf1arc/Bnu2+xEPwBAICy++KLL7Rx40ZFRkY6bE9ISNDBgwdDVBUAAEDp+RT8SVJaWprS0tJ09OhReyegzezZs8tcWEVhuxqdhj8AAJCSkiIpf2z6+PHjVblyZftjFotF//vf/9SqVasQVVd+uQr+bGEfzZEAAMAfrFary6kLv//+u6pWrRqCigAAAHzjU/A3adIkTZ48Wddcc43q1asnEwuruGX7ZFjjDwAAfPvtt5LyO/6+//57hyvKIyMj1bJlSz366KOhKq/cKmnUJwAAQFl169ZN06dP16xZsyTlX6iVlZWlCRMmqFevXiGuDgAAwHs+BX8zZ85UamqqhgwZ4u96KhyziVmfAAAg39q1ayVJSUlJeuWVV1StWrUQV3R+KGnUJwAAQFlNnTpV3bt3V7NmzXT27FkNHjxYO3fuVK1atfTee++FujwAAACv+RT85ebm6vrrr/d3LRVSYccfyR8AAMg3Z86cUJdwXrFaCzv8bBj1CQAA/Oniiy/W9u3btWDBAn333XfKysrSfffdp7vvvluVKlUKdXkAAABe8yn4Gz58uObPn6+nnnrK3/VUOKzxBwAAJOmOO+5QamqqqlWrpjvuuMPjvkuWLAlSVecHTx1/jPoEAAD+Eh4ernvuuSfUZQAAAJSJT8Hf2bNnNWvWLK1evVotWrRQRESEw+PTpk3zS3EVge3idHI/AAAubLGxsfZ1kWNjY0NczfnF0xp/dPwBAAB/eOeddzw+PnTo0CBVAgAAUDY+BX/fffedWrVqJUn64YcfHB4zFZ/DdIGzfRxWkj8AAC5oRcd7MuqzdFx1/DHqEwAA+NPo0aMd7p87d06nT59WZGSkKleuTPAHAADOGz4Ff2vXrvV3HRWWqaDnj9wPAADYnDlzRoZhqHLlypKkffv2aenSpWrWrJm6desW4urKH1dr/DHqEwAA+NOff/7ptG3nzp164IEH9I9//CMEFQEAAPjGXPIuKIuiH7DBQn8AAEDSbbfdZh8ndfLkSbVt21ZTp07Vbbfdptdffz3E1ZU/jPoEAAChcOmll+r555936gYEAAAoz3zq+OvUqZPHkZ5r1qzxuaCKpujHZKhwzT8AAHDh2rp1q15++WVJ0uLFi1W3bl19++23+uCDDzR+/Hg98MADIa6wfGHUJwAACJXw8HAdOnQo1GUgCCZOnGj/e2ZmpsN9AABKo0mTJhoyZEjI3t+n4M+2vp/NuXPntG3bNv3www9KTEz0R10VRtGgzyD5AwAAkk6fPq2qVatKklatWqU77rhDZrNZ1113nfbt2xfi6sofV8Gf7T7BHwAA8IePP/7Y4b5hGDp8+LD+85//6IYbbghRVQgWQj4AgD/t3r1bkyZN0oQJE0Ly/j4Ff7Yr1IubOHGisrKyylRQRVO84w8AAKBp06b68MMPdfvtt2vlypUaM2aMJOno0aOqVq1aiKsrfywW1vgDAACB1a9fP4f7JpNJtWvX1i233KKpU6eGpigEBaEfACAQDMPQu+++G5LOP5+CP3fuuecetW3bVi+99JI/X/a8ZirS4mcl+QMAAJLGjx+vwYMHa8yYMercubPat28vKb/7r3Xr1iGurvyh4w8AAASaNUBXE+Xk5CgnJ8d+PyMjIyDvU5xhhP4kVFZWFqEpAOCCtnv37pC8r1+Dv02bNik6OtqfL3neMzt0/DHrEwAASP3799eNN96ow4cPq2XLlvbtnTt31u233x7CysonT2v85eUFvx4AAABvTZkyRZMmTQp1GSFhGIYyMzNDXQYAABccn4K/O+64w+G+be755s2b9dRTT/mlsIrCaY0/AAAASXXr1lXdunUdtrVt2zZE1ZRvrkZ92oI/Ov4AAICvUlJSvN532rRpPr3H2LFjHd4nIyND8fHxPr3W+cZkMikmJibUZZSIcBIAUNH4FPzFxsY63Debzbr88ss1efJkdevWzS+FVRSs8QcAAIrLzs7W888/r7S0NB09etRptNRvv/0WosrKJ6u1MOizsd0/dy749QAAgIrh22+/9Wo/U/ErkEohKipKUVFRPj/fVyaTKeTjPmNiYvTII4+EtAZvsMYfACBQmjRpEpL39Sn4mzNnjr/rqLDo+AMAAMUNHz5cn3/+uYYMGaJ69eqV6WTShcBqdd/xx6hPAADgq7Vr14a6BJQDEydOJPwDAPidyWTSkCFDQvLeZVrjb8uWLdqxY4ck6aqrrlLr1q39UlRFUvREXmCWiQYAAOebTz/9VMuWLdMNN9wQ6lLOC55GfRL8AQAAoKwI/wAA/tSkSZOQhX6Sj8Hf0aNHddddd2ndunWqXr26JOnkyZPq1KmTFixYoNq1a/uzxvOeWfmhn8GwTwAAIKlGjRqqWbNmqMs4b1itktnsuI1RnwAAwN82b96s999/X/v371dubq7DY0uWLAlRVQiWiRMnaurUqcrMzFTVqlXPizGlAAC4Yi55F2cPP/ywMjMz9eOPP+rEiRM6ceKEfvjhB2VkZGjUqFH+rvG8Z7tCnVGfAABAkp5++mmNHz9ep0+fDnUp5wVXwV94weVrdPwBAAB/WLBgga6//nrt2LFDS5cu1blz5/Tjjz9qzZo1io2NDXV5AAAAXvOp42/FihVavXq1rrzySvu2Zs2aacaMGerWrZvfiqsobJOpyP0AAIAkTZ06Vbt371ZcXJwSEhIUERHh8PjWrVtDVFn55Knjj+APAAD4w3PPPaeXX35ZDz30kKpWrapXXnlFjRo10siRI1WvXr1QlwcAAOA1n4I/q9XqdIJKkiIiImS1spJdcSaTJIOOPwAAkK9fv36hLuG84mmNP0Z9AgAAf9i9e7d69+4tSYqMjFR2drZMJpPGjBmjW265RZMmTQpxhQAAAN7xKfi75ZZbNHr0aL333nuqX7++JOngwYMaM2aMOnfu7NcCKwKz8pM/cj8AACBJEyZMCHUJ5xVGfQIAgECrUaOGMjMzJUkNGjTQDz/8oKuvvlonT55kPDsAADiv+LTG33/+8x9lZGQoISFBTZo0UZMmTdSoUSNlZGTo1Vdf9XeN57+CK9SttPwBAIACJ0+e1FtvvaWxY8fqxIkTkvJHfB48eDDElZU/Vqv7jj+CPwAAUBY//PCDJOnmm2/WZ599Jkm68847NXr0aI0YMUKDBg3iIncAAHBe8anjLz4+Xlu3btXq1av1888/S5KuvPJKdenSxa/FVRS2dJXcDwAASNJ3332nLl26KDY2Vnv37tWIESNUs2ZNLVmyRPv379c777wT6hLLFYvF/Rp/jPoEAABl0aJFC1177bXq16+f7rzzTknSuHHjFBERoY0bN+qvf/2rnnzyyRBXCQAA4L1SdfytWbNGzZo1U0ZGhkwmk7p27aqHH35YDz/8sK699lpdddVV+uKLLwJV63nLdoU6uR8AAJCklJQUDRs2TDt37lR0dLR9e69evbR+/foQVlY+MeoTAAAEyueff66rrrpKU6ZM0ZVXXqnExERt2LBBjz/+uD7++GNNnTpVNWrUCHWZAAAAXitV8Dd9+nSNGDFC1apVc3osNjZWI0eO1LRp0/xWXEVhm0xlJfkDAACSvvnmG40cOdJpe4MGDXTkyJEQVFS+uRr1aQsCCf4AAEBZ3HTTTZo9e7YOHz6sV199VXv37lWHDh102WWX6YUXXuDYDAAAnHdKFfxt375dPXr0cPt4t27dtGXLljIXVdGEFZypIvcDAACSFBUVpYyMDKftv/76q2rXrh2Ciso3V6M+Tab8cZ+M+gQAAP5QpUoVJSUl6fPPP9evv/6qO++8UzNmzNAll1yivn37hro8AAAAr5Uq+EtPT1dERITbx8PDw3Xs2LEyF1XR2K5Qt7DIHwAAkNS3b19NnjxZ5wpSK5PJpP379+uxxx7TX//61xBXV/64GvUp5Y/7pOMPAAD4W9OmTfXEE0/oySefVNWqVbVs2bJQlwQAAOC1UgV/DRo00A8//OD28e+++0716tUrc1EVja3jj1GfAABAkqZOnaqsrCzVrl1bZ86cUYcOHdS0aVNVrVpVzz77bKjLK3dcjfqU8jv+CP4AAIA/rV+/XsOGDVPdunX1j3/8Q3fccYc2bNgQ6rIAAAC8Fl6anXv16qWnnnpKPXr0UHR0tMNjZ86c0YQJE3Trrbf6tcCKwEzHHwAAKCI2NlafffaZNmzYoO3btysrK0t/+ctf1KVLl1CXVi65GvUpMeoTAAD4x6FDh5SamqrU1FTt2rVL119/vf79739rwIABqlKlSqjLAwAAKJVSBX9PPvmklixZossuu0zJycm6/PLLJUk///yzZsyYIYvFonHjxgWk0POZLfgj9wMAAFarVampqVqyZIn27t0rk8mkRo0aqW7dujIMQyZXrW0XOIvFdccfoz4BAEBZ9ezZU6tXr1atWrU0dOhQ3XvvvfbzXQAAAOejUgV/cXFx2rhxox544AGNHTtWRkGSZTKZ1L17d82YMUNxcXEBKfR8Zi44U2Uh+AMA4IJmGIb69u2r5cuXq2XLlrr66qtlGIZ27NihYcOGacmSJfrwww9DXWa5426NP0Z9AgCAsoqIiNDixYt16623KiwsLNTlAAAAlFmpgj9JatiwoZYvX64///xTu3btkmEYuvTSS1WjRo1A1FchhBVcoW6l5Q8AgAtaamqq1q9fr7S0NHXq1MnhsTVr1qhfv3565513NHTo0BBVWD55Cv4Y9QkAAMri448/DnUJAAAAfuXiFIp3atSooWuvvVZt27Yl9CuB2R78hbYOAAAQWu+9956eeOIJp9BPkm655RY9/vjjmjdvXggqK98Y9QkAAAAAAOAdn4M/eM+s/DNVBH8AAFzYvvvuO/Xo0cPt4z179tT27dtL/bozZsxQQkKCoqOj1a5dO3399ddu912yZImuueYaVa9eXVWqVFGrVq307rvvlvo9g4lRnwAAAAAAAN4h+AsCW8efhVGfAABc0E6cOOFxPeS4uDj9+eefpXrNhQsXKiUlRRMmTNDWrVvVsmVLde/eXUePHnW5f82aNTVu3Dht2rRJ3333nZKSkpSUlKSVK1eW6n2DiVGfAAAAAAAA3in1Gn8o2YkTJ5SZmWm/n3M2SlK4jv3xh/ZllXxZetWqVVWzZs0AVggAAELBYrEoPNz94VdYWJjyStnCNm3aNI0YMUJJSUmSpJkzZ2rZsmWaPXu2Hn/8caf9O3bs6HB/9OjRevvtt/Xll1+qe/fupXrvYGHUJwAAAAAAgHcI/vzsxIkTatK0qU4WuVr/7pfmqPktt2rsE+P09Qdvl/ga1WvU0O5duwj/AACoYAzD0LBhwxQVFeXy8ZycnFK9Xm5urrZs2aKxY8fat5nNZnXp0kWbNm3yqp41a9bol19+0QsvvOC2pqJ1ZWRklKpGf7Ba87v7ijObCf4AAAAAAACKIvjzs8zMTJ38809NXrhCF9WtL0k6HV1deZIGPfKUEkc94vH5fxw5pPEDeygzM5PgDwCACiYxMbHEfYYOHer16x0/flwWi8VpfGhcXJx+/vlnt887deqUGjRooJycHIWFhem1115T165dXe47ZcoUTZo0yeuaAsFqdd3xxxp/AAAAAAAAjgj+AuSiuvVVu8ElkqT003nKyjNUJbaGqkfVCnFlAAAgVObMmRPqEiTljxXftm2bsrKylJaWppSUFDVu3NhpDKgkjR07VikpKfb7GRkZio+PD2K1+aM+Xa3xFx7OGn8AAAAAAABFEfwFge0KdSO0ZQAAgAqmVq1aCgsLU3p6usP29PR01a1b1+3zzGazmjZtKklq1aqVduzYoSlTprgM/qKiotyOJg0Wq9V18EfHHwAAAAAAgCMXp1AAAABwPoiMjFSbNm2UlpZm32a1WpWWlqb27dt7/TpWq7XU6wsGk7tRn6zxBwAAAAAA4IiOvyAwySTJoOMPAAD4XUpKihITE3XNNdeobdu2mj59urKzs5WUlCQpf83ABg0aaMqUKZLy1+y75ppr1KRJE+Xk5Gj58uV699139frrr4fyx/CIUZ8AAAAAAADeIfgLAvuoT5I/AADgZwMHDtSxY8c0fvx4HTlyRK1atdKKFSsUFxcnSdq/f7/MRVKz7OxsPfjgg/r9999VqVIlXXHFFZo7d64GDhwYqh+hRO46/hj1CQAAAAAA4IjgDwAA4DyXnJys5ORkl4+tW7fO4f4zzzyjZ555JghV+Y/Vmh/yFUfwBwAAAAAA4Ig1/oLAdoE6DX8AAACl56njLzc3+PUAAAAAAACUVwR/AAAAKNfcrfFHxx8AAAAAAIAjgr8gYI0/AAAA31mtBH8AAAAAAADeIPgLgsJRnyR/AAAApeVu1Gd4uHTuXPDrAQAAAAAAKK8I/oKI2A8AAKD0GPUJAAAAAADgnfBQF3AhsF+gTvIHAABQaoz6BAAA8E5MTIwkKTs7WwZrzpSa7fOz/QkAwPmI4C8I7Gv8hbYMAACA85Kn4I9RnwAAAIVGjhwpSZo6daoyMzNDXM35x/b5AQBwPmPUJwAAAMo1i8X9Gn90/AEAAAAAABQi+AsCU8GwTzr+AAAASo9RnwAAAAAAAN4h+AsC2wXqjFYHAAAoPUZ9AgAAAAAAeIfgLxhcjKYCAACAd6xW16M+6fgDAAAAAABwFPLgb8aMGUpISFB0dLTatWunr7/+2uP+J0+e1EMPPaR69eopKipKl112mZYvXx6kan1j7/gLaRUAAADnJ0Z9AgAAAAAAeCc8lG++cOFCpaSkaObMmWrXrp2mT5+u7t2765dfflGdOnWc9s/NzVXXrl1Vp04dLV68WA0aNNC+fftUvXr14BdfCgR/AAAAvmPUJwAAAAAAgHdCGvxNmzZNI0aMUFJSkiRp5syZWrZsmWbPnq3HH3/caf/Zs2frxIkT2rhxoyIiIiRJCQkJwSy5bEj+AAAASs3dqM/wcMliCX49AAAAAAAA5VXIRn3m5uZqy5Yt6tKlS2ExZrO6dOmiTZs2uXzOxx9/rPbt2+uhhx5SXFycmjdvrueee04WD2d8cnJylJGR4XALNtuJKoPkDwAAoNQsFkZ9AgAAAAAAeCNkwd/x48dlsVgUFxfnsD0uLk5Hjhxx+ZzffvtNixcvlsVi0fLly/XUU09p6tSpeuaZZ9y+z5QpUxQbG2u/xcfH+/Xn8AajPgEAAHzHqE8AAAAAAADvhCz484XValWdOnU0a9YstWnTRgMHDtS4ceM0c+ZMt88ZO3asTp06Zb8dOHAgiBUDAACgLAwj/+Yq+LON+jS4ugoAAAAAAEBSCNf4q1WrlsLCwpSenu6wPT09XXXr1nX5nHr16ikiIkJhYWH2bVdeeaWOHDmi3NxcRUZGOj0nKipKUVFR/i2+lOwdf5yUAgAAKBWrNf9PV2v82Q4JLZb8EBAAAAAAAOBCF7KOv8jISLVp00ZpaWn2bVarVWlpaWrfvr3L59xwww3atWuXrLYzQJJ+/fVX1atXz2XoV16YCs5UkfsBAACUju2wz92oT4lxnwAAAAAAADYhHfWZkpKiN998U2+//bZ27NihBx54QNnZ2UpKSpIkDR06VGPHjrXv/8ADD+jEiRMaPXq0fv31Vy1btkzPPfecHnrooVD9CAAAAAggb4K/vLzg1QMAAAAAAFCehXQo0sCBA3Xs2DGNHz9eR44cUatWrbRixQrFxcVJkvbv3y9zkbM88fHxWrlypcaMGaMWLVqoQYMGGj16tB577LFQ/QhesY/6DGkVAAAA5x+LJf9PT6M+Cf4AAAAAAADyhXw1lOTkZCUnJ7t8bN26dU7b2rdvr6+++irAVQUIyR8AAECp2Dr+iizxbMeoTwAAAAAAAEchHfV5obBdoU7uBwAAUDq24M9Vx194wSVsdPwBAAAAAADkI/gLAkZ9AgAA+MY26pM1/gAAAAAAAEpG8BdkhkH8BwAA4C1bxx/BHwAAAAAAQMkI/oLA1WgqAAAAlMybUZ+s8QcAAAAAAJCP4C8Iip6not8PAADAe4z6BAAAAAAA8B7BHwAAAMotTx1/BH8AAAAAAACOCP6CwKHjj5Y/AAAAr9mCP1vIVxSjPgEAAAAAABwR/AUZuR8AAID36PgDAAAAAADwHsFfEJhcnakCAABAiVjjDwAAAAAAwHsEf0Fii/7o+AMAAPCerePPU/DHqE8AAAAAAIB8BH9BYg/+SP4AAAC8xqhPAAAAAAAA7xH8BQvTPgEAAEqNUZ8AAAAAAADeI/gLEkZ9AgAAlJ6nUZ/h4fl/MuoTAAAAAAAgH8FfkBQGf0R/AAAA3vJmjT86/gAAAAAAAPIR/AUbuR8AAIDXbKM+WeMPAAAAAACgZAR/QWI7WUXuBwAA4D1GfQIAAAAAAHiP4C/ICP4AAAC8x6hPAAAAAAAA7xH8BYmL6VQAAAAoAaM+AQAAAAAAvEfwFySmgujPoOUPAADAa546/kym/PCPUZ8AAAAAAAD5wkNdwAWDlj8AAIBS8xT8SfnBHx1/AAAArp05c0bLli1zud3T42V9TwAAEDoEf0Fiy/1o+AMAAPAewR8AAEDZlBTEEdQBAFCxEPwFCcEfAABA6Xla40+SwsMZ9QkAAFBcTExMqEsoFzUAAHAhIvgLMtb4AwAA8B4dfwAAAKU3cuTIUJcAAABCxM0pFPibu6vUAQAA4B7BHwAAAAAAgPcI/oKkcNQnLX8AAADeYtQnAAAAAACA9wj+AAAAUG7ZOv7Cwlw/TscfAAAAAABAIYK/ILFdpc4afwAAAN6zBX/uOv4I/gAAAAAAAAoR/AVJ4ahPAAAAeMs26tPdGn+M+gQAAAAAAChE8AcAAIByy9bx5y74o+MPAAAAAACgEMFfkJgKev4Y9QkAAOA9Rn0CAAAAAAB4j+AvSOxr/IW2DAAAgPNKSaM+w8IY9QkAAAAAAGBD8AcAAIByi44/AAAAAAAA7xH8BYntXBUdfwAAAN6zBX9hYa4fJ/gDAAAAAAAoRPAXJPbgj+QPAADAa950/DHqEwAAAAAAIB/BX7C4OVkFAAAA97xZ44+OPwAAAAAAgHwEf0FSOOqTlj8AAABv2Tr+CP4AAAAAAABKRvAXZMR+AAAA3itp1Gd4OMEfAAAAAACADcFfkNjPVZH8AQAAeK2kUZ9ms5SbG7x6AAAAAAAAyjOCvyCxXaVO7gcAAOA9qzX/OMpdxx+jPgEAAAAAAAoR/AEAAKDcslrdd/tJjPoEAAAAAAAoiuAvSEwFwz7p+AMAAPCexeK+20/K7/g7dy549QAAAAAAAJRnBH9BYjtfZZD8AQAAeM1qzQ/33GHUJwAAAAAAQCGCv2BhjT8AABAgM2bMUEJCgqKjo9WuXTt9/fXXbvd98803ddNNN6lGjRqqUaOGunTp4nH/ULOt8ecOoz4BAAAAAAAKEfwFiYfzVQAAAD5buHChUlJSNGHCBG3dulUtW7ZU9+7ddfToUZf7r1u3ToMGDdLatWu1adMmxcfHq1u3bjp48GCQK/eOxeJ5jT9GfQIAAAAAABQi+AsS+6jPkFYBAAAqmmnTpmnEiBFKSkpSs2bNNHPmTFWuXFmzZ892uf+8efP04IMPqlWrVrriiiv01ltvyWq1Ki0tLciVe8dqLTn4o+MPAAAAAAAgH8FfsJH8AQAAP8nNzdWWLVvUpUsX+zaz2awuXbpo06ZNXr3G6dOnde7cOdWsWdPl4zk5OcrIyHC4BVNJwR+jPgEAAAAAAAoR/AWJyb7GH8kfAADwj+PHj8tisSguLs5he1xcnI4cOeLVazz22GOqX7++Q3hY1JQpUxQbG2u/xcfHl7nu0ihpjT9GfQIAAAAAABQi+AsSRn0CAIDy5vnnn9eCBQu0dOlSRUdHu9xn7NixOnXqlP124MCBoNbozRp/dPwBAAAAAADkCw91AQAAAPBNrVq1FBYWpvT0dIft6enpqlu3rsfnvvTSS3r++ee1evVqtWjRwu1+UVFRioqK8ku9vmCNPwAAAAAAAO/R8Rck9o4/Wv4AAICfREZGqk2bNkpLS7Nvs1qtSktLU/v27d0+71//+peefvpprVixQtdcc00wSvWZN8Efoz4BAAAAAADy0fEXJKaCxWnI/QAAgD+lpKQoMTFR11xzjdq2bavp06crOztbSUlJkqShQ4eqQYMGmjJliiTphRde0Pjx4zV//nwlJCTY1wKMiYlRTExMyH4OdyyWktf4s1iCVw8AAAAAAEB5RvAHAABwHhs4cKCOHTum8ePH68iRI2rVqpVWrFihuLg4SdL+/ftlLtIy9/rrrys3N1f9+/d3eJ0JEyZo4sSJwSzdK1ZrfrjnTng4oz4BAAAAAABsCP6CxD7qM6RVAACAiig5OVnJyckuH1u3bp3D/b179wa+ID+yWkvu+GPUJwAAAAAAQD7W+AsS2wkr1vgDAADwnsVS8hp/eXkcYwEAAAAAAEgEfwAAACjHrNaSgz/bfgAAAAAAABc6gr8gYdQnAABA6ZU06jO8YHA94z4BAAAAAAAI/kLCYBYVAACAV7wZ9Snlj/sEAAAAAAC40JWL4G/GjBlKSEhQdHS02rVrp6+//tqr5y1YsEAmk0n9+vULbIF+4OlKdQAAALhWUscfwR8AAAAAAEChkAd/CxcuVEpKiiZMmKCtW7eqZcuW6t69u44ePerxeXv37tWjjz6qm266KUiVlk3R81X0+wEAAHjHai0M91yxPcaoTwAAAAAAgHIQ/E2bNk0jRoxQUlKSmjVrppkzZ6py5cqaPXu22+dYLBbdfffdmjRpkho3bhzEagEAABBMdPwBAAAAAAB4L6TBX25urrZs2aIuXbrYt5nNZnXp0kWbNm1y+7zJkyerTp06uu+++0p8j5ycHGVkZDjcQsGh44+WPwAAAK9YLAR/AAAAAAAA3gpp8Hf8+HFZLBbFxcU5bI+Li9ORI0dcPufLL7/Uf//7X7355ptevceUKVMUGxtrv8XHx5e5bl+YipyxIvcDAADwTkmjPsPD8/9k1CcAAAAAAEA5GPVZGpmZmRoyZIjefPNN1apVy6vnjB07VqdOnbLfDhw4EOAqAQAA4C+M+gQAAAAAAPBeeCjfvFatWgoLC1N6errD9vT0dNWtW9dp/927d2vv3r3q06ePfZvVapUkhYeH65dfflGTJk0cnhMVFaWoqKgAVF96JuV3+9HxBwAA4B2LRTJ7uFSN4A8AAAAAAKBQSDv+IiMj1aZNG6Wlpdm3Wa1WpaWlqX379k77X3HFFfr++++1bds2+61v377q1KmTtm3bFrIxnt6yXazOGn8AAADesVo9B3+M+gQAAAAAACgU0o4/SUpJSVFiYqKuueYatW3bVtOnT1d2draSkpIkSUOHDlWDBg00ZcoURUdHq3nz5g7Pr169uiQ5bS+XbC1/AAAA8AqjPgEAAAAAALwX8uBv4MCBOnbsmMaPH68jR46oVatWWrFiheLi4iRJ+/fvl9nTZd7nEXvHX0irAAAAOH9YLAR/AAAAAAAA3gp58CdJycnJSk5OdvnYunXrPD43NTXV/wUFSGHwZxS5BwAAAHe8HfVJ8AcAAAAAABDiNf4uWLT8AQAAeKWk4M/W8ccafwAAAAAAAAR/QWUbU0XuBwAA4B1GfQIAAAAAAHiP4C8ECP4AAAC8Y7US/AEAAAAAAHiL4C+IWNUPAACgdKzWwnDPFUZ9AgAAAAAAFCL4CyJTQfRn0PIHAADgFUZ9AgAAAAAAeI/gL4hY4w8AAKB0rFbJ7OGINTw8/0+CPwAAAAAAAII/AAAAlGMWi+fgj1GfAAAAAAAAhQj+gsg2pYqOPwAAAO9YrYz6BAAAAAAA8BbBXwiwxh8AAIB3vO34I/gDAAAAAAAg+AsqT1erAwAAwFlJa/yZzfk3Rn0CAAAAAAAQ/AVV4ahPWv4AAAC8UdKoTym/64+OPwAAAAAAAII/AAAAlGMljfqUpPBwgj8AAAAAAACJ4C+obFers8YfAACAd0oa9Snld/wx6hMAAAAAAIDgL6gKR30CAADAG94Gf3T8AQAAAAAAEPwBAACgHLNYSl7jj1GfAAAAAAAA+Qj+gshU0PPHqE8AAADvMOoTAAAAAADAewR/QWRf4y+0ZQAAAJw3GPUJAAAAAADgPYI/AAAAlFuM+gQAAAAAAPAewV8Q2c5Z0fEHAADgHUZ9AgAAAAAAeI/gL4jswR/JHwAAgFcY9QkAAAAAAOA9gr9gKmFMFQAAABx5E/xFRUnZ2cGpBwAAAAAAoDwj+AuisILgz0LLHwAAgFe8WeOvWjXpjz+CUw8AAAAAAEB5RvAXRGEFZ60s5H4AAABe8abjLzZWOnYsOPUAAAAAAACUZwR/QUTHHwAAQOl4G/wdPx6cegAAAAAAAMozgr8gsnf8WUNcCAAAwHnCm1GfBH8AAAAAAAD5CP6CyNbxZ5Vk0PUHAABQIqtVCgvzvE9srPTnn/khIQAAAAAAwIWM4C+IzEWuVmedPwAAgJJZrd51/BlGfvgHAAAAAABwISP4CyKTyVRknb/Q1gIAAHA+sFi8W+NPko4dC3w9AAAAAAAA5RnBX5AVBn8kfwAAACWxWr0P/ljnDwAAAAAAXOgI/oIsrGBWlcUa4kIAAADOA96O+pQI/gAAAAAAAAj+giys4BOn4w8AAKBk3oz6jInJDwcJ/gAAAAAAwIWO4C/IbB1/eeR+AAAAJTKMkjv+wsKkatUI/gAAAAAAAAj+gow1/gAAALznzRp/klS9OsEfAAAAAAAAwV+QscYfAACA97wN/uj4AwAAAAAAIPgLOjr+AAAAvGexlDzqUyL4AwAAAAAAkAj+gi6s4BO3kPsBAACUyGrNX8OvJLGx0rFjga8HAAAAAACgPCP4C7Jw26hPQzLo+gMAAPDIavWu4y82lo4/AAAAAAAAgr8gMxc5ccUyfwAAAO4ZRv7NmzX+CP4AAAAAAAAI/oLObDLZP3QLyR8AAIBb1oJjJW+Dv8xMKTc3sDUBAAAAAACUZwR/IVC4zh+jPgEAANyxBX/ejvqUpD/+CFw9AAAAAAAA5R3BXwiEFVnnDwAAAK5ZLPl/etvxJzHuEwAAAAAAXNgI/kIgrOCqdTr+AAAA3CvtqE9JOnYscPUAAAAAAACUdwR/IWDv+GONPwAAALd8Cf7o+AMAAAAAABcygr8QKOz4C20dAAAA5Zlt1Kc3a/xVqSKFhxP8AQAAAACACxvBXwiEFXzqjPoEAABwrzQdfyZTftcfwR8AAAAAALiQEfyFgH3UJ7kfAACAW6UJ/iSCPwAAAAAAAIK/ECgc9UnyBwAA4I4t+PNm1KdE8AcAAAAAAEDwFwL2jj9riAsBAAAox2xr/Hnb8VetmnTsWODqAQAAAAAAKO8I/kIgvOBTt0rKPuec/rXrP0xfZkZpf+a54BYGAABQjjDqEwAAAAAAoHQI/kLAbDKpemT+R3/srMVh5GduRGX1e+JFHTgXrvm7Tmn+zlM6mWMJVakAAKCcmzFjhhISEhQdHa127drp66+/drvvjz/+qL/+9a9KSEiQyWTS9OnTg1eoDwj+AAAAAAAASofgL0RqRJkVYZYshnS8IPzLPGfV2ahqkqQ64RaZTdL+rHNacSArxNUCAIDyaOHChUpJSdGECRO0detWtWzZUt27d9fRo0dd7n/69Gk1btxYzz//vOrWrRvkakvPNurT2zX+qlXLD/7y8gJXEwAAAAAAQHlG8BciZpNJdaLDJElZ5wztzczT0TMWyWTSV4vm6JaqZ5V4WXVJ0r7MczqTx4KAAADA0bRp0zRixAglJSWpWbNm/9/enYdHVd79H/+cWbOThCVhXwQFZBUEURArqVC1Qt3QQrH+WmktVCyPVq0KXrUWrMvj+kjVuj2C4FLcWlGeKGgVtaLUHQEREJKwZiEkme3+/XFIcCRAMpnkTIb367rORXLOmTPfuZNc+TKf3PfRggULlJaWpkceeaTe80888UTddtttuuiii+T3+1u42sZr7Iy/wYOlmhrpr389+Jgx0jvv2McBAAAAAACSFcGfg1I8rrolPyXJkuQNVOrFW6+VZUl5aR51SHXLSPqqLOBYnQAAIPEEAgGtXr1aBQUFdftcLpcKCgq0atUqByuLn8YGf336SGeeKV1/vbRjR/SxG26QTjlF6t9fWrrUDgIBAAAAAACSDcGfw9qmuNUz06NemR71yvIqtaZcJnJgdt9x2fZf468t5c/TAQDAATt37lQ4HFZeXl7U/ry8PBUXF8fteWpqalReXh61tZTGLvUpSZddZod61113YN8dd0h//rN08cVSu3bSuedK11wT31oBAAAAAAASAcFfAnBZlqxDvKPVN9snSfqmIqhqlvsEAAAtbN68eWrTpk3d1rVr1xZ77tq/hXK7G/6YNm2kSy+VHnlEmjRJGj9euuoqacoUafp06dZbpfPPlx5+WAoGm6VsAAAAAAAAxxD8Jbi2KR61S3ErYqT15Sz3CQAAbO3atZPb7VZJSUnU/pKSEuXn58ftea677jqVlZXVbVu2bInbtY+kNvhrzIw/Sfrxj6WJE6WiIqmy0g78fvGLA8cLCqQ9e6SVK+NXKwAAAAAAQCJIiODv/vvvV48ePZSSkqKRI0fq/fffP+S5Dz30kMaMGaOcnBzl5OSooKDgsOcng+P2z/r7spTgDwAA2Hw+n4YNG6bCwsK6fZFIRIWFhRo1alTcnsfv9ysrKytqaym1S3029B5/tdxuadYse3bfn/5kL/H53fDw2GOljh2l556LX60AAAAAAACJwPHgb8mSJZo9e7bmzp2rDz/8UIMHD9b48eO1ffv2es9fsWKFLr74Yr3xxhtatWqVunbtqjPOOENbt25t4cpbTu19/jaWB1QTZrlPAABgmz17th566CE9/vjj+uKLL3T55ZersrJSl156qSRp2rRpuu47N7sLBAJas2aN1qxZo0AgoK1bt2rNmjVav369Uy/hsGKd8XckliWNGWMHf7XhIgAAAAAAQDJwPPi78847ddlll+nSSy9V//79tWDBAqWlpemRRx6p9/yFCxfqN7/5jYYMGaK+ffvq4Ycfrvvr9mTVPsWtXL9bYSNtKOdmNAAAwDZ58mTdfvvtmjNnjoYMGaI1a9Zo2bJlysvLkyRt3rxZRUVFdedv27ZNQ4cO1dChQ1VUVKTbb79dQ4cO1S9/+UunXsJh1QZ/jZ3x1xCnnirt2CG9/Xb8rw0AAAAAAOAUj5NPHggEtHr16qi/RHe5XCooKNCqVasadI19+/YpGAwqNze3ucp0nGVZOi7bp1UlVVpbWqP+OX6nSwIAAAli5syZmjlzZr3HVqxYEfV5jx49ZIxpgariI9alPhuiXz+pfXt71t+pp8b/+gAAAAAAAE5wdMbfzp07FQ6H6/4qvVZeXp6Ki4sbdI1rrrlGnTp1UkFBQb3Ha2pqVF5eHrW1RrXLfX5dHlAg3HresAMAAIhVcy31Kdlh4ujR0rPPHngeAAAAAACA1s7xpT6bYv78+Vq8eLGWLl2qlJSUes+ZN2+e2rRpU7d17dq1hauMj7xUt9r4XApGpK8rAk6XAwAA0OxqAzm3u3muf+qp0rZt0nvvNc/1AQAAAAAAWpqjwV+7du3kdrtVUlIStb+kpET5+fmHfeztt9+u+fPn67XXXtOgQYMOed51112nsrKyum3Lli1xqb2l2ct92rP+1u6pcbgaAACA5tecM/4kaeBAKTfXnvUHAAAAAACQDBwN/nw+n4YNG6bCwsK6fZFIRIWFhRo1atQhH/eXv/xFN998s5YtW6bhw4cf9jn8fr+ysrKittaqb7ZPkrShPKhQhOU+AQBAcmvOe/xJ9kzCMWOkZ56RWtGtDwEAAAAAAA7J43QBs2fP1iWXXKLhw4drxIgRuuuuu1RZWalLL71UkjRt2jR17txZ8+bNkyTdeuutmjNnjhYtWqQePXrU3QswIyNDGRkZjr2OePv2228P2meMlOZK1b6IS+9t2KouvnC9j83MzFRubm5zlwgAANCsamf8NVfwJ0mnnSa98IL0/vvSyJHN9zwAAAAAAAAtwfHgb/LkydqxY4fmzJmj4uJiDRkyRMuWLVNeXp4kafPmzXJ9592eBx54QIFAQOeff37UdebOnaubbrqpJUtvFpXlZbJcLo0ePbre42df9Sed8tNf6e7FL+iZOTPrPSc7J0cb1q8n/AMAAK1acy/1KR1Y7vOZZwj+AAAAAABA6+d48CdJM2fO1MyZ9YdYK1asiPr8m2++af6CHFS9r1ImEtH1T7ygTt17HnQ85PZqn6QTzrpAY8eequ+/D7areJvmTJ6giooKgj8AANCqNfdSn5K93Ofo0Xbwd9ttzRsyAgAAAAAANLeECP5wsNy8jmrfudtB+40x2rQ3pLBcSu/QReleR2/TCAAA0GxaYqlPSRo7VnrxRemDD6QTT2ze5wIAAAAAAGhOpEatjGVZSvfYX7bKUMThagAAAJpPSwV/gwdLOTn2rD8AAAAAAIDWjOCvFcrw2mtQVYaMjDEOVwMAANA8apf6bO7lN2uX+3z6aYnWCgAAAAAAtGYEf61QituSy5IiRqoK8+4UAABITi0140+yl/vctMle7hMAAAAAAKC1IvhrhezlPvfP+gsS/AEAgOTUksHfkCEs9wkAAAAAAFo/gr9WKsN74D5/LPcJAACSUUst9Smx3CcAAAAAAEgOBH+tVOr+5T7DLPcJAACSVEvO+JMOLPe5enXLPB8AAAAAAEC8Efy1Ut9d7nNvMOJwNQAAAPHX0sHfkCFSdjbLfQIAAAAAgNaL4K8VO7Dcp2G5TwAAkHRaOvirXe5zyRKW+wQAAAAAAK0TwV8rluq25LakCMt9AgCAJNSS9/irdfrp9nKf773Xcs8JAAAAAAAQLwR/rZi93Kf9JWS5TwAAkGxaesafJA0aJLVvLz31VMs9JwAAAAAAQLwQ/LVyGV77T+Argyz3CQAAkosTwZ/bLY0dKy1eLIVCLfe8AAAAAAAA8UDw18ql1C73KWlfiOAPAAAkDyeW+pSkggJp+3bpjTda9nkBAAAAAACaiuCvlbMsSxne/ct9hljuEwAAJA8nZvxJ0rHHSl27SosWtezzAgAAAAAANBXBXxLI8HxnuU+HawEAAIiXSMSe7dfSM/4sS/rBD6S//12qrm7Z5wYAAAAAAGgKgr8k4Hdb8liSkRTy+J0uBwAAIC7C4Zaf7Vdr3DipvFz65z+deX4AAAAAAIBYEPwlAcuylL5/uc+gJ9XhagAAAOKjdsafE7p1s5f8fOopZ54fAAAAAAAgFgR/SSLDa78rFvL45U0h/AMAAK1fJCK53c49/2mnSS+/bM/8AwAAAAAAaA0I/pKE32Uv9ynLpeNG/9DpcgAAAJosHHZuxp8knX66fY+/F190rgYAAAAAAIDGIPhLEpZlKWP/cp+DzpjkbDEAAABxEIk4d48/ScrLkwYOlBYtcq4GAAAAAACAxiD4SyK1wV/f0QUKGoeLAQAAaCKngz9J+sEPpOXLpV27nK0DAAAAAACgIQj+kojPJbkiIXlTUrU14OANcQAAAOIgEYK/sWPtOp591tk6AAAAAAAAGoLgL4lYliVPsEqStDngcbgaAACApgkGnQ/+cnOloUOlp55ytg4AAAAAAICGIPhLMt5QtSSpKOhWdTjicDUAAACxKy+XMjKcrsJe7vPNN6WiIqcrAQAAAAAAODyCvyTjjoRUsuFLRWRpXWnA6XIAAABiVloqpac7XYU0ZozkdkvPPON0JQAAAAAAAIdH8JeEPn7teUnSl6U1zhYCAADQBKWliTHjLytLOvFEafFipysBAAAAAAA4PIK/JFQb/G0sD2pfkOU+AQBA67RnT2LM+JPs5T5XrZI2b3a6EgAAAAAAgEMj+EtCOzdtUK47rIikD3ZUOV0OAABATBJlxp8knXyy5PNJTz/tdCUAAAAAAACHRvCXpPqnBiVJq3dUqzrErD8AAND6JFLwl54unXQSy30CAAAAAIDERvCXpLp4w2qX4lZNxOjDndVOlwMAANBoiRT8SdJpp0mrV0uffOJ0JQAAAAAAAPUj+EtSliWNykuVJP17e5UCYeNwRQAAAI1TXp5Ywd/o0VLnztK11zpdCQAAAAAAQP0I/pJYvxy/cvwuVYWN3inZ53Q5AAAADVZdLdXUJFbw5/VKv/yl9M9/Sm+84XQ1AAAAAAAAByP4S2Iuy9KYjumSpHdLqrR6R5XDFQEAADRMaan9byIFf5I0dqzUr5909dVShNsoAwAAAACABEPwl+T65/h1Sr695Ofybyv16W7u9wcAABJfogZ/liX96lf2vf6eeMLpagAAAAAAAKJ5nC4AzePbb7+t+7irkfr4fVpX49XLm/bqm5LdGpAalGXV/9jMzEzl5ua2UKUAAAAHqw3+0tMdLaNegwdLZ5whXXaZlJUlnXuu0xUBAAAAAADYCP6STGV5mSyXS6NHj47ab1mWzr76zzr5ol/q02qfnl2+Uv+44wbt3Pz1QdfIzsnRhvXrCf8AAIBjEnXGX62rr5ZCIenCC6X//V/p4oudrggAAAAAAIDgL+lU76uUiUR0/RMvqFP3ngcdD1SVqjqljfqO+aH6jvmhPKFq+QKV8oQDkqRdxds0Z/IEVVRUEPwBAADHJHrw5/FIf/iD5PVKP/2p9N570vz5UkqK05UBAAAAAICjGcFfksrN66j2nbvVe6wmbLS7Jqx9IaOQJ0UhT4rSPJZy/e4WrhIAAKB+paWSyyWlpjpdyaG53dLvfy/17i098ID0f/8n3XqrNGGCfQwAAAAAAKCluZwuAC3P77bUMc2jbhkeZXntb4F9IaNvK0Oq8SbgjXQAAMBRp7RUyszUIe9JnChcLun88+3gLxKRzj5b6tHDDgBrapyuDgAAAAAAHG0I/o5iXpel9qludcvwKN1jv6tWk5Kli+c/pKBxuDgAAHBUKytL3GU+69Orl3T//XYAOHiwdMMN0qBB0uuvO10ZAAAAAAA4mhD8QV6XpbxUt9qluCRjNOiMSfpnWarWltbIGBJAAADQ8kpLW1fwJ9mzE/v2la66SnrwQft+f+PGSbNnS8Gg09UBAAAAAICjAcEfJEmWZamNz620ql3avXWT9kVcWrqxQs9sKNeemrDT5QEAgKNMaamU3opXIO/ZU/rv/5ZmzJDuvVc67TTp22+drgoAAAAAACQ7gj9E8YSDuuuCMTo+JSC3JX1dEdTDX+zRW0WVCkWY/QcAAFpGaw/+pAP3//vv/5bWrZOOO85eArSszOnKAAAAAABAsiL4w0GC1VUalBbUL/rmqGemV2EjvV1cpUe+LNWWvaxTBQAAmt+ePa1vqc9DGTBAeuQRadIk6Y47pGOOkZ56SmJFdQAAAAAAEG8epwtAYvr222/VRdJIj9Qpw60PK33aXSMtXFembr6QevhCyveG5bYOfmxmZqZyc3PrPjfGaF1ZQF+XBxWMGIWMUX6qR4PapijdS/YMAAAOVloqdevmdBXxk5EhXXaZ9JOfSP/zP9JPf2qHf//zP1KXLk5XBwAAAAAAkgXBH6JUlpfJcrk0evToqP0pGVn60ZU3acS5P9PmgEebAx4FqvaprGSbyncU6dvPPtJXq97Qt59+pBSfRytWrJQyc7U96NL6Gq8qItEB39rSgN4qqlRHb1i5noiy3BG1cUeU6TJqkxUdHAIAgKNPMiz1WZ927aQ5c6TTT5fuuste/vP3v5euvlpKS2vctTZtkp59VurdWzrjDCk1tVlKBgAAAAAArQjBH6JU76uUiUR0/RMvqFP3ngcdD1fuVNCbqqAnRb7UNLXv0Vvte/TWMSeO0difXyFJikQi+mcgLHe5t+5xVeWlWv3SYpWVbJNlWRpYcI66DhymrUGPtn5n9dBwMKjyz77RsT0iyk71qW+2T32z/XK76plaCAAAklZZWfIs9Vmf0aOloUOlhQulW26xlwAdNkwaPlzq21fq00caOFDKyYl+3I4d0iuv2LMFX31VcrulUMgOSc84w94KCqRevex7DAIAAAAAgKMLwR/qlZvXUe07H3p9LWOMghEpvP/fqnBEVSGjsJFcLpf9TpOJyBMOyBOqUaZVrTPPmRh1jXDlDoXcfkXcHoVdHkVcHrm9XuV06qYdAWlHIKB1ZQG9vrVSo/LTNKxdiiyLABAAgGRXUyNVVyd38CfZYd306dLZZ0srVkhr19pBYHGxff8/l0s64QRp5Eh739q10mef2ceOP176r/+yZw7u2CG99Zb0/vvSb39rB4GpqdKxx9oBYOfOUvfudrA4bJiUleX0KwcAAAAAAM2F4A8xsSxLPrckWUqVlCWXjDFau+bf+suvpuimJcvUtUcvWZZfUmaDrmmM0faibbr9t5dq4TPPKZKRo//sqtHeYET/922ldlWH9cMu6XIR/gEAkNTKyux/kz34q9Wpk33Pv1qBgLRtm/T559Lq1dLLL9tLhPbsKZ11ljRihPTdVdG7dZOmTLG3yko7HNy0SdqyRdq6VfrPf6SiIqmqSrIs6fLLpTvvlPz+ln+tAAAAAACgeRH8IW4sy5IiEe3dvUNWJNzo2XmWZcllwtr0n/el7ZvUzRdWlwxpbbVHa6p8+mhntUrK9mp4WkDpbnPI62Rmco9AAABas9JS+9+jJfj7Pp9P6tHD3s48s3GPTU+3g8ERI6L3h8PS5s3Su+9KDz1kzw587jk7NAQAAAAAAMmD4A8JpbK8TJbLpdGjR0ftP/70szT5Tw9om1L1950RffjSYr296EFt/3rtQdfIzsnRhvXrCf8AAGiljvbgrzm43faMwZ497eVDb7pJGjRIuvdeaepUeyYgAAAAAABo/Qj+kFCq91XKRCK6/okX1Kl7z6hj4XClqkMuyevXiHOnacS50+QKB+UNVskbqpLLRLSreJvmTJ6giooKgj8AAFopgr/mddxx0l//Kt13nzRtmvT009I110gnn2zfVxAAAAAAALReBH9ISLl5HdW+c/1rT1WFIioLRFQZMoq4vapxe1WjLKW6LWV6UuXPaNg9BQEAQGIi+Gt+WVnSH/4gnXqqPetvzBgpL0+aPFmaPl06/ninKwQAAAAAALEg+EOrk+pxKdXjUtgY7Q1GtDdoVB02qgobKTVb1y//XK+WeZX2Val8LksZPpeyvG51zfCoW4a30fceBAAALau01J55lprqdCXJb/Roe6bfZ59Jb74pPfmkdM890kkn2UuAnn++HQgCAAAAAIDWgeAPrZbbstTG51YbnxSM2CFg6b4aef0p2h2WdleGDnpMltel47J9apfqUVu/Wx3TPXITBAIAkFBKS+3Zfiw72TJcLmngQHubPl16+23plVekK6+UrrjCXhq0Tx+pSxfJ47G300+Xxo+3PwYAAAAAAImD/6ojKXhdlnL8bgV37tTNv5ish55YpJx27RQwlqoilirCLm0NulUejOjfO6rrHpdqRXRMSkjH+ENKcxlJUmZmpnJzc2WMUUlVWCVVIYUjRhFJ7VPc6pzulcd1ICyMGKN9ISOXpBSPJdcRgsSIMaoJG+0LRVQVMgobo07pXnldBJAAAEgHgj+0PK9XOu00eysrk/71L2nDBmnrVumLL6RIRNq3T7rzTnsm4DnnSAMG2KHh6NH24wEAAAAAgHMI/pBU9pWXafvXa3XOyUMPOubx+dX31PHqNexktet+jDodN1DKaatPq3z6tMqnrV/8Rxv+/ZZS09J1zvmTVWqlqMocPNXALaNMd0QhYyloLAWMZHQgtPMqohSX5LPssDBgLIWMfTwiKWgkyTromvnesPK9YeW4I8pvk6a0zGzVhCNyWZZ8bktpHkt+N1MfAADJr6yM4C8RtGkjnXXWwfuNkdavl5Ytk954Q3rsMSkYlHJzpQsvlKZMsZcP/f6MzY0bpY8+knbvlvbulU44wV5S1Oc7cE44LO3caQeI2dlHnvVZWWmHkuXlUigkpaXZISQLOgAAAAAAjlYJEfzdf//9uu2221RcXKzBgwfr3nvv1YgRIw55/jPPPKMbb7xR33zzjfr06aNbb71VZ555ZgtWjERVva9SJhLR9U+8oE7dex72XKOAQlV7FPCmKez2qXO/wercb7Akqcg+QTX7KrX5P++rZl+lZEndB41QZrsOKg27o64ViUTk2v/OVFAuBSMNqLWiXJWlu+T2+pSd31lbgx5tDe7/kawwkvYc9Jg0V0RZrohclmTsEiVj1X1s9p/ncruV6vMq2+dWjt+lHL9bOX633JalylBEwYhRrt+tNj4X9zwEgCSQbL1UaamUnu50FTgUy7KX/uzTx/48HJa+/toOAZculRYskLp1s0NDj8eeIfjWW9JXXx24hs8nBQL217lrV6mmxj5v5077epLkdtthYm6uHQLu2yft2SNVVdnhYyhkB37f17mzdN55dqh43HFS27Z22FheboeZ7dvbsxVZphQAAAAAkIwc/+/ukiVLNHv2bC1YsEAjR47UXXfdpfHjx2vt2rXq0KHDQee/8847uvjiizVv3jydffbZWrRokSZNmqQPP/xQAwYMcOAVIBHl5nVU+87dGnx+KGIv11lcXKS3/v6URp05UTlZmcoMB9R+QN+684zCilTukLFckowsY2SZiCxjJ30bv/xM/zt/rn5121/VtmMnycg+XhfJqe78LEnKTpGRFKncoZAnRWG3VwFjyeX1q3pvhar3lsvt8cqXli5/Wrr2RVzaF2nArL+QpJqgpOBhT/NaRu09YXXeP9sw1WXktuzlTtvk5CgYNgpEjMJGSnFbSnFbBIUAkGCSsZci+Gtd3O4DQeAvfyl98olUWGjPCHS57ICtTx9p6lR7WdCsLDs8XL9eWr3aDuW8Xsnvl3Jy7KAvHLZnfpaVSRUV9gzBjh2lzEw7NLQs+3nbtrWDvIwM+/Pdu+17FC5ZIt1zz6Fr9nqlXr2kHj0OhI6h/beHNubA5nLZ183Ls2coDh5s1+/328ueVlfbH590kpSa2iLDDQAAAADAYTke/N1555267LLLdOmll0qSFixYoH/84x965JFHdO211x50/t13360JEybo6quvliTdfPPNWr58ue677z4tWLCgRWtH8vC4LGX5LG3bsUWv3vcnnfHjc9QxP7/R19ldvE3bN36l7Mx0dcrLi6mWL1e/qxsuPlN/eGypunXvKSkshctlKioUdnsUsaJ/bL8bKkrSzqKt+vv9tyslPUO5XXqobdeeatetl9p27SmX26O9u3coFKhR2269JK9P24IebQseuGbNvkq5PdXy+HYdVJslI58l+S0jn8vIYxl5JaW6jDLcEaW7jDJcEeW1SVde21xZliVjjELGDleD+zdJclmWLEkuy37zLhyRQsYoFJHCxj6vdp/Lsu/j6HNZ9r/uAx+7LSlspIix758YNvZCqm6X5Lbs44cLK42xl2SNGCm8P+SsvU7YGHv//n1uy6q7F2MwYhQy9iKvliSv21Ka2yWf21LYHKi9tp40j30MAOItGXupPXvsmVlofVwuOxwbPPjI5x57rL3FU8+e0rBh0hVX2GHh5s32v1lZdphcWWl/f5WUSFu2SDt22CFg27bRMwCt/f2JMXYIuWOHdN999mPrk5p64N6IJ50k9e1rX9ey7CB71y47WPT57OVI8/Ls73H+ngoAAAAAEG+OBn+BQECrV6/WddddV7fP5XKpoKBAq1atqvcxq1at0uzZs6P2jR8/Xs8//3xzlgq0KBOJNHrWYq3yb7/W52/8o57lTqukiNQ+O0VSikz1LkUCHoU8fgU9KYq47Hen/GnRUyzCwaDCoYB8qekyslRjpBpj2TcsPGQRRtqyS5bM/ljS2Xe1XDJyaX/IKHtJ1IixX0KkBWtzy8hjSR7L1PustRGuMdFvBFr1/Fv7ZmRk/+PcktyWPWPTZYxcLtWFkt+/Tr0fWwf2me8sXXvg3Oiv5Pcf891j3318vc9pHeaakvw+n1JTU6Oub+3/qHZcvvvavruv7in276w7zzr4eQ487sC5339NhxOv75x4vekbt3oacqX4nBKfx9XzgOPa+I6a2cnJ2kuVltrLNQJNkZEh9e8fv+sZY89ArK6272noctlBXkWF9O9/29tNN9lLkTZEaqo9gzE11Q4m8/Pt7/tevewZkl272jMgs7Ls8DEUsoPLioro53C7D9wnsbra3qqq7FmMVVUH6vX7pZQU+3rZ2XbwmJ5uB5HBoH1uIGDPZDTGPjct7cDm99vPZVl2LTU19mMqK+3nCgSit+pqO3StrLQfl5Zmv9aUFPta1dX2sUjErj8lxa4rO9u+flmZfV232w5lc3PtwDQ72w5V3e4DXxep/t+nhzsGAAAAAMnK0eBv586dCofDyvvezKi8vDx9+eWX9T6muLi43vOLi4vrPb+mpkY1NTV1n5eVlUmSyuu7IUgcVFRUSJK2fr1OVZV7G/34ks3fSJKKvtkgEw7x+KPs8fGsoaZqX4O/B92SamOazRu+0uM3X6uLfneDctvnqTacqZK9ppbl9kgejyyXx37Hy+WW5fHJ8vpl+XwyLo/cXn+9zxMK1ihUUy0TMXK53bLcLrncHlmWW+FQjcI1AQVrqhUK1ihYU6NwoFqhQFAut0velDT50tLkS02XLzVNXn/zracVDtlhZyQUsoPPYFCRSEhuj09ev1+W5VKgulqhYLUkyeVyy5eartSs7INebzgQkOV2y5eS1mz1Jp8aSRVOF4FW7HeDcpsl+KvtHUztO8kJIBl7KcmeHfXPf9pBAdBaHH+8PdNv82apuPhAgJaebgd8Hs+BwGzPHntZ0tJSaft2+/GffOJo+UDdTFfpwHK3icay7P+C1Nb63Zprj3/33+8/tj61r/NIr/n7533/3O9fv/acyCH+YPK7tR6qttpjta/5++fHu92xLGn6dOnGG+3njLdE7KWcUPv6m7OXAgAAyadRvZRx0NatW40k884770Ttv/rqq82IESPqfYzX6zWLFi2K2nf//febDh061Hv+3Llzjezkgo2NjY2NjY2tyduWLVvi0wjFAb0UGxsbGxsbW2vbEqmXcsKWLVsc/xqwsbGxsbGxtd6tIb2UozP+2rVrJ7fbrZKSkqj9JSUlyj/E/dXy8/Mbdf51110XtZxVJBLR7t271bZt22abDdC1a1dt2bJFWVlZcb/+0YAxbBrGr+kYw6Zh/JqG8Wu65hpDY4wqKirUqVOnuF2zqZKxl6oPPxexY+xix9jFjrGLDeMWO8Yudi05donYSzmhU6dO2rJlizIzM3lfKkExhk3D+DUdY9g0jF/TMH5NlwjvSzka/Pl8Pg0bNkyFhYWaNGmSJPvNpMLCQs2cObPex4waNUqFhYW68sor6/YtX75co0aNqvd8v98vvz962cHs7Ox4lH9YWVlZ/GA0EWPYNIxf0zGGTcP4NQ3j13TNMYZt2rSJ6/WaKpl7qfrwcxE7xi52jF3sGLvYMG6xY+xi11Jjl2i9lBNcLpe6dOnS7M/Dz0PTMYZNw/g1HWPYNIxf0zB+Tefk+1KOBn+SNHv2bF1yySUaPny4RowYobvuukuVlZW69NJLJUnTpk1T586dNW/ePEnSrFmzNHbsWN1xxx0666yztHjxYn3wwQd68MEHnXwZAAAAjqCXAgAAAAAAQC3Hg7/Jkydrx44dmjNnjoqLizVkyBAtW7ZMeXl5kqTNmzfL9Z27Sp988slatGiRbrjhBv3hD39Qnz599Pzzz2vAgAFOvQQAAADH0EsBAAAAAACgluPBnyTNnDnzkMtRrVix4qB9F1xwgS644IJmrio2fr9fc+fOPWhJLDQcY9g0jF/TMYZNw/g1DePXdEfjGCZTL1Wfo/FrGi+MXewYu9gxdrFh3GLH2MWOsUs+fE2bjjFsGsav6RjDpmH8mobxa7pEGEPLGGMce3YAAAAAAAAAAAAAceE68ikAAAAAAAAAAAAAEh3BHwAAAAAAAAAAAJAECP4AAAAAAAAAAACAJEDwF2f333+/evTooZSUFI0cOVLvv/++0yUlpDfffFM//vGP1alTJ1mWpeeffz7quDFGc+bMUceOHZWamqqCggKtW7fOmWIT0Lx583TiiScqMzNTHTp00KRJk7R27dqoc6qrqzVjxgy1bdtWGRkZOu+881RSUuJQxYnngQce0KBBg5SVlaWsrCyNGjVKr7zySt1xxq9x5s+fL8uydOWVV9btYwwP76abbpJlWVFb3759644zfke2detWTZ06VW3btlVqaqoGDhyoDz74oO44v0uSB/3VkdFbxYaeKnb0UvFBD9Vw9E5NQ9909KBvahh6p6ahh2o6eqn4oqdqPHqrpkvk/orgL46WLFmi2bNna+7cufrwww81ePBgjR8/Xtu3b3e6tIRTWVmpwYMH6/7776/3+F/+8hfdc889WrBggd577z2lp6dr/Pjxqq6ubuFKE9PKlSs1Y8YMvfvuu1q+fLmCwaDOOOMMVVZW1p3zu9/9Ti+99JKeeeYZrVy5Utu2bdO5557rYNWJpUuXLpo/f75Wr16tDz74QKeffromTpyozz77TBLj1xj//ve/9de//lWDBg2K2s8YHtnxxx+voqKiuu1f//pX3THG7/D27NmjU045RV6vV6+88oo+//xz3XHHHcrJyak7h98lyYH+qmHorWJDTxU7eqmmo4dqPHqn2NA3HT3omxqO3qlp6KGajl4qfuipYkdvFbuE768M4mbEiBFmxowZdZ+Hw2HTqVMnM2/ePAerSnySzNKlS+s+j0QiJj8/39x22211+0pLS43f7zdPPfWUAxUmvu3btxtJZuXKlcYYe7y8Xq955pln6s754osvjCSzatUqp8pMeDk5Oebhhx9m/BqhoqLC9OnTxyxfvtyMHTvWzJo1yxjD92BDzJ071wwePLjeY4zfkV1zzTVm9OjRhzzO75LkQX/VePRWsaOnahp6qYajh2o8eqfY0TcdPeibYkPv1HT0UPFBL9V49FSxo7dqmkTvr5jxFyeBQECrV69WQUFB3T6Xy6WCggKtWrXKwcpan40bN6q4uDhqLNu0aaORI0cylodQVlYmScrNzZUkrV69WsFgMGoM+/btq27dujGG9QiHw1q8eLEqKys1atQoxq8RZsyYobPOOitqrCS+Bxtq3bp16tSpk3r16qUpU6Zo8+bNkhi/hnjxxRc1fPhwXXDBBerQoYOGDh2qhx56qO44v0uSA/1VfPDz0HD0VLGhl2o8eqjY0DvFhr7p6EDfFD/8TDQePVTT0EvFjp6qaeitYpfo/RXBX5zs3LlT4XBYeXl5Ufvz8vJUXFzsUFWtU+14MZYNE4lEdOWVV+qUU07RgAEDJNlj6PP5lJ2dHXUuYxjtk08+UUZGhvx+v379619r6dKl6t+/P+PXQIsXL9aHH36oefPmHXSMMTyykSNH6rHHHtOyZcv0wAMPaOPGjRozZowqKioYvwb4+uuv9cADD6hPnz569dVXdfnll+uKK67Q448/LonfJcmC/io++HloGHqqxqOXig09VGzonWJH33R0oG+KH34mGoceKnb0Uk1DT9U09FZNk+j9lafZnwFAs5oxY4Y+/fTTqDWY0TDHHXec1qxZo7KyMj377LO65JJLtHLlSqfLahW2bNmiWbNmafny5UpJSXG6nFbpRz/6Ud3HgwYN0siRI9W9e3c9/fTTSk1NdbCy1iESiWj48OH685//LEkaOnSoPv30Uy1YsECXXHKJw9UBaI3oqRqPXqrx6KFiR+8UO/omAM2JHip29FKxo6dqOnqrpkn0/ooZf3HSrl07ud1ulZSURO0vKSlRfn6+Q1W1TrXjxVge2cyZM/Xyyy/rjTfeUJcuXer25+fnKxAIqLS0NOp8xjCaz+dT7969NWzYMM2bN0+DBw/W3Xffzfg1wOrVq7V9+3adcMIJ8ng88ng8Wrlype655x55PB7l5eUxho2UnZ2tY489VuvXr+d7sAE6duyo/v37R+3r169f3bIU/C5JDvRX8cHPw5HRU8WGXqrx6KHih96p4eibjg70TfHDz0TD0UM1Db1U7Oip4o/eqnESvb8i+IsTn8+nYcOGqbCwsG5fJBJRYWGhRo0a5WBlrU/Pnj2Vn58fNZbl5eV67733GMv9jDGaOXOmli5dqtdff109e/aMOj5s2DB5vd6oMVy7dq02b97MGB5GJBJRTU0N49cA48aN0yeffKI1a9bUbcOHD9eUKVPqPmYMG2fv3r3asGGDOnbsyPdgA5xyyilau3Zt1L6vvvpK3bt3l8TvkmRBfxUf/DwcGj1VfNFLHRk9VPzQOzUcfdPRgb4pfviZODJ6qOZBL9Vw9FTxR2/VOAnfXxnEzeLFi43f7zePPfaY+fzzz8306dNNdna2KS4udrq0hFNRUWE++ugj89FHHxlJ5s477zQfffSR2bRpkzHGmPnz55vs7GzzwgsvmI8//thMnDjR9OzZ01RVVTlceWK4/PLLTZs2bcyKFStMUVFR3bZv3766c37961+bbt26mddff9188MEHZtSoUWbUqFEOVp1Yrr32WrNy5UqzceNG8/HHH5trr73WWJZlXnvtNWMM4xeLsWPHmlmzZtV9zhge3n/913+ZFStWmI0bN5q3337bFBQUmHbt2pnt27cbYxi/I3n//feNx+Mxt9xyi1m3bp1ZuHChSUtLM08++WTdOfwuSQ70Vw1DbxUbeqrY0UvFDz1Uw9A7xY6+6ehB39Rw9E5NQw/VdPRS8UdP1Tj0Vk2T6P0VwV+c3XvvvaZbt27G5/OZESNGmHfffdfpkhLSG2+8YSQdtF1yySXGGGMikYi58cYbTV5envH7/WbcuHFm7dq1zhadQOobO0nm0UcfrTunqqrK/OY3vzE5OTkmLS3N/OQnPzFFRUXOFZ1g/t//+3+me/fuxufzmfbt25tx48bVNVfGMH6x+H6DxRge3uTJk03Hjh2Nz+cznTt3NpMnTzbr16+vO874HdlLL71kBgwYYPx+v+nbt6958MEHo47zuyR50F8dGb1VbOipYkcvFT/0UA1D79Q09E1HD/qmhqF3ahp6qKajl4o/eqrGobdqukTuryxjjGneOYUAAAAAAAAAAAAAmhv3+AMAAAAAAAAAAACSAMEfAAAAAAAAAAAAkAQI/gAAAAAAAAAAAIAkQPAHAAAAAAAAAAAAJAGCPwAAAAAAAAAAACAJEPwBAAAAAAAAAAAASYDgDwAAAAAAAAAAAEgCBH8AAAAAAAAAAABAEiD4A4AmOu2003TllVc6XQYAAECrRC8FAAAQO3opAN9H8AfAMT//+c9lWdZB24QJE+rO6dGjR93+1NRU9ejRQxdeeKFef/31eq9ZVVWl3NxctWvXTjU1NS31UgAAAFocvRQAAEDs6KUAJCuCPwCOmjBhgoqKiqK2p556KuqcP/7xjyoqKtLatWv1xBNPKDs7WwUFBbrlllsOut5zzz2n448/Xn379tXzzz/fQq8CAADAGfRSAAAAsaOXApCMCP4AOMrv9ys/Pz9qy8nJiTonMzNT+fn56tatm0499VQ9+OCDuvHGGzVnzhytXbs26ty//e1vmjp1qqZOnaq//e1vh33u1157TSkpKSotLY3aP2vWLJ1++umSpF27duniiy9W586dlZaWpoEDBx7UAH6fZVkHNXfZ2dl67LHH6j7fsmWLLrzwQmVnZys3N1cTJ07UN998U3d8xYoVGjFihNLT05Wdna1TTjlFmzZtOuzzAgCAow+9FL0UAACIHb0UvRSQjAj+ALRKs2bNkjFGL7zwQt2+DRs2aNWqVbrwwgt14YUX6q233jpsUzJu3DhlZ2frueeeq9sXDoe1ZMkSTZkyRZJUXV2tYcOG6R//+Ic+/fRTTZ8+XT/72c/0/vvvx1x7MBjU+PHjlZmZqbfeektvv/22MjIyNGHCBAUCAYVCIU2aNEljx47Vxx9/rFWrVmn69OmyLCvm5wQAAPgueikAAIDY0UsBSGQEfwAc9fLLLysjIyNq+/Of/3zEx+Xm5qpDhw5Rf430yCOP6Ec/+pFycnKUm5ur8ePH69FHHz3kNdxuty666CItWrSobl9hYaFKS0t13nnnSZI6d+6sq666SkOGDFGvXr3029/+VhMmTNDTTz8d82tesmSJIpGIHn74YQ0cOFD9+vXTo48+qs2bN2vFihUqLy9XWVmZzj77bB1zzDHq16+fLrnkEnXr1i3m5wQAAMmJXopeCgAAxI5eil4KSEYEfwAc9YMf/EBr1qyJ2n7961836LHGmLq/NgqHw3r88cc1derUuuNTp07VY489pkgkcshrTJkyRStWrNC2bdskSQsXLtRZZ52l7OzsuuvefPPNGjhwoHJzc5WRkaFXX31VmzdvjvEVS//5z3+0fv16ZWZm1jWVubm5qq6u1oYNG5Sbm6uf//znGj9+vH784x/r7rvvVlFRUczPBwAAkhe9FL0UAACIHb0UvRSQjDxOFwDg6Jaenq7evXs3+nG7du3Sjh071LNnT0nSq6++qq1bt2ry5MlR54XDYRUWFuqHP/xhvdc58cQTdcwxx2jx4sW6/PLLtXTp0qg1z2+77TbdfffduuuuuzRw4EClp6fryiuvVCAQOGRtlmXJGBO1LxgM1n28d+9eDRs2TAsXLjzose3bt5ckPfroo7riiiu0bNkyLVmyRDfccIOWL1+uk0466fADAwAAjir0UtHopQAAQGPQS0WjlwKSA8EfgFbp7rvvlsvl0qRJkyTZN0++6KKLdP3110edd8stt+hvf/vbIRssyf7rqoULF6pLly5yuVw666yz6o69/fbbmjhxYt1fbEUiEX311Vfq37//Ia/Xvn37qL+EWrdunfbt21f3+QknnKAlS5aoQ4cOysrKOuR1hg4dqqFDh+q6667TqFGjtGjRIhosAAAQF/RSAAAAsaOXApDICP4AOKqmpkbFxcVR+zwej9q1a1f3eUVFhYqLixUMBrVx40Y9+eSTevjhhzVv3jz17t1bO3bs0EsvvaQXX3xRAwYMiLrWtGnT9JOf/ES7d+9Wbm5uvTVMmTJFN910k2655Radf/758vv9dcf69OmjZ599Vu+8845ycnJ05513qqSk5LAN1umnn6777rtPo0aNUjgc1jXXXCOv1xv1fLfddpsmTpyoP/7xj+rSpYs2bdqkv//97/r973+vYDCoBx98UOecc446deqktWvXat26dZo2bVqjxhYAACQ/eil6KQAAEDt6KXopIBlxjz8Ajlq2bJk6duwYtY0ePTrqnDlz5qhjx47q3bu3fvazn6msrEyFhYW65pprJElPPPGE0tPTNW7cuIOuP27cOKWmpurJJ588ZA29e/fWiBEj9PHHH2vKlClRx2644QadcMIJGj9+vE477TTl5+fX/TXXodxxxx3q2rWrxowZo5/+9Ke66qqrlJaWVnc8LS1Nb775prp166Zzzz1X/fr10y9+8QtVV1crKytLaWlp+vLLL3Xeeefp2GOP1fTp0zVjxgz96le/OtJwAgCAowy9FL0UAACIHb0UvRSQjCzz/QV/AQAAAAAAAAAAALQ6zPgDAAAAAAAAAAAAkgDBHwAAAAAAAAAAAJAECP4AAAAAAAAAAACAJEDwBwAAAAAAAAAAACQBgj8AAAAAAAAAAAAgCRD8AQAAAAAAAAAAAEmA4A8AAAAAAAAAAABIAgR/AAAAAAAAAAAAQBIg+AMAAAAAAAAAAACSAMEfAAAAAAAAAAAAkAQI/gAAAAAAAAAAAIAkQPAHAAAAAAAAAAAAJIH/D+e+dibyeTCnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Electrodermal Activity\n", + "plotGraph(data.EDA)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kgGhhJrXRx__", + "outputId": "a1d8040c-41ca-4b5f-9da8-5aa4f11e8125" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJOCAYAAAB/dnBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwoElEQVR4nOzdeXhTddrG8TvpvkOhUMpWFpF9EQVRFBCQTRAdQHFhEZUZxQXUUdQBBEd0FIRRXpEZFTdEUQRHEEHAFUQBEVFQQHZaWtYulC7Jef9IExq6t2lP03w/19Urk5OTkyed1Bxy53l+FsMwDAEAAAAAAAAAAADwalazCwAAAAAAAAAAAABQfgR/AAAAAAAAAAAAQDVA8AcAAAAAAAAAAABUAwR/AAAAAAAAAAAAQDVA8AcAAAAAAAAAAABUAwR/AAAAAAAAAAAAQDVA8AcAAAAAAAAAAABUAwR/AAAAAAAAAAAAQDVA8AcAAAAAAAAAAABUAwR/AEpk2rRpslgslfJYPXv2VM+ePV3Xv/zyS1ksFn344YeV8vhjxoxRfHx8pTxWWaWlpenOO+9UbGysLBaLHnzwQbNLAgCgTC583/d2lXnOVBm84byorAYOHKi77rrL7DLy+e233+Tv768dO3Z4/Njx8fEaM2aMx49bHrt379a1116rqKgoWSwWLVu2zOySAACoNPv375fFYtHChQvNLsXNqlWr1LFjRwUHB8tisej06dNmlwSgFAj+AB+0cOFCWSwW109wcLDi4uLUr18//fvf/1ZqaqpHHufo0aOaNm2atm3b5pHjeVJVrq0knnnmGS1cuFB/+9vf9Pbbb+v2228vdN/4+Hhdd911Bd5WUKh64evD399f9evX15gxY3TkyBGPPxcAQPk4/7u9efNmt+1nzpxRly5dFBwcrFWrVplUnefEx8e73pusVqtq1Kihdu3a6e6779amTZvMLq9IzzzzjMfDDOd7eGE/ixcvLvGxqup50aJFizRnzpwKOfZ3332n1atX69FHH3VtK+zLZllZWbruuutktVr1+uuvSyrb+bQzFC7sJzExUZLUunVrDRo0SFOmTKmQ514WFfkaGT16tH755Rf985//1Ntvv61LL720wP2cH4y+8MILBd7u/P0eP37ctW3MmDFuv+OgoCC1aNFCU6ZM0blz5zz+XAAA5rnwvdlisahOnTrq1auXPvvss0qv58JztYCAADVt2lSjRo3Sn3/+6ZHH2LBhg6ZNm+bxUO7EiRMaMWKEQkJCNG/ePL399tsKCwsrcN/C/i3i1LNnT7Vt29ZtW97zeovForCwMHXp0kVvvfWWR58H4Mv8zS4AgHmmT5+uJk2aKDs7W4mJifryyy/14IMPavbs2frkk0/Uvn17175PPvmkHnvssVId/+jRo3rqqacUHx+vjh07lvh+q1evLtXjlEVRtf3nP/+R3W6v8BrKY926dbr88ss1derUCnsM5+vj3Llz+v7777Vw4UJ9++232rFjh4KDgyvscQEA5ZeSkqJrr71W27dv18cff6z+/fubXZJHdOzYUQ899JAkKTU1VTt37tSSJUv0n//8RxMnTtTs2bNNrrDgc6ZnnnlGw4YN09ChQz3+ePfff78uu+yyfNu7detW4mNU1fOiRYsWaceOHRUy2eD5559X79691bx58yL3y87O1rBhw7Ry5Ur95z//0R133OF2e2nOp51eeeUVhYeH59teo0YN1//+61//qoEDB2rv3r1q1qxZ2Z6kB5X1vL44GRkZ2rhxo5544glNmDDBY8fNKygoSP/9738lOb4QsXz5cs2YMUN79+7Vu+++WyGPCQAwj/O92TAMHTt2TAsXLtTAgQP1v//9r9AvRVck57ladna2tm7dqgULFmjFihX65ZdfFBcXV65jb9iwQU899ZTGjBnjdh5RXj/++KNSU1M1Y8YM9enTx2PHzSvveX1CQoL++9//avTo0crMzKySExkAb0PwB/iwAQMGuH2jdvLkyVq3bp2uu+46DRkyRDt37lRISIgkyd/fX/7+FfufjLNnzyo0NFSBgYEV+jjFCQgIMPXxSyIpKUmtW7eu0MfI+/q48847Vbt2bT333HP65JNPNGLEiAp9bABA2aWmpqpfv37atm2bli5dqgEDBpT7mOfOnVNgYKCsVnMHhtSvX1+33Xab27bnnntOt9xyi1588UVddNFF+tvf/mZSdQ6Vcc6U11VXXaVhw4ZV2PG94byotJKSkrRixQrNnz+/yP2ys7M1YsQIffrpp3r11Vc1bty4fPuU5nzaadiwYapdu3aRj92nTx/VrFlTb775pqZPn16KZ+ddkpOTJcmjH1ZeyN/f3+2/G/fcc4+uuOIKvffee5o9e7bq1q1bYY8NAKh8F743jxs3TnXr1tV7771nSvCX91xt7NixatGihe6//369+eabmjx5cqXXUxJJSUmSKvb9+cLz+jFjxqhp06Z68cUXCf4AD2DUJwA311xzjf7xj3/owIEDeuedd1zbC1qvZs2aNerevbtq1Kih8PBwXXzxxXr88cclOUYaOL99PnbsWFf7vnNmubPVf8uWLbr66qsVGhrqum9ha/3YbDY9/vjjio2NVVhYmIYMGaJDhw657VPYuiV5j1lcbQWtZZOenq6HHnpIDRs2VFBQkC6++GK98MILMgzDbT+LxaIJEyZo2bJlatu2rYKCgtSmTZsSj1hLSkpynZQGBwerQ4cOevPNN123O0dF7Nu3TytWrHDVvn///hIdvzyuuuoqSdLevXsr/LEAAGWTlpam/v37a+vWrfroo480aNAgt9uPHDmiO+64Q3Xr1nW9RzlHFzo532sWL16sJ598UvXr11doaKhSUlI0ZswYhYeH68iRIxo6dKjCw8MVExOjhx9+WDabze04drtdc+bMUZs2bRQcHKy6detq/PjxOnXqlEefc0hIiN5++21FR0frn//8p9t7c0lrcI7F/vbbb13jUZs2bZpv3FB2draeeuopXXTRRQoODlatWrXUvXt3rVmzxrXPhedMFotF6enpevPNN13v22PGjNH69etlsVj08ccf53tOixYtksVi0caNGz3yOyrPOduF50V5xy3OmzdPTZs2VWhoqK699lodOnRIhmFoxowZatCggUJCQnT99dfr5MmTbvUsX75cgwYNUlxcnIKCgtSsWTPNmDHD7TXUs2dPrVixQgcOHHDVlLeOzMxMTZ06Vc2bN1dQUJAaNmyov//978rMzCz297FixQrl5OQU+Q32nJwc3XzzzVq+fLleeeWVUn0AVdj5dGkEBASoZ8+eWr58ebH7Ol9zu3bt0ogRIxQZGalatWrpgQceKNE4yz///FPDhw9XdHS0QkNDdfnll2vFihWu24t7jRTmp59+0oABAxQZGanw8HD17t1b33//vVvdjRs3liQ98sgj+f4/rigWi0Xdu3eXYRgeG7UGAKi6atSooZCQkHxfzCruc56MjAy1bNlSLVu2VEZGhut+J0+eVL169XTFFVfkO/8tiWuuuUaStG/fviL3W7duna666iqFhYWpRo0auv7667Vz507X7dOmTdMjjzwiSWrSpEmJPx9asmSJOnfurJCQENWuXVu33Xab27IuPXv21OjRoyVJl112mevctaLFxMSoZcuWfOYEeAgdfwDyuf322/X4449r9erVhX7I8euvv+q6665T+/btNX36dAUFBWnPnj367rvvJEmtWrXS9OnTNWXKFN19992u0OiKK65wHePEiRMaMGCAbr75Zt12223Fftv2n//8pywWix599FElJSVpzpw56tOnj7Zt25bvm9RFKUlteRmGoSFDhmj9+vUaN26cOnbsqM8//1yPPPKIjhw5ohdffNFt/2+//VZLly7VPffco4iICP373//WX/7yFx08eFC1atUqtK6MjAz17NlTe/bs0YQJE9SkSRMtWbJEY8aM0enTp/XAAw+oVatWevvttzVx4kQ1aNDANRYhJiamyOecnZ3ttt6J05kzZ4q8X17Ok8eaNWuW+D4AgMqTnp6uAQMG6Mcff9SHH36Y7xvNx44d0+WXX+76kkpMTIw+++wzjRs3TikpKfnGKc6YMUOBgYF6+OGHlZmZ6erIt9ls6tevn7p27aoXXnhBX3zxhWbNmqVmzZq5dduNHz9eCxcu1NixY3X//fdr3759evnll/XTTz/pu+++82gnWXh4uG644Qa99tpr+u2339SmTZtS17Bnzx4NGzZM48aN0+jRo/X6669rzJgx6ty5s+t406ZN08yZM3XnnXeqS5cuSklJ0ebNm7V161b17du3wNrefvtt1/533323JKlZs2a6/PLL1bBhQ7377ru64YYb3O7z7rvvqlmzZiUa15mamlrge3ytWrVksVg8cs5WkHfffVdZWVm67777dPLkSf3rX//SiBEjdM011+jLL7/Uo48+qj179uill17Sww8/7BYwL1y4UOHh4Zo0aZLCw8O1bt06TZkyRSkpKXr++eclSU888YTOnDmjw4cPu861nOMx7Xa7hgwZom+//VZ33323WrVqpV9++UUvvvii/vjjj2LXU9ywYYNq1arlCp0ulJOTo5EjR+rjjz/WvHnzNH78+CKPV5CizqcvDEIlR1fahd+q79y5s5YvX66UlBRFRkYW+5gjRoxQfHy8Zs6cqe+//17//ve/derUqSLXyzl27JiuuOIKnT17Vvfff79q1aqlN998U0OGDNGHH36oG264oUyvkV9//VVXXXWVIiMj9fe//10BAQF69dVX1bNnT3311Vfq2rWrbrzxRtWoUUMTJ07UyJEjNXDgwAJHoF7o7NmzBb7mz549W+x9nTivBYDq68yZMzp+/LgMw1BSUpJeeuklpaWluXWXleRznpCQEL355pu68sor9cQTT7hGyt977706c+aMFi5cKD8/v1LX5wy2ivp86IsvvtCAAQPUtGlTTZs2TRkZGXrppZd05ZVXauvWrYqPj9eNN96oP/74Q++9955efPFF1zSBoj4fcp4XX3bZZZo5c6aOHTumuXPn6rvvvtNPP/2kGjVq6IknntDFF1+sBQsWuMamlmTsuPP3fqHs7Oxi7ys5zr8OHz7MezPgKQYAn/PGG28Ykowff/yx0H2ioqKMTp06ua5PnTrVyPufjBdffNGQZCQnJxd6jB9//NGQZLzxxhv5buvRo4chyZg/f36Bt/Xo0cN1ff369YYko379+kZKSopr+wcffGBIMubOneva1rhxY2P06NHFHrOo2kaPHm00btzYdX3ZsmWGJOPpp59222/YsGGGxWIx9uzZ49omyQgMDHTb9vPPPxuSjJdeeinfY+U1Z84cQ5LxzjvvuLZlZWUZ3bp1M8LDw92ee+PGjY1BgwYVeby8+0oq8mfJkiWu/Z2vjy+++MJITk42Dh06ZHz44YdGTEyMERQUZBw6dKhEjwsAqBzO/243btzYCAgIMJYtW1bgfuPGjTPq1atnHD9+3G37zTffbERFRRlnz541DOP8+27Tpk1d25xGjx5tSDKmT5/utr1Tp05G586dXde/+eYbQ5Lx7rvvuu23atWqfNsvfI8uTHHvfc5zk+XLl5e6Bud75ddff+3alpSUZAQFBRkPPfSQa1uHDh2Kff+98JzJMAwjLCyswPOTyZMnG0FBQcbp06fdHtff39+YOnVqkY/j/P+psJ+EhAS330tZz9kuPC/at2+fIcmIiYlxq3vy5MmGJKNDhw5Gdna2a/vIkSONwMBA49y5c65tF76uDMMwxo8fb4SGhrrtN2jQILfHdnr77bcNq9VqfPPNN27b58+fb0gyvvvuu0Kfq2EYRvfu3d1er07O36nz9TBv3rxCj1Ge8+mCfi6++OJ891+0aJEhydi0aVORz8d53CFDhrhtv+eeewxJxs8//+zaduG58oMPPmhIcvtdpqamGk2aNDHi4+MNm81mGEbRr5GCDB061AgMDDT27t3r2nb06FEjIiLCuPrqq13bnK+n559/vthjOvct7ifva3306NFGWFiYkZycbCQnJxt79uwxXnjhBcNisRht27Y17HZ7iZ4PAKDqc743X/gTFBRkLFy40G3f0nzOM3nyZMNqtRpff/21sWTJEkOSMWfOnGLrcZ5XvP7660ZycrJx9OhRY8WKFUZ8fLxhsVhc5xDO97e877EdO3Y06tSpY5w4ccK17eeffzasVqsxatQo17bnn3/ekGTs27ev2HqysrKMOnXqGG3btjUyMjJc2z/99FNDkjFlyhTXtpKc51y4b1E/bdq0cbtP48aNjWuvvdb1/vzLL78Yt99+uyHJuPfee4t9TADFY9QngAKFh4crNTW10Nud30hevny57HZ7mR4jKChIY8eOLfH+o0aNUkREhOv6sGHDVK9ePa1cubJMj19SK1eulJ+fn+6//3637Q899JAMw9Bnn33mtr1Pnz5u34Zq3769IiMjix0ltHLlSsXGxmrkyJGubQEBAbr//vuVlpamr776qszPoWvXrlqzZk2+nxdeeKHQ+/Tp00cxMTFq2LChhg0bprCwMH3yySdq0KBBmesAAFScY8eOKTg4WA0bNsx3m2EY+uijjzR48GAZhqHjx4+7fvr166czZ85o69atbvcZPXp0oR31f/3rX92uX3XVVW7vc0uWLFFUVJT69u3r9lidO3dWeHi41q9f74Fn7M7ZKeQ8fyltDa1bt3Z1MkmOb0tffPHFbs+rRo0a+vXXX7V7926P1Dxq1ChlZmbqww8/dG17//33lZOTk28tw8JMmTKlwPf46OhoV81S+c7ZCjJ8+HBFRUW5rnft2lWSdNttt7mN0uratauysrLcRkjlfV05OxavuuoqnT17Vrt27Sr2sZcsWaJWrVqpZcuWbv/fOkdnFff6OnHiRJHfJj927Jj8/f3VpEmTYmspSmHn0x999FG+/7/eeOONfPs5ayzo2/MFuffee92u33fffZJU5LnyypUr1aVLF3Xv3t2t7rvvvlv79+/Xb7/9VqLHzstms2n16tUaOnSomjZt6tper1493XLLLfr222+VkpJS6uM63X333QW+5m+//fYC909PT1dMTIxiYmLUvHlzPfzww7ryyiu1fPnyfEsZAAC837x581zvDe+884569eqlO++8U0uXLnXtU5rPeaZNm6Y2bdpo9OjRuueee9SjR4989yvKHXfcoZiYGMXFxWnQoEGuEfB51yHMKyEhQdu2bdOYMWNc53OS47Olvn37lvkzsM2bNyspKUn33HOPgoODXdsHDRqkli1buo35Lou8v/e8P+3bty9w/9WrV7ven9u1a6e3335bY8eOdU1/AFA+jPosxtdff63nn39eW7ZsUUJCgj7++GMNHTq0VMcwDEOzZs3SggULdODAAdWuXVv33HOPnnjiiYopGvCAtLQ01alTp9Dbb7rpJv33v//VnXfeqccee0y9e/fWjTfeqGHDhslqLdl3CurXr+8aG1YSF110kdt1i8Wi5s2bV/j6dgcOHFBcXJxb6Cg5RmM5b8+rUaNG+Y5Rs2bNYtc0OnDggC666KJ8v7/CHqc0ateuXeA6NhfOuM9r3rx5atGihc6cOaPXX39dX3/9tYKCgspcAwCgYr366quaNGmS+vfvr2+++UYXX3yx67bk5GSdPn1aCxYs0IIFCwq8f1JSktv1wkKP4ODgfCOELnyf2717t86cOVPoucSFj+UJaWlpkuR6vy5tDSV5/54+fbquv/56tWjRQm3btlX//v11++23F/qBRnFatmypyy67TO+++67GjRsnyTFC8/LLL1fz5s1LdIx27doVuVadJ87ZCnLh78sZAl4YPDu35/09/vrrr3ryySe1bt26fAFQScaQ7969Wzt37ix0lFVJXl/GBes05/Wvf/1Lc+bM0bBhw7R69WpdeeWVxR6vIIWdT1999dWucVwlqbGk4dSF58rNmjWT1Wot8lz5wIEDrtA2r7znn23bti3R4zslJyfr7Nmzbv8Nyntcu92uQ4cOuUboltZFF11U4Gv+22+/LXD/4OBg/e9//5MkHT58WP/617+UlJRUqqUCAADeo0uXLm6h2siRI9WpUydNmDBB1113nQIDA0v1OU9gYKBef/11XXbZZQoODtYbb7xRqi+OTJkyRVdddZX8/PxUu3ZttWrVqsjPYpyPXdj76Oeff6709HSFhYWVuIbijtuyZctC30dL6sLfu1PNmjUL/BJT165d9fTTT8tms2nHjh16+umnderUqVJ9TgigcAR/xUhPT1eHDh10xx136MYbbyzTMR544AGtXr1aL7zwgtq1a6eTJ08WuK4DUFUcPnxYZ86cKfIDp5CQEH399ddav369VqxYoVWrVun999/XNddco9WrV5doznlF/GO7sJMvm81WptnrZVHY4xT1AVNVlPekbejQoerevbtuueUW/f777yVafwUAULlat26tlStXqnfv3urbt6++++47Vwjj7PS67bbbNHr06ALvf2F4Vdj7dEneT+12u+rUqaN33323wNuLW5u2LHbs2CFJrvOX0tZQkvfvq6++Wnv37tXy5cu1evVq/fe//9WLL76o+fPn68477yxT3aNGjdIDDzygw4cPKzMzU99//71efvnlMh2rIJ44ZytIYfcr7vd4+vRp9ejRQ5GRkZo+fbqaNWum4OBgbd26VY8++miJuhLtdrvatWvnWmvnQgV1veZVq1atIr+QVa9ePa1Zs0bdu3fXoEGD9NVXX6lDhw7F1pVXSc6ni+OssSQhYUHoZnPw8/NzCwr79eunli1bavz48frkk09MrAwAUBmsVqt69eqluXPnavfu3WX64snnn38uSTp37px2795dqqkAxX1Jy1fl/YK68735uuuu09y5czVp0iSTqwO8H8FfMQYMGKABAwYUentmZqaeeOIJvffeezp9+rTatm2r5557Tj179pQk7dy5U6+88op27Njh+kZFeUfGABXt7bffluR44y2K1WpV79691bt3b82ePVvPPPOMnnjiCa1fv159+vTx+IcNF47VMgxDe/bscfugsmbNmjp9+nS++x44cMBt1FBpamvcuLG++OILpaamun0bzDmKqnHjxiU+VnGPs337dtntdrdv4Hv6ccrCz89PM2fOVK9evfTyyy/rscceM60WAEDhunTpomXLlmnQoEHq27evvvnmG9cInYiICNlstkr54KFZs2b64osvdOWVV1ZKV01aWpo+/vhjNWzY0PVN7YqqITo6WmPHjtXYsWOVlpamq6++WtOmTSsy+CvqvOPmm2/WpEmT9N577ykjI0MBAQG66aabPFavVPnnbEX58ssvdeLECS1dulRXX321a/u+ffvy7VtYXc2aNdPPP/+s3r17l6n2li1b6qOPPipyn6ZNm+rzzz9Xjx491K9fP33zzTf5OuqKUtLz6aLs27dPVqtVLVq0KNH+F34QuWfPHtntdsXHxxd6n8aNG+v333/Pt/3C88/S/J5jYmIUGhpa6HGtVmux4WxFqlevniZOnKinnnpK33//vS6//HLTagEAVI6cnBxJ5ydElOZznu3bt2v69OkaO3astm3bpjvvvFO//PKL28hzT3I+dmHvo7Vr13Z1+5X2sy3ncZ3j0Z1+//13Uz9zkhwjR3v06KFnnnlG48ePL3VHIwB3rPFXThMmTNDGjRu1ePFibd++XcOHD1f//v1dAcX//vc/NW3aVJ9++qmaNGmi+Ph43XnnnXT8ocpat26dZsyYoSZNmujWW28tdL+CXsMdO3aU5AjEJbnepAsK4srirbfeclsn5cMPP1RCQoJbON+sWTN9//33ysrKcm379NNPdejQIbdjlaa2gQMHymaz5fv2/YsvviiLxVLklwNKY+DAgUpMTNT777/v2paTk6OXXnpJ4eHh6tGjh0cep6x69uypLl26aM6cOTp37pyptQAACte7d2+999572rNnj/r376+UlBT5+fnpL3/5iz766CNXZ1xeycnJHq1hxIgRstlsmjFjRr7bcnJyPHZuIEkZGRm6/fbbdfLkST3xxBOuD0AqooYTJ064XQ8PD1fz5s1d5z6FCQsLK/TxateurQEDBuidd97Ru+++q/79+5e5w6sgZpyzFcXZEZi3kzIrK0v/93//l2/fsLCwAkd/jhgxQkeOHNF//vOffLdlZGQoPT29yBq6deumU6dOFbv+crt27bRixQqlpaWpb9++busUFqWk59PF2bJli9q0aVPiDxbnzZvndv2ll16SpCLPVQcOHKgffvhBGzdudG1LT0/XggULFB8fr9atW0sq3WvEz89P1157rZYvX+42ZvTYsWNatGiRunfvrsjIyBI9p4py3333KTQ0VM8++6ypdQAAKl52drZWr16twMBA1xfESvo5T3Z2tsaMGaO4uDjNnTtXCxcu1LFjxzRx4sQKq7devXrq2LGj3nzzTbf33R07dmj16tUaOHCga1tp3p8vvfRS1alTR/Pnz3c7d/3ss8+0c+dODRo0yGPPoaweffRRnThxosBzPAClQ8dfORw8eFBvvPGGDh48qLi4OEnSww8/rFWrVumNN97QM888oz///FMHDhzQkiVL9NZbb8lms2nixIkaNmyY1q1bZ/IzgK/77LPPtGvXLuXk5OjYsWNat26d1qxZo8aNG+uTTz5xW+z3QtOnT9fXX3+tQYMGqXHjxkpKStL//d//qUGDBurevbskRwhXo0YNzZ8/XxEREQoLC1PXrl3L3PUaHR2t7t27a+zYsTp27JjmzJmj5s2b66677nLtc+edd+rDDz9U//79NWLECO3du1fvvPOOmjVr5nas0tQ2ePBg9erVS0888YT279+vDh06aPXq1Vq+fLkefPDBfMcuq7vvvluvvvqqxowZoy1btig+Pl4ffvihvvvuO82ZMyff7HkzPPLIIxo+fLgWLlyov/71r2aXAwAoxA033KD//Oc/uuOOOzRkyBCtWrVKzz77rNavX6+uXbvqrrvuUuvWrXXy5Elt3bpVX3zxhUe/mNajRw+NHz9eM2fO1LZt23TttdcqICBAu3fv1pIlSzR37lwNGzas1Mc9cuSI3nnnHUmOb2z/9ttvWrJkiRITE/XQQw9p/PjxFVpD69at1bNnT3Xu3FnR0dHavHmzPvzwQ02YMKHI+3Xu3FlffPGFZs+erbi4ODVp0sRtXbVRo0a5aikoqCzKN998U+AXctq3b6/27dubcs5WlCuuuEI1a9bU6NGjdf/998tisejtt98ucCR6586d9f7772vSpEm67LLLFB4ersGDB+v222/XBx98oL/+9a9av369rrzyStlsNu3atUsffPCBPv/88wLXmHEaNGiQ/P399cUXX+juu+8ust5u3bpp6dKlGjx4sKuLtlatWq7by3I+/eGHHxY4Nr1v376qW7euJMcHjV999ZXuueeeIuvLa9++fRoyZIj69++vjRs36p133tEtt9xS5JjSxx57TO+9954GDBig+++/X9HR0XrzzTe1b98+ffTRR64pFKV9jTz99NOucan33HOP/P399eqrryozM1P/+te/SvycKkqtWrU0duxY/d///Z927tzp+iAYAOD9nO/NkmPd30WLFmn37t167LHHXF88KennPE8//bS2bdumtWvXKiIiQu3bt9eUKVP05JNPatiwYW4hnCc9//zzGjBggLp166Zx48YpIyNDL730kqKiojRt2jTXfp07d5YkPfHEE7r55psVEBCgwYMHF9gtFxAQoOeee05jx45Vjx49NHLkSB07dkxz585VfHx8hYaZJTVgwAC1bdtWs2fP1r333quAgACzSwK8l4ESk2R8/PHHruuffvqpIckICwtz+/H39zdGjBhhGIZh3HXXXYYk4/fff3fdb8uWLYYkY9euXZX9FADDMAzjjTfeMCS5fgIDA43Y2Fijb9++xty5c42UlJR895k6daqR9z8Za9euNa6//nojLi7OCAwMNOLi4oyRI0caf/zxh9v9li9fbrRu3drw9/c3JBlvvPGGYRiG0aNHD6NNmzYF1tejRw+jR48eruvr1683JBnvvfeeMXnyZKNOnTpGSEiIMWjQIOPAgQP57j9r1iyjfv36RlBQkHHllVcamzdvznfMomobPXq00bhxY7d9U1NTjYkTJxpxcXFGQECAcdFFFxnPP/+8Ybfb3faTZNx77735amrcuLExevToAp9vXseOHTPGjh1r1K5d2wgMDDTatWvnquvC4w0aNKjY4xW3r/N3u2TJEtc25+vjxx9/zLe/zWYzmjVrZjRr1szIyckp0eMDACpWUf/dfuGFFwxJxnXXXWdkZ2cbx44dM+69916jYcOGRkBAgBEbG2v07t3bWLBgges+Bb03OI0ePdoICwvLt/3C8wSnBQsWGJ07dzZCQkKMiIgIo127dsbf//534+jRo659CnqPLkjjxo1d5y4Wi8WIjIw02rRpY9x1113Gpk2bCr1fSWoo7L3ywtqefvppo0uXLkaNGjWMkJAQo2XLlsY///lPIysrq8jfxa5du4yrr77aCAkJMSTlOyfIzMw0atasaURFRRkZGRnF/i4M4/z/T4X9TJ061TCM8p+zXXhetG/fPkOS8fzzzxdYz4Wvm4Jen999951x+eWXGyEhIUZcXJzx97//3fj8888NScb69etd+6WlpRm33HKLUaNGDUOSWx1ZWVnGc889Z7Rp08YICgoyatasaXTu3Nl46qmnjDNnzhT7+xsyZIjRu3fvEj0HwzCM999/37BarcZll11mpKSklOt8urCfvM/9s88+MyQZu3fvLva5OI/722+/GcOGDTMiIiKMmjVrGhMmTMj3eironHTv3r3GsGHDjBo1ahjBwcFGly5djE8//TTf4xT2GinM1q1bjX79+hnh4eFGaGio0atXL2PDhg1u+xT2eipIcfs6fw/JycmubYX9N8swHM/bz8+vROfoAICq78L3ZklGcHCw0bFjR+OVV17J9/lNcZ/zbNmyxfD39zfuu+8+t/vl5OQYl112mREXF2ecOnWq0HqKOq/Iy/n+duH76hdffGFceeWVRkhIiBEZGWkMHjzY+O233/Ldf8aMGUb9+vUNq9VqSDL27dtX5OO9//77RqdOnYygoCAjOjrauPXWW43Dhw+77VPUvy8uVNy+BX3+V9TnVAsXLizReQaAolkMo4CvVqJAFotFH3/8sYYOHSpJev/993Xrrbfq119/zbeIfXh4uGJjYzV16lQ988wzys7Odt2WkZGh0NBQrV69Wn379q3MpwAAAACgisnJyVFcXJwGDx6s1157zexyfMI333yjnj17ateuXaVau6+yDB061PXvz+JMmzZNTz31lJKTkz06JhYAAACAd2LUZzl06tRJNptNSUlJuuqqqwrc58orr1ROTo727t3rahP/448/JMn0RVMBAAAAmG/ZsmVKTk7WqFGjzC7FZ1x11VW69tpr9a9//avKrSOzc+dOffrpp9q2bZvZpQAAAADwQgR/xUhLS9OePXtc1/ft26dt27YpOjpaLVq00K233qpRo0Zp1qxZ6tSpk5KTk7V27Vq1b99egwYNUp8+fXTJJZfojjvu0Jw5c2S323Xvvfeqb9++atGihYnPDAAAAICZNm3apO3bt2vGjBnq1KmTevToYXZJPuWzzz4zu4QCtWrVSjk5OWaXAQAAAMBLWc0uoKrbvHmzOnXqpE6dOkmSJk2apE6dOmnKlCmSpDfeeEOjRo3SQw89pIsvvlhDhw7Vjz/+qEaNGkmSrFar/ve//6l27dq6+uqrNWjQILVq1UqLFy827TkBAAAAMN8rr7yiv/3tb6pTp47eeusts8sBAAAAAFQDrPEHAAAAAAAAAAAAVAN0/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA34m11AVWS323X06FFFRETIYrGYXQ4AAKhEhmEoNTVVcXFxslr5jlR5cV4FAIDv4rzKszivAgDAd5XmvIrgrwBHjx5Vw4YNzS4DAACY6NChQ2rQoIHZZXg9zqsAAADnVZ7BeRUAACjJeRXBXwEiIiIkOX6BkZGRJlcDAAAqU0pKiho2bOg6H0D5cF4FAIDv4rzKszivAgDAd5XmvIrgrwDOcQmRkZGcSAEA4KMYn+QZnFcBAADOqzyD8yoAAFCS8yoGrAMAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/AEAAAAAAAAAAADVAMEfAAAAAAAAAAAAUA0Q/MFn/XQ8Q98lnpVhGGaXAgAAAAAAAAAAUG7+ZhcAmCE1y6bPD6W7rl8ZG2piNQAAANWLYUjPPScdOSK99JLZ1QAAAAAA4Dvo+INP+v1Mlut/f5NwVnvzXAcAAEDZZWdLd9whTZ4szZsnJSWZXREAAAAAAL6D4A8+6ffTmZKkyADHn8AnB1J1JstmZkkAAADVwi23SO+8I917r+P6Z5+ZWw8AAAAAAL6E4A8+Jz3brsNpOZKkm5tHqV6ovzJthn5KPmdyZQAAAN4tNVVaulT661+lYcOkVq2kTz81uyoAAAAAAHwHwR98zu4zWTIkxYb6KzrYT5fGBEuS9qYw7hMAAKA8fvxRstulSy5xXL/8cunzz6UsTrMAAAAAAKgU/mYXAFSWkydPKjU1VdtSgiT5q65xVgcOnFGAXbIoVMnnbPrtz4MK8zPy3TciIkLR0dGVXzQAAIAX2bhRCg+XGjd2XO/WTXr9dembb6Tevc2tDQAAAAAAX0DHH3zCyZMn1ax5c7Vs10FHMhzB3qh+Vyk+Pl4XN43Xnz9tkiSNe2ya4uPj8/00a95cJ0+eNPMpAAAAVHkbNjjGe1pz/5XRrJkUE8O4TwAAAAAAKgsdf/AJqampOn3qlGas+F5+AQGy2rL11NvLXLdnBoYpU9JfHpmu2ydMdLvvicSjmnJTf6WmptL1BwAAUAjDkL7/Xho8+Pw2i8Ux7vOTT6TZsx3XAQAAAABAxSH4g08Ji66jTElhwYGKqdnItT3TZuhweo5s/sGqFddQVj6VAgAAKJXdu6WTJ6XWrd23d+sm/e9/0o4dUrt25tQGAAAAAICvYNQnfIrN6si6A6zuwV6gVfK3SIakjJz8a/wBAACgaBs2ODr6Lgz+Lr1UqlNHev55c+oCAAAAAMCXEPzBp9hzg7/AC4I/i8WiUH/Hn0N6jr3S6wIAAPB2GzdK8fFSeLj79oAA6aabpEWLpL17TSkNAAAAAACfQfAHn2K3+knK3/EnSWEBjm2p2YZOZtpkGHT+AQAAlNSGDfm7/ZwGDZKioqTnnqvcmgAAAAAA8DUEf/AZkTGxksXxkg8o4JUf4mdRzUDHDacy7TqRaSf8AwAAKIGUFOnXXwsP/oKCpGHDpIULpUOHKrU0AAAAAAB8CsEffEbt+OaSHKGfxZK/489isSg62E+1gx1/Fmey7Eo6ZxPRHwAAQNF+/lkyDKlly8L3uf56KTRUatNG6tNHWrCg8uoDAAAAAMBXEPzBZ8Q0dgZ/+UO/vKIC/VQnxDESNC3bUEZITfkHBVd4fQAAAN7K2cUXG1v4PqGh0r//Ld18s5SYKN13n3TuXOXUBwAAAACAryD4g8+o3biZpOKDP0mKCLAqNsRPFkk5/sHqcuOoCq4OAADAex09KoWFOcK9ojRqJN1yiyP0y8qStm6tnPoAAAAAAPAVpgZ/X3/9tQYPHqy4uDhZLBYtW7asyP3HjBkji8WS76dNmzaufaZNm5bv9pZFzRyCz3B2/AWWIPiTpLAAq2oEOf5EGrTuUGF1AQAAeLsjR6TatUu+f7NmUnCwtGFDxdUEAAAAAIAvMjX4S09PV4cOHTRv3rwS7T937lwlJCS4fg4dOqTo6GgNHz7cbb82bdq47fftt99WRPnwMuc7/kp+H2dIGNOkRUWUBAAAUC0cOSLVqlXy/f39pVatpO++q7iaAAAAAADwRf5mPviAAQM0YMCAEu8fFRWlqKgo1/Vly5bp1KlTGjt2rNt+/v7+ii1qgRH4HJsh1YxrJKlkoz6dnMFfnSYXyTAqpDQAAACvV9rgT5LatJE+/1wyDMlS8tMzAAAAAABQBK9e4++1115Tnz591LhxY7ftu3fvVlxcnJo2bapbb71VBw8eLPI4mZmZSklJcftB9ZJms8jq5ycZdvmV4oOlAKskw1BgSJjS7XwiBQAw17x58xQfH6/g4GB17dpVP/zwQ5H7L1myRC1btlRwcLDatWunlStXut0+bdo0tWzZUmFhYapZs6b69OmjTZs2ue0THx+fb4z6s88+6/HnBu9W2lGfkiP4S06W/vyzYmoCAAAAAMAXeW3wd/ToUX322We688473bZ37dpVCxcu1KpVq/TKK69o3759uuqqq5SamlrosWbOnOnqJoyKilLDhg0runxUshS746VutefIUoqvlFssFlntOY5j2Lz2zwUAUA28//77mjRpkqZOnaqtW7eqQ4cO6tevn5KSkgrcf8OGDRo5cqTGjRunn376SUOHDtXQoUO1Y8cO1z4tWrTQyy+/rF9++UXffvut4uPjde211yo5OdntWNOnT3cbo37fffdV6HOFdzEMKSGh9MFf69aOS9b5AwAAAADAc7w2yXjzzTdVo0YNDR061G37gAEDNHz4cLVv3179+vXTypUrdfr0aX3wwQeFHmvy5Mk6c+aM6+fQoUMVXD0qmzO087PbSn1fZ/B3xkbHHwDAPLNnz9Zdd92lsWPHqnXr1po/f75CQ0P1+uuvF7j/3Llz1b9/fz3yyCNq1aqVZsyYoUsuuUQvv/yya59bbrlFffr0UdOmTdWmTRvNnj1bKSkp2r59u9uxIiIiFBsb6/oJCwur0OcK73LihJSVVfrgLzJSatKEdf4AAAAAAPAkrwz+DMPQ66+/rttvv12BgYFF7lujRg21aNFCe/bsKXSfoKAgRUZGuv2geknNDe2cIV5puDr+7F755wIAqAaysrK0ZcsW9enTx7XNarWqT58+2rhxY4H32bhxo9v+ktSvX79C98/KytKCBQsUFRWlDh06uN327LPPqlatWurUqZOef/555eSU/v0U1deRI47L0gZ/kqPrj+APAAAAAADP8Te7gLL46quvtGfPHo0bN67YfdPS0rR3717dfvvtlVAZqqqzuaGdpQwdf36M+gQAmOz48eOy2WyqW7eu2/a6detq165dBd4nMTGxwP0TExPdtn366ae6+eabdfbsWdWrV09r1qxR7TwJzv33369LLrlE0dHR2rBhgyZPnqyEhATNnj27wMfNzMxUZmam6zprJ1d/R486LssS/LVpI61cKZ05I0VFebYuAAAAAAB8kanBX1pamlsn3r59+7Rt2zZFR0erUaNGmjx5so4cOaK33nrL7X6vvfaaunbtqrZt2+Y75sMPP6zBgwercePGOnr0qKZOnSo/Pz+NHDmywp8Pqq5zRm7Hn1GeUZ9WGYZRqjUCAQCo6nr16qVt27bp+PHj+s9//qMRI0Zo06ZNqlOnjiRp0qRJrn3bt2+vwMBAjR8/XjNnzlRQUFC+482cOVNPPfVUpdUP8x05IlksUnR06e/burVjjcCtW6VevTxfGwAAAAAAvsbUFqbNmzerU6dO6tSpkyTHB0udOnXSlClTJEkJCQk6ePCg233OnDmjjz76qNBuv8OHD2vkyJG6+OKLNWLECNWqVUvff/+9YmJiKvbJoErLtDsuLYa91Pe12nNkt9mUbViUnmN4uDIAAIpXu3Zt+fn56dixY27bjx07ptjY2ALvExsbW6L9w8LC1Lx5c11++eV67bXX5O/vr9dee63QWrp27aqcnBzt37+/wNtZO9n3HD3qCP38y/CVwnr1HJcHDni2JgAAAAAAfJWpHX89e/aUYRQepCxcuDDftqioKJ09e7bQ+yxevNgTpaEaMQxDmbkdf2UJ/iySTh7er9qNm+n4uRyFBxS9riQAAJ4WGBiozp07a+3atRo6dKgkyW63a+3atZowYUKB9+nWrZvWrl2rBx980LVtzZo16tatW5GPZbfb3UZ1Xmjbtm2yWq2ujsALBQUFFdgJiOrryJGyjfmUpMBAqVYtgj8AAAAAADzFK9f4A0rjnM2QobIHf5J07M/fc4M/m+IjPFkdAAAlM2nSJI0ePVqXXnqpunTpojlz5ig9PV1jx46VJI0aNUr169fXzJkzJUkPPPCAevTooVmzZmnQoEFavHixNm/erAULFkiS0tPT9c9//lNDhgxRvXr1dPz4cc2bN09HjhzR8OHDJUkbN27Upk2b1KtXL0VERGjjxo2aOHGibrvtNtWsWdOcXwSqnCNHHOFdWdWpI10w5AMAAAAAAJQRwR+qvbM5jrDvXGqKIst4jOR9u6Ve0olzpV8jEAAAT7jpppuUnJysKVOmKDExUR07dtSqVatUt25dSdLBgwdltZ6f4n7FFVdo0aJFevLJJ/X444/roosu0rJly1xrJPv5+WnXrl168803dfz4cdWqVUuXXXaZvvnmG7Vp00aSo3tv8eLFmjZtmjIzM9WkSRNNnDjRbd0/4MgRqWHDst+/Th06/gAAAAAA8BSCP1R7Z3PX5Us7dVx1aoaU6RhJ+36XJB0/l+OxugAAKK0JEyYUOtrzyy+/zLdt+PDhru69CwUHB2vp0qVFPt4ll1yi77//vtR1wrccOSLlLtldJnXrSlu3eq4eAAAAAAB8mbX4XQDv5uz4Sz91vMzHSN6/R5J0OrNso0IBAACqo+xsKTm5/KM+Dx2S7JxmAQAAAABQbgR/qPbOB38nynyMU0cPSZJSs+3KsRseqQsAAMDbJSQ4LmNiyn6MunWlzExHgAgAAAAAAMqH4A/VnmvU58myd/ylnzouPzmOk5LF19EBAAAkx5hPSapdu+zHyF2mknX+AAAAAADwAII/VHuujr/TZe/4k6QwP0fwdybLVu6aAAAAqoOjRx2X5R31KUkHD5a/HgAAAAAAfB3BH6q9s9nlX+NPksKtjuOcoeMPAABAkqPjLzBQiows+zEiI6WQEII/AAAAAAA8geAP1Z5z1Gd6OUZ9SlKYlY4/AACAvI4ccazvZ7GU/RgWi2PcJ6M+AQAAAAAoP4I/VHuuUZ+nyjnqk44/AAAAN0lJUs2a5T9OnTp0/AEAAAAA4AkEf6j2nMFfWnmDP9b4AwAAcHP8uBQVVf7j1Kkj7d9f/uMAAAAAAODrCP5QrRmGoQznqM9yrvHnGvWZSccfAACAJCUnl299P6e6den4AwAAAADAEwj+UK2dsxlyxnTlHfUZnjvqMy3Hrhy7Uc7KAAAAvJ+nOv7q1pVOnpTS08t/LAAAAAAAfBnBH6o155jPAIshW3ZWuY4VaJECrRZJUgrr/AEAAHg0+JPo+gMAAAAAoLwI/lCtnc0d8xlkKX+HnsUiRQU6/mROs84fAADwcdnZ0pkznhn1WaeO4/LAgfIfCwAAAAAAX0bwh2rN2fEXbPXMaM7I3ODvDMEfAADwcSdPOi490fEXEyNZrXT8AQAAAABQXgR/qNacwZ8nOv4kKSrQT5J0hlGfAADAxx0/7rj0RPDn5+cI/+j4AwAAAACgfAj+UK25Rn16qOPPOerzTCYdfwAAwLd5MviTpHr1pD17PHMsAAAAAAB8FcEfqjXXqE8PdfzVCKLjDwAAQPJ88Ne4sbRjh2eOBQAAAACAryL4Q7V2Njt31KfHOv6cwR8dfwAAwLcdP+5Yly883DPHi4+X/vhDysryzPEAAAAAAPBFBH+o1lyjPj22xp/jTyY9x1C23TPHBAAA8EbHjzu6/awe+hdFkyZSTo60e7dnjgcAAAAAgC8i+EO15hr16aFXerCfRYFWiyTpNOv8AQAAH+YM/jwlPt5xybhPAAAAAADKjuAP1Zoz+PNUx5/FYlHtYMe4z+QMgj8AAOC7PB38RUVJtWpJv/7quWMCAAAAAOBrCP5QbRmGoYzcUZ/BHlrjT5JiQ/0lSYkZOR47JgAAgLc5flyKjPTsMePj6fgDAAAAAKA8CP5QbWXaDNlz/7enOv4kqW5u8HfsLMEfAADwXcnJBH8AAAAAAFQ1BH+ots7mdvsFWS3ys3juuHVDznf8GYbnAkUAAABv4ulRn5LUpIm0d6907pxnjwsAAAAAgK8g+EO1lZ67vl+IvwdTP0kxwX6yWhwdhWey7MXfAQAAoBo6ccLzwV98vGS3S7t2efa4AAAAAAD4CoI/VFtnc4O/UH/Pvsz9rBbFBPtJko6xzh8AAPBB585JaWkVE/xJjPsEAAAAAKCsCP5QbWXkjvoMDfD8yzyWdf4AAIAPO3HCcenp4C8sTKpbV/r1V88eFwAAAAAAX0Hwh2or3dXx59lRn5L7On8AAAC+5vhxx6Wngz/J0fVHxx8AAAAAAGVD8Idqq6JGfUrnO/4Sz+bIMAyPHx8AAKAqq+jg75dfPH9cAAAAAAB8AcEfqi3XqM8KCP5iQvxlkXQ2x1BabsAIAADgKyo6+DtwwLGGIAAAAAAAKB2CP1Rb6dkVN+ozwGpR7WA/SdKxszaPHx8AAKAqO35c8veXQkM9f+z4eMflrl2ePzYAAAAAANUdwR+qrYoc9SlJdfOM+wQAAPAlx487uv0snv9+lRo3dlz++qvnjw0AAAAAQHVH8IdqqyJHfUpSTG7H34lzBH8AAMC3OIO/ihASItWrJ/32W8UcHwAAAACA6ozgD9WSYRh5Ov4q4KvokmoFOzr+TmQy6hMAAPiWigz+JEfXHx1/AAAAAACUHsEfqqVMmyF77v+uqI6/WrkdfyfP2WQYRoU8BgAAQFWUnCxFRlbc8Rs3lnbsqLjjAwAAAABQXRH8oVo6mzvmM8hqkb+1Yjr+ogKt8rNIOYZ0Jste/B0AAACqiYru+IuPlw4ckNLTK+4xAAAAAACojgj+UC05x3yGVNCYT0myWiyKDnKu88e4TwAA4DtOnKj44E+Sdu6suMcAAAAAAKA6IvhDtZTuWt+vYl/i0bnjPlnnDwAA+ArDcHT8VfSoT0n67beKewwAAAAAAKojf7MLACpCRu6oT08Gf4cPH863zf9cgKRAHTh+WnUzkgq9b0REhKKjoz1WCwAAgFnS06Vz56QaNSruMUJCpHr1pF9/rbjHAAAAAACgOiL4Q7XkHPUZGlD+UZ/pKWdksVrVvXv3fLd16H+jbn7mVX2xcbNG3Dmk0GPUqFlTe/fsIfwDAABeLznZcVmRwZ8kNWpE8AcAAAAAQGkR/KFa8uSoz3Nn02XY7XrireWKa9zE7Tab1V/pkpp27KJ5X20v8P4nEo9qyk39lZqaSvAHAAC8XmUFf/Hx0qZNFfsYAAAAAABUNwR/qJYqYtRndN16iqnfyG2b3TC0LzVHhtVP0fUays9a/g5DAACAqswZ/EVFVezjxMdL77/vGC0aFlaxjwUAAAAAQHXhuVQEqEJcoz79KzaIs1oscj5Elt2o0McCAACoCpJylzWu6OCvcWPH5c6dFfs4AAAAAABUJwR/qJbOenDUZ3ECcrv8su0V/lAAAACmS06WwsOlwMCKfZz4eMlikbYXPE0dAAAAAAAUgOAP1dLZbM+P+ixMoJ8j+KPjDwAA+ILk5Ipf30+SQkKkRo2kn36q+McCAAAAAKC6IPhDtWMYhs7aKmfUpyQF5P4VZRP8AQAAH1BZwZ8kNWsmbd1aOY8FAAAAAEB1QPCHaifTZsiZwVVKx1/uqM8sG8EfAACo/pKTpcjIynmsiy6Sfv5Zstkq5/EAAAAAAPB2BH+ods7mOAK4QKtF/taK7/gLyh31mWPQ9QcAAKq/pKTK6/i76CIpPV3as6dyHg8AAAAAAG9H8Idq52xO5Y35lCSrxeIK/zJyCP4AAED1VpmjPps3d1wy7hMAAAAAgJIh+EO1cz74q7yXd4gz+MtdWxAAAKC6On5cioqqnMeKipJiY6WffqqcxwMAAAAAwNsR/KHacY76rNTgL7e78FyOIcOg6w8AAFRPGRmO0ZuV1fEnSc2a0fEHAAAAAEBJEfyh2knP7fgLC6icUZ+SFJxnnT+mfQIAgOoqOdlxWZnB30UXOYI/vlsFAAAAAEDxCP5Q7Zgx6tNqsbjCP9b5AwAA1ZUz+KusUZ+SI/g7dUo6dKjyHhMAAAAAAG9lavD39ddfa/DgwYqLi5PFYtGyZcuK3P/LL7+UxWLJ95OYmOi237x58xQfH6/g4GB17dpVP/zwQwU+C1Q16dmVH/xJ57v+WOcPAABUV2Z1/EmM+wQAAAAAoCRMDf7S09PVoUMHzZs3r1T3+/3335WQkOD6qVOnjuu2999/X5MmTdLUqVO1detWdejQQf369VNSUpKny0cV5VzjLyygcl/eznX+MljnDwAAVFNmBH+1a0s1axL8AQAAAABQEqYGfwMGDNDTTz+tG264oVT3q1OnjmJjY10/Vuv5pzF79mzdddddGjt2rFq3bq358+crNDRUr7/+uqfLRxWV7hr1WXlr/EnnO/5shnTORvAHAACqn+RkKSRECgqqvMe0WKROnaRXXpH276+8xwUAAAAAwBt55Rp/HTt2VL169dS3b1999913ru1ZWVnasmWL+vTp49pmtVrVp08fbdy4sdDjZWZmKiUlxe0H3uts7qjPsEoe9Wm1WBSeGzYmnrUpk/APAOBhpR1nvmTJErVs2VLBwcFq166dVq5c6Xb7tGnT1LJlS4WFhalmzZrq06ePNm3a5LbPyZMndeuttyoyMlI1atTQuHHjlJaW5vHnBu+QnFy53X5O99/vCBsHDZI4VQcAAAAAoHBeFfzVq1dP8+fP10cffaSPPvpIDRs2VM+ePbU1d+7P8ePHZbPZVLduXbf71a1bN986gHnNnDlTUVFRrp+GDRtW6PNAxbEbhjJyA7fKDv4kKSbET0F+FtklJZzNUbad8A8A4BmlHWe+YcMGjRw5UuPGjdNPP/2koUOHaujQodqxY4drnxYtWujll1/WL7/8om+//Vbx8fG69tprleyc5yjp1ltv1a+//qo1a9bo008/1ddff6277767wp8vqiazgr+oKOmf/5QOHpRuvlliqjoAAAAAAAXzquDv4osv1vjx49W5c2ddccUVev3113XFFVfoxRdfLNdxJ0+erDNnzrh+Dh065KGKUdmc6/tZJAVX8qhPydH1Vy/UT4FWx8jP4+dslV4DAKB6Ku0487lz56p///565JFH1KpVK82YMUOXXHKJXn75Zdc+t9xyi/r06aOmTZuqTZs2mj17tlJSUrR9+3ZJ0s6dO7Vq1Sr997//VdeuXdW9e3e99NJLWrx4sY4ePVopzxtVS3KyI4QzQ+PG0qOPSp99Jq1ebU4NAAAAAABUdV4V/BWkS5cu2rNnjySpdu3a8vPz07Fjx9z2OXbsmGJjYws9RlBQkCIjI91+4J3Ss8+v72e1VH7wJ0l+FovqhvhLcgSRNqu/KXUAAKqPsowz37hxo9v+ktSvX79C98/KytKCBQsUFRWlDh06uI5Ro0YNXXrppa79+vTpI6vVmm8kqBMj1Ku3pCTzgj9JuvJKqXVr6amn6PoDAAAAAKAgXh/8bdu2TfXq1ZMkBQYGqnPnzlq7dq3rdrvdrrVr16pbt25mlYhKdDbHGfyZ+9IO9Du/3l9mYLiptQAAvF9ZxpknJiaWaP9PP/1U4eHhCg4O1osvvqg1a9aodu3armPUqVPHbX9/f39FR0cX+riMUK/ezBr16WSxSLffLm3cKK1fb14dAAAAAABUVaamI2lpadq2bZu2bdsmSdq3b5+2bdumgwcPSnKM4Bw1apRr/zlz5mj58uXas2ePduzYoQcffFDr1q3Tvffe69pn0qRJ+s9//qM333xTO3fu1N/+9jelp6dr7NixlfrcYI703OAvLMD8TLtmkJ8kKScgRHWbtTS5GgAACtarVy9t27ZNGzZsUP/+/TVixIhC1w0sCUaoV29mjvp06tpVuvhiR9cfAAAAAABwZ+oMws2bN6tXr16u65MmTZIkjR49WgsXLlRCQoIrBJQcI6geeughHTlyRKGhoWrfvr2++OILt2PcdNNNSk5O1pQpU5SYmKiOHTtq1apV+b7xjurp/KhP84O/QD+LwvwtSs8x1PvuR8wuBwDgxcoyzjw2NrZE+4eFhal58+Zq3ry5Lr/8cl100UV67bXXNHnyZMXGxuYLAXNycnTy5MlCHzcoKEhBQUGlfYrwAllZUkqKVLOmuXVYLNJtt0n/+Idjvb8BA8ytBwAAAACAqsTUdKRnz54yDCPfz8KFCyVJCxcu1Jdffuna/+9//7v27NmjjIwMnThxQuvXr3cL/ZwmTJigAwcOKDMzU5s2bVLXrl0r6RnBbGdzHIu9hPqbs77fhWoG+UmGoXZ9h+iPc6z1BwAom7KMM+/WrZvb/pK0Zs2aYsef2+12ZWZmuo5x+vRpbdmyxXX7unXrZLfbOb/yQcePOy7N7viTHGv9XXaZdOut0p9/ml0NAAAAAABVh/ltUYAHOdf4C6sCHX+SFORnUVBWqiRp69lA7TmTZXJFAABvVdw481GjRmny5Mmu/R944AGtWrVKs2bN0q5duzRt2jRt3rxZEyZMkCSlp6fr8ccf1/fff68DBw5oy5YtuuOOO3TkyBENHz5cktSqVSv1799fd911l3744Qd99913mjBhgm6++WbFxcVV/i8BpkpOdlyaucafk8Xi6PgLDZWuv15KSzO7IgAAAAAAqoaqkY4AHuJc4y+0Cqzx5xSYla4fP35Hhiz6ZH+qUrJsZpcEAPBCN910k1544QVNmTJFHTt21LZt29zGmR88eFAJCQmu/a+44gotWrRICxYsUIcOHfThhx9q2bJlatu2rSTJz89Pu3bt0l/+8he1aNFCgwcP1okTJ/TNN9+oTZs2ruO8++67atmypXr37q2BAweqe/fuWrBgQeU+eVQJVSn4k6SICGnGDEfH39//bnY1AAAAAABUDcweRLVyNtsx6rOqdPxJkkXSspmPqO+wkTpt89P+1Gy1r+VndlkAAC80YcIEV8fehfKOR3caPny4q3vvQsHBwVq6dGmxjxkdHa1FixaVqk5UT84lI6tK8CdJTZpIAwc61voDAAAAAAB0/KGaSXeN+qwaa/w52XNyVNffUVtSRo7J1QAAAJReYqIUFiaFhJhdibtWraT9+893JAIAAAAA4MsI/lBtGIbhWuOvKo36dKqRG/wdI/gDAABeKDFRio42u4r8WrVyXG7aZG4dAAAAAABUBVUvHQHKKNNuyOaY9KnQKjTq06mmn7PjzybDMEyuBgAAoHSqavAXGyvVrEnwBwAAAACARPCHasS5vl+g1aIAa9Ua9SlJkX52+VmkTJuhM1l2s8sBAAAolYSEqrW+n5PFIrVsKX3/vdmVAAAAAABgPoI/VBuu9f0Cql7oJ0l+Fql2sJ8kxn0CAADvU1U7/iTHuM8ffpDsfLcKAAAAAODjCP5QbTiDv6o45tOpToi/JCmJ4A8AAHiZhASpVi2zqyhYq1ZSSor0xx9mVwIAAAAAgLmqbkIClNLZ7Kof/NXNDf6OZdhMrgQAAKDksrKkkyerbsdfy5aOkZ+s8wcAAAAA8HVVNyEBSsk16rMqB3+huR1/Z+n4AwAA3iMpyXFZVYO/8HCpcWOCPwAAAAAAqm5CApTS2RxDkhRaRdf4k6SYEMcafynZdmXksAgNAADwDomJjsuqGvxJjq6/7783uwoAAAAAAMxF8Idq46wXdPwF+1lVI9BRH+v8AQAAb+ENwV+rVtIvv0iZmWZXAgAAAACAeapuQgKUUnp21Q/+JKkO6/wBAAAvk5joWEOvRg2zKylcw4ZSTo508KDZlQAAAAAAYJ6qnZAApZCaG/yFB1Ttl7Uz+Eum4w8AAHiJxESpZk3Jz8/sSgoXG+u43L/f1DIAAAAAADBV1U5IgBIyDENpXhL8RQc7PjE7lUnHHwAA8A6JiVV7zKckxcRIVivBHwAAAADAt1XthAQooQybIZvh+N8RVTz4c67xdybLbnIlAAAAJePs+KvK/P2lOnUI/gAAAAAAvq1qJyRACaXmhmih/hb5WS0mV1O0GkGOjr/UbLty7IbJ1QAAABQvIaHqB3+SY9wnwR8AAAAAwJcR/KFa8JYxn5IU4mdRYG44eSaLcZ8AAKDq84ZRn5JUt660b5/ZVQAAAAAAYJ6qn5IAJeAM/qr6mE9JslgsqhHkqPN0JuM+AQBA1XfsmHcEf3T8AQAAAAB8XdVPSYASSPWijj9JqhHoGPd5mo4/AABQxaWlSenp3hP8JSRI586ZXQkAAAAAAObwjpQEKEZqtiNAiwjwM7mSknGu83c6k+APAABUbYmJjktvCf4k6eBBc+sAAAAAAMAsBH+oFrxp1Kck1QjMHfWZxahPAABQtXlj8Me4TwAAAACAr/KOlAQohteN+qTjDwAAeAlvCv5iYiQ/P4I/AAAAAIDv8o6UBChGmrcFf3nW+DMMw+RqAAAACpeYKAUESOHhZldSPD8/qU4dgj8AAAAAgO/yjpQEKEKO3dDZHEd4FhHoHS/pqNw6s+1y1Q4AAFAVJSZKtWpJFovZlZRM3boEfwAAAAAA3+UdKQlQBGe3n59FCvHzjk+k/KwWRQY41/kretznd4ln9eL2E0rOyKmM0gAAANwkJEg1a5pdRcnVrSvt21f8fn/8IW3aVPH1AAAAAABQmfzNLgAor7xjPi1V+Kvohw8fdrsebAQrRX7ac+SYcoIKDv8MQ/rxdIgyDat2nspUTAh/sgAAoHJ5W/BXr57088/F7zdxoiP827274msCAAAAAKCykCLAa5w8eVKpqan5th/M8pMUrAB7tg4cOFDgfS8M3SpTesoZWaxWde/e3W37jVPm6LKht2r68y9q3X9nF3jf2Ita64H3v5Ik7Tudoavjwiq8XgAAgLyOHpUaNTK7ipKrW9cxnvTcOSk4uOB9MjOlL7+Uzp6VTpxwjDIFAAAAAKA6IPiDVzh58qSaNW+u06dO5bvtylvG67qHn9a6lf/TXY/dVeRxsrMrf1zmubPpMux2PfHWcsU1buLanhkYrkxJA+96QH+5fUyB980MCFNm7v9OyjRksxvys1bdrkYAAFD9JCZKnTqZXUXJxcY6Lg8ckC6+uOB9Nm50hH6SY9znwIGVUxsAAAAAABWN4A9eITU1VadPndL091epVmyc223ngiKUJenSnn3U/avtBd5/7y8/afaE0bLZzFsnL7puPcXUP/91+dRsu5IybPILDlNMragC73M0PUeyGZIkmyxKzMhR/bCASqkXAADAZpOSk6XoaLMrKTln8Ld/f+HB3+rV58eXfv89wR8AAAAAoPog+INXqRUb5xaeSdKxsznKyjEUERGpGrULXoDmROLRyiivVAJyG/ey7UaBt9sNQ+dyQ79jf/6uuk0v1uG0bII/AABQaZKSJLvdu0ZhxsQ4Rnz+9JPUr1/B+3z+uXTJJY6uv++/r9z6AAAAAACoSFazCwDKKyc3N/O2EZgBfo56bYaUacsf/p2zGTIkWew52rJ8kSTpcLp5HYsAAMD3JCQ4Lr0p+PPzk7p2lT74oODbjx93hIKXXiq1bu0Y9Wm3V26NAAAAAABUFII/eD2b4QjN/L0r95OfxaKw3KJTs/N/2nQ2N9H0z8nS/p8cX0U/nJYtwyi4QxAAAMDTnMGfN436lKRevRzh3u7d+W9bu1YyDKlzZ6lVKyklRfr998qvEQAAAACAikDwB69mGIZycjMzfy/r+JOkiADHn2Bqtj1foHc294n52zJ1dNcv8pOhDJuhE5m2Sq8TAAD4poQEyWLxvuDv8sul0FDp/ffz37Z6tdSkiWMkaMuWjue3aVPl1wgAAAAAQEUg+INXs0tyxmV+3pf7KdTfIj+LZDek9JzzwV+WzZCzCdA/J1O2nGzV8ndsOJzGuE8AAFA5EhKkmjUd4zO9SVCQdMUV0nvvuW+326VVqxzdfpIUFibFx7POHwAAAACg+iD4g1ez5YZjVklWi/clfxaLRZG5XX8pWefHfabkpn6h/hZZcqPNGH9Hp9/h9OxKrhIAAPiqhATv6/Zz6tVL+u03aceO89vWrpWOHpWuvvr8tlatpI0bK78+AAAAAAAqAsEfvJpzfT8/L34lRwQ6is+wGcq2GzIMw7XmnzMUlKSauR1/J88x6hMAAFQOZ8efN7r0UikiQlq8+Py2V191jPls2/b8ttatHeFgWlrl1wgAAAAAgKd5cVwCSLbc6Zh+Xtjt5xRgtSgkd05pUoZNaTmG7IZjdGmo//nnFWp1PFlnNyAAAEBFO3pUqlXL7CrKJjBQuuYa6eWXpcOHpcREafly6brrHOv6OTVp4hgBumePebUCAAAAAOApBH/waq6OP+/N/SRJMSF+skg6ZzOUnOHo6IsIsMqS51OpMKsj8EvLtstmNwo6DAAAgEd586hPSRo3zhEA3nGH9Nprkr+/dO217vvUqeO4PHSo8usDAAAAAMDTCP7g1Zwdf1YvD/4CrBbFhPhJkpyRXmSg+59nkOV8wJlK1x8AAKhghiEdO+a9HX+SY9Tnww9La9ZI06dLPXtK4eHu+9Ss6QgECf4AAAAAANUBwR+8mi03//LmUZ9OEQFWhQc4nkeIn0UBF6SZFotjH4lxnwAAoOKdOiVlZXl38CdJXbpIgwc7nsvgwflv9/OTYmIc40ABAAAAAPB2/mYXAJRHdRn16RQT7KcQP8Ntbb+8IgP9dDrLrtQsm6SAyi0OAAD4lIQEx6U3j/p0mjBB6ttXat264NtjYuj4AwAAAABUDwR/8GrOUZ9+3j7rM5fVYlFkYOHPxTn+MyWLjj8AAFCxnMGft3f8SY51/tq1K/z22rWlgwcrrx4AAAAAACoKoz7h1apbx19xIhn1CQAAKkl1Cv6KQ8cfAAAAAKC6IPiDV3N1/FWDNf5KIjLQT5KUkmUzuRIAAFDdJSRI4eFSUJDZlVS8OnWkI0ckO9+tAgAAAAB4OYI/eC3DMGR3BX/m1lJZIgIY9QkAACpHQoJvdPtJjuAvK0tKTja7EgAAAAAAyofgD17L2e0n+U7w51zjL5VRnwAAoIIlJEjR0WZXUTliYhyXjPsEAAAAAHg7gj94LWfwZ7VIFp8Z9en4kz1nM5SVN/kEAADwsKNHpZo1za6ictSp47g8fNjcOgAAAAAAKC+CP3gtm+EIvnyl20+SgvysCsp9winZrPMHAAAqji+N+oyKkgIC6PgDAAAAAHg/gj94LZtrfT8fSv4kRbLOHwAAqATHjvlO8Ge1Orr+CP4AAAAAAN6O4A9ey+6DHX9SnnX+CP4AAEAFycqSUlMdnXC+IiaG4A8AAAAA4P0I/uC1bLm5l691/EUE+Eli1CcAAKg4Z844LsPDza2jMsXESAcPml0FAAAAAADlQ/AHr+Ua9eljr2Jnxx+jPgEAQEU5fdpx6WvBHx1/AAAAAABvZ2pk8vXXX2vw4MGKi4uTxWLRsmXLitx/6dKl6tu3r2JiYhQZGalu3brp888/d9tn2rRpslgsbj8tW7aswGcBs9h8fNQnwR8AAKgovhr8HT0q2RiqAAAAAADwYqYGf+np6erQoYPmzZtXov2//vpr9e3bVytXrtSWLVvUq1cvDR48WD/99JPbfm3atFFCQoLr59tvv62I8mEyV8efz436zA3+GPUJAAAqiC8Gf3XqOEK/Y8fMrgQAAAAAgLLzN/PBBwwYoAEDBpR4/zlz5rhdf+aZZ7R8+XL973//U6dOnVzb/f39FRsb66kyUUX5asdfVKBjjb/ULLsMw5DFx4JPAABQ8Xw1+JMc4z7j4sytBQAAAACAsvLq1dHsdrtSU1MVHR3ttn337t2Ki4tT06ZNdeutt+rgwYMmVYiKZMuddOlrHX/huR1/OYaUkWOYXA0AoDLNmzdP8fHxCg4OVteuXfXDDz8Uuf+SJUvUsmVLBQcHq127dlq5cqXrtuzsbD366KNq166dwsLCFBcXp1GjRuno0aNux4iPj883Rv3ZZ5+tkOeHquP0aclikUJDza6k8sTEOC5Z5w8AAAAA4M28Ovh74YUXlJaWphEjRri2de3aVQsXLtSqVav0yiuvaN++fbrqqquUmppa6HEyMzOVkpLi9oOqzTAMOVe487WOP3+rRWH+jiedks06fwDgK95//31NmjRJU6dO1datW9WhQwf169dPSUlJBe6/YcMGjRw5UuPGjdNPP/2koUOHaujQodqxY4ck6ezZs9q6dav+8Y9/aOvWrVq6dKl+//13DRkyJN+xpk+f7jZG/b777qvQ5wrznT7t6PazevW/FkonMlIKDib4AwAAAAB4N1NHfZbHokWL9NRTT2n58uWq45zLI7mNDm3fvr26du2qxo0b64MPPtC4ceMKPNbMmTP11FNPVXjN8BxbnkY3q48Ff5IUGein9JwcpWTZFBvqtX/GAIBSmD17tu666y6NHTtWkjR//nytWLFCr7/+uh577LF8+8+dO1f9+/fXI488IkmaMWOG1qxZo5dfflnz589XVFSU1qxZ43afl19+WV26dNHBgwfVqFEj1/aIiAjGqPuYU6d8a8yn5OhwrFOH4A8AAFSOV199VWlpaWaXUanCw8M1fvx4s8sAgGrPKxODxYsX684779SSJUvUp0+fIvetUaOGWrRooT179hS6z+TJkzVp0iTX9ZSUFDVs2NBj9cLznMGfn0U+ucZdRIBVCaLjDwB8RVZWlrZs2aLJkye7tlmtVvXp00cbN24s8D4bN250O7+RpH79+mnZsmWFPs6ZM2dksVhUo0YNt+3PPvusZsyYoUaNGumWW27RxIkT5e9f8GlkZmamMjMzXdeZpOCdnB1/vqZ2benwYbOrAAAAviAtLa3ICWUAAJSV1wV/7733nu644w4tXrxYgwYNKnb/tLQ07d27V7fffnuh+wQFBSkoKMiTZaKC2QxH8udrYz6dIgMdc7dSswj+AMAXHD9+XDabTXXr1nXbXrduXe3atavA+yQmJha4f2JiYoH7nzt3To8++qhGjhypyMhI1/b7779fl1xyiaKjo7VhwwZNnjxZCQkJmj17doHHYZJC9eCrwV9MjMTy4AAAoLKFhIRU2LEzMjIq5XFKWgMAoOKZGvylpaW5deLt27dP27ZtU3R0tBo1aqTJkyfryJEjeuuttyQ5xnuOHj1ac+fOVdeuXV0fXIWEhCgqKkqS9PDDD2vw4MFq3Lixjh49qqlTp8rPz08jR46s/CeICmPLzbv8fLDbT3KM+pSklCybyZUAAKqD7OxsjRgxQoZh6JVXXnG7LW/XYPv27RUYGKjx48dr5syZBX5xikkK1cPp01JYmNlVVL6YGCl3GUwAAIBKERISUqLmhrJasWKFMjIyKvxxSlIDAKByWM188M2bN6tTp07q1KmTJMcHS506ddKUKVMkSQkJCTqY5yu3CxYsUE5Oju69917Vq1fP9fPAAw+49jl8+LBGjhypiy++WCNGjFCtWrX0/fffKyYmpnKfHCqUz3f8BTj+dBn1CQC+oXbt2vLz89OxY8fcth87dqzQtfdiY2NLtL8z9Dtw4IDWrFnj1u1XkK5duyonJ0f79+8v8PagoCBFRka6/cD7+OIaf5Ij+EtIkHJyzK4EAAAAAICyMbXjr2fPnjJyA5yCLFy40O36l19+WewxFy9eXM6q4A3suS8bq892/OUGf4z6BACfEBgYqM6dO2vt2rUaOnSoJMlut2vt2rWaMGFCgffp1q2b1q5dqwcffNC1bc2aNerWrZvrujP02717t9avX69atWoVW8u2bdtktVpVp06dcj0nVG2nT0sNGphdReWLiZHsdikx0TefPwAAAADA+3ndGn+AJDnjLqtv5n6uUZ9p2XbZDcNnA1AA8CWTJk3S6NGjdemll6pLly6aM2eO0tPTNXbsWEnSqFGjVL9+fc2cOVOS9MADD6hHjx6aNWuWBg0apMWLF2vz5s1asGCBJEfoN2zYMG3dulWffvqpbDaba4x6dHS0AgMDtXHjRm3atEm9evVSRESENm7cqIkTJ+q2225TzZo1zflFoFL46hp/zjz70CGCPwAAAACAdyL4g1ey53aK+mrwF+ZvkdXi6HxMy7a7gkAAQPV10003KTk5WVOmTFFiYqI6duyoVatWqW7dupKkgwcPymo9P8X9iiuu0KJFi/Tkk0/q8ccf10UXXaRly5apbdu2kqQjR47ok08+kSR17NjR7bHWr1+vnj17KigoSIsXL9a0adOUmZmpJk2aaOLEiW5r+KF6OnPGN9f4cwZ/hw+bWwcAAAAAAGVF8AevdH7Up7l1mMVisSgiwKozWXalZBH8AYCvmDBhQqGjPQsaiT58+HANHz68wP3j4+OLHLkuSZdccom+//77UtcJ75aZKWVk+GbHX3i4FBzs6PgDAAAAAMAbWYvfBah6XMGffDT5U551/rJZ5w8AAHjOmTOOS18M/iwWqW5dgj8AAAAAgPci+INX8vWOP0mKDHB0+aVk2UyuBAAAVCenTzsufTH4k6TatRn1CQAAAADwXgR/8Ep2+fYaf1Kejr8sOv4AAIDn+HrwFxMjHTxodhUAAAAAAJQNa/zBK53v+POd5O/wBV89zz7nLylIx86k6YD9RKH3i4iIUHR0dAVXBwAAqguCP2n7drOrAAAAAACgbAj+4JV8adRnesoZWaxWde/e3W37xd37asy/F+mH7b9p1K29C71/jZo1tXfPHsI/AABQIgR/UmKilJMj+fOvJQAAAACAl+GfsvA6hmHkDvr0jVm1586my7Db9cRbyxXXuIlru83qr3RJDS5uo3lfFfy19BOJRzXlpv5KTU0l+AMAACVy+rRktUqhoWZXYo46dSS7XUpIkBo2NLsaAAAAAABKh+APXifvina+0PHnFF23nmLqN3JdtxmG0lNzZFj9VCuuoU+NPQUAABXn9GlHt5/VF75hVYCYGMfloUMEfwAAAAAA7+Oj/5yHN3OO+bRIsvhw2GWV43cgSTn2ovYEAAAoOWfw56vq1HFcHjpkbh0AAAAAAJQFwR+8ji+t71cUi8Ui/9y/4BzDKHpnAACAEvL14C8sTAoJkQ4fNrsSAAAAAABKj+APXseeG3L5evAnSf65HY90/AEAAE85fdoRfvkqi8XR9UfHHwAAAADAGxH8weu4Ov5E8heQm35m2+n4AwAAnuHrHX+SY50/Ov4AAAAAAN6I4A9ex9ncRsefFJD7F0zwBwAAPOXUKd/u+JOk2rWlgwfNrgIAAAAAgNIj+IPXYdTneXT8AQAAT6PjT6pXT/rzT7OrAAAAAACg9Aj+4HVcoz4J/vIEf5JhEP4BAIDyI/iTGjSQTpxwdD8CAAAAAOBNCP7gdc4HfyR/zlGfhiQbuR8AAPCAM2cI/ho0cFzu3m1uHQAAAAAAlBbBH7yOK/gzt4wqwWKxyD83/2TcJwAAKK/MTCkjg+DPGfz98Ye5dQAAAAAAUFpkJ/A6drHGX155x30CAACUx5kzjktfD/5CQ6Vatej4AwAAAAB4H4I/eB1Gfbo7H/zR8QcAAMrn9GnHpa8Hf5Kj64+OPwAAAACAtyH4g9c5H/yZW0dV4Vznj+APAACU16lTjkuCP6l+fYI/AAAAAID3IfiD17EbjPrMi44/AADgKXT8ndeggWPUp8EpFgAAAADAixD8weu4Ov7MLaPKyLvGn8EnUwAAoByca/yFhZlbR1XQoIGUmiolJZldCQAAAAAAJUd2Aq9jz71kjT8H56hPQ5KN3A8AAJRDSorjMjTU3DqqggYNHJeM+wQAAAAAeBOCP3gVQ6zxdyGLxSL/3N8F4z4BAEB5pKQ4uv2s/CtB9etLFotj3CcAAAAAAN6Cf9LDaxH8nZd33CcAAEBZOYM/SIGBUmwsHX8AAAAAAO9C8AevYljOv2TJ/c4L9HMGf3T8AQCAsktJkUJCzK6i6oiLo+MPAAAAAOBdCP7gVYzcuM8qx4hLODjX+SP4AwAA5ZGSwvp+eTVoQMcfAAAAAMC7EPzBu+R2/DHm051z1GcWwR8AACiH1FSCv7waNJD27JHsjFMHAAAAAHgJgj94FSO3y4/gz11gnjX+7AbhHwAAKJszZwj+8mrQQDp3Tjp82OxKAAAAAAAoGYI/eBXD1fFH8peXv9Wi3GX+6PoDAABllpIihYWZXUXV0aiR4/K338ytAwAAAACAkvI3uwCgNFxr/JH75RNotSjDZijLJgX7mV0NAADwRikpUr16ZldRdcTGSiEh0o4dUv/+ZlcDAEDlevXVV5WWlqbw8HCNHz/e7HIAFIG/VwB5EfzBq7hGfZpcR1UU6OcI/jJtdPwBAICyoePPndUqNWki/fKL2ZUAAFD50tLSlJqaanYZAEqAv1cAeZGfwLsw6rNQQbltkIz6BAAAZZWS4uhww3nx8dL27WZXAQAAAABAyRD8wau4Ov7I/fIJzF3kL8tmyDAI/wAAQOkYhpSaSsffhZo0kXbulGw2sysBAAAAAKB4BH/wKoacHX8mF1IFBeb+Ndsl5ZD7AQCAUsrIkOx2KTTU7EqqlqZNpcxMac8esysBAAAAAKB4BH/wKnT8Fc5isbjCvyzW+QMAAKWUkuK4pOPPXZMmjkvW+QMAAAAAeAOCP3gVw7nGn0j+CuIc95nJOn8AAKCUnMEfHX/uataUoqMJ/gAAAAAA3oHgD96Fjr8iBVnPr/MHAABQGnT8Fa5JE2nHDrOrAAAAAACgeAR/8Cqs8Vc0Z8dfFh1/AACglOj4K1x8vLR9u9lVAAAAAABQPII/eJXza/yR/BUkMDcRzbZLdoPwDwAAlBzBX+GaNJH27pXOnjW7EgAAAAAAikbwB6/iWuOP3K9A/laL63eTbTe3FgAA4F0I/grXtKlkGNLOnWZXAgAAAABA0Qj+4DX8/ANY468EnF1/jPsEAAClkZIiBQRIgYFmV1L1xMc7Ln/5xdQyAAAAAAAoFsEfvEZweKTrf/PCLVxA7i8n20bwBwAASi41VQoLM7uKqikkRIqLk3791exKAAAAAAAoGvkJvEZwRJQkySLJwhp/hQpwrfNH8AcAAEouJYXgrygNGki7d5tdBQAAAAAARSP4g9cIDo+QJPmR+RWJUZ8AAKAsUlJY368o9etLv/9udhUAAAAAABSN4A9ew9nxx/p+RTvf8ScR/QGA+f7880+zSwBKhOCvaA0aSH/+KdlsZlcCAAAAAEDhCP7gNUJcwR/JX1Gca/wZkgwLf+IAYLbmzZurV69eeuedd3Tu3DmzywEKlZLiWMsOBWvQQMrKkg4dMrsSAAAAAAAKRyoArxEcHimJjr/iWCwWV/hnt/qbWwwAQFu3blX79u01adIkxcbGavz48frhhx/MLgvI58wZOv6KUr++45J1/gAAAAAAVRnBH7xGcATBX0k5x30S/AGA+Tp27Ki5c+fq6NGjev3115WQkKDu3burbdu2mj17tpKTk80uEZDk6PgLCzO7iqorNlby9yf4AwAAAABUbQR/8Bqujj+R/BXnfPDnZ3IlAAAnf39/3XjjjVqyZImee+457dmzRw8//LAaNmyoUaNGKSEhwewS4eNSU+n4K4qfnxQXR/AHAAAAAKjayhT8NW3aVCdOnMi3/fTp02ratGm5iwIKcn6NP5ML8QKBdPwBQJWzefNm3XPPPapXr55mz56thx9+WHv37tWaNWt09OhRXX/99WaXCB9Hx1/x6teX/vjD7CoAAAAAAChcmVKB/fv3y2az5duemZmpI0eOlLsooCCM+iw55xp/NoI/ADDd7Nmz9cYbb+j333/XwIED9dZbb2ngwIGyWh3/sW7SpIkWLlyo+Ph4cwuFz6Pjr3j160vbtpldBQAAAAAAhStVKvDJJ5+4/vfnn3+uqKgo13Wbzaa1a9fyoRUqjHPUp5+F5K84zlGfhsVPfgGBJlcDAL7tlVde0R133KExY8aoXr16Be5Tp04dvfbaa5VcGXBedraUkUHHX3EaNJCWLZNychzr/QEA4JSTk6Mvv/xSe/fu1S233KKIiAgdPXpUkZGRCg8PN7s8AADgQ0o16nPo0KEaOnSoLBaLRo8e7bo+dOhQ3XzzzVqzZo1mzZpV4uN9/fXXGjx4sOLi4mSxWLRs2bJi7/Pll1/qkksuUVBQkJo3b66FCxfm22fevHmKj49XcHCwunbtqh9++KEUzxJVVTCjPkvMzyLHSogWi2o1bGJ2OQDg09asWaNHH300X+hnGIYOHjwoSQoMDNTo0aPNKA+Q5Oj2k6SQEHPrqOoaNHCEfvv3m10JAKAqOXDggNq1a6frr79e9957r5KTkyVJzz33nB5++GGTqwMAAL6mVMGf3W6X3W5Xo0aNlJSU5Lput9uVmZmp33//Xdddd12Jj5eenq4OHTpo3rx5Jdp/3759GjRokHr16qVt27bpwQcf1J133qnPP//ctc/777+vSZMmaerUqdq6das6dOigfv36KSkpqTRPFVWQs+OP4K94FovFtc5f7cbNTK4GAHxbs2bNdPz48XzbT548qSZN+HIGqoaUFMclHX9Fq1/fcbl7t7l1AACqlgceeECXXnqpTp06pZA836K54YYbtHbtWhMrAwAAvqhUwZ/Tvn37VLt27XI/+IABA/T000/rhhtuKNH+8+fPV5MmTTRr1iy1atVKEyZM0LBhw/Tiiy+69pk9e7buuusujR07Vq1bt9b8+fMVGhqq119/vdz1wlwhzjX+TK7DWwT4OS5jGjc3txAA8HGGYRS4PS0tTcHBwaU6VmmnGixZskQtW7ZUcHCw2rVrp5UrV7puy87O1qOPPqp27dopLCxMcXFxGjVqlI4ePep2jJMnT+rWW29VZGSkatSooXHjxiktLa1UdaPqcwZ/rPFXtDp1pMBAgj8AgLtvvvlGTz75pAID3ZfaiI+P15EjR0yqCgAA+Koyr0yxdu1arV271tX5l1dFhWwbN25Unz593Lb169dPDz74oCQpKytLW7Zs0eTJk123W61W9enTRxs3bqyQmlB5zo/6pOWvJAIsFkmGohvEm10KAPikSZMmSXJ0YU+ZMkWheRIVm82mTZs2qWPHjiU+nnOqwfz589W1a1fNmTNH/fr10++//646derk23/Dhg0aOXKkZs6cqeuuu06LFi3S0KFDtXXrVrVt21Znz57V1q1b9Y9//EMdOnTQqVOn9MADD2jIkCHavHmz6zi33nqrEhIStGbNGmVnZ2vs2LG6++67tWjRorL/clDlOEd90vFXNKvV0fVH8AcAyMtut8tms+XbfvjwYUVERJhQEQAA8GVlCv6eeuopTZ8+XZdeeqnq1asnSyUFMYmJiapbt67btrp16yolJUUZGRk6deqUbDZbgfvs2rWr0ONmZmYqMzPTdT3F+ZVnVBmGIQWFOU6WGfVZMgG5vyjW+AMAc/z000+SHB1/v/zyi9s3wAMDA9WhQ4dSrfmSd6qB5JiEsGLFCr3++ut67LHH8u0/d+5c9e/fX4888ogkacaMGVqzZo1efvllzZ8/X1FRUVqzZo3bfV5++WV16dJFBw8eVKNGjbRz506tWrVKP/74oy699FJJ0ksvvaSBAwfqhRdeUFxcXOl+Kaiy6Pgrufr1pd9/N7sKAEBVcu2112rOnDlasGCBJMcXv9LS0jR16lQNHDjQ5OoAAICvKVPwN3/+fC1cuFC33367p+sxxcyZM/XUU0+ZXQaKkG04ujclgr+SCsidiUrwBwDmWL9+vSRp7Nixmjt3riIjI8t8rLJMNdi4caOr69CpX79+WrZsWaGPc+bMGVksFtWoUcN1jBo1arhCP0nq06ePrFarNm3aVOJx7aj6WOOv5OrXlzZtMrsKAEBVMmvWLPXr10+tW7fWuXPndMstt2j37t2qXbu23nvvPbPLAwAAPqZMwV9WVpauuOIKT9dSrNjYWB07dsxt27FjxxQZGamQkBD5+fnJz8+vwH1iY2MLPe7kyZPdPhhLSUlRw4YNPVs8yiXbyE37DINRnyXk7PirEVtfOUa6ydUAgO964403yn2M48ePl3qqQWGTEhITEwvc/9y5c3r00Uc1cuRIV0iZmJiYb4yov7+/oqOjCz0OkxS8U0qKZLFIpVx20ifFxUmHDknZ2VJAgNnVAACqggYNGujnn3/W4sWLtX37dqWlpWncuHG69dZbFRISYnZ5AADAx5Qp+Lvzzju1aNEi/eMf//B0PUXq1q2bVq5c6bZtzZo16tatmyTH2KzOnTtr7dq1Gjp0qCTHnPW1a9dqwoQJhR43KChIQUFBFVY3yi/LcFxaDHvRO8LFapFk2CWLVek2wlIAqEw33nijFi5cqMjISN14441F7rt06dJKqqpw2dnZGjFihAzD0CuvvFKuYzFJwTulpDi6/XIHLKAI9etLNpt08KDUrJnZ1QAAqgp/f3/ddtttZpcBAABQtuDv3LlzWrBggb744gu1b99eARd81XX27NklOk5aWpr27Nnjur5v3z5t27ZN0dHRatSokSZPnqwjR47orbfekiT99a9/1csvv6y///3vuuOOO7Ru3Tp98MEHWrFihesYkyZN0ujRo3XppZeqS5cumjNnjtLT013r4cA7OTv+LDJMrsR7WCwWWe05svsFKtXOp3gAUJmioqJcayBHRUWV+3i1a9cu9VSDwiYlXLi/M/Q7cOCA1q1b5zaSNDY2VklJSW775+Tk6OTJk4U+LpMUvFNKCuv7lVS9eo7LvXsJ/gAADs7PrQozatSoSqoEAACgjMHf9u3b1bFjR0nSjh073G6zlGIM4+bNm9WrVy/XdeeHRKNHj9bChQuVkJCggwcPum5v0qSJVqxYoYkTJ2ru3Llq0KCB/vvf/6pfv36ufW666SYlJydrypQpSkxMVMeOHbVq1ap8o67gXc6P+qTjrzSsdpvsflIqHX8AUKnyjvf0xKjPskw16Natm9auXasHH3zQtS3vpATpfOi3e/durV+/XrVq1cp3jNOnT2vLli3q3LmzJGndunWy2+3q2rVrgY/LJAXvRPBXcnXrSv7+juAPAABJeuCBB9yuZ2dn6+zZswoMDFRoaCjBHwAAqFRlCv7Wr1/vkQfv2bOnDKPwDq6FCxcWeJ+ffvqpyONOmDChyNGe8D5Zzo6/Il4vyM9qz5EkpdHxBwCmycjIkGEYCs1NVQ4cOKCPP/5YrVu31rXXXlvi4xQ31WDUqFGqX7++Zs6cKcnxAVSPHj00a9YsDRo0SIsXL9bmzZu1YMECSY4PpIYNG6atW7fq008/lc1mc63bFx0drcDAQLVq1Ur9+/fXXXfdpfnz5ys7O1sTJkzQzTffrLi4OE/+mmAygr+S8/OTYmOlP/80uxIAQFVx6tSpfNt2796tv/3tb3rkkUdMqAgAAPiyMgV/QGXLZo2/MrHabZKkVBvBHwCY5frrr9eNN96ov/71rzp9+rS6dOmiwMBAHT9+XLNnz9bf/va3Eh2nuKkGBw8elDXPAm1XXHGFFi1apCeffFKPP/64LrroIi1btkxt27aVJB05ckSffPKJJLkmOTitX79ePXv2lCS9++67mjBhgnr37i2r1aq//OUv+ve//13O3wqqGoK/0omNpeMPAFC0iy66SM8++6xuu+027dq1y+xyAACADylT8NerV68iR3quW7euzAUBBaHjr2yshrPjj1GfAGCWrVu36sUXX5Qkffjhh4qNjdVPP/2kjz76SFOmTClx8CcVPdXgyy+/zLdt+PDhGj58eIH7x8fHFzl5wSk6OlqLFi0qcY3wTsnJUp7lHVGMuDgpz1LlAAAUyN/fX0ePHjW7jGJNmzatyNtTU1MrpxAAZZL3bzg1NbXYv2kAlcesv8cyBX8Xfis8Oztb27Zt044dOzR69GhP1AW4ca7xZxEdf6Xh7Pg7a7fIZjfkZyUABIDKdvbsWUVEREiSVq9erRtvvFFWq1WXX365Dhw4YHJ1gENysnTxxWZX4T3i4qR16yTDkEqxxDkAoJpyTlFwMgxDCQkJevnll3XllVeaVFXJlPQDyWnTphEmAFUQf5dA1WbW+2eZgj/nt9YvNG3aNKWlpZWrIKAg50d90vFXGhbDrsyz6QoKDdOZLLuig/3MLgkAfE7z5s21bNky3XDDDfr88881ceJESVJSUpIiabFCFZGcLHXtanYV3iMuTkpLc/ze6tQxuxoAgNmGDh3qdt1isSgmJkbXXHONZs2aZU5RJVDaDyIJ/4Cqhb9HwDuY8f7p0TX+brvtNnXp0kUvvPCCJw8LKMvuHPVJx19pWCSdPLxP9Vq01alMG8EfAJhgypQpuuWWWzRx4kT17t1b3bp1k+To/uvUqZPJ1QGS3S6dPCnVqGF2Jd6jXj3H5d69BH8AAMlur5jPKjIzM5WZmem6npKSUiGP07x5c+0p4QzrqhxkehtfbJ5IS0vjNQQAlcCjwd/GjRsVHBzsyUMCks6v8Sc6/krtxKH9ruAPAFD5hg0bpu7duyshIUEdOnRwbe/du7duuOEGEysDHE6dkmw2KSrK7Eq8R1yc4/LPP6XcLB8AAI+bOXOmnnrqqQp/nNtuu82tE6GozgTW+0N5GIbBawgAKkGZgr8bb7zR7bpzdvnmzZv1j3/8wyOFAXmdH/VJx19pnTj0pyTpVBbBHwCYJTY2VrGxsW7bunTpYlI1gLvkZMclHX8lFxoqRUc7Ov4AAL5p0qRJJd539uzZZXqMyZMnuz1OSkqKGjZsWKZjFeWNN95wu17UODLn2tUov7S0NBk+9gV3i8Wi8PBws8uoNghRARSmTMFf1AVfB7Zarbr44os1ffp0XXvttR4pDMgrO7fjzyKCv9I6cWifJNHxBwAmSU9P17PPPqu1a9cqKSkp3yioP//806TKAAeCv7KpV4/gDwB82U8//VSi/SwWS5kfIygoSEFBQWW+f0kdOHCgxPs+9NBDFViJb5k1a5bPBTfh4eG8hjyINf4AFKZMwd+F3wQCKppz1KfFx74J5QnO4O/kOYI/ADDDnXfeqa+++kq333676tWrV64Pf4CKQPBXNvXqSSVcDgkAUA2tX7/e7BLKraiRnoXtD6DqKO3fMABzmPF3Wq41/rZs2aKdO3dKktq0aaNOnTp5pCggL8MwGPVZDscPOL6KfibLLpvdkJ+VD5wBoDJ99tlnWrFiha688kqzSwEKlJwsWa0Sk7tKJy5OWr3a7CoAACifkgYHhAtA1UT4B1RtZv19lin4S0pK0s0336wvv/xSNXK/Gnz69Gn16tVLixcvVkxMjCdrhI/LMSS76Pgrq5TkRPnJkE0Wnc6yqVZwufJ+AEAp1axZU9HR0WaXARQqOVmKinKEfyi5evWkxETp7FnHmn8AAN+2efNmffDBBzp48KCysrLcblu6dKlJVZVMYR9KOkdRsq4fULVNmzbN7e+VcaoAyvTP+/vuu0+pqan69ddfdfLkSZ08eVI7duxQSkqK7r//fk/XCB+XaXOEfY41kQj+yiLCz9EpeZJ1/gCg0s2YMUNTpkzR2bNnzS4FKFByMmM+y6J+fccly3QCABYvXqwrrrhCO3fu1Mcff6zs7Gz9+uuvWrdunaKioswuDwAA+Jgytf6sWrVKX3zxhVq1auXa1rp1a82bN0/XXnutx4oDJCkjxxFanUs5rRp+JhfjpSL9DJ225a7zx785AKBSzZo1S3v37lXdunUVHx+vgIAAt9u3bt1qUmWAg7PjD6XjDP5275batjW3FgCAuZ555hm9+OKLuvfeexUREaG5c+eqSZMmGj9+vOrVq2d2eQAAwMeUKfiz2+35PrSSpICAgNyuLMBz0rIdr6mU48cUW7eGucV4qQir43d4KpO/TwCobEOHDjW7BKBISUkEf2VRs6YUHi79/rvZlQAAzLZ3714NGjRIkhQYGKj09HRZLBZNnDhR11xzjZ566imTKwQAAL6kTMHfNddcowceeEDvvfee4uLiJElHjhzRxIkT1bt3b48WCDiDv9TkRIngr0wi/BwjUhn1CQCVb+rUqWaXABQpOVmKjze7Cu9jsUgNGxL8AQAcazqnpqZKkurXr68dO3aoXbt2On36NOPeAQBApSvTGn8vv/yyUlJSFB8fr2bNmqlZs2Zq0qSJUlJS9NJLL3m6Rvg4V/B3PMnkSrwXa/wBgLlOnz6t//73v5o8ebJOnjwpyTHi88iRIyZXBrDGX3k0aCDt2mV2FQAAs+zYsUOSdPXVV2vNmjWSpOHDh+uBBx7QXXfdpZEjR/IFeQAAUOnK1PHXsGFDbd26VV988YV25f5Lt1WrVurTp49HiwMkKS13jb+U5ESTK/FezlGfadl2ZdkMBfpZTK4IAHzH9u3b1adPH0VFRWn//v266667FB0draVLl+rgwYN66623zC4RPswwpOPHCf7KqlEj6aOPHL9HC6dXAOBz2rdvr8suu0xDhw7V8OHDJUlPPPGEAgICtGHDBv3lL3/Rk08+aXKVAADA15Sq42/dunVq3bq1UlJSZLFY1LdvX91333267777dNlll6lNmzb65ptvKqpW+CjXGn8Ef2UWZJVC/B2fRp2i6w8AKtWkSZM0ZswY7d69W8HBwa7tAwcO1Ndff21iZYCUkiJlZ7PGX1k1bCidPu0ITwEAvuerr75SmzZtNHPmTLVq1UqjR4/Wd999p8cee0yffPKJZs2apZo1a5pdJgAA8DGlCv7mzJmju+66S5GRkflui4qK0vjx4zV79myPFQdIeUd9HjO5Eu8WHeQniXGfAFDZfvzxR40fPz7f9vr16ysxkS+1wFzJyY5LOv7KpmFDxyXr/AGAb7rqqqv0+uuvKyEhQS+99JL279+vHj16qEWLFnruuec41wMAAKYoVfD3888/q3///oXefu2112rLli3lLgrIi44/zyD4AwBzBAUFKSUlJd/2P/74QzExMSZUBJxH8Fc+9es7RnwS/AGAbwsLC9PYsWP11Vdf6Y8//tDw4cM1b948NWrUSEOGDDG7PAAA4GNKFfwdO3ZMAQEBhd7u7++vZOenB4AHGIZBx5+HuIK/cwR/AFCZhgwZounTpys7O1uSZLFYdPDgQT366KP6y1/+YnJ18HUEf+UTFCTFxhL8AQDOa968uR5//HE9+eSTioiI0IoVK8wuCQAA+JhSBX/169fXjh07Cr19+/btqlevXrmLApwybYZshuN/E/yVT81gR/DHGn8AULlmzZqltLQ0xcTEKCMjQz169FDz5s0VERGhf/7zn2aXBx/nDP4KmOSPEmrYkOAPAODw9ddfa8yYMYqNjdUjjzyiG2+8Ud99953ZZQEAAB/jX5qdBw4cqH/84x/q37+/goOD3W7LyMjQ1KlTdd1113m0QPi21Nxuv0CLoZysTJOr8W7Ojr8TmTYZhiGLxWJyRQDgG6KiorRmzRp99913+vnnn5WWlqZLLrlEffr0Mbs0QMnJjtDPv1T/KkBeDRpIRXw3EgBQzR09elQLFy7UwoULtWfPHl1xxRX697//rREjRigsLMzs8gAAgA8q1T/xn3zySS1dulQtWrTQhAkTdPHFF0uSdu3apXnz5slms+mJJ56okELhm5xjPkOshsmVeL+aucFfps1QRo6h0ACCPwCoaHa7XQsXLtTSpUu1f/9+WSwWNWnSRLGxsXwJA1VCcjJjPsurYUPpk0+k7GypiFURAADV0IABA/TFF1+odu3aGjVqlO644w7XZ2UAAABmKVXwV7duXW3YsEF/+9vfNHnyZBmGI4yxWCzq16+f5s2bp7p161ZIofBNruDPQvBXXgFWi6ICrTqTZVfyuRw1Dgg0uyQAqNYMw9CQIUO0cuVKdejQQe3atZNhGNq5c6fGjBmjpUuXatmyZWaXCR+XnCxFRZldhXdr2FDKyZH27ZNatDC7GgBAZQoICNCHH36o6667Tn5+fmaXAwAAIKmUwZ8kNW7cWCtXrtSpU6e0Z88eGYahiy66SDVr1qyI+uDjnMFfsNVuciXVQ50Qf53JylJShk2NI8yuBgCqt4ULF+rrr7/W2rVr1atXL7fb1q1bp6FDh+qtt97SqFGjTKoQIPjzhEaNHJe//07wBwC+5pNPPjG7BAAAgHysZb1jzZo1ddlll6lLly6EfqgwaTmM+vSkOiGObyAmZeSYXAkAVH/vvfeeHn/88XyhnyRdc801euyxx/Tuu++aUBlwXlISwV951a4thYQ4gj8AAAAAAMxW5uAPqAzOjr9Qgj+PqBPiaPIl+AOAird9+3b179+/0NsHDBign3/+uRIrAvJLTpb4Dl/5WCyOrr+dO82uBAAAAAAAgj9UcemuUZ8Ef57gDP6On7PJbvA7BYCKdPLkySLXPq5bt65OnTpViRUB+R0/TsefJzRuLP3yi9lVAAAAAABA8IcqLjU3+AuxEFJ5Qo1AqwKtFtkM6cQ5m9nlAEC1ZrPZ5O9f+HLKfn5+ysmhAxvmSU2VMjLo+POEpk2l336T7CxLDQAAAAAwWeGfRgEmMwzDNeqTNf48w2KxKCbET0fSc5SUkaOYEP4TAAAVxTAMjRkzRkFBQQXenpmZWckVAe4OH3ZcxsSYW0d10KSJlJ4u7dsnNWtmdjUAAAAAAF/Gp/6osjJthmy5eR/Bn+fUCfHPDf5samN2MQBQjY0ePbrYfUaNGlUJlQAFI/jznKZNHZe//ELwBwAAAAAwF8EfqiznmM9gP4v8LCYXU43UCfGTJCVlMF4OACrSG2+8YXYJQJGcwV+tWubWUR3UquVYK/GXX6ShQ82uBgAAAADgy1jjD1VWem7wFx7Ay9ST6uSO9yT4AwDAtx065AisAgPNrsT7WSyOcZ+//GJ2JcD/t3fn8VHU9x/H37O72WzuC8jBGW7lEAWlIIoHFZRWUYtIwatWKz+pB61aqqCiLWrFG0u1arWKWFq8LWpRPApi5RBQRM6EAAlHyH3tMb8/hgQiSbiSnd3N6/l4zGNhdnbymW824cu+5/v9AgAAAGjtSFQQskoJ/lpEW48V/JX7zLpwFQAAtD55eVKbNnZXETmys6XVq+2uAgAAAADQ2pGoIGSVEfy1CLfTUEq01aaM+gMAoPUi+Gte2dnSxo1SVZXdlQAAAAAAWjMSFYSs2hF/CQR/zY7pPgEAwLZtUtu2dlcRObp2lfx+6bvv7K4EAAAAANCakaggZJXsD/4S3bxNm1vtdJ97qvw2VwIAAOySlye1a2d3FZEjO9t6ZJ0/AAAAAICdSFQQskprrFAqIcppcyWRJ81jtelegj8AAFql8nKpqIipPptTbKyUmUnwBwAAAACwF8EfQlYJU322mLrgr9ov0zRtrgYAAARbXp71yFSfzSs7W1q92u4qAAAAAACtGYkKQpI3YKrSZwVSTPXZ/FKjnTIkVftNlfkCdpcDAACCjOCvZWRnM+IPAAAAAGAvEhWEpLL9o/2iHJLHadhcTeRxOQwlR1s//kz3CQBA60Pw1zI6d5Z27JCKi+2uBAAAAADQWrnsLgBoSMlB6/sZBsHf8cqr/XTvILGBaO2TSxt27Jbh8TX62oSEBKWmprZkeQAAIMi2bZNSUiS32+5KIkuXLtbjd99JgwfbWgoAAAAAoJUi+ENIKqmxRvwxzefxKS8pluFwaNiwYYc8N/LX03TWNTdp9t9e0ZsP3NHoOZJTUrRp40bCPwAAIkheHqP9WkLHjpJhSOvWEfwBAMJffHx8vUcAoYufVwAHI/hDSCrdP9VnQhTB3/GoqiiXGQjozpfeVFbn7HrP1bhiVCXp9Esm6Lzzz2/w9Xvzd2j6uFEqLS0l+AMAIILk5Ult2thdReTxeKSMDCv4AwAg3P3qV7+yuwQAR4ifVwAHI/hDSGLEX/NKTc9U2/ad6u2r8ge0vdwvRUWrbWqnRl4JAAAi0bZtB6alRPPq1IngDwAAAABgH1IVhKRS74E1/tAy3A5r7US/KflN0+ZqAABAMOXlSe3a2V1FZOrUSfrmG7urAAAAAAC0VgR/CEmM+Gt5DsOQy8r+VOMn+AMAoLWoqJAKC1njr6V07ixt3SpVVdldCQAAAACgNSJVQUgqYY2/oIjaP+pvf3MDAIBWYPt265Hgr2V07iwFAtL339tdCQAAAACgNSJVQcip8Zuq3j8CjRF/LcvttIK/mgAj/gAAaC3y8qxHgr+W0bmz9cg6fwAAAAAAO5CqIOTUru8X7TAU7eQt2pJqB1R6Cf4AAGg1tm2zHgn+WkZCgpSWRvAHAAAAALAHqQpCTu36fgmM9mtx7v1TfVazxh8AAK1Gbq6UkiJFR9tdSeTq1En69lu7qwAAAAAAtEYkKwg5tev7JbK+X4uL3j/Vp9+UfIz6AwCgVcjJkdq1s7uKyEbwBwAAAACwC8kKQk4pI/6CxmEYit4/6q+KUX8AALQKW7cS/LW0zp2lDRskn8/uSgAAAAAArQ3JCkJOyf41/hKinDZX0jp4XAR/AAC0Jjk5Unq63VVEtk6dpJoaacsWuysBAAAAALQ2IRH8zZ49W126dJHH49HgwYP15ZdfNnrsWWedJcMwDtlGjx5dd8zVV199yPOjRo0KxqWgGdSO+EtkxF9Q1E73WeUj+AMAINKZprRtG8FfS8vOth5XrLC3DgAAAABA62N7svLaa69pypQpuvvuu7VixQqddNJJGjlypHbt2tXg8QsWLNDOnTvrtrVr18rpdGrs2LH1jhs1alS941599dVgXA6aAWv8BZdnf/BXHTAVMAn/ACCUHc3NUpI0f/589e7dWx6PR/369dN7771X7/kFCxbovPPOU1pamgzD0KpVqw45R0M3Xd1www3NeVkIol27pKoqKSPD7koiW2qqNd3nxx/bXQkAAAAAoLWxPVl55JFHdN111+maa67RiSeeqDlz5ig2NlbPP/98g8enpqYqIyOjbvvwww8VGxt7SPAXHR1d77iUlJRgXA6Ok2maKq62pvpMjmaqz2BwGdL+7E/VTPcJACHraG+WWrJkicaPH69rr71WK1eu1JgxYzRmzBitXbu27pjy8nINGzZMDz74YJNf+7rrrqt3Q9VDDz3UrNeG4MnNtR5Z46/lnXSS9NFHdlcBAAAAAGhtbA3+ampqtHz5co0YMaJun8Ph0IgRI7R06dIjOsdzzz2nyy+/XHFxcfX2L168WO3atVOvXr00adIk7d27t9FzVFdXq6SkpN4Ge5T5AvKZkiEpgak+g8IwjLpRf6zzBwCh62hvlnr88cc1atQo3XbbbTrhhBN033336ZRTTtFTTz1Vd8wVV1yh6dOn1+uLNSQ2NrbeDVWJiYnNem0Inpwc65GpPlveKadIGzZI27fbXQkAAAAAoDWxNVnZs2eP/H6/0n/wyUN6erry8/MP+/ovv/xSa9eu1S9/+ct6+0eNGqWXXnpJixYt0oMPPqhPPvlE559/vvx+f4PnmTlzppKSkuq2jh07HvtF4bgUVR9Y389pGDZX03oQ/AFAaDuWm6WWLl16SKA3cuTII7656mCvvPKK2rRpo759+2rq1KmqqKg46nMgNOTkSDExEtltyxswwHpkuk8AAAAAQDC57C7geDz33HPq16+fTjvttHr7L7/88ro/9+vXT/3791e3bt20ePFinXvuuYecZ+rUqZoyZUrd30tKSgj/bFK0f5rPFKb5DKqDgz/TNGUQugJASGnqZqnvvvuuwdfk5+cf881VB/v5z3+uzp07KysrS6tXr9Ydd9yh9evXa8GCBQ0eX11drerq6rq/M5NCaMnJsdb345/6lpeUJHXvbk33OXGi3dUAAAAAAFoLW4O/Nm3ayOl0qqCgoN7+goICZWRkNPna8vJyzZs3TzNmzDjs1+natavatGmjjRs3Nhj8RUdHKzo6+uiKR4vYV7N/fT83wV8wRTsNGZICpuQNSDQ/AKDW9ddfX/fnfv36KTMzU+eee642bdqkbt26HXL8zJkzde+99wazRByFnBzW9wumAQOkRYvsrgIAAAAA0JrYOtWn2+3WwIEDteig/w0HAgEtWrRIQ4YMafK18+fPV3V1tSYewe2zeXl52rt3rzIzM4+7ZrSs4v1TfSZHs75fMBmGoej9o/4q/QGbqwEA/NCx3CyVkZFxTDdXHc7gwYMlSRs3bmzw+alTp6q4uLhu27Zt23F9PTSvrVsJ/oJpwAApN1fassXuSgAAAAAArYXt6cqUKVP07LPP6sUXX9S6des0adIklZeX65prrpEkXXnllZo6deohr3vuuec0ZswYpaWl1dtfVlam2267TV988YW2bt2qRYsW6aKLLlL37t01cuTIoFwTjl0RI/5sE+vaH/z5WOcPAELNsdwsNWTIkHrHS9KHH3542JurDmfVqlWS1OgNVdHR0UpMTKy3IXTk5ko/mAEWLeikkySHw5ruEwAAAACAYLB9jb9x48Zp9+7dmj59uvLz8zVgwAAtXLiwbk2a3NxcORz188n169fr888/1wcffHDI+ZxOp1avXq0XX3xRRUVFysrK0nnnnaf77ruP6TzDwL79a/wls8Zf0MW4DKnaCv5Y5w8AQs+UKVN01VVXadCgQTrttNP02GOPHXKzVPv27TVz5kxJ0s0336zhw4dr1qxZGj16tObNm6evvvpKzzzzTN05CwsLlZubqx07dkiy+liSNVowIyNDmzZt0ty5c3XBBRcoLS1Nq1ev1q233qozzzxT/fv3D3IL4HiVlkpFRQR/wRQfL/XsKS1eLF17rd3VAAAAAABaA9uDP0maPHmyJk+e3OBzixcvPmRfr169ZJoNj0qKiYnR+++/35zlIUhq/KYq9o82Y6rP4It2GHIY1jp/1X5THhfBHwCEkqO9WWro0KGaO3eu7rrrLv3+979Xjx499MYbb6hv3751x7z11lt1waEkXX755ZKku+++W/fcc4/cbrf+85//1IWMHTt21KWXXqq77rorSFeN5pSTYz0S/AVX377S55/bXQUAAAAAoLUIieAPkA5M8+lxGvI4Cf6CzTAMxTgNlfusANbDbwcACDlHe7PU2LFjNXbs2EbPd/XVV+vqq69u9PmOHTvqk08+OdoyEaJqg7/jXOYRR6lvX+mf/5R27pRYchwAAAAA0NJIVxAyipjm03axLutXQoWfdf4AAIg0OTmSyyWlptpdSetSO8j2v/+1tw4AAAAAQOtA8IeQUVQTkCSluHlb2iVm//Se1X5T/kam0wUAAOEpJ0dq21Zyco9VUKWlSVlZBH8AAAAAgOAgYUHIYMSf/aIchqL2/1ao9BH8AQAQSXJyWN/PLieeyDp/AAAAAIDgIPhDyCD4Cw0x+9dXrGK6TwAAIsqmTazvZ5e+faVVq6SKCrsrAQAAAABEOoI/hIx9NfuDP6b6tJXHeWC6TwAAEBlMU/r+e6ljR7sraZ369pV8PunLL+2uBAAAAAAQ6UhYEBICpqni/Wv8MeLPXu6Dgj+iPwAAIkNBgVRSQvBnly5dpPh4ackSuysBAAAAAEQ6gj+EhFJvQAFTchhSQhRvSzu5HZIhyZRkGoSwAABEgvXrrUeCP3s4nazzBwAAAAAIDpfdBaB1KSwsVGlp6SH7870OSTGKMwLalpt7yPN5eXlBqA6SZBiG3A5D1QFTfmeU3eUAAIBmsH695HBIWVl2V9J69ekjLVhgTbtqGHZXAwAAAACIVAR/CJrCwkJ1695dRfv2HfLckHHX6sI7HtAXixZq8m+uavQcXq+vJUvEfm6nVB2Q/A5+RQAAEAnWr7dCP7fb7kpar169pOJiacsWqWtXu6sBAAAAAEQqPtVH0JSWlqpo3z7NeG2h0jLq325eGZ0or6STh56pIZ+sPuS1m9as1COTr5LfT/AXDNFOQ6VeUwFG/AEAEBHWr5fat7e7itatRw/rcdUqgj8AAAAAQMsh+EPQpWVkqW37TvX27Sj3yes3lZSUpER3yiGv2Zu/I1jlQZLbYc0/5XcQ/AEAEAnWr5cGDLC7itYtNdXaVq6ULrnE7moAAAAAAJHKYXcBgCTVBExJkpt3ZEiIdlrBn+lwKi6ljc3VAACA41FTY00v2bGj3ZWge3cr+AMAAAAAoKUw4g+2C5im/Fbup6j9gRPs5TAMRTkkb0DK7NnH7nIAAMBx2LxZ8vsJ/kJB9+7Sxx/bXQUAAAgllZWVevfdd1v0/MH4OkdSAwAgOAj+YDtvwHp0GpLTIPgLFW6HIW/AVFbvfnaXAgAAjsP69dYjwZ/9evSQ5s6Vdu2S2rWzuxoAABAqghWMEcABQOtA8Afb1U7zGeUg9Asl0U5D5T5TmT372l0KAAA4DuvXS7GxUlqa3ZWgRw/rcdUq6bzzbC0FAADYLD4+3u4Sgq41XjMA2IHgD7bz+mvX9yP4CyW134+s3v1trgQAAByP9eut0X5MrGC/zEwpLs5a54/gDwCA1u1Xv/qV3SUAACKUw+4CgAMj/mwuBPV4XIZkmmqX3UPlfj4pBAAgXH33ndShg91VQJIcDqlbNyv4AwAAAACgJRC1wHZepvoMSU7DkDPglSTt8DptrgYAAByr2hF/CA3dukkrVthdBQAAAAAgUhH8wVamacobsP7sdhL8hRqXr0qStJPgDwCAsLRvn7R3L8FfKOnRQ9q4USors7sSAAAAAEAkIviDrXymZEoyJLnI/UKOy1ctScr3OuXbPzITAACEj40brUem+gwd3btLpil9/bXdlQAAAAAAIhHBH2xV4z+wvp9hkPyFGkfAp+KCHfLLUG6Z1+5yAADAUaoN/rKy7K0DB2RnSykp0vz5dlcCAAAAAIhEBH+wFev7hTZD0vr//keStKmkxt5iAADAUdu4UUpOluLj7a4EtVwuaeRI6W9/kyor7a4GAAAAABBpCP5gq9r1/Qj+Qtf6z/cHf8U1Mk2m+wQAIJxs2iS1b293Ffihn/xEKi5m1B8AAAAAoPkR/MFWjPgLfRuXfSqHTBXVBLSnym93OQAA4Chs2MA0n6GofXtp4EBpzhy7KwEAAAAARBqCP9jqQPBncyFoVE1luTKjrMBv+e4qm6sBAABHY+NGRvyFqp/8RFq6VFq71u5KAAAAAACRhLgFtjFNU779M0cy4i+09fZ4JUlrCqtUXjs/KwAACGmlpdKuXYz4C1Wnny6lpkrPPmt3JQAAAACASELwB9vU5keGJCe5X0hr6wooK9Ylvykt311pdzkAAOAIbN5sPTLiLzRFRUlnnSX9618SyygDAAAAAJoLwR9sc/A0n4ZB8hfKDEM6LT1GkrRiT5Vq/Hw6BQBAqNu40Xok+AtdQ4dK27dLq1bZXQkAAAAAIFIQ/ME2B4I/Qr9w0DPJrZRoh6r8ptYUstYfAAChbuNGKT5eSky0uxI05qSTrO/RW2/ZXQkAAAAAIFIQ/ME2rO8XXhyGoQFpHknSllKvzdUAAIDD2bjRGu3HxAqhy+WSTjtNeuMNuysBAAAAAEQKgj/YhhF/4ScrLkqSVFDhs7kSAABwOBs2SJmZdleBwxk61Jrqc9s2uysBAAAAAEQCgj/Ypjb4c/EuDBvtYpySpFJvQBXegM3VAACApmzaxPp+4eC006yRf2+/bXclAAAAAIBIQOQCW5imqdrciBF/4SPa6VBqtBX+FVQy6g8AgFBVWSnl5RH8hYOEBKl/f+nNN+2uBAAAAAAQCQj+YIva9f0kyUXuF1bS94/6y2e6TwAAQtaWLdYjwV94GDJE+vhjqarK7koAAAAAAOGO4A+2OLC+n2QYJH/hJD3WJYkRfwAAhLKNG61Hgr/w0KuX5PVK69fbXQkAAAAAINwR/MEWB4I/Qr9wkxFD8AcAQKjbtEnyeKTUVLsrwZHIzrYe1661tw4AAAAAQPgj+IMtWN8vfNWO+NtXHVCVP2BzNQAAoCGbN0tZWRITK4SH+HgpPZ3gDwAAAABw/Aj+YAvfQVN9IrzEuBxK3P+N21Xpt7kaAADQkE2bpMxMu6vA0ejSRVqzxu4qAAAAAADhjtgFtmCqz/BWt85fBdN9AgAQigj+wk92NsEfAAAAAOD4Efwh6Ewx1We4y9gf/OUT/AEAEHICAWnrVoK/cJOdLeXmSiUldlcCAAAAAAhnBH8IOtNwyNz/Zxe5X1hKj9k/4q+S4A8AgFCzY4dUU2Ot8YfwkZ1tPX7zjb11AAAAAADCG8Efgi7gsEIjlyEZBslfOKod8be3yq8av3mYowEAQDBt3mw9EvyFl86dJYdDWrvW7koAAAAAAOHMZXcBaH0ChlMS03yGk7y8vEP2xTpiVBFwaNWWPKVHBRp8XUJCglJTU1u6PAAAcJBNm6zHjAx768DRcbuljh0J/gAAAAAAx4fgD0FXO+KP4C/0lZcUy3A4NGzYsEOe+/mDz6nfjy/Ubff/SZ+++GSDr09OSdGmjRsJ/wAACKLNm6V27awgCeGlc2dpzRq7qwAAAAAAhDOCPwRdwFE74s/mQnBYVRXlMgMB3fnSm8rqnF3vueqoOFVL+un/3a5xv7jukNfuzd+h6eNGqbS0lOAPAIAg2rxZysy0uwoci65dpXfesbsKAAAAAEA4I/hD0DHiL/ykpmeqbftO9fZV+gLaUeGX6faoTWpH1msEACBEbNpE8BeuunSR9uyRdu2yRm0CAAAAAHC0GHOFoDsw4o+gKJxFO63vn9+0NgAAEBoI/sJX167WI9N9AgAAAACOFcEfgio2OVUyrLedi3dfWHMYhtz7v4dVJH8AAISE0lJrxBjBX3jKypISEqRPP7W7EgAAAABAuCJ6QVCldbTWiXMaVnCE8OZxWr9CCP4AAAgNW7ZYj+3b21sHjo3TKQ0eLL3+ut2VAAAAAADCFcEfgqo2+GOaz8hQO91nNcEfAAAhYfNm65ERf+Fr2DBrqs/a7yUAAAAAAEeD4A9BldahiyQpindeRPAcFPyZJuEfAAB227xZiomRkpPtrgTH6tRTpago6c037a4EAAAAABCOiF8QVIz4iyxRDuuXiClG/QEAEAo2bbLWiWNG9fAVGysNHCi98YbdlQAAAAAAwhHBH4KK4C+yGIahGJf1vdxbHWDUHwAANtu8mWk+I8Hpp0uffy7t2WN3JQAAAACAcEPwh6BKrZvqk+AvUqR5nDIkVflNlXoJ/gAAsNO6dVL79nZXgeM1dKhkmtI779hdCQAAAAAg3IRE8Dd79mx16dJFHo9HgwcP1pdfftnosX/7299kGEa9zePx1DvGNE1Nnz5dmZmZiomJ0YgRI7Rhw4aWvgwcRk1Aik9tK4k1/iJJlMNQSrT1Dd1b7Zc/QPgHAIAdysulnBypSxe7K8HxSk2V+vSRnnlG8vvtrgYAAAAAEE5sj19ee+01TZkyRXfffbdWrFihk046SSNHjtSuXbsafU1iYqJ27txZt+Xk5NR7/qGHHtITTzyhOXPmaNmyZYqLi9PIkSNVVVXV0peDJpQFrLebEfDLwcIzESXZ7ZDbIQVMK/wDALSMo7lZSpLmz5+v3r17y+PxqF+/fnrvvffqPb9gwQKdd955SktLk2EYWrVq1SHnqKqq0o033qi0tDTFx8fr0ksvVUFBQXNeFprJunXWI8FfZLj2WmnZMun+++2uBAAAAAAQTmwP/h555BFdd911uuaaa3TiiSdqzpw5io2N1fPPP9/oawzDUEZGRt2Wnp5e95xpmnrsscd011136aKLLlL//v310ksvaceOHXrjjTeCcEVoTJHfers5Aj6bK0FzMwxDbT1OSVKp11SVP2BzRQAQeY72ZqklS5Zo/Pjxuvbaa7Vy5UqNGTNGY8aM0dq1a+uOKS8v17Bhw/Tggw82+nVvvfVWvf3225o/f74++eQT7dixQ5dcckmzXx+O3zffWI+dO9tbB5rHgAHSlVdK994rffyx3dUAAAAAAMKFrcFfTU2Nli9frhEjRtTtczgcGjFihJYuXdro68rKytS5c2d17NhRF110kb6p/ZRD0pYtW5Sfn1/vnElJSRo8eHCj56yurlZJSUm9Dc1vn896uzkDXpsrQUvwuByKj7JGcu6tCogJPwGgeR3tzVKPP/64Ro0apdtuu00nnHCC7rvvPp1yyil66qmn6o654oorNH369Hr9poMVFxfrueee0yOPPKJzzjlHAwcO1AsvvKAlS5boiy++aJHrxLH79lspM1OKibG7EjSXiROtAPDnP5fKyuyuBgAAAAAQDmwN/vbs2SO/319vxJ4kpaenKz8/v8HX9OrVS88//7zefPNNvfzyywoEAho6dKjy8vIkqe51R3POmTNnKikpqW7r2LHj8V4aGrCvdsSfnxF/kSot2ilDUpXflM/lOezxAIAjcyw3Sy1duvSQQG/kyJFN3lz1Q8uXL5fX6613nt69e6tTp07cUBWCvvmG0X6RxumUbr9d2r1beuEFu6sBAAAAAIQD26f6PFpDhgzRlVdeqQEDBmj48OFasGCB2rZtq7/85S/HfM6pU6equLi4btu2bVszVgzJmoKVEX+Rz+UwlBJtfZ+rohPkcLlsrggAIsOx3CyVn59/VMc3dg63263k5OQjPg83VNmH4C8yZWRIw4dLjz4q+VlKGQAAAABwGLYGf23atJHT6VRBQUG9/QUFBcrIyDiic0RFRenkk0/Wxo0bJanudUdzzujoaCUmJtbb0LyKagLyyZC3uoo1/iJcktshpyGZDpdOOHOk3eUAAIKMG6rsUV4ubd0qdelidyVoCZddJm3ZIrFkOQAAAADgcGwN/txutwYOHKhFixbV7QsEAlq0aJGGDBlyROfw+/1as2aNMjMzJUnZ2dnKyMiod86SkhItW7bsiM+J5ldQYYV9BRvXybC5FrQsh2EoIcr61TL4Z1fbWwwARIhjuVkqIyPjuG6uqj1HTU2NioqKjvg83FBlj3XrrEdG/EWmXr2k/v2lWbPsrgQAAAAAEOpsn+pzypQpevbZZ/Xiiy9q3bp1mjRpksrLy3XNNddIkq688kpNnTq17vgZM2bogw8+0ObNm7VixQpNnDhROTk5+uUvfylJMgxDt9xyi+6//3699dZbWrNmja688kplZWVpzJgxdlwiJBVUWsHfjvVrbK4EwZDodkimqR4/OkslfqJeADhex3Kz1JAhQ+odL0kffvjhUd0INXDgQEVFRdU7z/r165Wbm8sNVSHm22+tR4K/yDV2rLR0qfTFF3ZXAgAAAAAIZbYvwDVu3Djt3r1b06dPV35+vgYMGKCFCxfWrUmTm5srh+NAPrlv3z5dd911ys/PV0pKigYOHKglS5boxBNPrDvm9ttvV3l5ua6//noVFRVp2LBhWrhwoTweT9CvD5baEX87vlsj/fjHNleDlhblMOTyV8vn8mhjVZT62V0QAESAKVOm6KqrrtKgQYN02mmn6bHHHjvkZqn27dtr5syZkqSbb75Zw4cP16xZszR69GjNmzdPX331lZ555pm6cxYWFio3N1c7duyQZIV6kjXSLyMjQ0lJSbr22ms1ZcoUpaamKjExUb/+9a81ZMgQ/ehHPwpyC6Ap33xjrQUXG2t3JWgpQ4dKWVnSX/4i8eMHAAAAAGiM7cGfJE2ePFmTJ09u8LnFixfX+/ujjz6qRx99tMnzGYahGTNmaMaMGc1VIo4TI/5an6iaCvlcHm2pcckbMBXlYOQfAByPo71ZaujQoZo7d67uuusu/f73v1ePHj30xhtvqG/fvnXHvPXWW3XBoSRdfvnlkqS7775b99xzjySr7+VwOHTppZequrpaI0eO1NNPPx2EK8bR+PZbRvtFOodDGjVKmjdPevxxiVl0AQAAAAANCYngD5GtzBtQuc+UIVP5G761uxwEictfrcK8rUrt0EXr9lWrfxojbgHgeB3NzVKSNHbsWI0dO7bR81199dW6+uqrm/yaHo9Hs2fP1uzZs4+mVATZ2rXS4MF2V4GWNnKk9MIL0j/+Ie1f6QAAAAAAgHpsX+MPka92ms8EhylvVaXN1SBYDEnL/vWSJGnlnip7iwEAIIKVl0s5OYz4aw3atZNOPVV67jm7KwEAAAAAhCqCP7S4nfuDvxRXwOZKEGzL35wrh0ztrPBpZ4XX7nIAAIhIf/+79di/v711IDjOP1/64gtp3Tq7KwEAAAAAhCKCP7SoUq9f/9ttjfJr5/LbXA2Crbxorzq6re/7yt2M+gMAoLl5vdLMmdJZZ0nt29tdDYJh6FApKYlRfwAAAACAhhH8ocWYpqmFuWWq9pvKiHWpa7TP7pJggx7R1ki/b/dVq8rHqE8AAJrT3/8u5eZKEyfaXQmCxe221vr761+l4mK7qwEAAAAAhBqCP7SYNYXV2lTildOQftIpXg7D7opghzaugNp6nPKZ1nsCAAA0D59P+sMfpDPOkLp2tbsaBNPYsVJFhfT003ZXAgAAAAAINQR/aBG7Kn36T165JOmMzFi1iXHZXBHsYhjSKW09kqSlBRWM+gMAoJnMni1t3ixdcYXdlSDY2rSx1vqbNUsqL7e7GgAAAABAKCH4Q7Mr9wb0z80lqgmY6hwfpdPaxdhdEmzWP9WjtGinKnymPt1ZYXc5AACEvTlzpFtukS65ROrRw+5qYIfx462pPv/yF7srAQAAAACEEoI/NCu/aer1LSUqqQkoJdqhMdkJchjM8dnaOR2GzusYJ0lasadK+RWs9wgAwLH6y1+kSZOs0G/yZLurgV0yMqQRI6SHHpIqK+2uBgAAAAAQKgj+0Kw2Fdcor9ynaKehn3VNVIyLtxgsnRPcOjElWpL0/rYymaZpc0UAAIQf05SmTZN+/GMr9OP+qtZt4kRp717p8cftrgQAAAAAECpIZdCstpdbI7lOSI5Wmod1/VDfOe3j5HYY2lnh09ZSr93lAAAQdr7/Xtq92xrpReiH9u2ln/5UmjnTel8AAAAAAEDwh2a1vdwKc9rHEfrhUPFRDvVPs0b9fbmLOakAADhan34qORxSnz52V4JQcdVVkt8vzZhhdyUAAAAAgFBA8Idm4wuY2rl/7bb2cVE2V4NQNahtjAxJW0q92l3JWn8AAByNzz6TevSQ4uLsrgShIilJmjBBmjPHGhEKAAAAAGjdCP7QbAoqffKbUqzLUEo0by00LDnaqZ7JbknS/3Yz6g8AgKPxySdSv352V4FQc8klVgD45JN2VwIAAAAAsBvpDJpNXlntNJ9RMlh0Bk04tW2MJOmbwmqVewM2VwMAQHjIzbW2/v3trgShJjpaOvts6R//sKb9BAAAAAC0XizEhmazvbx2mk/eVjggLy/vkH2mKaU5Pdrrd+rTTfk6Mcbb4GsTEhKUmpra0iUCABAWPvvMemTEHxpyzjnSP/9pjQo95xy7qwEAAAAA2IWEBs3CNE1tLz8w4g8oLymW4XBo2LBhDT5/2qVX6uI7Z+nfK9frgp83/OlUckqKNm3cSPgHAICkTz+VsrOl5GS7K0Eo6t1bysqS5s0j+AMAAACA1ozgD82iuCagcp8phyFlxPK2glRVUS4zENCdL72prM7ZhzwfkKEy01RW73564rNv5AzUn5dqb/4OTR83SqWlpQR/AADICv769rW7CoQqw5DOOkuaP1966inJ7ba7IgAAAACAHUho0CxqR/tlxLgU5WB9PxyQmp6ptu07NfhcoMKnCp8pd0qGUj3OIFcGAED42L1b+u476dJL7a4Eoezcc6W5c6UPP5RGj7a7GgAAAACAHRx2F4DIwPp+OBbxLutXUJkvINM0ba4GAIDQtXy59XjCCfbWgdCWnW1tr75qdyUAAAAAALsQ/KFZ5FdYwV9mLOv74cjFRRkyJHkDUk3A7moAAAhdX38txcVJmZl2V4JQZhjW+n4LFkhFRXZXAwAAAACwA8OzcFQKCwtVWlpab1/AlAoqYiUZ8hcVKKe04ZFbeXl5QagQ4cRhGIp1GSr3mSr1BhTtZLpPAAAasmqV1LWr5OC2PRzG+edLL74ovfyyNHmy3dUAAAAAAIKN4A9HrLCwUN26d1fRvn319rfL7qlb//VfVVeU66SB2YedstHr9bVkmQgzCVEOlfv8Kq0JKCXaIafBGpEAAPzQqlVS7952V4FwkJYmDR0qzZkj3XijNQoQAAAAANB6EPzhiJWWlqpo3z7NeG2h0jKy6vbXuGJUJSnWHaWnFn/d6Os3rVmpRyZfJb+f4A8HxLoMRTms6T6LawJKjWbUHwAAB6uslL7/Xho92u5KEC5Gj5buuENautQKAQEAAAAArQfBH45aWkaW2rbvVPf3PVV+VdUEFBfjUdvUTo2+bm/+jmCUhzBjGIZSo50qqPSruDqgJDej/gAAONjatVIgIHXrZnclCBeDBklZWdJf/kLwBwAAAACtDauE4LhV+62pPaOdhDU4NnH7R/0FJJXUBOwuBwCAkPL119baftnZdleCcOFwSBdcIP3jH1JBgd3VAAAAAACCieAPx8U0TdUQ/OE4GYahlP1TfBZVB+QLNL1OJAAArcnXX0sdO0oej92VIJz85CfWe+ZXv5IOswQ3AAAAACCCEPzhuPhMa5SWJLl5N+E4xLsMufeP+ttV6RefTwEAYFm5Uura1e4qEG6SkqRbbpHefFN65RW7qwEAAAAABAtRDY5L7TSfboc1ags4VoZhKD3GJUNSpd9UjTve7pIAALCdaUpr1kjdu9tdCcLR8OHSiBHS5MlSXp7d1QAAAAAAgoHgD8eF9f3QnNxOQ2091pSf1e54dex7is0VAQBgr61bpZISqVs3uytBuLrpJsnlkn73O7srAQAAAAAEA8EfjktNgOAPzSvB7VC8y5AMQ2de9Wu7ywEAwFarVlmPjPjDsUpIkCZOlF59VVq3zu5qAAAAAAAtjeAPx8w0zQMj/hwEf2g+KdHWqL8Tho9SRYD3FgCg9Vq1SkpJkVJT7a4E4eyCC6S2baUZM+yuBAAAAADQ0gj+cMx8prQ/95ObEX9oRm6nIaevWk6XSxurXHaXAwCAbf77X6l3b4mllHE83G7p5z+XXntN+uYbu6sBAAAAALQkgj8csyrfgWk+HXwahWbm9lZIkjZVu+TfP6UsAACtic8nLVsm9e1rdyWIBOefL6WnM+oPAAAAACIdwR+OWaU/IEnyMNoPLcDlq1LJ7gJVmQ59X1xjdzkAAATd2rVSWRnBH5pHVJR02WXSggXSrl12VwMAAAAAaCkEfzhmVfvn+Ywh+EMLMCT97/WXJEkr9lTaWwwAADb4738ll0vq1cvuShApzjnHepw71946AAAAAAAth+APx8QfMOW1Bvwx4g8t5st/vSRDpraV+bS70md3OQAABNV//2uFftHRdleCSJGUJA0dKr34ot2VAAAAAABaCsEfjkntaL8oh+R0EPyhZZTszleHKL8kacWeKpurAQAguD7/XOrTx+4qEGl+/GNp1SppzRq7KwEAAAAAtASCPxyTyrppPnkLoWV193glSd8UVqt6/7qSAABEurw8ads2gj80v8GDpeRkRv0BAAAAQKQitcExqfJZwZ/HxWg/tKx0V0Bp0U7VBEx9U1htdzkAAATFf/9rPfbta28diDxRUdLZZ0svvyz5mEkdAAAAACIOwR+OmilD1YH9wR/r+6GFGYZ0cluPJGu6T9M0ba4IAICW99//Sh06SKmpdleCSHT++VJBgfT663ZXAgAAAABobgR/OGp+Z5QkyWVIUazvhyDomxqtKIe0p8qvTSVeu8sBAKDFff65dOKJdleBSNWjhzRwoHT//RL3VAEAAABAZCH4w1HzuaIlMc0ngsfjdOiUNjGSpM93VjDqDwAQ0fbulVatkk46ye5KEMkmTpRWr5bee8/uSgAAAAAAzYngD0fN57SCv1gXbx8Ez+B2MYpySPmVPm0sqbG7HAAAWsyiRdYorFNPtbsSRLKTTpL69ZNmzGDUHwAAAABEEpIbHJXEdpkK7J/qM5b1/RBEsVEODWxrjfr7jFF/AIAI9sEHUna21Lat3ZUgkhmGNervyy+ljz6yuxoAAAAAQHMh+MNR6Tn0XElStNOQk/X9EGSD28XI7TC0q9KvDcWM+gMARB7TlN5/31p/DWhpp54q9ewpPfCA3ZUAAAAAAJoLwR+OSq/TreAvlvX9YIMYl0MD23okSct2VdpcDQAAzW/9eikvTxo0yO5K0BoYhnTZZdJ//iN9/bXd1QAAAAAAmgPBH45YwJS6n3amJII/2GdQ2xg5DWl7uU95ZV67ywEAoFl98IEUFSX17293JWgthg+XMjKkRx6xuxIAAAAAQHNw2V0Awscen0OehDgZAb+iHbx1EBx5eXmH7OvidmtTdZQWb92rMxKqG31tQkKCUlNTW7I8AACa1fvvS/36STExdleC1sLlki65RHrmGemPf5Tat7e7IgAAAADA8SC9wRHb4XVKklz+GhmGx+ZqEOnKS4plOBwaNmzYIc+1ze6hKf9aotxqhwZecI72btvc4DmSU1K0aeNGwj8AQFiorpYWL5YmTrS7ErQ2F1wgvfSS9OSTrPcHAAAAAOGO4A9HxDRNbaux3i4uX5WkRHsLQsSrqiiXGQjozpfeVFbn7EOer/BVyefyaOr8jxRTXXLI83vzd2j6uFEqLS0l+AMAhIVPPpEqKqRTT7W7ErQ2cXHS6NHSnDnSXXdJ8fF2VwQAAAAAOFYEfzgieeU+lQUcqiorVYJZZXc5aEVS0zPVtn2nQ/ZX+gLaUeGXzx2n1NQkOR2sOwkACG8vvyx16iR162Z3JWiNLr5Ymj/feh/ecIPd1QAAAAAAjpXD7gIQHtYUWmHfmv+8JeIVhAKP01C0w5ApqdgbsLscAACOS3m5tGCBNGKEZNDZgg3S06Vhw6THH5dM0+5qAAAAAADHiuAPh+UNmPpuX40kacU7r9lcDWAxDEPJ0davsOKagAJ8QgUACGNvvmmFf+eea3claM0uuUT67jvpP/+xuxIAAAAAwLEKieBv9uzZ6tKlizwejwYPHqwvv/yy0WOfffZZnXHGGUpJSVFKSopGjBhxyPFXX321DMOot40aNaqlLyNifV9UrZqAqThHQDkrv7C7HKBOnMuQy5ACplTKqD8AQBj7+9+lfv2krCy7K0Fr1r+/1L27NeoPAAAAABCebA/+XnvtNU2ZMkV33323VqxYoZNOOkkjR47Url27Gjx+8eLFGj9+vD7++GMtXbpUHTt21Hnnnaft27fXO27UqFHauXNn3fbqq68G43Ii0trCaklSttsnk1FVCCGGYSjJfWDUH+9PAJHuaG6WkqT58+erd+/e8ng86tevn9577716z5umqenTpyszM1MxMTEaMWKENmzYUO+YLl26HHJD1QMPPNDs19aaFRRIH35oTfMJ2MkwrFF/770nff+93dUAAAAAAI6F7cHfI488ouuuu07XXHONTjzxRM2ZM0exsbF6/vnnGzz+lVde0f/93/9pwIAB6t27t/76178qEAho0aJF9Y6Ljo5WRkZG3ZaSkhKMy4k4uyp92lLqlSR1ifbZXA1wqES3Qw5J3oBU5iP4AxC5jvZmqSVLlmj8+PG69tprtXLlSo0ZM0ZjxozR2rVr64556KGH9MQTT2jOnDlatmyZ4uLiNHLkSFVVVdU714wZM+rdUPXrX/+6Ra+1tZk71wpczjrL7koAa7rZNm2kGTPsrgQAAAAAcCxsDf5qamq0fPlyjTjo9maHw6ERI0Zo6dKlR3SOiooKeb1epaam1tu/ePFitWvXTr169dKkSZO0d+/eZq29tfh4e7kkqXeyWwlOQhWEHsdBa/3tq/Yz6g9AxDram6Uef/xxjRo1SrfddptOOOEE3XfffTrllFP01FNPSbJG+z322GO66667dNFFF6l///566aWXtGPHDr3xxhv1zpWQkFDvhqq4uLiWvtxWo7xcevBB6eyzpcREu6sBJLdbmjjRCqS/+cbuagAAAAAAR8vW4G/Pnj3y+/1KT0+vtz89PV35+flHdI477rhDWVlZ9cLDUaNG6aWXXtKiRYv04IMP6pNPPtH5558vv9/f4Dmqq6tVUlJSb4O0paRGW0q9chjSWVl8wIfQleR2yGFYo/5KvQR/ACLPsdwstXTp0nrHS9LIkSPrjt+yZYvy8/PrHZOUlKTBgwcfcs4HHnhAaWlpOvnkk/WnP/1JPl/jswDQrzo6jz4qFRZKv/iF3ZUAB5x/vpSRIU2fbnclAAAAAICj5bK7gOPxwAMPaN68eVq8eLE8Hk/d/ssvv7zuz/369VP//v3VrVs3LV68WOeee+4h55k5c6buvffeoNQcLgKmqY93WKP9TmnjUXK0U8U21wQ0xmEYSnE7tLc6oMJqv+KjDLtLAoBm1dTNUt99912Dr8nPz2/y5qrax8PdgHXTTTfplFNOUWpqqpYsWaKpU6dq586deuSRRxr8uvSrjtzu3dJDD0kXXWSFLECoiIqSrrzSGo26fLk0cKDdFQEAAAAAjpStI/7atGkjp9OpgoKCevsLCgqUcZhPPx5++GE98MAD+uCDD9S/f/8mj+3atavatGmjjRs3Nvj81KlTVVxcXLdt27bt6C4kAn21u0q7Kv2Kdho6PSPW7nKAw0p0O+QyJL8pldQE7C4HACLGlClTdNZZZ6l///664YYbNGvWLD355JOqrq5u8Hj6VUfu/vulQMCaVhEINT/+sdSpE2v9AQAAAEC4sTX4c7vdGjhwoBYtWlS3LxAIaNGiRRoyZEijr3vooYd03333aeHChRo0aNBhv05eXp727t2rzMzMBp+Pjo5WYmJiva01yymtqVvbb3hmrGJctr5NgCPiMAylRDslSUU1ATHhJ4BIciw3S2VkZDR5fO3j0d6ANXjwYPl8Pm3durXB5+lXHZmPP5aeekqaMEFKSrK7GuBQTqc0bpz09tvS+vV2VwMAAAAAOFK2JzpTpkzRs88+qxdffFHr1q3TpEmTVF5ermuuuUaSdOWVV2rq1Kl1xz/44IOaNm2ann/+eXXp0kX5+fnKz89XWVmZJKmsrEy33XabvvjiC23dulWLFi3SRRddpO7du2vkyJG2XGOoKSwsVE5Ojr7bkqNXv8nXO+t2aPXmXG3amqPlm7ZpwaZimZK6uL1KLd+lnJwc5eTkKC8vz+7SgSYlRBly7h/153XF2F0OADSbY7lZasiQIfWOl6QPP/yw7vjs7GxlZGTUO6akpETLli1r8gasVatWyeFwqF27dsdzSa3a9u1WoDJggHTZZXZXAzRuxAgpNVVqZGZfAAAAAEAIsn2Nv3Hjxmn37t2aPn268vPzNWDAAC1cuLBuvZnc3Fw5HAfyyT//+c+qqanRz372s3rnufvuu3XPPffI6XRq9erVevHFF1VUVKSsrCydd955uu+++xQdHR3UawtFhYWF6ta9u4r27dPoKTM0bOIkSdLaKne943asX6vp11wgb1XlIefwen1BqRU4WoZhKMntUGF1QDXuOBkGa/0BiBxTpkzRVVddpUGDBum0007TY489dsjNUu3bt9fMmTMlSTfffLOGDx+uWbNmafTo0Zo3b56++uorPfPMM5Ks35m33HKL7r//fvXo0UPZ2dmaNm2asrKyNGbMGEnS0qVLtWzZMp199tlKSEjQ0qVLdeutt2rixIlKSUmxpR3CzeOPS3v3Sp07WwGKzyc9+qj13F13WaOqgFDldksXXyy9+KI15ecPlgQFAAAAAIQg24M/SZo8ebImT57c4HOLFy+u9/fGppWqFRMTo/fff7+ZKos8paWlKtq3TzNeWyh3twEyJTn8NQo4oiTDkMyAnH6verZvp8feX1bvtZvWrNQjk6+S30/wh9CV6HaoqDqggDNKvc9klC+AyHG0N0sNHTpUc+fO1V133aXf//736tGjh9544w317du37pjbb79d5eXluv7661VUVKRhw4Zp4cKF8ng8kqxpO+fNm6d77rlH1dXVys7O1q233qopU6YE9+LD1Nat0i23WFN5lpRI5v55qGNipAcflMhOEQ4uvFB65RVp9mzW+wMAAACAcBASwR+CL6l9tiocTjkMqUtyrExZH0Y5HYakaEnxh7xmb/6OYJcJHDWnYVjhX01AZ/3i5roPWQEgEhzNzVKSNHbsWI0dO7bR8xmGoRkzZmhGI5/mn3LKKfriiy+OqVZI//qXNWJq7lwpKkqqqLBG+Lnd1gaEg4QE6YILrDUpb79dij/0vwkAAAAAgBBi+xp/sIc3ylr/LN7lkGEYchjG/tAPCH9JbodkmurUb5DyfcyhBgCwxz//KZ16qhQbawV/SUlWaELoh3AzdqxUWir9+c92VwIAAAAAOByCv1bIHRMnr8ta7zAhirAPkcflMOT2lkuS1lZGyWTYHwAgyPLypC++kM480+5KgOOXni6NHCn96U9S5aFLgAMAAAAAQgjBXyvU55zRkuFQlEOKdhL8ITK5a8rlrarUHp9TW0u9dpcDAGhlFiyQXC5p6FC7KwGax89/LhUWSs8+a3clAAAAAICmEPxFgD2VPv0nr0wvf1+kR1fv1byNxSrzBho9fuCFl0uS4qOsaT6BSOQwA1r2rxclSZ/nVzDqDwDQLPLzpeLiwx/3z39KgwaxHhoiR1aWdO650oMPStXVdlcDAAAAAGgMwV8YK63x652cUj33XZG+2l2lvHKfqv2mtpZ69bf1RdpZfugop2KfoW6nniGZphKi+PYjsn364lNyytT2cp82ltTYXQ4AIExVVkq//a3Uq5eUmSl16iTNmiXVNPJPS36+9Pnn0hlnBLdOoKVNmCDt3MmoPwAAAAAIZSQ/Yco0Tc3fXKK1hdUyJfVIcusnneM1vnui0jxOlXkDemVDsXJK638i9X11lCTJ5atSlIPRfohspXsK1NNjBeCL8srlCzDqDwBwdEpKrLXNZs+2gr9p06RzzpHuuEPq398K+X7oL3+R3G7p9NODXy/Qkjp1sn4eZsyQSkvtrgYAAAAA0BCCvzBUWFioFZvztKvSL6dMnZdYqUHOfUooLZAKd+rsmBJlRvnkM6V/birWqk25ysnJ0YYtOdpc5ZQkub0VNl8FEBx9YryKj3KoqCag/+2qtLscAEAYKSyUzjpLWrVK+tOfpClTrNDv5putEU9790oXXWSNCKxVVCQ9+qj0059KSUk2FQ60oKuvtqa7feQRuysBAAAAADSE4C/MFBYWqlv37prx11clSV+9908N7N5JXbp0qdt6ZHfRLwd20ZYVS+U1Df1jU4nOGTtRv7x3lgKGQzs3fKNAFcEfWocoQzorK1aStKSgQqU1fpsrAgCEizlzpO++s4K8vn3rP5edLd1/v/T119K110q1S8k++qi1/tn48cGvFwiG9HRpzBjp4YelggK7qwEAAAAA/JDL7gJwdEpLS1VaVq4fXXqlJOn0s87R8E9WN3isKUPlfq8S22bour+8Xrd/6by/qvMNNwWlXiAU9EmJ1so9Vdpe7tOrG0t0adcEpXn49QcAaNrChdLAgVK3bg0/36uX9LvfSffea43+u/NOK/i78EIpNTW4tQLB9POfS++9J02aJL36qhQdbXdFAAAAAIBajPgLQ73P+LEMp0tOQ8pIT1fb9p0a3Nq176iOSTFKiDJUu5yf6fNq1b//Ze8FAEFmGIYu6BSvhCiHCqv9enF9sTYUV9tdFgAghJWUSEuXSoMGNX3cWWdZI/++/VYaPlzyeqXLLw9KiYBtkpKk22+X3n1XOu88ad8+uysCAAAAANRiyEsYOnn0ZZKkhCiHDMNo8liXw1C7GJdM01R1wNTWtavlrWKdM7QeeXl5dX8eESf9t8yjXT6nXt9conMTq9TGFWjwdQkJCUpluAYAtFqLF0s+n3TqqYc/9vTTpdNOs0ZAJSRIKSktXh5guzPOsKb7nDZNGjpUWrKE9z4AAAAAhAKCvzBTHZB6D/uxJCv4O1KGYcjjNCSft6VKA0JKeUmxDIdDw4YNq7ff4XLp5w/8VX3OGa1/bizSUxNGqGzvrkNen5ySok0bNxL+AUAr9f77UocOUlbWkR0fFSVddFHL1gSEmn79pCeekG66SRo3zgq/XfwPEwAAAABsxX/Lwsxun1POqCg5/F65nVF2lwOErKqKcpmBgO586U1ldc6u91zt+pdJ7TI1feFKxVbsVe3Y2YDhUNG+fXp22hRtLyoj+AOAVur99631/QA0rVMna9TfHXdYa14+/LDdFQEAAABA60bwF2YKfdYoP2eAkXvAkUhNz1Tb9p0O2V/jN7W93Ce/062apCxlxDpV6g2osDogV3y6Jv3tPb1bLMUU16h7ktuGygEAdtm8Wdq0Sbr6arsrAcLDwIHSpEnSrFlS+/bSrbda+/ftk95+25o2NzpauvhiKTbW3loBAAAAINIR/IWZff79wZ+f4A84Hm6noYxYp/Ir/aoOmMop89U9ZwR8KtqzW0ntMvXBtjJ1ik+R29n0epoAgMjxwQfWdIUnn2x3JUD4uOQSae9eacoUqahIGjxYuvZaKT//wDG//KX07LO2lQgAAAAArcKRLxKHkFA74s9B8AcctxiXQx3iXKpdLtMhqZ3Hqfjy3Zo15keKcwRU4g3ov/kVttYJAAiuDz+U+vSR4uLsrgQIH4YhXX+9tc2YIY0ebU0D+o9/SB99ZK0D+Nxz0pdf2l0pAAAAAEQ2RvyFkVKvX1WmQwG/n6k+gWYS5TDUIc6lMq+pWJchl8NQlSRvVYUGxtbo0zKPvtxVqT6p0WoXw69MAGgNvvxSOvNMu6sAwtP48VJ6ujW9549/bAWCknThhdJ770k33igtWyY5uAUVAAAAAFoE/90KI/kV1lSEu7Z8LyYdBJqPwzCU6HbI5aj/k9Xe7VevZLdMSYt3lNtTHAAgqAoLpbw8qVs3uysBwtc550jnnXcg9JMkp9Ma9ffVV9ILL9hXGwAAAABEOoK/MFJQ4Zck7Vi32uZKgNbjrCxrnrfNJV7trfId5mgAQLj7+mvrsXt3e+sAIlG/flYoeO+9kt9vdzUAAAAAEJkI/sJI7Yi/7eu+trkSoPVIiXaqe6JbkrR8d5XN1QAAWtqqVZLHI7Vvb3clQGS67DJp2zbpnXfsrgQAAAAAIhPBXxjJr9wf/H3HiD8gmAa180iS1hRWqcoXsLkaAEBL+vprKTvbmpYQQPPr1Uvq00d68km7KwEAAACAyETwFybKvAGVeQOSTO1cv9bucoBWpXN8lNp6nPIGpK/3MuoPACLZypVS1652VwFEtosukhYtktats7sSAAAAAIg8BH9homD/NJ+JDlM1leU2VwO0LoZhaFC7GEnWdJ9+07S5IgBAS6ipsYKIbt3srgSIbMOHS6mp0uzZdlcCAAAAAJHHZXcBODK103ymuJhmEAiWvLy8uj/Hm1K0EasSb0CfbNihbtG+Jl+bkJCg1NTUli4RANCM1q2TvF6pe3e7KwEim9stjR4tvfiidP/9UnKy3RUBAAAAQOQg+AsT+ftH/KW6/DZXAkS+8pJiGQ6Hhg0bVm//sAk3aPRv7tPC7/M16+IfKeBrPPxLTknRpo0bCf8AIIx8/bX1yIg/oOWNGSPNny89+qh07712VwMAAAAAkYPgL0zUTvWZ6mTEH9DSqirKZQYCuvOlN5XVObtuvympLOBXavvOmvXpOrm9lQ2+fm/+Dk0fN0qlpaUEfwAQRlatkjp0kGJj7a4EiHypqdKFF1rB3003SWlpdlcEAAAAAJGB4C8MVHgDKvFagR9TfQLBk5qeqbbtO9Xb5672a291QL6YZGW1bSPDMGyqDgDQ3Fatkrp2tbsKoPUYP156+21p1izpj3+0uxoAAAAAiAwOuwvA4dWu75ca7VQUGQNgq0S3Q05D8pnSzgq//AHT7pIAAM3ANK3gj2k+geBJTpYuvlh64glp9267qwEAAACAyEDwFwZq1/fLiGWAJmA3h2GorccpQ1Kl31ReuU8VPkbiAkC4y8uT9u0j+AOC7bLLJIdDOuMM6auv7K4GAAAAAMIfwV8YqA3+0mOcNlcCQJLiohxqH+dSlOPAyL8d5T5V+xn9BwDhavly67FnT3vrAFqbpCTpySetP//oR9L06VJlw8soAwAAAACOAMFfGKid6pMRf0DoiHYa6hDnUpLb+jVaO/qvzMvoPwAIR199JaWlSW3a2F0J0Pp07iw99ZQ0YYI0c6bUp4/03nt2VwUAAAAA4YngL8RV+gIqqbGChPQYgj8glDgMQ208TnWKdynWZS3AWVDpV40rxubKAABH66uvpB49JIP1lAFbuFzSNddIzz1nhfCjR0uPPmp3VQAAAAAQfgj+QlztNJ/Jboc8Lr5dQCiKchjKiHEqIcr6tLgqJlnDJtxgc1UAgCNlmlbw16uX3ZUA6NRJeugh6ec/l6ZMkR5+2O6KAAAAACC8MIQsxNUGf0zzCYQ2wzDU1uOU0wioqCag0b+5T6sratTJNGUwfAQAQtq2bdLevazvB4QKw5B++UvJ6ZRuu02qqJCmTWNELgAAAAAcCdKkEFfA+n5A2DAMQ2kepypLi1QdnahvqtzybS3V2VlxSo522l0eAKARX31lPRL8AaHDMKypP91u6e67pR07pNmzrTAQAAAAANA45o4McXUj/ljfDwgb0TXlev0Pv5EhU+uLavTsun1alFemomq/3aUBABqwfLnUpo21AQgdhiFNnGiN+vvrX6VRo6S1a+2uCgAAAABCG8FfCCv3WlMGSoz4A8LNl/96SSMTq9Q5Pkp+U/rf7irN+Xaf5m0s1le7KrWr0ifTNO0uEwAg6X//Y7QfEMouuED64x+ldeuk/v2lCROkJUus9TkBAAAAAPWRJoWwvHKvJKmtxymPi4wWCDfl+bka0r6DusQ7tb7apXyvS1tLvdpaav1spzj9OiW2Ru2iAvVel5CQoNTUVDtKBoBWxzStEX8XXmh3JQCactpp0gsvSP/+t/Tqq9LcuVL37tK4cVYwOHgw04ACAAAAgETwF9LyyqxwoEN8lM2VADga5SXFMhwODRs2rN7+lPad1f/HF6nrqcPUZcBg7YuJ1aLSGH39/ut6+8GpKi/aK0lKTknRpo0bCf8AIAhycqTCQkb8AeEgKsoK6X/yE2nVKun996WnnpL+8AepSxfppZekM86wu0oAAAAAsBfBXwjbXm6t79c+jm8TEE6qKsplBgK686U3ldU5u8FjAv5SVdeY8kbF6qSRF2vAjy9UTFWRirdv1fRxo1RaWkrwBwBBsHy59dirl711ADhyDod0yinW5vdL334rPfusNHy4dMcd0j33SNHRdlcJAAAAAPYgUQpR3oCp/Eor+OsQx4g/IBylpmeqbftOTR5T7TdVUOmTV05VxKYpumuiRk+ZoW8qo7R1R7mchqGsOJeyYl1M+QsALWDpUik9XeJeCyA8OZ1Sv37So49Kr70mPfywtGCB9Je/SGedZXd1AAAAABB8BH8hKr/Cp4ApxbkMJbn5sB+IVNFOQx3iXCqsDqi4JqCAM0rDJk7S6kpJlZX1jm3jcSorzqVkt1Muh/W7oWeSW4Zh2FM8AESATz+V+va1uwoAx8vplH7+c2nIEOmxx6Szz5ZOOEHq2FFq105yuSSPx5oK9IILpORkuysGAAAAgJZB8BeiDl7fjw/1gcjmMAy18TiV4naoYPduffz267rokkuVFBerGtPQHp9DZQGH9lT5tafKX++1bVx+nRpbrWSXWbcvISGBaUIB4AiUl0srV0qTJ9tdCYDmkp1tjf77+GNrCtDdu6U1a6RAwPqZnzPHCgF79pQyM6VOnaSBA6Uf/ciaOpT/egEAAAAIdwR/ISqv3Ar+2jPNJ9BqOB2GagoL9NZDU/XmA3fUey4upY069R+kjv0GKi45TdGxceo17MfaE5+gd/ZG6a2Hfqcv//WSJCk5JUWbNm4k/AOAw1i2TPL5pP797a4EQHNyOKRzz7W2H9q9W1qyRMrNlfbutf78979bvwsmTZKeesp6PQAAAACEK4K/EGSapraX167vx7cIaE2qKsplBgK686U3ldU5u8ljA6pQlTdKivLo4jtnafxvpqt020ZNHzdKpaWlBH8AcBiffSYlJkqdO9tdCYBgadtWuuii+vtqaqR//1t6/HFrpvW//tWaOhQAAAAAwhGpUggqrParym/KZUjpMXyLgNYoNT1Tbdt3Ouxxpmlq7/71Aas8SYrv1EOuaE8QKgSA8Fe7vh+je4DWze22wsC4OOmBB6TiYumll6T4eLsrAwAAAICjR6pkg8LCQpWWljb6/Poql6RopTn9ytuWW++5vLy8Fq4OQDgxDENp0dYn1sU1AVVHJ+r2d5Zreblb3+eVyRswlRjlVJsYpzrGRSkuik+3AUCSvF7piy+kK66wuxIAoWLECCk2VvrDH6ShQ6U337TWDAQAAACAcELwF2SFhYXq1r27ivbta/SYXzw9Xz1+dJaef/Ae/eKVOQ0e4/X6WqpEAGGmNvyLckh7K2qUkNZO31dL2l1V7zi3w9C5HeLUPzVahmHYUywAhIiVK6WKCtb3A1Df0KHWOn/Tpkm9e0vdu0s9e0qBgLRvn9SnjzR9upSZaXelAAAAANAwgr8gKy0tVdG+fZrx2kKlZWQd8rwpQ6Xx6ZKky371a42//v/qPb9pzUo9Mvkq+f0EfwAOMAxDSW6nqnfv1rN/vFtTZjyo5IQ4OQ2pzG9or8+pkoBD/84t06qdRero9ivVGZAhU17TUJRhKtFpKikxgbUBAbQKn38ueTxSjx52VwIg1GRnS08/Lf3nP1JurrRjhzUlcGys9Oqr0t//Lt1+u3TrrVJCgt3VAgAAAEB9BH82ScvIanD9rjJvQKWVfkU5pIys9oc8vzd/RzDKAxCmKkqKtfrDN3XV+6/X2284HBo2cZLO+7+p2qlo7fQe+uu/prJcBZ8s0+hhpyo7NUHZCVHyuJgaFEBk+uwz6YQTpKgouysBEIoSE6VLLjl0f1mZ9PLL0v33S48/Lv3mN9aowKIiyeWSOneWunWzHplgAQAAAIAdCP5CTIUvIEmK5cN2AMegqqJcZiCgO196U1mdD12Uxu8tkVcx8jui5HdGyTBNGTIVMBxyx8SpY/9TtbpEWl1SKpch9UqO1iltPWofxyfjACJHSYn0/vvSxIl2VwIg3MTHSzfcYIWCr7wi3X235PNZIZ9pHjiuTRtpyBDpggusY9u1s69mAAAAAK0LwV8IMU1TFT7rf4uxLm4PBXDsUtMzGxxV3BjTNFWQv1N/e/BeTX3wURUZHu2p8uubfdX6Zl+1shOiNCwzlgAQQET417+kqirpxz+2uxIA4apdO2uqz+uvtwK/2FgrANy9W9q2Tfr2W2ntWmnyZOnGG6Xzz5fuvVcaONDuygEAAABEOoK/EFIdMOU3JUNSjJPgD0DwGIYhZ8CnFe+8pszf/VqD2ndQoduhDVUuba1xaUupV1tKi5XgCKiD26dkZ0BuQ4pxmEpwBlR7r0JCAmsEAgh9f/ub9eF727Z2VwIg3MXFHfiz2y21b29tP/qRta+4WPr0U+mf/5QGDZIuvNAKDIcPZypQAAAAAC2D4C+ElHkPjPYz+F8ggCArLym21gIcNqze/pSsTjrnut9owAU/U2mUW+uq3Ie8trhgh/bkblJpwXbdcMV4tU+JVxuPS8luB7/PAISULVusD+GnTrW7EgCtQVKS9NOfWlN+/uc/0ty50tlnS716SWeeKWVlSR07Sl27WmsDduggOVj1AQAAAMBxCIn/UsyePVtdunSRx+PR4MGD9eWXXzZ5/Pz589W7d295PB7169dP7733Xr3nTdPU9OnTlZmZqZiYGI0YMUIbNmxoyUs4bpW+gIprrPX9EqJC4tsCoJU5eH3A2Z+srtvuf/UdnXPO2UqpKlRM5T5FeSvk9FXL4ffKCFi/t5LSs9Tt1DM04CeX64t9pv61uVR/+XafHvt6j15em6831u3U++u36/MNeVqxaZvWbcnVpq05ysmpvxUWFtaryTRNVfkC2lXp06biGn1TWKXvi6q1tbRGZd5Ag9cRME35Aqb8AVPmwYvtHCHTNOs2INTY0WcqLCzUhAkTlJiYqOTkZF177bUqKytr9msLlpdflmJipDPOsLsSAK2J0ymNHGmNOH70UalTJ+smhNmzpeuuk845R+rc2Zoy9MQTpTFjpNtus47ftKn++oEAAAAA0BTbR/y99tprmjJliubMmaPBgwfrscce08iRI7V+/Xq1a2AF9CVLlmj8+PGaOXOmfvKTn2ju3LkaM2aMVqxYob59+0qSHnroIT3xxBN68cUXlZ2drWnTpmnkyJH69ttv5fF4gn2Jh+ULmCqo9EuSEqIMxRH8AbDR0a4P6DdNef2mduRt06IF85TWMVttO3dXu649JXe08rwuydvwa2sqK+T3eRXw+RTw+2WapUpvWyPn/lvdqwKGfGp8xGCsI6B4hymnYQV95aZT5QFD2v8aQ6Y8hqkYh6l4p6kER0AJTmt6Uqek8oChMr+hIr9DRT5DVaZD1aahwEFf05D1SZtDktOQ3Iap+P3naevyKz3Kr7ZJzT/FqWmaKqz2a191QG6HoWinoTSPUy4HIyhbK7v6TBMmTNDOnTv14Ycfyuv16pprrtH111+vuXPnBvX6m0MgIL34ojXKJibG7moAtEaGIQ0YYG21amqk/Hxpxw5p+/YD21dfWftMU8rIkE44Qere3QoIs7KkzExryuLUVGuaUafTevR4pOho62uZprXu4Pbt1tqDW7dKe/daIxHT0qQ+faSTTrKOr1Vaao2O9vutcyUlSenp1vkPp6pKKiyUSkqsPzscB+pyu6X4eOt8Lts/iQAAAAAil+3d7UceeUTXXXedrrnmGknSnDlz9O677+r555/X7373u0OOf/zxxzVq1CjddtttkqT77rtPH374oZ566inNmTNHpmnqscce01133aWLLrpIkvTSSy8pPT1db7zxhi6//PLgXVwTTFmj/Cp8psp9AflNKcohtfEcwf+mACCEOA1DTpehmr079eHTM3XnS28qq30bmdWF8vui5HdEyXQ4FTCcBx4Nh2QYcsfEHnK+Skn6wWC+8n17VVywQxUl++T2xCgmMUVpnbqqQg5VNDzwT5JkylClaajSLxX6j+36zP0hoF+S35RqTENlAYfyfdKG6ihJUtG6HJ3YJaDUuGh5nIZiXA55nIY8TkMuhyFDksOwHg1jf1gasG788AVMlZRXqLyqWj7TCjsrAg7t8ztUY9YP+Rwy1cYVUKoroBhHQDGGqbT4GGWlJSvO5ZD7ONeHNU1TAVmxqVVr4+fzBUxV+gMyTWukOlO6tjw7+kzr1q3TwoUL9b///U+DBg2SJD355JO64IIL9PDDDysrKytIV3/8tmyRrrnGGjlz8812VwMAB7jd1gjATg3cd1VWJq1ZI33zjZSXJ33yibRrl1RUdGxfKzraCt4qKqxz1379zEwr6KuosIK7H3I6rbUL+/WzgsIOHaTkZCvcW7PG2r7/3goXj2R0Yps20tCh0umnS0OGWOsfNucNGZWV0ooV1u/+0lLrxo8f/cgKXI8kwAQAAADCma3BX01NjZYvX66pBy2y4nA4NGLECC1durTB1yxdulRTpkypt2/kyJF64403JElbtmxRfn6+RowYUfd8UlKSBg8erKVLl9oe/G2scukXs/+h0vgMlVYc+BTaISkjxiUHH5wCCHNHMmKwNmAKmAc+HNr87df68+9+rV/e/5jaZGRJhmQEAnKYfiW6pMz2baT2bQ6co3yX/M4omYZDBXm5ev/vz2r01b9Su3btZOw/qWkYMg2HAoZTAYdLAUfto/XPn2H65Qj4Vbxzm15/4o+65IZb1S4jU1JDn1gZ9c/ndMnnjFbAGaXkzI7aUS3tqK4+jpY7dO1Eb3WVdm/dKJc7WnHJqYpLSdMun1O7fAd9YlVuSgX7JEkumXI7TDkkOQwrKHTKChutK1DdWEa/aYWZPlPym9bISp95IOiUrNcb+88VZVjn8u0PP/0/OC6hbkRlQB7DlGEc+FqGrBat2/Z/HX8gIMPhOGjfwZtRb58Oes4lq56U2GgN65x2TK0dbuzqMy1dulTJycl1oZ8kjRgxQg6HQ8uWLdPFF1/cjFfZ/LZvt6bS++QTa4rPhATp4YetD64BIBzEx1vB2JAh9ffX1Ej79knFxdboOp/PCrd8Pqm6WvIeNNtCcrI1uq9dO+vPtf2CmhrrZohvv7XCvtqReZmZ1ghDl8s6pqzMGjWYny9t3iz99a/WqEG/3zpX+/bWKMTTT7f+nJoqxcVZ5zJN6zifz6qpslIqL5d27rTCzHvusfa5XNZah+3aWaMY09KsLSHBagP3/m6SYVjX6fcfOFdFhfVYWirt2SMVFEjffWd9TenA6EKfz7r+k06y1ljs0sUaydiu3YFrTk21Rjke6X/LTfPA1y4ttWoyDGuko8djbXFx1nU4HFY7791rfc/Kyqx6+vQ5cH0AAABAc7A1+NuzZ4/8fr/S09Pr7U9PT9d3333X4Gvy8/MbPD4/P7/u+dp9jR3zQ9XV1ao+6MPa4uJiSVJJSclRXM2R2VpUoY79BqmqvExGwC+Xv0ZOf7UMf43yzSaGrexXkLtVkrRz6yaZft9Rf/3jeT1fO/hf+3hf31q/9vG+nq9t0/ds43fauX6NKgt3yRt3dLd8l+Ru1Ip3XtM5Px2j6timp3R26NAFbvdtWKNvPnpX54+bqOr4Q0chNsYp67rnPz1LyekdlNAmQzGJSdYWnyRPYpJcbo8cTkMOh1OG4ZThcMjvrZa3ulreqkr5aqrlra5U9/6nyB3tkXxemX6vzJoqmVWVipMplUu+fdtVkhctIzZehtsjw+WWz+dXWXmZEtqky+058rqbizU9a0BOV5QqJBUE+esX5n2nDmbXZp9mtfbf/1Ba59GuPlN+fv4h04i6XC6lpqaGRL9Kkt57T5o82fqwtabmwAe9DbngAmn1amsDgNai4Aj+ga4Nx7xeKTfX2n4oKsoKzHr1sgKv2qk8D54mdNcuazscw5D69rWmL83Jkdavt0bnbdlyZNd0OGlpUu/e1shEt9v6t+H7763f/598Ym2wvqculzXa8rHHpP0TADSrUOxXhbPadmypfhUAAAhdR9WvMm20fft2U5K5ZMmSevtvu+0287TTTmvwNVFRUebcuXPr7Zs9e7bZrl070zRN87///a8pydyxY0e9Y8aOHWtedtllDZ7z7rvvrj/IgI2NjY2Nja3Vb9u2bTvWLk6zs6vP9Ic//MHs2bPnIedu27at+fTTTzf4delXsbGxsbGxsf1wC6V+VTjbtm2b7d9LNjY2NjY2Nnu3I+lX2Trir02bNnI6nSr4wS2IBQUFysjIaPA1GRkZTR5f+1hQUKDMzMx6xww4eAX1g0ydOrXeVFiBQECFhYVKS0uLyDWLSkpK1LFjR23btk2JiYl2lxNyaJ/Do42aRvs0jfY5PNqoaS3dPqZpqrS0NKTWr7Orz5SRkaFdPxi64fP5VFhY2OjXbW39qobwM9ww2qVxtE3DaJfG0TaNo20aZle7hGK/KpxlZWVp27ZtSkhIiMh+FT+/TaN9mkb7HB5t1DTap2m0z+GF0udVtgZ/brdbAwcO1KJFizRmzBhJ1odDixYt0uTJkxt8zZAhQ7Ro0SLdcsstdfs+/PBDDdm/6EF2drYyMjK0aNGiug+tSkpKtGzZMk2aNKnBc0ZHRyv64PlJJCUnJx/XtYWDxMREfkibQPscHm3UNNqnabTP4dFGTWvJ9klKSmqR8x4ru/pMQ4YMUVFRkZYvX66BAwdKkj766CMFAgENHjy4wa/bWvtVDeFnuGG0S+Nom4bRLo2jbRpH2zTMjnYJtX5VOHM4HOrQoYPdZbQ4fn6bRvs0jfY5PNqoabRP02ifwwuFz6tsDf4kacqUKbrqqqs0aNAgnXbaaXrsscdUXl6ua665RpJ05ZVXqn379po5c6Yk6eabb9bw4cM1a9YsjR49WvPmzdNXX32lZ555RpJkGIZuueUW3X///erRo4eys7M1bdo0ZWVl1X1QBgAAEG7s6DOdcMIJGjVqlK677jrNmTNHXq9XkydP1uWXX86d+wAAAAAAACHI9uBv3Lhx2r17t6ZPn678/HwNGDBACxcuVHp6uiQpNzdXDoej7vihQ4dq7ty5uuuuu/T73/9ePXr00BtvvKG+ffvWHXP77bervLxc119/vYqKijRs2DAtXLhQHo8n6NcHAADQHOzqM73yyiuaPHmyzj33XDkcDl166aV64okngnfhAAAAAAAAOGK2B3+SNHny5EanqVq8ePEh+8aOHauxY8c2ej7DMDRjxgzNmDGjuUqMKNHR0br77rsPmYYLFtrn8GijptE+TaN9Do82alprbh87+kypqamaO3fuUdfamrXm92hTaJfG0TYNo10aR9s0jrZpGO2CcMD7tGm0T9Non8OjjZpG+zSN9jm8UGojwzRN0+4iAAAAAAAAAAAAABwfx+EPAQAAAAAAAAAAABDqCP4AAAAAAAAAAACACEDwBwAAAAAAAAAAAEQAgr8Itn37dk2cOFFpaWmKiYlRv3799NVXX9U9b5qmpk+frszMTMXExGjEiBHasGGDjRUHj9/v17Rp05Sdna2YmBh169ZN9913nw5e8rK1tc+nn36qn/70p8rKypJhGHrjjTfqPX8k7VFYWKgJEyYoMTFRycnJuvbaa1VWVhbEq2g5TbWP1+vVHXfcoX79+ikuLk5ZWVm68sortWPHjnrniOT2kQ7/HjrYDTfcIMMw9Nhjj9XbH8ltdCTts27dOl144YVKSkpSXFycTj31VOXm5tY9X1VVpRtvvFFpaWmKj4/XpZdeqoKCgiBeRcs5XPuUlZVp8uTJ6tChg2JiYnTiiSdqzpw59Y6J5PZBaKKv1TD6WRb6Vo2jX9Uw+lKNox/VMPpPCFf0oRpHP+pQ9KmaRr/q8OhjNY1+VtPCtb9F8Beh9u3bp9NPP11RUVH697//rW+//VazZs1SSkpK3TEPPfSQnnjiCc2ZM0fLli1TXFycRo4cqaqqKhsrD44HH3xQf/7zn/XUU09p3bp1evDBB/XQQw/pySefrDumtbVPeXm5TjrpJM2ePbvB54+kPSZMmKBvvvlGH374od555x19+umnuv7664N1CS2qqfapqKjQihUrNG3aNK1YsUILFizQ+vXrdeGFF9Y7LpLbRzr8e6jW66+/ri+++EJZWVmHPBfJbXS49tm0aZOGDRum3r17a/HixVq9erWmTZsmj8dTd8ytt96qt99+W/Pnz9cnn3yiHTt26JJLLgnWJbSow7XPlClTtHDhQr388stat26dbrnlFk2ePFlvvfVW3TGR3D4IPfS1Gkc/y0LfqnH0qxpGX6px9KMaRv8J4Yg+VNPoRx2KPlXT6FcdHn2sptHPalrY9rdMRKQ77rjDHDZsWKPPBwIBMyMjw/zTn/5Ut6+oqMiMjo42X3311WCUaKvRo0ebv/jFL+rtu+SSS8wJEyaYpkn7SDJff/31ur8fSXt8++23piTzf//7X90x//73v03DMMzt27cHrfZg+GH7NOTLL780JZk5OTmmabau9jHNxtsoLy/PbN++vbl27Vqzc+fO5qOPPlr3XGtqo4baZ9y4cebEiRMbfU1RUZEZFRVlzp8/v27funXrTEnm0qVLW6pUWzTUPn369DFnzJhRb98pp5xi3nnnnaZptq72QWigr9U4+lmHom/VOPpVDaMv1Tj6UQ2j/4RwQR+qafSjmkafqmn0qw6PPlbT6Gc1LZz6W4z4i1BvvfWWBg0apLFjx6pdu3Y6+eST9eyzz9Y9v2XLFuXn52vEiBF1+5KSkjR48GAtXbrUjpKDaujQoVq0aJG+//57SdLXX3+tzz//XOeff74k2ueHjqQ9li5dquTkZA0aNKjumBEjRsjhcGjZsmVBr9luxcXFMgxDycnJkmgfSQoEArriiit02223qU+fPoc835rbKBAI6N1331XPnj01cuRItWvXToMHD643fcDy5cvl9Xrr/Rz27t1bnTp1ahW/l4YOHaq33npL27dvl2ma+vjjj/X999/rvPPOk0T7IPjoazWOftbh0bc6OvSrLPSlGkY/qnH0nxCK6EM1jX7U0aFPdfToVx2KPlbj6GcdXqj2twj+ItTmzZv15z//WT169ND777+vSZMm6aabbtKLL74oScrPz5ckpaen13tdenp63XOR7He/+50uv/xy9e7dW1FRUTr55JN1yy23aMKECZJonx86kvbIz89Xu3bt6j3vcrmUmpra6tqsqqpKd9xxh8aPH6/ExERJtI9kTVnicrl00003Nfh8a26jXbt2qaysTA888IBGjRqlDz74QBdffLEuueQSffLJJ5Ks9nG73XWd81qt5ffSk08+qRNPPFEdOnSQ2+3WqFGjNHv2bJ155pmSaB8EH32txtHPOjz6VkeOftUB9KUaRj+qcfSfEIroQzWNftTRoU91dOhXNYw+VuPoZx1eqPa3XC12ZtgqEAho0KBB+uMf/yhJOvnkk7V27VrNmTNHV111lc3V2e8f//iHXnnlFc2dO1d9+vTRqlWrdMsttygrK4v2wXHxer267LLLZJqm/vznP9tdTshYvny5Hn/8ca1YsUKGYdhdTsgJBAKSpIsuuki33nqrJGnAgAFasmSJ5syZo+HDh9tZXkh48skn9cUXX+itt95S586d9emnn+rGG29UVlZWvbumgGChr9U4+lloLvSrDqAv1Tj6UY2j/4RQRB+qafSj0FLoVzWMPlbT6GcdXqj2txjxF6EyMzN14okn1tt3wgknKDc3V5KUkZEhSSooKKh3TEFBQd1zkey2226ru4uqX79+uuKKK3Trrbdq5syZkmifHzqS9sjIyNCuXbvqPe/z+VRYWNhq2qy2E5WTk6MPP/yw7u4pifb57LPPtGvXLnXq1Ekul0sul0s5OTn6zW9+oy5dukhq3W3Upk0buVyuw/7erqmpUVFRUb1jWsPvpcrKSv3+97/XI488op/+9Kfq37+/Jk+erHHjxunhhx+W1LrbB/agr9U4+lmHR9/q8OhX1UdfqnH0oxpG/wmhij5U0+hHHR36VEeGflXj6GM1jX5W00K5v0XwF6FOP/10rV+/vt6+77//Xp07d5YkZWdnKyMjQ4sWLap7vqSkRMuWLdOQIUOCWqsdKioq5HDUf/s7nc66uxhae/v80JG0x5AhQ1RUVKTly5fXHfPRRx8pEAho8ODBQa852Go7URs2bNB//vMfpaWl1Xu+tbfPFVdcodWrV2vVqlV1W1ZWlm677Ta9//77klp3G7ndbp166qlN/t4eOHCgoqKi6v0crl+/Xrm5uRH/e8nr9crr9Tb5e7s1tw/sQV+rcfSzDo++VdPoVx2KvlTj6Ec1jP4TQhV9qKbRjzo69KkOj35V0+hjNY1+VtNCur9lIiJ9+eWXpsvlMv/whz+YGzZsMF955RUzNjbWfPnll+uOeeCBB8zk5GTzzTffNFevXm1edNFFZnZ2tllZWWlj5cFx1VVXme3btzffeecdc8uWLeaCBQvMNm3amLfffnvdMa2tfUpLS82VK1eaK1euNCWZjzzyiLly5UozJyfHNM0ja49Ro0aZJ598srls2TLz888/N3v06GGOHz/erktqVk21T01NjXnhhReaHTp0MFetWmXu3Lmzbquurq47RyS3j2ke/j30Q507dzYfffTRevsiuY0O1z4LFiwwo6KizGeeecbcsGGD+eSTT5pOp9P87LPP6s5xww03mJ06dTI/+ugj86uvvjKHDBliDhkyxK5LalaHa5/hw4ebffr0MT/++GNz8+bN5gsvvGB6PB7z6aefrjtHJLcPQg99rcbRz7LQt2oc/aqG0ZdqHP2ohtF/QjiiD9U0+lGHok/VNPpVh0cfq2n0s5oWrv0tgr8I9vbbb5t9+/Y1o6Ojzd69e5vPPPNMvecDgYA5bdo0Mz093YyOjjbPPfdcc/369TZVG1wlJSXmzTffbHbq1Mn0eDxm165dzTvvvLPeP3qtrX0+/vhjU9Ih21VXXWWa5pG1x969e83x48eb8fHxZmJionnNNdeYpaWlNlxN82uqfbZs2dLgc5LMjz/+uO4ckdw+pnn499APNdSRiuQ2OpL2ee6558zu3bubHo/HPOmkk8w33nij3jkqKyvN//u//zNTUlLM2NhY8+KLLzZ37twZ5CtpGYdrn507d5pXX321mZWVZXo8HrNXr17mrFmzzEAgUHeOSG4fhCb6Wg2jn2Whb9U4+lUNoy/VOPpRDaP/hHBFH6px9KMORZ+qafSrDo8+VtPoZzUtXPtbhmmaZsNjAQEAAAAAAAAAAACEC9b4AwAAAAAAAAAAACIAwR8AAAAAAAAAAAAQAQj+AAAAAAAAAAAAgAhA8AcAAAAAAAAAAABEAII/AAAAAAAAAAAAIAIQ/AEAAAAAAAAAAAARgOAPAAAAAAAAAAAAiAAEfwAAAAAAAAAAAEAEIPgDgKN0zz33aMCAAXaXAQAAEPboVwEAADQP+lUAahH8AQgpV199tcaMGXPI/sWLF8swDBUVFdX7e+3Wtm1bXXDBBVqzZk1wCwYAAAhR9KsAAACaB/0qAOGE4A9AWFu/fr127typ999/X9XV1Ro9erRqamrsLgsAACDs0K8CAABoHvSrANiJ4A9AWGvXrp0yMjJ0yimn6JZbbtG2bdv03XffNXhsSUmJYmJi9O9//7ve/tdff10JCQmqqKiQJN1xxx3q2bOnYmNj1bVrV02bNk1er7fRGs466yzdcsst9faNGTNGV199dd3fq6ur9dvf/lbt27dXXFycBg8erMWLF9c9n5OTo5/+9KdKSUlRXFyc+vTpo/fee+/oGgMAAOA40K8CAABoHvSrANjJZXcBANAciouLNW/ePEmS2+1u8JjExET95Cc/0dy5c3X++efX7X/llVc0ZswYxcbGSpISEhL0t7/9TVlZWVqzZo2uu+46JSQk6Pbbbz/m+iZPnqxvv/1W8+bNU1ZWll5//XWNGjVKa9asUY8ePXTjjTeqpqZGn376qeLi4vTtt98qPj7+mL8eAADAsaJfBQAA0DzoVwGwA8EfgJDzzjvvHNKJ8Pv9DR7boUMHSVJ5ebkk6cILL1Tv3r0bPfeECRN0xRVXqKKiQrGxsSopKdG7776r119/ve6Yu+66q+7PXbp00W9/+1vNmzfvmDtSubm5euGFF5Sbm6usrCxJ0m9/+1stXLhQL7zwgv74xz8qNzdXl156qfr16ydJ6tq16zF9LQAAgIPRr6JfBQAAmgf9KvpVQLgg+AMQcs4++2z9+c9/rrdv2bJlmjhx4iHHfvbZZ4qNjdUXX3yhP/7xj5ozZ06T577gggsUFRWlt956S5dffrn+9a9/KTExUSNGjKg75rXXXtMTTzyhTZs2qaysTD6fT4mJicd8PWvWrJHf71fPnj3r7a+urlZaWpok6aabbtKkSZP0wQcfaMSIEbr00kvVv3//Y/6aAAAAEv0q+lUAAKC50K+iXwWEC4I/ACEnLi5O3bt3r7cvLy+vwWOzs7OVnJysXr16adeuXRo3bpw+/fTTRs/tdrv1s5/9THPnztXll1+uuXPnaty4cXK5rF+HS5cu1YQJE3Tvvfdq5MiRSkpK0rx58zRr1qxGz+lwOGSaZr19B8+xXlZWJqfTqeXLl8vpdNY7rvZOsV/+8pcaOXKk3n33XX3wwQeaOXOmZs2apV//+teNfl0AAIDDoV9FvwoAADQP+lX0q4Bw4bC7AABoLjfeeKPWrl1bbxqEhkyYMEELFy7UN998o48++kgTJkyoe27JkiXq3Lmz7rzzTg0aNEg9evRQTk5Ok+dr27atdu7cWfd3v9+vtWvX1v395JNPlt/v165du9S9e/d6W0ZGRt1xHTt21A033KAFCxboN7/5jZ599tmjbQIAAIBmQb8KAACgedCvAhBsBH8AIkZsbKyuu+463X333Yfc0XSwM888UxkZGZowYYKys7M1ePDguud69Oih3NxczZs3T5s2bdITTzxx2I7ZOeeco3fffVfvvvuuvvvuO02aNElFRUV1z/fs2VMTJkzQlVdeqQULFmjLli368ssvNXPmTL377ruSpFtuuUXvv/++tmzZohUrVujjjz/WCSeccHwNAgAAcIzoVwEAADQP+lUAgo3gD0BEmTx5statW6f58+c3eoxhGBo/fry+/vrrendPSdZiy7feeqsmT56sAQMGaMmSJZo2bVqTX/MXv/iFrrrqKl155ZUaPny4unbtqrPPPrveMS+88IKuvPJK/eY3v1GvXr00ZswY/e9//1OnTp0kWXdd3XjjjTrhhBM0atQo9ezZU08//fQxtgIAAMDxo18FAADQPOhXAQgmw2zqNgMAAAAAAAAAAAAAYYERfwAAAAAAAAAAAEAEIPgDAAAAAAAAAAAAIgDBHwAAAAAAAAAAABABCP4AAAAAAAAAAACACEDwBwAAAAAAAAAAAEQAgj8AAAAAAAAAAAAgAhD8AQAAAAAAAAAAABGA4A8AAAAAAAAAAACIAAR/AAAAAAAAAAAAQAQg+AMAAAAAAAAAAAAiAMEfAAAAAAAAAAAAEAEI/gAAAAAAAAAAAIAI8P9nPel4qPi2lQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Heart Rate\n", + "plotGraph(data.HR)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JqWz4iIhR0ev", + "outputId": "ec26981f-1930-4899-aeba-9208a8abc90f" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJOCAYAAAB/dnBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhTddrG8TvpvhdKKRSBsgsoy6AwKCoqi4D7y7jgCKKoozI6Mo7K6ADijLgi6jCizghuCOKGI4oLgisugLgCw763FLrvbXLeP06TNl3T0vYk6fdzXb1CkpPkaUk5h3PneX42wzAMAQAAAAAAAAAAAPBrdqsLAAAAAAAAAAAAAHD8CP4AAAAAAAAAAACAAEDwBwAAAAAAAAAAAAQAgj8AAAAAAAAAAAAgABD8AQAAAAAAAAAAAAGA4A8AAAAAAAAAAAAIAAR/AAAAAAAAAAAAQAAg+AMAAAAAAAAAAAACAMEfAAAAAAAAAAAAEAAI/oBWZM6cObLZbC3yWiNHjtTIkSPd19etWyebzabXX3+9RV7/mmuuUUpKSou8VmPl5eVp2rRp6tChg2w2m/70pz9ZXRIAAI1Sdb/v71rymKkl+MNxUWONHz9e119/vdVlVPPrr78qODhYP//8c5M/d0pKiq655pomf97jsX37do0ZM0ZxcXGy2Wx6++23rS4JAIAWs2fPHtlsNi1ZssTqUjysXr1agwYNUnh4uGw2m7KysqwuCUALIfgD/NSSJUtks9ncX+Hh4UpOTtbYsWP15JNPKjc3t0le59ChQ5ozZ442b97cJM/XlHy5Nm888MADWrJkiW666Sa99NJLuvrqq6tt4zrxWN+X62TrNddcU+s24eHh7ud1BbE2m00vv/xyjfWdfvrpstlsOumkkzxuT0lJ8Xje9u3b64wzztBbb73VdD8cAGhlXPv1DRs2eNyenZ2toUOHKjw8XKtXr7aouqZTeR9it9sVHx+vk08+WTfccIO++eYbq8ur0wMPPNDkYUbl/XFNX8uWLfP6uXz1uGjp0qVasGBBszz3l19+qQ8//FB33XWX+7baPmxWUlKi888/X3a7Xc8//7ykxh1P13dslpqaKknq16+fJkyYoFmzZjXL994YzfkemTJlin766Sf94x//0EsvvaRTTjml2jYjR4706rh2zpw5kqofc1b+Ou+889zP6/o7sdvt2r9/f7XXzcnJUUREhGw2m6ZPn+6+3XWS1vUVFBSkLl266JJLLvG53yMAaC2q7ptd5xzOPvtsvf/++y1eT9VjtZCQEHXv3l2TJ0/Wrl27muQ1vvrqK82ZM6fJQ7ljx47psssuU0REhBYuXKiXXnpJUVFR1bbzZt9ss9m0bt26avvOql8PPvig+3ld+/1evXrVWN9HH33kflzl47aajs969+6t6dOnKy0trUl/RkAgC7a6AADHZ+7cuerWrZtKS0uVmpqqdevW6U9/+pPmz5+vd955RwMGDHBve++99+ruu+9u0PMfOnRI9913n1JSUjRo0CCvH/fhhx826HUao67annvuOTmdzmav4Xh88skn+u1vf6vZs2fXus2ll16qnj17uq/n5eXppptu0iWXXKJLL73UfXtSUpL7z2FhYfr3v/9d7bmCgoKq3RYeHq6lS5fq97//vcfte/bs0VdffeURFlY2aNAg/fnPf5Zk/j0888wzuvTSS/X000/rD3/4Q63fDwDAezk5ORozZox+/PFHvfXWWx4nuv1Z5X1Ibm6utmzZohUrVui5557T7bffrvnz51tcYc3HTA888IAmTpyoiy++uMlf79Zbb9Wpp55a7fbhw4d7/Ry+ely0dOlS/fzzz80y2eCRRx7Rueee63GsVJPS0lJNnDhR7733np577jlde+21Hvc35Hja5emnn1Z0dHS12+Pj491//sMf/qDx48dr586d6tGjR+O+ySbU2OP6+hQWFmr9+vW65557PIK1qu655x5NmzbNff27777Tk08+qb/+9a/q27ev+/bKP+/K/15UlpycXO22sLAwvfrqq7rzzjs9bn/zzTfrrP/KK6/U+PHj5XA4tGXLFj399NN6//339fXXXzfpzwkA4D3XvtkwDKWlpWnJkiUaP368/vvf/+r8889v8Xpcx2qlpaXatGmTnn32Wa1atUo//fRTjfukhvjqq69033336ZprrvE4jjhe3333nXJzc3X//fdr1KhRtW730ksveVx/8cUX9dFHH1W7vW/fviosLJRUse+savDgwR7Xw8PDtWPHDn377bcaOnSox32vvPKKwsPDVVRUVGNdrvdAUVGRvvjiCz399NN677339PPPPysyMrL2bxyAJII/wO+NGzfO4xO1M2fO1CeffKLzzz9fF154obZs2aKIiAhJUnBwsIKDm/fXvqCgQJGRkQoNDW3W16lPSEiIpa/vjSNHjqhfv351bjNgwACPkx9Hjx7VTTfdpAEDBlQL61yCg4Nrva+q8ePH65133tHRo0fVrl079+1Lly5VUlKSevXqpczMzGqP69Spk8drTJ48WT179tTjjz9O8AcATSA3N1djx47V5s2b9eabb2rcuHHH/ZxFRUUKDQ2V3W7t0I+q+xBJeuihhzRp0iQ9/vjj6tWrl2666SaLqjO1xDFTZWeccYYmTpzYbM/vD8dFDXXkyBGtWrVKixYtqnO70tJSXXbZZXr33Xf1zDPP6Lrrrqu2TUOOp10mTpzocexUk1GjRqlNmzZ64YUXNHfu3AZ8d/4lPT1dkuo9WTl69GiP6+Hh4XryySc1evToWkcF1/TvRW3Gjx9fY/C3dOlSTZgwQW+88UaNj/vNb37j8Rqnn366LrzwQj399NN65plnvHptAEDTqrpvvu6665SUlKRXX33VkuCv8rHa1KlT1bt3b91666164YUXNHPmzBavxxtHjhyRVP/+uep+9uuvv9ZHH31U4/53z549kqrvO2vTo0cPlZWV6dVXX/UI/oqKivTWW2/VuX+u/B6YNm2aEhISNH/+fK1cuVJXXnllva8NtHaM+gQC0DnnnKO//e1v2rt3r8cYx5rWq/noo480YsQIxcfHKzo6Wn369NFf//pXSeZIA9enz6dOnepus3fNLB85cqROOukkbdy4UWeeeaYiIyPdj61trR+Hw6G//vWv6tChg6KionThhRdWG8lT27ollZ+zvtpqWssmPz9ff/7zn9W5c2eFhYWpT58+evTRR2UYhsd2rjFAb7/9tk466SSFhYWpf//+Xo9YO3LkiPugNDw8XAMHDtQLL7zgvt81KmL37t1atWqVu3bXAVRLuuiiixQWFqYVK1Z43L506VJddtllNXYJ1qRDhw7q27evdu/e3RxlAkCrkpeXp/POO0+bNm3SG2+8oQkTJnjcf/DgQV177bVKSkpy76NcowtdXPuaZcuW6d5771WnTp0UGRmpnJwcXXPNNYqOjtbBgwd18cUXKzo6WomJibrjjjvkcDg8nsfpdGrBggXq37+/wsPDlZSUpBtvvLHGD4Ucj4iICL300ktq27at/vGPf3jsm72tISUlReeff76++OIL93jU7t2768UXX/TYrrS0VPfdd5969eql8PBwJSQkaMSIEfroo4/c21Q9ZrLZbMrPz9cLL7zg3m9fc801Wrt2rWw2W43jrpcuXSqbzab169c3yc/oeI7Zqh4XucY0Pfroo1q4cKG6d++uyMhIjRkzRvv375dhGLr//vt1wgknKCIiQhdddJEyMjI86lm5cqUmTJig5ORkhYWFqUePHrr//vs93kMjR47UqlWrtHfvXndNlesoLi7W7Nmz1bNnT4WFhalz58668847VVxcXO/PY9WqVSorK6vzE+xlZWW64oortHLlSj399NMNWguwtuPphggJCdHIkSO1cuXKerd1vee2bt2qyy67TLGxsUpISNBtt91W6yfhK9u1a5d+97vfqW3btoqMjNRvf/tbrVq1yn1/fe+R2nz//fcaN26cYmNjFR0drXPPPVdff/21R91du3aVJP3lL3+p9nfckiZNmqTNmzdr69at7ttSU1P1ySefaNKkSV4/zznnnCNJHNcCgA+Jj49XREREtQ9m1Xeep7CwUCeeeKJOPPFEd7eaJGVkZKhjx4467bTTqh3/esPbfcUnn3yiM844Q1FRUYqPj9dFF12kLVu2uO+fM2eO/vKXv0iSunXr5vX5oRUrVmjIkCGKiIhQu3bt9Pvf/14HDx503z9y5EhNmTJFknTqqae6j12tcOWVV2r58uUe0yf++9//qqCgQJdddpnXz8P+GWgYOv6AAHX11Vfrr3/9qz788MNaT3L88ssvOv/88zVgwADNnTtXYWFh2rFjh7788ktJZhv/3LlzNWvWLN1www0644wzJEmnnXaa+zmOHTumcePG6YorrtDvf/97j5GTNfnHP/4hm82mu+66S0eOHNGCBQs0atQobd68udonqeviTW2VGYahCy+8UGvXrtV1112nQYMG6YMPPtBf/vIXHTx4UI8//rjH9l988YXefPNN3XzzzYqJidGTTz6p//u//9O+ffuUkJBQa12FhYUaOXKkduzYoenTp6tbt25asWKFrrnmGmVlZem2225T37599dJLL+n222/XCSec4B5flJiY6PX3X5+jR49Wuy00NFSxsbEet0VGRuqiiy7Sq6++6u6u+OGHH/TLL7/o3//+t3788UevXq+0tFT79++v82cDAKhffn6+xo0bp++++06vv/56tU80p6Wl6be//a37QyqJiYl6//33dd111yknJ6faOMX7779foaGhuuOOO1RcXOzuyHc4HBo7dqyGDRumRx99VB9//LEee+wx9ejRw6Pb7sYbb9SSJUs0depU3Xrrrdq9e7f++c9/6vvvv9eXX37ZpJ1k0dHRuuSSS/Sf//xHv/76q/r379/gGnbs2KGJEyfquuuu05QpU/T888/rmmuu0ZAhQ9zPN2fOHM2bN0/Tpk3T0KFDlZOTow0bNmjTpk3VOpJcXnrpJff2N9xwgyTzE8y//e1v1blzZ73yyiu65JJLPB7zyiuvqEePHl6N68zNza1x352QkCCbzdYkx2w1eeWVV1RSUqI//vGPysjI0MMPP6zLLrtM55xzjtatW6e77rpLO3bs0FNPPaU77rjDI2BesmSJoqOjNWPGDEVHR+uTTz7RrFmzlJOTo0ceeUSSOdoxOztbBw4ccB9rucZjOp1OXXjhhfriiy90ww03qG/fvvrpp5/0+OOP63//+1+96yl+9dVXSkhIcIdOVZWVlenKK6/UW2+9pYULF+rGG2+s8/lqUtfxdNUgVDI7Rat+qn7IkCFauXKlcnJyqh2H1eSyyy5TSkqK5s2bp6+//lpPPvmkMjMzqwXYlaWlpem0005TQUGBbr31ViUkJOiFF17QhRdeqNdff12XXHJJo94jv/zyi8444wzFxsbqzjvvVEhIiJ555hmNHDlSn376qYYNG6ZLL71U8fHxuv32291jv2oagdpYpaWlNf5uREVFVfu/w5lnnqkTTjhBS5cudXdYLl++XNHR0dU+QFGXnTt3ShLHtQBgoezsbB09elSGYejIkSN66qmnlJeX59Fl5s15noiICL3wwgs6/fTTdc8997hHyt9yyy3Kzs7WkiVLvP7Ac2Xe7Cs+/vhjjRs3Tt27d9ecOXNUWFiop556Sqeffro2bdqklJQUXXrppfrf//6nV199VY8//rh7mkBd54dcx8Wnnnqq5s2bp7S0ND3xxBP68ssv9f333ys+Pl733HOP+vTpo2effdY9MrMpx44XFBTUuH+Oj4+vFs5OmjRJc+bM0bp169zh3dKlS3Xuueeqffv2Xr8m+2eggQwAfmnx4sWGJOO7776rdZu4uDhj8ODB7uuzZ882Kv/aP/7444YkIz09vdbn+O677wxJxuLFi6vdd9ZZZxmSjEWLFtV431lnneW+vnbtWkOS0alTJyMnJ8d9+2uvvWZIMp544gn3bV27djWmTJlS73PWVduUKVOMrl27uq+//fbbhiTj73//u8d2EydONGw2m7Fjxw73bZKM0NBQj9t++OEHQ5Lx1FNPVXutyhYsWGBIMl5++WX3bSUlJcbw4cON6Ohoj++9a9euxoQJE+p8vqrS09MNScbs2bNrvH/KlCmGpBq/xo4d697O9fexYsUK49133zVsNpuxb98+wzAM4y9/+YvRvXt3wzDMn3n//v09XqNr167GmDFjjPT0dCM9Pd344YcfjCuuuMKQZPzxj39s0PcDADC59utdu3Y1QkJCjLfffrvG7a677jqjY8eOxtGjRz1uv+KKK4y4uDijoKDAMIyKf+e7d+/uvs3Fta+YO3eux+2DBw82hgwZ4r7++eefG5KMV155xWO71atXV7u96j66NvXt+1zHJitXrmxwDV27djUkGZ999pn7tiNHjhhhYWHGn//8Z/dtAwcOrHf/W/WYyTAMIyoqqsbjk5kzZxphYWFGVlaWx+sGBwfXur92cf091fZ1+PBhj59LY4/Zqh4X7d6925BkJCYmetQ9c+ZMQ5IxcOBAo7S01H37lVdeaYSGhhpFRUXu26q+rwzDMG688UYjMjLSY7sJEyZ4vLbLSy+9ZNjtduPzzz/3uH3RokWGJOPLL7+s9Xs1DMMYMWKEx/vVxfUzdb0fFi5cWOtzHM/xdE1fffr0qfb4pUuXGpKMb775ps7vx/W8F154ocftN998syHJ+OGHH9y3VT1W/tOf/mRI8vhZ5ubmGt26dTNSUlIMh8NhGEbd75GaXHzxxUZoaKixc+dO922HDh0yYmJijDPPPNN9m+v99Mgjj3j1vC4rVqwwJBlr166t8X7X32FNX/PmzXNv5/rZpaenG3fccYfRs2dP932nnnqqMXXqVMMwzGP8W265pVrd9913n5Genm6kpqYa69atMwYPHmxIMt54440GfT8AgOPn2jdX/QoLCzOWLFnisW1DzvPMnDnTsNvtxmeffebe/yxYsKDeelzHFc8//7yRnp5uHDp0yFi1apWRkpJi2Gw29zGEa59SeR87aNAgo3379saxY8fct/3www+G3W43Jk+e7L7tkUceMSQZu3fvrreekpISo3379sZJJ51kFBYWum9/9913DUnGrFmz3Ld5c5xTk1tuuaXacbCL6/us7Wv9+vXubSufTzrllFOM6667zjAMw8jMzDRCQ0ONF154wePcVNW6P/74YyM9Pd3Yv3+/sWzZMiMhIcGIiIgwDhw40KDvB2itGPUJBLDo6Gjl5ubWer/rE8krV670aLlviLCwME2dOtXr7SdPnqyYmBj39YkTJ6pjx4567733GvX63nrvvfcUFBSkW2+91eP2P//5zzIMQ++//77H7aNGjfL4NNSAAQMUGxurXbt21fs6HTp08Jg3HhISoltvvVV5eXn69NNPm+C7qVt4eLg++uijal8PPvhgjduPGTNGbdu21bJly2QYhpYtW1bvvPQPP/xQiYmJSkxM1MCBA7VixQpdffXVeuihh5rjWwKAViMtLU3h4eHq3LlztfsMw9Abb7yhCy64QIZh6OjRo+6vsWPHKjs7W5s2bfJ4zJQpU2rtqK+6JusZZ5zhsZ9bsWKF4uLiNHr0aI/XGjJkiKKjo7V27dom+I49uTqFXMcvDa2hX79+7k4myfy0dJ8+fTy+r/j4eP3yyy/avn17k9Q8efJkFRcX6/XXX3fftnz5cpWVlXm9NtmsWbNq3He3bdvWXbN0fMdsNfnd736nuLg49/Vhw4ZJMtd6qfxp7WHDhqmkpMRjhFTl95WrY/GMM85QQUGBx6jF2qxYsUJ9+/bViSee6PF36/okeH3vr2PHjqlNmza13p+Wlqbg4GB169at3lrqUtvx9BtvvFHt72vx4sXVtnPVWNOn4mtyyy23eFz/4x//KEl1Hiu/9957Gjp0qEaMGOFR9w033KA9e/bo119/9eq1K3M4HPrwww918cUXq3v37u7bO3bsqEmTJumLL75QTk5Og5+3oYYNG1bj70Ztx6qTJk3Sjh079N1337kv6xvzOXv2bCUmJqpDhw4aOXKkdu7cqYceekiXXnppc3xLAAAvLFy40P1v/ssvv6yzzz5b06ZN05tvvunepiHneebMmaP+/ftrypQpuvnmm3XWWWdVe1xdrr32WiUmJio5OVkTJkxwj4CvvA5hZYcPH9bmzZt1zTXXuI/nJPPc0ujRoxt9DmzDhg06cuSIbr75ZoWHh7tvnzBhgk488USPMd/N6YYbbqhx/9yvX78at580aZLefPNNlZSU6PXXX1dQUFC1aRlVjRo1SomJiercubOuuOIKRUdH66233lKnTp2a41sCAk6rHvX52Wef6ZFHHtHGjRt1+PBhvfXWW7r44osb9ByGYeixxx7Ts88+q71796pdu3a6+eabdc899zRP0UAD5OXl1dk2f/nll+vf//63pk2bprvvvlvnnnuuLr30Uk2cOFF2u3efC+jUqZN7bJg3evXq5XHdZrOpZ8+ezb6+3d69e5WcnOwROkrmaCzX/ZV16dKl2nO0adOm3jWN9u7dq169elX7+dX2Os0hKCiozvVuqgoJCdHvfvc7LV26VEOHDtX+/fvrPUEybNgw/f3vf5fNZlNkZKT69u1b74LRAID6PfPMM5oxY4bOO+88ff755+rTp4/7vvT0dGVlZenZZ5/Vs88+W+Pjjxw54nG9ttAjPDy82gihqvu57du3Kzs7u9Zjiaqv1RTy8vIkyb2/bmgN3uy/586dq4suuki9e/fWSSedpPPOO09XX321BgwY0KiaTzzxRJ166ql65ZVXdN1110kyR2j+9re/Vc+ePb16jpNPPrnOfXdTHLPVpOrPyxUCVg2eXbdX/jn+8ssvuvfee/XJJ59UC4Cys7Prfe3t27dry5YttY6y8ub9ZVRZp7myhx9+WAsWLNDEiRP14Ycf6vTTT6/3+WpS2/H0mWee6R7H5U2NVdfZrk3VY+UePXrIbrfXeay8d+9ed2hbWeXjz5NOOsmr13dJT09XQUGBx79BlZ/X6XRq//797hG6zaVdu3YNOq4dPHiwTjzxRC1dulTx8fHq0KGDO0yuzQ033KDf/e53stvtio+PV//+/RUWFna8pQMAjsPQoUM9QrUrr7xSgwcP1vTp03X++ecrNDS0Qed5QkND9fzzz+vUU09VeHi4Fi9e7PW+WTI/pHXGGWcoKChI7dq1U9++fauNtKzM9dq17Uc/+OAD5efnKyoqyusa6nveE088UV988UWDnq+xevXq1aD98xVXXKE77rhD77//vl555RWdf/751f7eqlq4cKF69+6t4OBgJSUlqU+fPsd13Au0Nq06+MvPz9fAgQN17bXXNvrTfLfddps+/PBDPfroozr55JOVkZFR43oPQEs7cOCAsrOz6zzhFBERoc8++0xr167VqlWrtHr1ai1fvlznnHOOPvzwQ6/mnDdkXT5v1Xbw5XA4GjV7vTFqe526TjD5s0mTJmnRokWaM2eOBg4cWOuntFwaehIGAOCdfv366b333tO5556r0aNH68svv3SHMK5Or9///veaMmVKjY+vGl7Vtp/2Zn/qdDrVvn17vfLKKzXe35Rr07r8/PPPkuQ+fmloDd7sv88880zt3LlTK1eu1Icffqh///vfevzxx7Vo0SJNmzatUXVPnjxZt912mw4cOKDi4mJ9/fXX+uc//9mo56pJUxyz1aS2x9X3c8zKytJZZ52l2NhYzZ07Vz169FB4eLg2bdqku+66y6uuRKfTqZNPPtm91k5VNXW9VpaQkFDnB7I6duyojz76SCNGjNCECRP06aefauDAgfXWVZk3x9P1cdXoTUhYk4aclIRp0qRJevrppxUTE6PLL7+83pOEDT15CQBoeXa7XWeffbaeeOIJbd++vVEfPPnggw8kSUVFRdq+fXuDpgLU9yEt1K1jx44aOXKkHnvsMX355Zd644036n1M1fAXQMO06uBv3LhxGjduXK33FxcX65577tGrr76qrKwsnXTSSXrooYc0cuRISdKWLVv09NNP6+eff3Z/0uJ4R8kATeWll16SJI0dO7bO7ex2u84991yde+65mj9/vh544AHdc889Wrt2rUaNGtXkJxuqjtUyDEM7duzwOFHZpk0bZWVlVXvs3r17PUYNNaS2rl276uOPP1Zubq7Hp4pco6i6du3q9XPV9zo//vijnE6nx0mGpn6dpjZixAh16dJF69atY1wnAFhs6NChevvttzVhwgSNHj1an3/+uXu8ckxMjBwOR4uceOjRo4c+/vhjnX766c3yQZ+q8vLy9NZbb6lz587uT2o3Vw1t27bV1KlTNXXqVOXl5enMM8/UnDlz6gz+6jruuOKKKzRjxgy9+uqrKiwsVEhIiC6//PImq1dq+WO2uqxbt07Hjh3Tm2++qTPPPNN9++7du6ttW1tdPXr00A8//KBzzz23UbWfeOKJ9Z406t69uz744AOdddZZGjt2rD7//PNqHXV18fZ4ui67d++W3W5X7969vdq+6onIHTt2yOl0KiUlpdbHdO3aVdu2bat2e9Xjz4b8nBMTExUZGVnr89rt9nrDWatMmjRJs2bN0uHDh91/hwAA/1dWViapYkJEQ87z/Pjjj5o7d66mTp2qzZs3a9q0afrpp588Rp43Jddr17Yfbdeunbvbr6HntlzPW7Wjfdu2bT57zkky98/Tpk1TfHy8xo8fb3U5QMCjP7YO06dP1/r167Vs2TL9+OOP+t3vfqfzzjvPHVz897//Vffu3fXuu++qW7duSklJ0bRp0+j4g+U++eQT3X///erWrZuuuuqqWrer6b06aNAgSWbwLcl9IFJTENcYL774osc6Ka+//roOHz7sEcL36NFDX3/9tUpKSty3vfvuu9q/f7/HczWktvHjx8vhcFT79P3jjz8um81W54cAGmL8+PFKTU3V8uXL3beVlZXpqaeeUnR0tM4666wmeZ2mZrPZ9OSTT2r27Nm6+uqrrS4HAFq9c889V6+++qp27Nih8847Tzk5OQoKCtL//d//6Y033nB3xlWWnp7epDVcdtllcjgcuv/++6vdV1ZW1mTHBpJUWFioq6++WhkZGbrnnnvcJ0Cao4Zjx455XI+OjlbPnj3dxz61iYqKqvX12rVrp3Hjxunll1/WK6+8ovPOO6/RHV41seKYrS6ujsDKnZQlJSX617/+VW3bqKioGkd/XnbZZTp48KCee+65avcVFhYqPz+/zhqGDx+uzMzMetdfPvnkk7Vq1Srl5eVp9OjRHusU1sXb4+n6bNy4Uf379/f6xOLChQs9rj/11FOSVOex6vjx4/Xtt99q/fr17tvy8/P17LPPKiUlxT3JoSHvkaCgII0ZM0YrV670GDOalpampUuXasSIEYqNjfXqe2ppPXr00IIFCzRv3jwNHTrU6nIAAE2gtLRUH374oUJDQ90fEPP2PE9paamuueYaJScn64knntCSJUuUlpam22+/vdnq7dixowYNGqQXXnjBY7/7888/68MPP/QIvhqyfz7llFPUvn17LVq0yOPY9f3339eWLVs0YcKEJvsemtrEiRM1e/Zs/etf/2rQkkEAGqdVd/zVZd++fVq8eLH27dun5ORkSdIdd9yh1atXa/HixXrggQe0a9cu7d27VytWrNCLL74oh8Oh22+/XRMnTtQnn3xi8XeA1uL999/X1q1bVVZWprS0NH3yySf66KOP1LVrV73zzjsei/1WNXfuXH322WeaMGGCunbtqiNHjuhf//qXTjjhBI0YMUKS+R/n+Ph4LVq0SDExMYqKitKwYcMa3d3atm1bjRgxQlOnTlVaWpoWLFignj176vrrr3dvM23aNL3++us677zzdNlll2nnzp16+eWX1aNHD4/nakhtF1xwgc4++2zdc8892rNnjwYOHKgPP/xQK1eu1J/+9Kdqz91YN9xwg5555hldc8012rhxo1JSUvT666/ryy+/1IIFC+qdYd4UysrK9PLLL9d43yWXXFLrDPmLLrpIF110UXOWBgBogEsuuUTPPfecrr32Wl144YVavXq1HnzwQa1du1bDhg3T9ddfr379+ikjI0ObNm3Sxx9/3KQfQDvrrLN04403at68edq8ebPGjBmjkJAQbd++XStWrNATTzyhiRMnNvh5Dx486N5P5eXl6ddff9WKFSuUmpqqP//5z7rxxhubtYZ+/fpp5MiRGjJkiNq2basNGzbo9ddf1/Tp0+t83JAhQ/Txxx9r/vz5Sk5OVrdu3TzWVZs8ebK7lpqCyrp8/vnnKioqqnb7gAEDNGDAAEuO2epy2mmnqU2bNpoyZYpuvfVW2Ww2vfTSSzWORB8yZIiWL1+uGTNm6NRTT1V0dLQuuOACXX311Xrttdf0hz/8QWvXrtXpp58uh8OhrVu36rXXXtMHH3xQ53inCRMmKDg4WB9//LFuuOGGOusdPny43nzzTV1wwQXuLtqEhAT3/Y05nn799dcVHR1d7fbRo0crKSlJknmi8dNPP9XNN99cZ32V7d69WxdeeKHOO+88rV+/Xi+//LImTZpU55jSu+++W6+++qrGjRunW2+9VW3bttULL7yg3bt364033nBPoWjoe+Tvf/+7e1zqzTffrODgYD3zzDMqLi7Www8/7PX3dDwq/3tRWXR0tC6++OJaH3fbbbc1Y1UAgObm2jdL5rq/S5cu1fbt23X33Xe7P3ji7Xmev//979q8ebPWrFmjmJgYDRgwQLNmzdK9996riRMnNlv32SOPPKJx48Zp+PDhuu6661RYWKinnnpKcXFxmjNnjnu7IUOGSJLuueceXXHFFQoJCdEFF1xQ47mbkJAQPfTQQ5o6darOOussXXnllUpLS9MTTzyhlJSUZg0zK9u0aVON++cePXpo+PDhNT6m6vcNoJkZMAzDMCQZb731lvv6u+++a0gyoqKiPL6Cg4ONyy67zDAMw7j++usNSca2bdvcj9u4caMhydi6dWtLfwtoZRYvXmxIcn+FhoYaHTp0MEaPHm088cQTRk5OTrXHzJ4926j8a79mzRrjoosuMpKTk43Q0FAjOTnZuPLKK43//e9/Ho9buXKl0a9fPyM4ONiQZCxevNgwDMM466yzjP79+9dY31lnnWWcddZZ7utr1641JBmvvvqqMXPmTKN9+/ZGRESEMWHCBGPv3r3VHv/YY48ZnTp1MsLCwozTTz/d2LBhQ7XnrKu2KVOmGF27dvXYNjc317j99tuN5ORkIyQkxOjVq5fxyCOPGE6n02M7ScYtt9xSraauXbsaU6ZMqfH7rSwtLc2YOnWq0a5dOyM0NNQ4+eST3XVVfb4JEybU+3yVpaenG5KM2bNn13j/lClTPN4XVb92795tGEbF38eKFSvqfL2a/o4bUzcAoG6u/fp3331X7b5HH33UkGScf/75RmlpqZGWlmbccsstRufOnY2QkBCjQ4cOxrnnnms8++yz7sfU9e/8lClTjKioqGq3Vz1OcHn22WeNIUOGGBEREUZMTIxx8sknG3feeadx6NAh9zY17aNr0rVrV/c+yWazGbGxsUb//v2N66+/3vjmm29qfZw3NdS2f6pa29///ndj6NChRnx8vBEREWGceOKJxj/+8Q+jpKSkzp/F1q1bjTPPPNOIiIgwJFU7JiguLjbatGljxMXFGYWFhfX+LAyj4u+pti/X/v54j9mqHhft3r3bkGQ88sgjNdZT9X1T0/vzyy+/NH77298aERERRnJysnHnnXcaH3zwgSHJWLt2rXu7vLw8Y9KkSUZ8fLwhyaOOkpIS46GHHjL69+9vhIWFGW3atDGGDBli3HfffUZ2dna9P78LL7zQOPfcc736HgzDMJYvX27Y7Xbj1FNPNXJyco7reLq2r8rf+/vvv29IMrZv317v9+J63l9//dWYOHGiERMTY7Rp08aYPn16tfdTTcekO3fuNCZOnGjEx8cb4eHhxtChQ41333232uvU9h6pzaZNm4yxY8ca0dHRRmRkpHH22WcbX331lcc2tb2f6rNixYpqP7PKKv97UfWr8vvI9bNLT0+v8/WqHuM3tm4AQPOpum+WZISHhxuDBg0ynn766Wrnb+o7z7Nx40YjODjY+OMf/+jxuLKyMuPUU081kpOTjczMzFrr8fbciWufUnW/+vHHHxunn366ERERYcTGxhoXXHCB8euvv1Z7/P3332906tTJsNvtHuduarN8+XJj8ODBRlhYmNG2bVvjqquuMg4cOOCxTV3/v6jLLbfcUuP/CSp/n7V9VT4+qeucoUtNP9/G1g3Ak80wavhYZitks9n01ltvuT81uHz5cl111VX65Zdfqi1uHx0drQ4dOmj27Nl64IEHVFpa6r6vsLBQkZGR+vDDDzV69OiW/BYAAAAAWKSsrEzJycm64IIL9J///MfqclqFzz//XCNHjtTWrVsbtHZfS7n44ovd/8+sz5w5c3TfffcpPT29ScfEAgAAAGh9GPVZi8GDB8vhcOjIkSM644wzatzm9NNPV1lZmXbu3OluH//f//4nST69mCoAAACApvX2228rPT1dkydPtrqUVuOMM87QmDFj9PDDD9e4VqCVtmzZonfffVebN2+2uhQAAAAArUyrDv7y8vK0Y8cO9/Xdu3dr8+bNatu2rXr37q2rrrpKkydP1mOPPabBgwcrPT1da9as0YABAzRhwgSNGjVKv/nNb3TttddqwYIFcjqduuWWWzR69Gj17t3bwu8MAAAAQEv45ptv9OOPP+r+++/X4MGDddZZZ1ldUqvy/vvvW11Cjfr27auysjKrywAAAADQCtmtLsBKGzZs0ODBgzV48GBJ0owZMzR48GDNmjVLkrR48WJNnjxZf/7zn9WnTx9dfPHF+u6779SlSxdJkt1u13//+1+1a9dOZ555piZMmKC+fftq2bJlln1PAAAAAFrO008/rZtuuknt27fXiy++aHU5AAAAAIBWjjX+AAAAAAAAAAAAgADQqjv+AAAAAAAAAAAAgEBB8AcAAAAAAAAAAAAEgGCrC2hpTqdThw4dUkxMjGw2m9XlAAAAH2MYhnJzc5WcnCy7nc9I1YXjKgAAUBeOq7zHcRUAAKhLQ46rWl3wd+jQIXXu3NnqMgAAgI/bv3+/TjjhBKvL8GkcVwEAAG9wXFU/jqsAAIA3vDmuanXBX0xMjCTzhxMbG2txNQAAwNfk5OSoc+fO7mMG1I7jKgAAUBeOq7zHcRUAAKhLQ46rWl3w5xqXEBsby4EUAACoFSOW6sdxFQAA8AbHVfXjuAoAAHjDm+MqBqwDAAAAAAAAAAAAAcDS4O+zzz7TBRdcoOTkZNlsNr399tt1bv/mm29q9OjRSkxMVGxsrIYPH64PPvigZYoFAAAAAAAAAAAAfJilwV9+fr4GDhyohQsXerX9Z599ptGjR+u9997Txo0bdfbZZ+uCCy7Q999/38yVAgAAAAAAAAAAAL7N0jX+xo0bp3Hjxnm9/YIFCzyuP/DAA1q5cqX++9//avDgwU1cHQAAAAAAAAAAAOA/LA3+jpfT6VRubq7atm1b6zbFxcUqLi52X8/JyWmJ0gAAAAAAAAAAAIAWZemoz+P16KOPKi8vT5dddlmt28ybN09xcXHur86dO7dghQAAAAAAAAAAAEDL8Nvgb+nSpbrvvvv02muvqX379rVuN3PmTGVnZ7u/9u/f34JVAgAAAAAAAAAAAC3DL0d9Llu2TNOmTdOKFSs0atSoOrcNCwtTWFhYC1UGAAAAAAAAAAAAWMPvOv5effVVTZ06Va+++qomTJhgdTkAAAAAAAAAAACAT7C04y8vL087duxwX9+9e7c2b96stm3bqkuXLpo5c6YOHjyoF198UZI53nPKlCl64oknNGzYMKWmpkqSIiIiFBcXZ8n3AAAAAAAAAAAAAPgCSzv+NmzYoMGDB2vw4MGSpBkzZmjw4MGaNWuWJOnw4cPat2+fe/tnn31WZWVluuWWW9SxY0f312233WZJ/QAAAAAAAAAAAICvsLTjb+TIkTIMo9b7lyxZ4nF93bp1zVsQAAAAAAAAAAAA4Kf8bo0/AAAAAAAAAAAAANUR/AEAAAAAAAAAAAABgOAPAAAAAAAAAAAACAAEfwAAAAAAAAAAAEAAIPgDAAAAAAAAAAAAAgDBHwAAAAAAAAAAABAACP4AAAAAAAAAAACAAEDwBwAAAAAAAAAAAASAYKsLAADAX2VkZCg3N7fRj4+JiVHbtm2bsCIAAAAAAAAArRnBHwAAjZCRkaEePXsqKzOz0c8R36aNdu7YQfgHAABatU8/lRYulF54QYqIsLoaAAAAwL8R/AEA0Ai5ubnKyszU3OWrldAhucGPP5Z6SLMuP0+5ubkEfwAAoFW7917piy+kLl2kRx+1uhoAAADAvxH8AQBwHBI6JCuxUxerywAAAPBLP/1khn6DB0vz50sXXSSdcYbVVQEAAAD+y251AQAAAAAAoHX617+kdu2kBx+U+veXpkyR8vKsrgoAAADwXwR/AAAAAACgxeXkSC+9JE2YIIWGSnffLe3dKy1bZnVlAAAAgP8i+AMAAAAAAC3upZekoiIz+JOkTp2k7t2lb76xti4AAADAnxH8AQAAAACAFvfCC9Jpp0mJiRW39ekjff21dTUBAAAA/o7gDwAAAAAAtCjDkLZulfr187y9b1/p119Z5w8AAABoLII/AAAAAADQoo4dk3JzpY4dPW/v21dyOqWNG62pCwAAAPB3BH8AAAAAAKBF7dplXiYne97etasUESF9+23L1wQAAAAEAoI/AAAAAADQolzBX9WOv6Agc52/b75p+ZoAAACAQEDwBwAAAAAAWtSuXVJcnBQdXf0+gj8AAACg8Qj+AAAAAABAi9q1q/qYT5e+faUDB6TDh1u2JgAAACAQEPwBAAAAAIAWtXOn1KFDzff162dess4fAAAA0HAEfwAAAAAAoEXt3Fl9fT+Xdu3ML8Z9AgAAAA1H8AcAQBMqcxrKKnYor9RpdSkAAAA+qaTEHOVZ26hPm81c54+OPwAAAKDhgq0uAACAQFDmNJRW6FCRw3DfFhZkU4jdZmFVAAAAvmfvXskwag/+JKl7d+njj1uuJgAAACBQ0PEHAEATyCl1ukM/186Vrj8AAIDqdu0yL2sb9SlJXbpIhw9L2dktUxMAAAAQKAj+AABoAkVlZujXLtyuhPAgSQR/AAAANdm1SwoOlhITa98mJcW83LKlRUoCAAAAAgbBHwAAx8kwDHe3X3iQXVEh5njPEqdUXGn0JwAAAMzgr0MHKSio9m06dzbX+iP4AwAAABqG4A8AgONU4pQMmTvVULsUZLMpKtgM/+j6AwAA8LRrV91jPiUpLMzc5tdfW6YmAAAAIFAQ/AEAcJwKy8xwLzzYJpvNDPyiQ8xdbF6pU4ZB1x8AAIDLjh31B3+Suc4fHX8AAABAwxD8AQBwnCrGfNrct0UG22STVGYw7hMAAMDFMKTdu6Xk5Pq37dqVjj8AAACgoQj+AAA4DoZqDv7slcZ9FpQR/AEAAEjSsWNSbq73HX979kiFhc1eFgAAABAwCP4AADgOhi1Iroa+sErBX+XrxU6CPwAAAMkM8iSpQ4f6t+3a1ewQ3LatYa+Rn9/gsgAAAICAQfAHAMBxKAsKlWR2+9lttQR/jPoEAACQJB05Yl62aVP/tl27mpcNWedv+XKpfXuzsxAAAABojQj+AAA4Do5KwV9VruDPYUgOuv4AAACUnm5exsXVv210tNSunffBn9Mp3XefVFAgff5542sEAAAA/BnBHwAAx8ERFCKp5uDPbrMppHxPy7hPAAAAM/iLjpZCQ73bvksX6ddfvdv2v/81Q8LwcII/AAAAtF7BVhcAAIA/c9qDJEnB9urBnySF2m0qdRoqdhiKZK8LAABauaNHpfh477fv2tW74M8wpAcekAYMMEd9fvppo0sEAAAA/BodfwAANFJIeKRkM3elwbXsUV3jPktY5w8AAEDp6VJsrPfbd+ki7dghlZbWvd26ddK330qTJpnh3+bNUm7u8VQKAAAA+CeCPwAAGimufQdJkk2171BdwR+jPgEAAMzgz5v1/VxSUszQb/v2urd76impRw9p6FAz+HM4pPXrj6tUAAAAwC8R/AEA0EhxHTpJMrv9bLbaR31KUqlTchqEfwAAoHU7cqRhwV+PHubl5s21b+N0SmvXSmecIdlsZpdgfDzr/AEAAKB1IvgDAKCR4tonS5KCawn9JHPtv/KmPxUz7hMAALRyDV3jLyZG6tix7uDvl1+krCyz008yw7+TT5Y+++w4CgUAAAD8FMEfAACNFJtUHvzVszd1r/PHuE8AANDKNXTUp2R2/W3aVPv9n38uBQdLfftW3DZggPTNN1JxcePqBAAAAPwVwR8AAI0Un1R/x58khZWP+6TjDwAAtGYlJVJOTsM6/iSpZ0/p+++l2qamf/651KePFB5ecdvJJ5uh34YNjS4XAAAA8EsEfwAANFKcu+Ov7uAvNIjgDwAA4Ngx87KhHX89e0oZGdLBg9XvMwxzpOdJJ1V/TESEtH5942oFAAAA/BXBHwAAjRRbvsZfUN25X6VRn5JR20fVAQAAAlx6unnZmOBPMrv+qtqzRzp0qGJ9P5egICk52bwfAAAAaE0I/gAAaKR4Lzv+gm2Sa4tSZzMXBQAA4KNcwV9DR322b2+GhZs3V7/vs8/My6odf5KUmCjt29ew1wIAAAD8HcEfAACNUGZIkfFtJUnB9exNbTabQu2urj86/gAAQOvU2ODPZqtY56+qzz+XuneXYmOr39e+PR1/AAAAaH0I/gAAaIRCZ3kPn+H0amcaGmReljRgnT/DMPT54Xy9uzdXTkaEAgAAP3f0qBQaaq6911A9etQc/NW0vp9LUhIdfwAAAGh9CP4AAGiE/PLgz+50ymarZ5E/qVEdf1+mFurL1EL9nFGsA3lljSsUAADAR6Snm91+Xhw6VdOzp9m9l5VVcduBA9L27dXX93NJSpKys6WcnEYUCwAAAPgpgj8AABqh0GnuQm2Gw6vtQ4MaFvz9dKxIX6QWuK8fLihtYIUAAAC+JT3dXKuvMXr2NC8rr/O3eLEUHi799rc1P6Z9e/Ny//7GvSYAAADgjwj+AABohAJXx5+3wV95x1+pU/WO7TxaVKb39+VJkuJDzV31oQI6/gAAgH87nuCvSxcpLEz67jvzutMp/fvf0siRUlRUzY9JSjIvGfcJAACA1oTgDwCARnAFfzand8FfsN2m8qa/erv+/pdVIqekrtEhGtclWpJ0OJ/gDwAA+LfjCf6CgqTTTpMeflg6dkz66CMz0Dv//Nofk5BgPm7v3sa9JgAAAOCPCP4AAGiEhnb8SZXW+avnIXtzzbGefeJD1TEyRDZJOaVO5ZU6G1UrAACALzie4E+SbrlFKiqS7rhDeu45qVs3qV+/2rcPCjLHfdLxBwAAgNaE4A8AgEao6PjzPozzZp2/UqehA/lm8Nc1JkShQTa1Cw+SxDp/AADAv6WnS/HxjX98QoL0hz9IS5ZIb70ljR8v2Wx1P4bgDwAAAK0NwR8AAI1Q4DR3oY3r+Ks9+DuYXyqHIUWH2NU2zAz8OkYGS2LcJwAA8F9Op5SRcXwdf5IZ9g0eLAUHS2PG1L99YiKjPgEAANC6BFtdAAAA/qbUaajEKB/16eUaf5IUWv5xmxKnoZBatnGN+ewaHSJb+UfYO0YF68eMYh0qIPgDAAD+KStLcjiOP/iz2aQ5c6TDh6XY2Pq3b99e+vzz43tNAAAAwJ8Q/AEA0ECutfZKCvMl1d69V5Vr1KfDkJy1zKVyB38xFdFgcqT558MFZTIMwx0IAgAA+Iv0dPPyeEZ9usTGehf6SVJSknTokFRWZnYJAgAAAIGOUZ8AADSQK/jLPXpEDYng7Dabgssf4LRX7/krdjh1uLyrr3Lw1y4iSME2qdhhKKPY+w5DAAAAX9GUwV9DJCWZnYaHD7fs6wIAAABWIfgDAKCBCsvM4C8/82iDHxtRnvyVBYVVu29fXqkMSW3C7IoLDXLfHmSzqYNrnT/GfQIAAD90tPywqaWDv/btzct9+1r2dQEAAACrEPwBANBAhWXmeM/8rIwGPzY8yNz1OoJDq91Xsb5f9ftcwV8qwR8AAPBD6enm+nzR0S37uklJ5uXevS37ugAAAIBVCP4AAGigAlfHXyOCP1fHn8MeotCIKPfthmFoR3aJJCklpvoY0LZhZgdgdomzwa8JAABgtfR0KS5OCgqqf9umFBlprgdIxx8AAABaC4I/AAAayBX8FWQda/BjQ+zl6/zZbOo68FT37WmFDmWVOBVsk7rHVu/4c43+zGKNPwAA4IfS01t+zKdLUhLBHwAAAFoPgj8AABqo0FE+6jOz4cGfVNH11+2U0923bcsqliT1iAtVaJCt2mPiwsxddk6JU4ZhNOp1AQAArJKRYXbeWSExkeAPAAAArQfBHwAADVR4HKM+pYp1/roPOU2SOeZza3nwd2J8WI2PcXX8FTsNFTsI/gAAgH/JzGz59f1c2reX9uyx5rUBAACAlkbwBwBAAxWUmcFbwXF2/J3Qb7BKDelIoUOZxeaYzx41jPmUzBGhUeWPy2KdPwAA4GcyMqSoqPq3aw7t29PxBwAAgNaD4A8AgAY63o6/ELtNNmeZgkJCdLQ0yD3ms3tszWM+XVxdf9klrPMHAAD8S2amFBNjzWsnJUm5uVJ2tjWvDwAAALQkgj8AABqo0NXxl9W4jj9JCnaUSJK+zA/ThvQiSbWP+XSJCzV321nFBH8AAMC/ZGVZG/xJdP0BAACgdSD4AwCgARxOQ8VOM/hrbMefJIWUFqqksEClhk0lTkOhdpt6xIXU+Zi4MFfHH6M+AQCAf8nKsnaNP0nau9ea1wcAAABaUrDVBQAA4E8KHGboZpOhotzGz4sKdpTo/tED9d2v2xXSJlEJ4cEKC6r78zjxjPoEAAB+qKREKiiwLvhLSJCCg+n4AwAAQOtA8AcAQAO4xnyG2iTDMI7rucpKitUm2KmubcO92t416pOOPwAA4E8yM81Lq0Z92u1m1x/BHwAAAFoDS0d9fvbZZ7rggguUnJwsm82mt99+u97HrFu3Tr/5zW8UFhamnj17asmSJc1eJwAALgVlZugWZj++0K8x4ip1/B1v6AgAANBSrA7+JDP4Y9QnAAAAWgNLg7/8/HwNHDhQCxcu9Gr73bt3a8KECTr77LO1efNm/elPf9K0adP0wQcfNHOlAACYXB1/YbaWD95iyzv+Sp1SoYPgDwAA+AeCPwAAAKDlWDrqc9y4cRo3bpzX2y9atEjdunXTY489Jknq27evvvjiCz3++OMaO3Zsc5UJAIBboavjz4LgL9huU3SIXXmlTmUXOxQZbOnndwAAALySlWVeWrXGnyQlJUm//GLd6wMAAAAtxa/OGK5fv16jRo3yuG3s2LFav369RRUBAFqbAlfHnwWjPiXW+QMAAP7H1fFnZfDXvr10+LBUWmpdDQAAAEBL8KvgLzU1VUlJSR63JSUlKScnR4WFhTU+pri4WDk5OR5fAAA0VoGFHX+SFF9pnT+0PgsXLlRKSorCw8M1bNgwffvtt7Vu+9xzz+mMM85QmzZt1KZNG40aNara9oZhaNasWerYsaMiIiI0atQobd++vbm/DQBAK5OZKQUHS+Hh1tWQlCQ5ndLBg9bVAAAAALQEvwr+GmPevHmKi4tzf3Xu3NnqkgAAfsw96tPijr8sOv5aneXLl2vGjBmaPXu2Nm3apIEDB2rs2LE6cuRIjduvW7dOV155pdauXav169erc+fOGjNmjA5WOuP58MMP68knn9SiRYv0zTffKCoqSmPHjlVRUVFLfVsAgFYgM1OKjZVsNutqcH2GeN8+62oAAAAAWoKla/w1VIcOHZSWluZxW1pammJjYxUREVHjY2bOnKkZM2a4r+fk5BD+AQAardBRPuqziTr+Dhw40KDty4qCJYUpNTtPGVElatu2bZPUAd83f/58XX/99Zo6daokc+3jVatW6fnnn9fdd99dbftXXnnF4/q///1vvfHGG1qzZo0mT54swzC0YMEC3XvvvbroooskSS+++KKSkpL09ttv64orrmj+bwoA0CpkZkoxMdbWkJhoXu7da20dAAAAQHPzq+Bv+PDheu+99zxu++ijjzR8+PBaHxMWFqawsLDmLg0A0EpUjPo8vufJz8mWzW7XiBEjGvS4HkPP0LRFb+qH/+3Sn848Xzt37CD8awVKSkq0ceNGzZw5032b3W7XqFGjvF7ruKCgQKWlpe73y+7du5WamuqxfnJcXJyGDRum9evXE/wBAJpMVpa16/tJUkSEFB9Pxx8AAAACn6XBX15ennbs2OG+vnv3bm3evFlt27ZVly5dNHPmTB08eFAvvviiJOkPf/iD/vnPf+rOO+/Utddeq08++USvvfaaVq1aZdW3AABoZQrLyjv+jnPUZ1FBvgynU/e8uFLJXbt5/TinLUh5khK79lRWZqZyc3MJ/lqBo0ePyuFw1LjW8datW716jrvuukvJycnuoC81NdX9HFWf03VfVcXFxSouLnZfZ+1kAIA3MjOlqCirqzDHfRL8AQAAINBZGvxt2LBBZ599tvu6ayTnlClTtGTJEh0+fFj7Kh2Vd+vWTatWrdLtt9+uJ554QieccIL+/e9/a+zYsS1eOwCg9TEMo2KNvyYa9dk2qaMSO3VpUA15uWWy2e2KbpvYJDUg8D344INatmyZ1q1bp/Dw8EY/z7x583Tfffc1YWUAgNYgI8P6jj/JHPe5Z4/VVQAAAADNy9Lgb+TIkTKM2k+cLlmypMbHfP/9981YFQAANSt1SuUNf8fd8ddYNptNwTazjjYNCAzh39q1a6egoKAa1zru0KFDnY999NFH9eCDD+rjjz/WgAED3Le7HpeWlqaOHTt6POegQYNqfC7WTgYANEZmptTN+wEHzaZ9e+nXX62uAgAAAGhedqsLAADAX7jW9wuyWfvJmWC7ucBgm44ELq1FaGiohgwZojVr1rhvczqdWrNmTZ1rHT/88MO6//77tXr1ap1yyike93Xr1k0dOnTweM6cnBx98803tT5nWFiYYmNjPb4AAKhPZqYUE2N1Feaoz/37pTo+fwwAAAD4PUs7/gAA8CeFDjP4iwy2y2azro5guySH1CaZjr/WZMaMGZoyZYpOOeUUDR06VAsWLFB+fr6mTp0qSZo8ebI6deqkefPmSZIeeughzZo1S0uXLlVKSop73b7o6GhFR0fLZrPpT3/6k/7+97+rV69e6tatm/72t78pOTlZF198sVXfJgAgAGVl+U7wl59vjh5NSLC6GgAAAKB5EPwBAOClwvI5nxHBFqZ+kkJsNkkGoz5bmcsvv1zp6emaNWuWUlNTNWjQIK1evVpJSUmSpH379slurxjm8PTTT6ukpEQTJ070eJ7Zs2drzpw5kqQ777xT+fn5uuGGG5SVlaURI0Zo9erVx7UOIAAAlZWVSbm5UlSU1ZWYoz4lae9egj8AAAAELoI/AAC85Br1GRls7aRs96hPOv5anenTp2v69Ok13rdu3TqP63v27Kn3+Ww2m+bOnau5c+c2QXUAAFSXnW1e+kLHX7t25mV5EzwAAAAQkFjjDwAAL7k7/oIs7vgr33uzxh8AAPB1mZnmpS8Ef/Hx5mVamqVlAAAAAM2K4A8AAC8Vlnf8RfhMx19nGYalpQAAANTJl4K/kBApNpbgDwAAAIGN4A8AAC8V+Mgaf8E2SYah4NAwFRrW1gIAAFAXV/AXHW1tHS5t2khHjlhdBQAAANB8CP4AAPBSkcM3Ov5sNptshkOSlO8g+AMAAL4rK8u89JXgLz6ejj8AAAAENoI/AAC8VOQwO/7CLV7jT5LszvLgz2l9LQAAALXJzJTsdiky0upKTAR/AAAACHQEfwAAeMm9xl+Q9btPu6vjz2l9LQAAALXJzDTX97P7yCFLmzYEfwAAAAhsPnLoDQCA73N3/Fm8xp9U0fGXR8cfAADwYa7gz1cQ/AEAACDQEfwBAOAlXxr1aXON+nSwKwcAAL4rM1OKirK6igpt2kjHjkkOh9WVAAAAAM2Ds4UAAHjBaRgqdgd/1u8+7UaZJNb4AwAAvi0rS4qOtrqKCm3aSE6nGf4BAAAAgcj6M5cAAPgBV+gn+daozwKnTU7DqGdrAAAAa2Rk+F7wJzHuEwAAAIGL4A8AAC8UlpnhWqjdpiCb9cGfzXCqrLRETtmUV+q0uhwAAIAa+doaf/Hx5uWRI5aWAQAAADQbgj8AALxQ5DDDNV9Y30+SbJKyUw9KkrJLCP4AAIBv8rXgr21b85KOPwAAAAQqgj8AALxQ5FrfzwfGfLpkHt4vScoucVhcCQAAQM0yM31r1GdEhBQeTvAHAACAwEXwBwCAF4rKR32GB/nOrjP3qHnGKp9RnwAAwAc5nVJOjm8Ff5K5zh+jPgEAABCofOfsJQAAPqywfNRnhA91/OUeNc9Y5ZeHkgAAAL4kJ8cM/3xp1KdkBn90/AEAACBQEfwBAOAF96hPH1njT5LyjpUHf3T8AQAAH5SVZV76YvBHxx8AAAACFcEfAABeKCozwzWfGvVZHvzlEfwBAAAflJlpXvpa8BcfL6WmWl0FAAAA0Dx85+wlAAA+rNAHO/4qRn0S/AEAAN/jCv58cY0/Rn0CAAAgUBH8AQDgBdeoz4hg39l1MuoTAAD4Ml/u+EtPlwyWSQYAAEAA8p2zlwAA+LCKUZ8+1PFXHvwVOgw5nJy5AgAAvsUV/EVFWVtHVW3aSMXFUk6O1ZUAAAAATY/gDwAAL7g6/sKDfSf4K8zOlF1mXYz7BAAAviYz0xzzGRRkdSWe2rY1Lxn3CQAAgEBE8AcAgBeKylxr/PnOrtMwDIXby4M/xn0CAAAfk5npe2M+JXPUpyQdOWJpGQAAAECz8J2zlwAA+LAih++N+pSkcJsZ/OXR8QcAAHyMq+PP17RpY17S8QcAAIBARPAHAEA9Sp2Gyhv+FOFDoz4lVer4Y40/AADgW3w1+IuJMceP0vEHAACAQETwBwBAPVzdfjZJoXbfCv4i7KzxBwAAfFNGhm8Gf3a72fVHxx8AAAACEcEfAAD1cK/vF2yTzeZbwZ9r1Cdr/AEAAF+TleWba/xJBH8AAAAIXAR/AADUo9BRHvz52Pp+UkXHXx7BHwAA8DGZmb4b/MXEmB2JAAAAQKAh+AMAoB5F5WM0I4J8b7cZzqhPAADgo3x1jT9JioqScnKsrgIAAABoer53BhMAAB9T5KgY9elrXKM+6fgDAAC+xDB8e9RnVJRZHwAAABBoCP4AAKiHO/jzwY4/16jP/FKnDMOwuBoAAABTXp7kcPhu8BcZSccfAAAAApPvncEEAMDHuEZ9+uIaf65Rn2WGVOIk+AMAAL4hM9O89OVRn9nZVlcBAAAAND2CPwAA6uHLoz6DbVKo3awrv5TgDwAA+AZX8OerHX/R0XT8AQAAIDAR/AEAUI/C8o6/CB8c9SlJUSFm8JdXxjp/AADAN/h68BcZKeXmSk4OnwAAABBgfPMMJgAAPqRijT/f6/iTpOgQc3eeX8qZKwAA4Bt8PfiLijIvc3OtrQMAAABoagR/AADUw5dHfUpSVLC5O88j+AMAAD7CH9b4k1jnDwAAAIGH4A8AgHq4Rn2G++yoz/KOP0Z9AgAAH5GZaYZrQUFWV1IzV/DHOn8AAAAINL55BhMAAB/i6viL8NVRn8GM+gQAAL4lK8t3u/0kOv4AAAAQuAj+AACog9MwVOwe9embu80o1vgDAAA+JjPTd9f3kwj+AAAAELh88wwmAAA+othhyCj/s692/IWX1+XqTAQAALBaZqZ/dPwx6hMAAACBhuAPAIA6FJaZYVqY3aYgu28Gf2HlwV8xwR8AAPARvh78RURINhsdfwAAAAg8BH8AANShoMwcnxke7JuhnySFB5m78yIHoz4BAIBvyMjw7eDPZjO7/uj4AwAAQKAh+AMAoA6F5WFapI+u7yfR8QcAAHyPr6/xJ5nBJB1/AAAACDS+exYTAAAf4Br16avr+0kVa/yVGVKZk/APAABYzx+Cv6gogj8AAAAEHoI/AADqUFg+6jPCDzr+JLr+AACA9QxDysry7VGfkhQZyahPAAAABB7fPYsJAIAPcHf8+fAafzabjXGfAADAZxQUSKWldPwBAAAAViD4AwCgDq41/ny540+q6PorKq8XAADAKpmZ5qWvB3+RkWZnIgAAABBIfPssJgAAFivwgzX+pIp1/uj4AwAAVvOX4C8qilGfAAAACDwEfwAA1MG1xl+k33T8EfwBAABrubrofH2NP0Z9AgAAIBD59llMAAAs5grSwn14jT9JCgsyd+l0/AEAAKv5U8cfwR8AAAACDcEfAAB1KCjv+IsI8u1dZjhr/AEAAB+RkWFe+kPHX26u1VUAAAAATcu3z2ICAGAhwzBUWL7GX6TPd/yxxh8AAPANaWlSbKwUEmJ1JXWLipJKSqSiIqsrAQAAAJoOwR8AALUodhhyxWgRPr7GXzhr/AEAAB9x+LCUkGB1FfWLijIvGfcJAACAQOLbZzEBALBQYXmIFmKXgu2+3vHHGn8AAMA3pKZKbdpYXUX9XMFfTo61dQAAAABNieAPAIBaFPrJ+n5SRcdfMWv8AQAAix0+7F/BHx1/AAAACCS+fyYTAACLuNb3i/Dx9f2kijX+GPUJAACslpoqtW1rdRX1o+MPAAAAgYjgDwCAWhS4Ov58fH0/qXLHH8EfAACwFmv8AQAAANbx/TOZAABYxLXGX6QfBH+uNf7o+AMAAFYqKJByc/2r44/gDwAAAIHE989kAgBgEdcaf65uOl/GGn8A4P9WrpTuvNPqKoDjk5ZmXvpD8BccLIWHM+oTAAAAgYXgDwCAWrjW+POPjj8z+Ct1Sg6Drj8A8DfFxdL06dKCBeafAX91+LB56Q/Bn2R2/dHxBwAAgEDi+2cyAQCwSKHDtcaf73f8hVXqSmSdPwDwP0uWSAcOSKWl0g8/WF0N0HipqeYlwR8AAABgDYI/AABq4er4iwjy/d2l3WZTqN017pPgDwD8SUmJ9I9/SCNGmKMHv/3W6oqAxktNNd/HMTFWV+KdqChGfQIAACCw+P6ZTAAALOJa488fOv6kinX+iljnDwD8ygsvmN1+114r9ewpffed1RUBjZeaanb72f3kbENkJB1/AAAACCx+cigOAEDLc3f8+cEaf1LFuM/iMjr+AMCfPPaYdNZZUrduUu/edPzBvx0+7D9jPiWCPwAAAAQe/ziTCQBACzMMw6/W+JMqgr8iRn0CgN9wOqUdO6TBg83rJ54obdvG6EH4L1fHn79gjT8AAAAEGoI/AABqUOI05MrP/GGNP0kKL6+TNf4AwH8cOyY5HFKbNub1E0+UDEPauNHauoDGOny44v3sDwj+AAAAEGj840wmAAAtzDXmM9gmhfjJ3jKMNf4AwO+kpZmXrqCkSxcpIoJ1/uC/6PgDAAAArOUnpzIB+BLDMGQYdBQhsFWM+bTLZvOvUZ90/AGA/6ga/AUFsc4f/JfTab6n/S34y821ugoAAACg6RD8AWiw9WmFemTzMR3ML7W6FKDZuDr+/GV9P0kKZ40/APA7ruCvclBy4okEf/BPGRlSWZmUkGB1Jd5zBX8Oh9WVAAAAAE3D8uBv4cKFSklJUXh4uIYNG6Zv6/kf7oIFC9SnTx9FRESoc+fOuv3221VUVNRC1QJwGIa+Sy+UU9IvGcVWlwM0m4Ky8o4/P1nfT6LjDwD8UVqaFB5ujvd06dNH2r+/IhQE/EVqqnnpTx1/rt+9ggJr6wAAAACaiqVnM5cvX64ZM2Zo9uzZ2rRpkwYOHKixY8fqyJEjNW6/dOlS3X333Zo9e7a2bNmi//znP1q+fLn++te/tnDlQOu1N7fU3Qm1P4+OPwSu3BIz+IsJ9Z/gLzzYrJU1/gDAf9Q0FrFfP/Py889bvh7geBw+bF76U/AXGWleMu4TAAAAgcLSs5nz58/X9ddfr6lTp6pfv35atGiRIiMj9fzzz9e4/VdffaXTTz9dkyZNUkpKisaMGaMrr7yy3i5BAE1nS2ZFl196kcPdFQUEmpxS870dG+I/wR8dfwDgf9LSKtb3c0lKkrp1k/77X2tqAhrLnzv+8vKsrQMAAABoKpadzSwpKdHGjRs1atSoimLsdo0aNUrr16+v8TGnnXaaNm7c6A76du3apffee0/jx49vkZqB1q7Maeh/WSWSJFcWQtcfAlVOibnQS2xokMWVeC+c4A8A/E5NwZ8knXaa9O675nppgL9ITZWio6WwMKsr8Z4r+KPjDwAAAIHCsuDv6NGjcjgcSkpK8rg9KSlJqa6PCVYxadIkzZ07VyNGjFBISIh69OihkSNH1jnqs7i4WDk5OR5fABpnV06Jip2GYkLsOrltuCRpH8EfAlRO+ajPOH8a9RnkGvVJ8AcA/uLw4dqDv4wMqZbPRAI+KTVVSkiwuoqGcY36pOMPAAAAgcJ/zmZKWrdunR544AH961//0qZNm/Tmm29q1apVuv/++2t9zLx58xQXF+f+6ty5cwtWDAQW15jPvm3C1CU6RJK0L5fgD4HJFfzF+lHwx6hPAPA/tXX8nXiiOS7xnXdaviagsWoLsn0Zoz4BAAAQaCw7m9muXTsFBQUpLS3N4/a0tDR16NChxsf87W9/09VXX61p06bp5JNP1iWXXKIHHnhA8+bNk9NZ8zpjM2fOVHZ2tvtr//79Tf69AK1BmdPQjhxzzGffNqHqXB78sc4fAlGRw6lipxmexYT436jPEqchp0H4BwC+zumU0tNrDkrsdmn4cGnlypavC2isQ4f8N/hj1CcAAAACRbBVLxwaGqohQ4ZozZo1uvjiiyVJTqdTa9as0fTp02t8TEFBgex2z6wyKMg8IWvUcoIzLCxMYf60wADgo/JKnSp1SsE2qUNEsGw2m9qFB+lokUP780rVJ57fM/ifjIwM5dZwlierzCYpUqE2Q4cP7KvxsQcOHGjm6houtDz4k8yuv4hgWx1bAwCslplpruFXW1By2mnSqlXStm1SYqK0d680eHDL1gg0xI4d0siRVlfRMOHmCgZ0/AEALPPMM88ojx0RWkh0dLRuvPFGq8tAM7Ms+JOkGTNmaMqUKTrllFM0dOhQLViwQPn5+Zo6daokafLkyerUqZPmzZsnSbrgggs0f/58DR48WMOGDdOOHTv0t7/9TRdccIE7AATQPPJKza6+qBC7bDYzTOgSHaKjRQ7tI/iDH8rIyFCPnj2VlZlZ7b4+I0brmieXavevPynlqnPrfJ7S0rLmKrHBgmw2hdilUqcr+LO6IgBAXVzDT9q2rfn+IUPMUOL886U9e8yQ8D//ka69tsVKBLyWlycdPCh16WJ1JQ1jt5tdf5xvBQBYJS8vr8YPJQNAY1l6SvDyyy9Xenq6Zs2apdTUVA0aNEirV69WUlKSJGnfvn0eHX733nuvbDab7r33Xh08eFCJiYm64IIL9I9//MOqbwFoNfLLx3lGh1T8TnaJDtGmo0Ws8we/lJubq6zMTM1dvloJHZI97isJiVSRpK49e2vhpz/W+PidP32v+dOnyOHwneBPkkLtNpU6Ddb5AwA/4Ar+auv4CwuTLrxQ2r5duuUWs5vq+uul2Fhp4sSWqxPwxv/+Z1527mxtHY0RGcmoTwCAb4hwzaBGkyssLHT/uTX+nCt//wh8lvcCTJ8+vdbRnuvWrfO4HhwcrNmzZ2v27NktUBmAyvLLO/4igysFfzEV6/zllTo9QkHAXyR0SFZiJ8+Pph8rcqioxKmoqEi1S4ip8XHHUg+1RHkNFhpkU36ZoRInwR8A+Lr6gj9Juummij87nVJxsTRpkhmuDBvWvPWhdXE6pdRUqV07KTS04Y/futW89Mfgj44/AIAviIiI0IQJE6wuI2CtWrVKhYWFrfbn7Pr+0Tpwlh6AV2rq+IsMtispwhyzuze3xJK6gOZQVh6a+eMSeaF2s+gSOv4AwOelpZldfZGR3m1vt0t33WUGhW+80by1ofV56impUyfzPdmpk/TLLw17/LZtUkKCFB3dPPU1p4gIOv4AAAAQOAj+AHglv9QMEaKCPf/ZSIkxPw68l3GfCCBl5ZlZsN3/kr+wIPN3lI4/APB9aWnm+n62BuxugoOlPn2kjRu9294wpNdfl7KzG1cjWo8ffjDX57vjDrPz76uvGvb4rVv9b30/l8hIOv4AAAAQOAj+AHjF1fEXFeJ5ZiqlfNznntxSGQZBAwIDHX8AgJaQmirFxzf8cb16SZs2maFeff76V+l3v5OWL2/466B12blT6tlTmjBBSkoyrzfE1q3SCSc0T23NLTyc4A8AAACBg+APgFdca/xV7fg7ITpEQTYpp9SpzGKnFaUBTcowDL/u+AsNMmsupuMPAHyeq+OvoXr1krKypD176t7uwQfNr+BgaceOxlSI1mTnTik52fxzcnLDgj+nU9q+3X87/sLDpZwcq6sAAAAAmgbBHwCv5Lk7/jz/2Qix29QpytX1xzp/8H9llfKyIP/L/RQWRMcfAPiLxnb89e5tXm7aVPs2770nzZwpTZ4sDRzY8O4ttC5FRdKhQ1LHjub1Dh0a9p7Zv18qLJQ6d26e+poboz4BAAAQSAj+ANTLMAwV1NLxJ3mO+wT8XeUxn7aGLLrkI9yjPun4AwCf19iOv7ZtpcTE+oO/zp2la64xu7fo+ENd9uwxR8e6Ov46dTKDP28n+W/dal76a8dfRATBHwAAAAIHwR+AehU7K0YfVu34kyqCv715pdqVU6LsEoecrPcHP+XPYz6lSqM+HYzeBQBfZhhSerrUpk3jHt+zp7RxY+33f/ed1KePZLOZYc6uXd6HOGh9du0yL13BX8eO5ujLzEzvHr9tmxQaKrVv3zz1NbfISCk31+oqAAAAgKYRbHUBAHyfa32/MLtNITWEIR0igxUWZFOxw9BrO83FMWwyuwP7tQ3TOZ2iWrJc4Li4O/789KMx7o4/Rn0CgE/LypJKShof/PXqZXb1GYYZ7lVWWir98IM0bZp5PTnZ7GZKT/ffYAbNa+dOKSREatfOvO4KAHfu9K4rdetWs8M0KKj5amxOdPwBAAAgkPjpaU0ALSm/vAWqpm4/SbLbbLqwa4z6xIcqITxIdkmGzHUBvz1S6A4OAX9QvpylQvxwzKdU0fHHqE8A8G1paebl8QR/R49KBw9Wv++XX6TiYrPjT/IMcYCa7Nplvk/s5Yf7DX3PbN0qnXBC89TWEgj+AAAAEEjo+ANQL1dwFxVSexDSIy5UPeJCJUlOw1BBmaHlO7KVXuTQvrxS9W0T1iK1onVLLyzTf/fmKi40SD3jQtU7LlQRDWzdKzNcHX/+GfyF2V2jPgn+AMCXHW/w5wr1Nm2qHrhs2GAGOD17mtcrhzjDhzfu9RDYdu40x3u6REdLcXEVI0Drs3WrNGpU89TWEiIizA7ckhJzZCkAAADgz+j4A1Avd/DnZYBit9kUHWJ3r/23J7ek3scYhqH1qQXallXc+ELR6v2cUawjhQ5tzy7R+/vytHhblowGLmjkGpFZS4Orz6PjDwD8w9Gj5mV8fOMe366dGRpu2lT9vg0bpJQUM8yQzPXL2ral4w+1qxr8SWZg7M17JjdXOnzYHPXpr1y/K/n51tYBAAAANAU/Pa0JoCXll7k6/hr2T0ZKjPlx2d25pfWGL3vzSvXp4QL9d0+uisoYDYrGOVbskCR1iwmRTVJOiVO5DRg16zQMlU+2da+V529Y4w8A/ENWlnkZ1cilkG02c9znxo3V7/vuO6l3b8/bvA1x0PoYhrR7d0VnqEuHDtKOHfU/fts287JLl6avraW4gr/cXGvrAAAAAJoCwR+AejW048+lc3SI7DYzfMkqqTt82ZVTKkkqM6RfMun6Q+NkFJnB39D2EYoPM9+vGeVhoDdcXXJBNinIX4M/Ov4AwC9kZ5udeEFBjX+OPn2kr76SnJUOs4qLpZ9+qh78dezoXYiD1ic1VSosrLnjz5tRn1u2mJf+HPxFRpqXrPMHAACAQEDwB6Beje34Cw2yKTnSXEp0b25pndvuyqkYB/rjsaIGVghIDsNQVnnI1zY8SG3DzDOpmQ0J/so39dduP0kKC6LjL5AtXLhQKSkpCg8P17Bhw/Ttt9/Wuu0vv/yi//u//1NKSopsNpsWLFhQbZs5c+bIZrN5fJ144onN+B0AcMnONtdROx6DB0sZGdLPP1fc9tNPUmlpxRqALnT8oTau90XVjr/kZOngQTNMrsvWrVL79hVdc/7IVTvBHwAAAAIBwR+AeuWXmgFCQzv+pIpxn3Wt85dV7NDRIodsMjut0godSi0oa1StaL2yi51yylybLzbErjblwZ+rC9Abri45V9ecP3KFlmWGGYYicCxfvlwzZszQ7NmztWnTJg0cOFBjx47VkSNHaty+oKBA3bt314MPPqgOHTrU+rz9+/fX4cOH3V9ffPFFc30LACrJzm78mE+X/v2l0FBp7dqK2zZskIKDpZ49PbdNTpaOHCHYQHWurr6aOv4MQ9qzp+7Hb9ni391+EqM+AQAAEFgI/gDUy9XxF93Ajj9JSokJkSTtqWOdP1e3X6eoYPWOM4NCuv7QUMeKzbC4TViQbDZbpY4/79f4c3XJ+XPHX+XQkq6/wDJ//nxdf/31mjp1qvr166dFixYpMjJSzz//fI3bn3rqqXrkkUd0xRVXKCwsrNbnDQ4OVocOHdxf7dq1a65vAUAlWVnHH/yFhprh3yefVNy2YYPUvbt5X2Wubi5vRjeiddm5U2rXTgoP97zd9Z6pr1P011+lzp2bp7aWwqhPAAAABBKCPwB1Mgyj0hp/DQ9DOkYFK9RuU5HDUFphzZ1XO8uDvx6xoRqYYJ5x+CWzWKWsUYYGcHX2JZQHfq7grzFr/IX68d4xyGaT61eVdf4CR0lJiTZu3KhRo0a5b7Pb7Ro1apTWr19/XM+9fft2JScnq3v37rrqqqu0b9++WrctLi5WTk6OxxeAxmmKjj9JGjhQWrdOcjiksjLp44+rr+8neR/ioPXZtat6t59khoEhIXW/Z0pLzfu7dm2++loCoz4BAAAQSPz41CaAllDoMOTql4psRMdfkM2mztHmOn8H8qqv81fmNNzr//WIC1XXmBDFhthV7DC0r551AYHKMiqt7ydJbcovs0occnox8tJhGHI1yPnzqE+pov5iOv4CxtGjR+VwOJSUlORxe1JSklJTUxv9vMOGDdOSJUu0evVqPf3009q9e7fOOOMM5dYy62zevHmKi4tzf3X29xYPwEJN0fEnmev85eRImzdLr70m7d0rnX9+9e3atDHDDYI/VLVzp1TTRGi73QyM6+oS3bnTDJz9fdRnaKgUFMSoTwAAAAQGgj8AdXJ1+0UE2RRka1wY0jHSHPd5uIZ1+/bllarMkGJC7EoMN0c0JkaYgU1uqfcjGoFj5R1/rk6/2BC7gm2S05CyS+p/L7nGYgbbJHsj3+u+wjWqlFGfqM+4ceP0u9/9TgMGDNDYsWP13nvvKSsrS6+99lqN28+cOVPZ2dnur/3797dwxUDgaKqOv759zRGNn3wi/eMf0tChUp8+1bez2cwQh+APVe3ZU3PHn2TeXtd7ZutW89LfO/5sNjMYp+MPAAAAgSDY6gIA+DbX+n5Rjej2c+kYaf5Tk1pD8Le7fMxn99gQ2crDlpiQIEmlyiP4QwO4Ov4Sws33m81mU5uwIKUXOZRZ7FCb8kCwNu4xn37e7SdVfA+M+gwc7dq1U1BQkNLS0jxuT0tLU4ea2jQaKT4+Xr1799aOHTtqvD8sLKzO9QIBeC87u+aArqFCQqSTTpIeflg6elR68snat60vxEHr43BIaWlSQkLN93fsKG3bVvvjt2yRoqPNjlJ/FxlJxx8AAAACAx1/AOpUsb5f4/+56FAe/B0rdqjY4Rnm7Ssf/5kSE+q+Lbo8ZCT4g7eKypwqKDNDrjZhFe9VV9jnWv+vLiXlm7i65fwZHX+BJzQ0VEOGDNGaNWvctzmdTq1Zs0bDhw9vstfJy8vTzp071bG21g8ATaapRn1K0qBBZug3cKB08sm1b5eQYIY8gEt6uuR0muv51aRjR2n3bqm2qelbt5rdfn4+LEESHX8AAAAIHAR/AOqUXx6mHE/HX1SIXbHlj6/c9VfscOpIoZm2nBBd0YDsCv5yS+sPawCpotsvOsSusKCK96pr7Kfr/rq4O/4CIPgLc63xR8dfQJkxY4aee+45vfDCC9qyZYtuuukm5efna+rUqZKkyZMna+bMme7tS0pKtHnzZm3evFklJSU6ePCgNm/e7NHNd8cdd+jTTz/Vnj179NVXX+mSSy5RUFCQrrzyyhb//oDWxDDMdfmio5vm+YYONYOXq6+ue7u4ODMgBFwOHTIv6+r4KyysPTD+9VcpUJZ7JfgDAABAoGDUJ4A6FZWP+gw/zvGHHaOClZNVotSCMnUt7+47mF8mQ1J8qL18vKeJjj80VNX1/VzahJvXM+sJ/gzDCKxRn3T8BaTLL79c6enpmjVrllJTUzVo0CCtXr1aSUlJkqR9+/bJbq8Ivg8dOqTBgwe7rz/66KN69NFHddZZZ2ndunWSpAMHDujKK6/UsWPHlJiYqBEjRujrr79WYmJii35vQGtTWCiVlTVdx1+vXtLrr0tt29a9XVycdOyYGTwGQocWjl99wV9ysnm5a5dUdbK0YZhjQH/zm+arryVFRDDqEwAAAIGB4A9AnYrKg4PjDv4ig7Utq0SHK3X87S8f89k5OsRjW4I/NFTF+n6ewZ+3HX8OQ3I1xx1Hc6vPYI2/wDV9+nRNnz69xvtcYZ5LSkqKjNpms5VbtmxZU5UGoAGys83Lpur4k+oP/SQz+CsulvLzm/a14b8OHzZD4NrW6HNNft61SzrtNM/7Dh0yg7KuXZu3xpZCxx8AAAACBcEfAElSRkaGcmv4iOuxvDBJwSrMydLe0tpnQ8XExKhtHWecXOv8NST4yy8z5DQM2flIOupRa8df+fWcEqfKnIaCaxnj6QrIQuwKiPcbHX8A4NuysszLpur481ZcnHl59CjBH0yHDpmhcVBQzfdHRJj379pV/b4tW8zLLl2ar76WFB5Oxx8AAAACA8EfAGVkZKhHz57Kysysdt+UJ17RiWeM0T1336mNK5fW+hzxbdpo544dtYZ/HSLMf26yS5wqKHUqJMjmDgGrBn+RwTbZJBmS8sucHmNAgZq4RnlWDf6igm0KtdtU4jSUVeJQu/Cad3uugCwQ1veT5F7nkI4/APBNzdHx543KwV9KSsu+NnzT4cNSu3Z1b9OxY83B39atUkhIRVegv4uMNH8eAAAAgL8j+AOg3NxcZWVmau7y1UrokOxxX35EghySrr5zjq6dcXeNjz+WekizLj9Pubm5tQZ/4cF2tQ0LUkaxQ6mFZQq22eQwpOhgu+JDPWcr2m02RYfYlVvqVF4pwR/ql1NijoWND/N8L9lsNrUJsyut0KGMojqCP6f/Bn8HDhyodlt+YbCkMGXk5Gnv3mO1Pra+Tl0AQPNwBX9WdvwBktnxV9uYT5cOHaSdO6vf/vPPUufOtXcL+htGfQIAACBQEPwBcEvokKzETp6zegrzSuVwSvEJ7RQZfHyLn3WMDFZGscNj3OcJ0cGy1TBasXLwB9Ql7egxFZcHd5mpB5VX5e0U5jDH1e5KPaqw7Ir3XuXArKR8CcDQ41zLsiXl52TLZrdrxIgR1e479ZLf69K/Pa73P/pYk26/utbnqK9TFwDQPAj+4CsOHTKDvbokJ0tr1lS/feNGqVev5qnLChERjPoEAABAYCD4A1An16TAIC/WPaup86iysGKzC+nLw/kKtkmSTVEludq7N7Na55FrnT+CP9QlIyNDp50zRte/8IGK8nLV6zfdq20z+uaZOmfaDC16calWzruz2v0lpWV+2fFXVJAvw+nUPS+uVHLXbh73lQaHq1DSyaefrYWf/ljj473p1AUANI/sbMlmM0cLtqSwMDPcIPiDy6FDUv/+dW/TsaO5XVGRuQ6eJJWWSj/9JF1/ffPX2FIiI+n4AwAAQGAg+ANQJ1fwV1ceUlfnUWWx7TvqmqdeVcde/VVS/rxXTxiltJ1bq3UeuYK/XII/1CE3N1e2CLNdIjIivMaQqyQ4QkWSTr9kksacd5779p0/fa/506fIYZjrSUpSyPE1tVqibVLHap26+aVOFRY6FBQapsS2XWp5JADAKllZZref3YL9Tnw8wR9MDod05IiUkFD3dq41/PbskU480fzzL79IxcVS797NWmKLioiQ8vMlwzCDeQAAAMBfEfwBqJVhGO5ApK7gr67Oo2rPKcmZn66y4HDZDKdmPf9ajZ1HdPzBW7GJ5tmosNBQJbapHnIVljl1qMAhW4hnCHYs9ZAkyQgOkSSF2lXj2Fl/5Pp9NereDABgkexsKTramteOjZXS0615bfiW9HQz/Ksv+EsuXwJ8166K4G/TJjMc69mzeWtsSRER5s+jqMj8MwAAAOCvCP4A1MpZKTXw5gPpNXUeNRbBH7wV294M/mpbgjKkPAUrM8wwu2q4ZwSFSvKvMZ/1sZd/j06SPwDwSdnZLb++n0tcHB1/MB0+bF62a1f3dgkJUkiIGfy5bNwode0aWAGZ63vJywus7wsAAACtjx8ONQPQUhyuMZ9q+U6o6GCCP3gnLsn8GHpt61AG2STXPTW9nYzg8uAvKJCCP/OS4A8AfJOVwR8df3A5ZA4/UH1L/QYFmeM+qwZ/vXo1X21WqBz8AQAAAP6M4A9ArZzlgwKtaISi4w/eik3sIKn2jj+bzeZeu6/MqJ6EVYz6DKDgr/zSkNnlCADwLVlZUmSkNa9Nxx9cDh0yx3XWF/xJUocOFcFfWZn044+BF/y5fidzc62tAwAAADhejPoEUCtXt5AVeUhMeVJTUGbIYRi1dnMBca5Rn3W8R0LsNpU4DZVWaYGzBwVVjPoMwI4/SXJKCrKsEgBATbKyrFvjj+APLocPm6FfkBcHCh07Sjt3mn/eulUqLJR6927e+loaHX9oTZ555hnl5eUpOjpaN954o9XlAAAQEHxp/0rHH4BaVQR/LR+IRATb3OFFPl1/qEPFGn+1v09d91V9KyV07ibZbLJJCg6c3M9jNC8NfwDge6xe4y8jQ3JyeNXqHTpkrt/njeRkafdu87hi40bztp49m682K7iCPzr+0Brk5eUpNzdXeSTdAAA0GV/av9LxB6BWjvLEwIpGKJvNpuhgu3JKncordSo2lJ4lVOc0pOiE9pLqfp+6Rn1W7fhL6tFXkjnms6XXsWxudpv582GdPwDwPVYHfw6HWUObNtbUAN/g6vjzRvfuUn6+9Je/mN1+XbpY9x5uLq5Rnz5wngYAAAA4LgR/AGpl5ahPyVznL6fUqVw6/lCLQqdNdrtdMox6gj9Xx59nCtahVz9JUiDmynaZYz6dhiEpsEJNAPB32dnWjvqUzHGfBH+t28GD5tp93hgyRLrlFunxx82uv7PPbt7arBAebl4S/AEAAMDfMeoTQK2sHPUpmcGfxKhP1K7QMN+bNsNRZ8eeK/grc0pGpdmXXQcNlSSFBdD6fi6uwJ7fHgDwLYYh5eRY2/Ensc4fzI4/b0d92mzSxInSww+b76FTTmne2qwQEiKFhpq/nwAAAIA/o+MPQK18oeNPkvII/lCLAqf55rQbdb9HXOv3GZIcRsX1LicPkSSFBwXe52DMwN5g1CcA+Ji8PHN9PV/o+EPr5XBIaWneB38uQ4ZIb77ZPDX5gqgo1vgDAACA/wu8M50AmoyzvDPKqn8oXMEfoz5Rm8Ly4M/mdNS5nc1mq7bOny0sUqERUZLTodAA3Bu68nqCPwDwLdnZ5qVVHX+xseYlwV/rdvSoGf41NPiTzO6/AFsa2S0yko4/AAAA+L8APNUJoKk4ygODIEZ9wkdVdPzVHfxJUrDNtc6fed0WYbZa2EqL6xwT6q/s7i5Hkj8A8CVWB3/BwVJMDMFfa3fokHnZmOAvkEVG0vEHAAAA/0fwB6BWrrjNqlGfkcHlwV8ZwR9qVug03yM2Z/3vEdc6f+6Ov/Lgz15a1EzVWcu9xh+5HwD4lKws89KqUZ+SOe6T4K9127fPvExMtLYOX0PHHwAAAAIBwR+AWrlHfVoU/EWVL8RWUEZygZo1pOOv8qhPwzBkC3d1/AVq8Gf+bAj+AMC3WN3xJxH8Qdq2zXwPtm1rdSW+JSKC4A8AAAD+j+APQK1cgYHdojGIkeVJTUGZU4ZBeoHq3Gv8eRH8hQZVBMkFZYZswSEqLSqUray4WWu0imsHT/AHAL7FFfxZ2fEXG0vw19pt2yadcELgrtXXWHT8AQAAIBAQ/AGokWEYldb4s6YG16hPhyEVk16gCsMw3MGf3YtRnxFBNoUH2WRISis0g8L9P29SoJ7vqhj1ye8OAPiS7GwpKEgKD7euhrg46cgR614f1nMFf/AUFUXwBwAAAP9H8AegRpWjAqtGfYbYbQotf/GCUsILeCpyGHLI+44/m82m9hFBsqni/b3n+6+br0CLuUd9WlwHAMBTdrYZLljZacWoT2zbJnXubHUVvoeOPwAAAAQCgj8ANarcYGdlR1Ske50/4gt4yi013xN5mUe9fo+G2G1KDA9yX9+z+ZtmqMw3VHT8WVsHAMBTVpa1Yz4lgr/WLjPT/Psn+KuO4A8AAACBgOAPQI0q1vczO6WsElW+zl8+wR+qyC4xu/yyUw816HHRITbFh9rlzMvUrg1fNkdpPoFRnwDgm1wdf1aKjTUDyLIya+uANbZtMy8J/qqLjJTy8qyuAgAAADg+wVYXAMA3ucKClvx0wIEDB6rfWBImKVgH0o4qPLv2s1MxMTFq27Zt8xUHn5NRZAZ/R/ftlE5I9PpxNptNCeFBSj+8S47SkuYqz3Ku3106/qy3a9cude/e3eoyAPgIXwj+4uLMy4wMqX17a2tBy/vf/8xL1virLipKKigwQ/FgzpYAAADAT9HxB6BGjvKwIKgFuv3yc7Jls9s1YsQIpaSkeHy9tXypJOmBR+dXu6/yV4+ePZWRkdHstcJ3ZBabXaBH9+60uBLfxBp/vqNnz546++yz9fLLL6uoqMjqcgBYLCfH7CqyUps25mVamrV1wBrbtpmBb0SE1ZX4HtfvZm6utXUAAAAAx4PPsAGokSsssLfAlM+ignwZTqfueXGlkrt287wvNFolksZPu1X/d/U1NT7+WOohzbr8POXm5tL114pkFJsdf8f277K4Et9UeY0/wzAsHdnb2m3atEmLFy/WjBkzNH36dF1++eW67rrrNHToUKtLA2CB3FzrA5eEBPPy0CHp5JOtrQUtb9s2xnzWpnLw5wrIAQAAAH9D8AegRu5Rny2YFbRN6qjETl08bssqduhYsVOhkdFKbBffcsXA52WWB390/NWs8u+uIYnYzzqDBg3SE088occee0zvvPOOlixZohEjRqh379669tprdfXVVysx0ftxtQD8W16e1LGjtTW4gr+DB62tA9bYulXq0cPqKnyTawxvTo61dQAAAADHg1GfAGrkWhesJYO/mgSXF+BgnTJUUuIwlFtaPupzHx1/Nan8q8s6f74hODhYl156qVasWKGHHnpIO3bs0B133KHOnTtr8uTJOnz4sNUlAmgBeXnWd/yFhEht2xL8tUZOp7RjBx1/tXF1/BH8AQAAwJ81Kvjr3r27jh07Vu32rKwsde/e/biLAmA9hzv4szb5Cyp/eYdBcoEKrm6/UJuhwpwsa4vxUTabzb2TJ/jzDRs2bNDNN9+sjh07av78+brjjju0c+dOffTRRzp06JAuuugiq0sE0AJ8IfiTpHbtCP5ao337pOJiqUuX+rdtjQj+AAAAEAgaNepzz549cjgc1W4vLi7WQf73CAQE16jPIIs7/oJsdPyhOlfwFxvkrGfL1s1uM0M/J8M+LTV//nwtXrxY27Zt0/jx4/Xiiy9q/PjxstvNaLZbt25asmSJUlJSrC0UQIvwleAvIYHgrzXats28pOOvZpXX+AMAAAD8VYOCv3feecf95w8++EBxcXHu6w6HQ2vWrOGkFRAgfGXUpyt4dBqSYRiyWdyBCN+QUR78xdgJ/upit0ky6Piz2tNPP61rr71W11xzjTrWsrBX+/bt9Z///KeFKwPQ0gxDys+vCBeslJAgHThgdRVoadu2SaGhUvv2Vlfim1yhPB1/qKqsrEzr1q3Tzp07NWnSJMXExOjQoUOKjY1VdHS01eUBAAB4aFDwd/HFF0syx4dNmTLF476QkBClpKTosccea7LiAFjH6SOjPisHjw5DCib3gyoFf0EkWnUxf38Ngj+LffTRR+rSpYu7w8/FMAzt379fXbp0UWhoaLVjKwCBp7hYKivzjY6/du2kb7+1ugq0tG3bpBNOkIKCrK7ENwUFmb+fBH+obO/evTrvvPO0b98+FRcXa/To0YqJidFDDz2k4uJiLVq0yOoSAQAAPDRojT+n0ymn06kuXbroyJEj7utOp1PFxcXatm2bzj///OaqFUALcgd/1pYhm81WaZ0/a2uB78h0B390/NXFXqljFtbp0aOHjh49Wu32jIwMdevWzYKKAFglL8+89JXgLz1dKi21uhK0FMOQPvhA6tPH6kp8W1QUoz7h6bbbbtMpp5yizMxMRVT6B/ySSy7RmjVrLKwMAACgZo1a42/37t1NXQcAH+MoX+PP6lGfkjnu02G4avKBgmC5jCLXqE8Srbq4gnvXmp2whlHLzz8vL0/h4eEtXA0AK/lS8JeYaAZBhw9LXbpYXQ1awqZN0s6d0h/+YHUlvi0qio4/ePr888/11VdfKTQ01OP2lJQUHWSxVAAA4IMaFfxJ0po1a7RmzRp3519lzz///HEXBsBartPUVo/6lKSg8nGFdPxBkgrLnCosfzNE0/FXJ/eoT6sLaaVmzJghyexcnjVrliIrLerlcDj0zTffaNCgQRZVB8AKvhT8tWtnXh48SPDXWixbJrVtKw0ebHUlvo1Rn6jK6XTK4XBUu/3AgQOKiYmxoCIAAIC6NSr4u++++zR37lydcsop6tixo2w+EAwAaFoVa/xZW4ekilGfzCuEKo35DLErxAfen76MUZ/W+v777yWZHX8//fSTx6fEQ0NDNXDgQN1xxx1WlQfAAr4U/CUkmJc0q7QOTqf06qvSmWeyvl99IiMJ/uBpzJgxWrBggZ599llJ5oe68vLyNHv2bI0fP97i6gAAAKprVPC3aNEiLVmyRFdffXVT1wPABxiGUdHxZ2klpiA7HX+okFEe/LUJ46xVfSqCP355rLB27VpJ0tSpU/XEE08oNjbW4ooAWM2Xgr/YWCk0lOCvtfjqK/Pv+q67rK7E90VGssYfPD322GMaO3as+vXrp6KiIk2aNEnbt29Xu3bt9Oqrr1pdHgAAQDWNCv5KSkp02mmnNXUtAHxE5bGAPtXxR3gBVQR/bcOCKmbSokauX186/qy1ePFiq0sA4CN8Kfiz2cx1/g4dsroStIRly6T27aX+/a2uxPdFRkrZ2VZXAV9ywgkn6IcfftCyZcv0448/Ki8vT9ddd52uuuoqRfjCP+gAAABVNCr4mzZtmpYuXaq//e1vTV0PAB9QOV/zhVG+QeU10PEHSUrNL5MktQ0PkgotLsbHudboJPhreZdeeqmWLFmi2NhYXXrppXVu++abb7ZQVQCs5kvBn2Su80fHX+BzOKTXXpPOOUey+8I4Dx8XGSkdPmx1FfA1wcHB+v3vf291GQAAAF5pVPBXVFSkZ599Vh9//LEGDBigkJAQj/vnz5/fJMUBsIYvre8nVV7jz9o6YL3CMqf25JZKknrEhiiP4K9O7lGf1pbRKsXFxbk/OBEXF2dxNQB8RV6eub5alf8+WSYhQTpwwOoq0Nw2b5bS0yWG9niHUZ+o6sUXX6zz/smTJ7dQJQAAAN5pVPD3448/atCgQZKkn3/+2eM+X+gOAnB8XOuB+coHghn1CZft2SVySkoMD1JCeLDyrC7Ix7HGn3Uqj/dk1CcAl7w8s9vPV/7LlJAgff+91VWguX36qRQWJp14otWV+IeoKCknx+oq4Etuu+02j+ulpaUqKChQaGioIiMjCf4AAIDPaVTwt3bt2qauA4APcXUH+UzHn51RnzBtzSqWJJ3YJsziSvxDRfBnbR2tXWFhoQzDUGRkpCRp7969euutt9SvXz+NGTPG4uoAtKS8PLObyFe0a2eu8WcYvhNGoul9+qnUr58UGmp1Jf4hIsLs+OP3Ai6ZmZnVbtu+fbtuuukm/eUvf7GgIgAAgLr5SkMPAB9SMerTN/6n6+r4M0TnUmtWWObUnhxzzOeJ8Zy58oZd5i8PvzbWuuiii9wjorKysjR06FA99thjuuiii/T0009bXB2AluTq+PMV7dpJBQVSdnbzv9a+fdLXXzf/68CT0yl99pk0cKDVlfiPqCiptFQqLra6EviyXr166cEHH6zWDQgAAOALGtXxd/bZZ9c50vOTTz5pdEEArOcK/nwj9jMDSLvNrKvUKYUFWV0RrFB1zCfqV3mNP8MwGMdtkU2bNunxxx+XJL3++uvq0KGDvv/+e73xxhuaNWuWbrrpJosrBNBS8vKk8HCrq6iQmGheHjokxcc372v94Q/Sxx9Ln3wijRjRvK+FCj/9JGVlEfw1hKsrNzfXt35f4XuCg4N16NAhq8vwypw5c6wuAQAAtKBGnTl1re/nUlpaqs2bN+vnn3/WlClTmqIuABYyVL7Gnw9lBCF2m4odhkqdhsKCfKgwtBjGfDZc5d9hQ74T5rc2BQUFiomJkSR9+OGHuvTSS2W32/Xb3/5We/futbg6AC3JFzv+JOngQXMUZHPJzjZDv9BQ6dJLpY0bpc6dm+/1UOHTT6WQEKlvX6sr8R9RUeZlTk5FOI7W7Z133vG4bhiGDh8+rH/+8586/fTTLarKe4R+AAC0Po0K/lyfWq9qzpw5ysvLO66CAFivYtSntXVUFmqXih1SCYuVtUpFjPlslMq/wk7Dt36nW5OePXvq7bff1iWXXKIPPvhAt99+uyTpyJEjio2Ntbg6AC3J1zr+EhLMy4MHm/d13n3XHJ24cKE0a5Z00UXSV1/51s8iULnW9wvjc1Nec3X85eRYWwd8x8UXX+xx3WazKTExUeecc44ee+wxa4ryUuXQr2vXrpo6daoWL17s/vBZbm6uRZUBAIDm1KSz0n7/+99r6NChevTRR71+zMKFC/XII48oNTVVAwcO1FNPPaWhQ4fWun1WVpbuuecevfnmm8rIyFDXrl21YMECjR8/vim+BQDyvTX+JLPjTzI7/tD67Mwxx3y2Y8xng9gqjcnlV8c6s2bN0qRJk3T77bfr3HPP1fDhwyWZ3X+DBw+2uDoALSk317c6/kJDpbg46cCB5n2dN94ww6devaT77pNuvFFauVK6/PLmfd3WzumU1q2TJkywuhL/UnnUJyBJTqezWZ63uLhYxZUWk8xpxrS5Z8+e+v3vfy9Jmjp1qkcg6OvhJdAa0EiDlpSXl8e//c3El36Xm/Ts6fr16xXegI9tLl++XDNmzNCiRYs0bNgwLViwQGPHjtW2bdvUvn37atuXlJRo9OjRat++vV5//XV16tRJe/fuVXxzL0gBtDK+tsaf5Ar+pFKHxYXAEtuzSyRJveLo9msou8w1/pwGwz6tMnHiRI0YMUKHDx/WwEqLLJ177rm65JJLLKwMQEvLy6sYr+krevaUPvus+Z4/L096/33JtSJE797m2Mnlywn+mtuvv0oZGazv11CVR30CzWnevHm67777WuS1XKGfS0xMjLvbj64/AGhdDMPg3/5WoFHB36WXXupx3TXffMOGDfrb3/7m9fPMnz9f119/vaZOnSpJWrRokVatWqXnn39ed999d7Xtn3/+eWVkZOirr75SSEiIJCklJaUx3wKAOvjiGn+h5cWUOA0ZhiGbD3UjonmVOQ3tKh/z2Zvgr8HKm2XVPJ9Thrc6dOigDh06eNxW14QDAIEpL8/31rYbMcIcwZmRIbVt2/TP//77UlGRdOaZFbeNHCk9/7wZrDDxuPl88YUUHCz17291Jf7F1ZVL8Ne6zZgxw+tt58+f36jXmDlzpsfr5OTkqHMz7SQWL17sPvcmeYZ9rrWoAVgnLy9PhsGYHrQMm82m6Ohoq8sISL70u9yo4C8uLs7jut1uV58+fTR37lyNGTPGq+coKSnRxo0bNXPmTI/nGTVqlNavX1/jY9555x0NHz5ct9xyi1auXKnExERNmjRJd911l4KCgmp8TEuOTgAChS+u8RdiNy8NSQ5DCvah2tC89uaWqsRpKDrErg6RjPlsKHNkr8GoTwvl5+frwQcf1Jo1a3TkyJFq46J27dplUWUAWlpenm+N+pSkM86QnnxSeucd6Zprmv7533jDHPGZnFxx28iR0tNPm69ZpQkFTejXX6UTTmAtxYYKD5fsdoK/1u7777/3arvj+UBqWFiYwlpoAc69e/e6w7/Fixd73PfnP/+5RWoAULvHHnuMDiy0mOjoaP7tbya+9LvcqDOoVQ8SGuPo0aNyOBxKSkryuD0pKUlbt26t8TG7du3SJ598oquuukrvvfeeduzYoZtvvlmlpaWaPXt2jY9pydEJQKBwB38+NBbQZrMp2CaVGVKp01BwM6eS2SUOvbkrRz1iQzWiY6RPrXfY2lQe80mnZ8O5flUI/qwzbdo0ffrpp7r66qvVsWNH3sdAK+aLwV9CgnTyydKKFU0f/BmG9N570v/9n+ft7dtLJ50kLVvW9MHfN99IF1wg/eMf0rRpUmv+J3frVjP4Q8PYbOa4Tx85ZwOLrF271uoSmsScOXPc6/nt3bvXY20/iW4/AAAC1XG1TmzcuFFbtmyRJPXv31+DBw9ukqJq43Q61b59ez377LMKCgrSkCFDdPDgQT3yyCO1Bn8tOToBCBSuXhRf6viTpNAgm8rKDJU4DTX1ObOMjAyPT2T8WBCitKJQpRUWal9GroZHF9fZZRgTE6O2zTEfq5UzDEPbs82ubcZ8Nk5F8EfyZ5X3339fq1at0umnn251KQAslp/ve8GfZHb9PfeclJ0tVRnuclyOHTPDk27dqt83cqT0zDNSZqbUpk3TveYHH5hjS2+4wRwzunhx035P/mTrVvPvFg0XFUXHHwJH5fAPAAC0Do0K/o4cOaIrrrhC69atU3x8vCQpKytLZ599tpYtW6bExMR6n6Ndu3YKCgpSWlqax+1paWnV1sBx6dixo0JCQjzGevbt21epqakqKSlRaGj1k8ItOToBCBSugMDXPiEdUr5YWWkTL1aWkZGhHj17Kisz033bH19dq+Q+J0mSDpQG67HPNuvZ6y6Uo6y0xueIb9NGO3fsIPxrYocKypRfZijMblOX6BCry/FLZucuoz6t1KZNG/5tAKDSUqm42DeDvzPPNNf5e/dd6aqrmu55DxwwL9u1q37fWWeZr/nWW9K11zbda27YIP3mN9L550vz5kkLFki1fEY0oOXnS/v3+96akv4iMpLgD542bNig1157Tfv27VNJSYnHfW+++aZFVXmvavDnS6PIAABA07M35kF//OMflZubq19++UUZGRnKyMjQzz//rJycHN16661ePUdoaKiGDBmiNWvWuG9zOp1as2aNhg8fXuNjTj/9dO3YscNjbZz//e9/6tixY42hH4DGMXxwjT+pYp2/0iZOMHJzc5WVmam5y1dr4ac/6qnPfjZDP8NQRGGGZDjV5eRT9Ninv2jhpz9W+5q7fLWyMjP5j1Mz2JdrBq0psSEK8rU3pJ9wd/xZW0ardv/992vWrFkqKCiwuhQAFsrLMy99Mfhr317q189cj68puYK/mj4X2q6d+ZoffdS0r/ndd1Lv3maYOWCAGQT6guJiM1T9+eeWeb3t283LLl1a5vUCTWQkoz5RYdmyZTrttNO0ZcsWvfXWWyotLdUvv/yiTz75RHGttaUYAAD4tEZ1/K1evVoff/yx+vbt676tX79+WrhwocaMGeP188yYMUNTpkzRKaecoqFDh2rBggXKz8/X1KlTJUmTJ09Wp06dNG/ePEnSTTfdpH/+85+67bbb9Mc//lHbt2/XAw884HXYCMA7vrjGnySFlicYJY7maV1K6JCsxE5dlF3iUF6RU+HBdiUnJSmjyKHMEqcU3VaJUcc1IRkNlF7kkCR1iODn3liM+rTeY489pp07dyopKUkpKSkKCfHsXt20aZNFlQFoSb4c/EnSOedITz8tffml1FSTiQ8elIKCpNqannv3lpryn8BDh6TUVKlPH/N6z57SunVN9/zH47PPpKVLzSBy40YpOrp5X2/rVvOSjr/GoeMPlT3wwAN6/PHHdcsttygmJkZPPPGEunXrphtvvFEdO3a0ujwAAIBqGnUm1el0VjtpJUkhISEe3Xj1ufzyy5Wenq5Zs2YpNTVVgwYN0urVq5WUlCRJ2rdvn+z2iqbEzp0764MPPtDtt9+uAQMGqFOnTrrtttt01113NebbAFADwzB8do2/kPKCygyzTlszzSLNLzUDksjyRf1iQu3KLHGq0GGo1Gm460DzO1JYJklqT/DXaBXBn7V1tGYXX3yx1SUA8AG+HvxdfLH06afS5ZdLP/wgJSQc/3MeOGA+T6WVGjz07Cm9/bb5s2mKIMzV3Vc5+Fu6VDpyxOxqtNJHH5lrDR44IN18s/TCC807Vn/bNvNnHxPTfK8RyCIizDUvAUnauXOnJkyYIMmcXpWfny+bzabbb79d55xzju677z6LKwQAAPDUqDOp55xzjm677Ta9+uqrSk5OliQdPHhQt99+u84999wGPdf06dM1ffr0Gu9bV8PHM4cPH66vv/66wTUD8E7lbMDX8q0gm8pXK5NKnVJoLSeRjofTMFRY3lEYFWx+8CDEblNksE0FZYZySpxKCG+GF5b0w7EifXukUJekxKgdQZfKnIaOlXf8JUY0z8+8NbCXn1Uk+LPO7Na4uBSAanw9+AsKku69V7rhBmnKFOm//z3+YOrAgZrHfLr07GmOmP/xR+m0047vtSQz+GvTpuI1e/UyL7//Xho79vif/3h89JE0dKh06qnSAw9Io0ZJkyc33+tt3SqdcELzPX+gi4yUjh2zugr4ijZt2riXdejUqZN+/vlnnXzyycrKymKUOwAA8EmNWuPvn//8p3JycpSSkqIePXqoR48e6tatm3JycvTUU081dY0AWlDlcMDHcj/ZbLaKcZ/NlGIUlJnPG2yrWFNQkmLLr+SUOmU0w8hEh2Hos0P5Olbk0LfphU3+/P7oWJFDhqTwIJtiQhq1u4IqdvQEf9bKysrSv//9b82cOVMZGRmSzBGfBw8etLgyAC3F14M/yeyKu+su/X979x0nV13vf/x9pm1v2ZpNh4RAIKGXIMgVIgSUclFA8EcJXOQq8aq5ioAICl6xIGLhyr0oAl4QRIpc4UYgkNAiSEIghPTedpPdzfYy7fz++M7sZpMtM7uze6a8no/HPIZMO589bIYv857P56sXXpBefHH4r7d9u9nLrz+TJ0sej7RixfCPJfXs7xcNLKurpbw8E/w5ae9e8zMef7z06U9Ls2dL//mfI3vM1asZ8zkc+flSY6PTVcBpH0U25fzkJz+plyMbkl5yySX62te+puuvv16XX3553F9+BwAAGA1DaimZMGGCli9frldeeUVrIpsHHHHEEZozZ05CiwMw+qLZgCWN2CjN4fC6pa6w1BYIK38EwqD2oBl0mud19fr5cz2W3JYUsqW2oK18b2LPzcYmv9oioePafX6dPd6WJ9laLkdZdMxneY47KX8XU0X3qE+R/Dnlww8/1Jw5c1RUVKQtW7bo+uuv15gxY/TMM89o27ZtevTRR50uEcAoSIXgT5JOOcXsybd0qRSZbDdkO3ZIRx3V//0+nzRlSmKCOds2e+fNndtzm8slHXqo88HfokXm+rjjzPWxx0oPPSQFgyb4TLRwWFq/PjFdlJmqsFCKfE8HGWzWrFk68cQTddFFF+mSSy6RJH3nO9+R1+vV22+/rc997nO67bbbHK4SAADgYHF9av7qq69qxowZam5ulmVZ+vSnP62vfvWr+upXv6oTTzxRRx55pN54442RqhXAKIh2BSVr5lTkM29brUG7O6RLpK7ImM8cd+8TYFk9XWcjcdwP6jt7agjb2tDkT/gxUs3eyJhP9vcbHkZ9Om/BggW65pprtH79emVnZ3ffft555+n11193sDIAoylVgj/LMl1z0f3yhmPXroFHfUommFu+fPjH2rHDdNZF9/eLmjo1Ma8/HC+/bALO6LmYPl3q7JRWrRqZ4+3YIbW3SxMnjszrZ4Jox98IDPpAClmyZImOPPJI3X333TriiCN09dVX66233tLNN9+s559/Xj/72c9UUlLidJkAAAAHiSv4u++++3T99dersLDwoPuKiop0ww036N57701YcQBGXzjyf7fJGvxlu13dYzfrOkMJH7sZabrrs9suOxIGdoYSe8wWf0ibmgOSpMOKfJKkVfu6EnqMVBTt+KvIJvgbjmiGHbI1ImNqMbh//OMfuuGGGw66fdy4caqpqXGgIgBOaG01oVpWltOVDG76dBP8Dec/G83NUkvL4MHf1KnSRx9JgcDQjyX1BJUHBn/TpkkbNph6nGDb0ksv9XT7RWuyrMSEq31Zu9ZcE/wNXWGh6ciMBvbITKeffroeeugh7d69W7/61a+0ZcsWnXHGGTrssMP04x//mHUcAABIWnEFfx988IHm7j875QBnn322li1bNuyiADgn2hWUpLmfJGlMtktuSwqEpX3+xHXf2er5+T19vDtme8xZCYSlYALbp1Y2dMmWND7Po0+OzZUkbWz2q2MEOguHoisU1tKadr20vVXPb2nR+3Wjswfh3v1GfWLo9s+wif2ckZWVpeY+PnFet26dygf7RBxA2mhtNd1+rhTYtnb6dKm+Xtq2beivsWOHuR7sbW7aNMnvN3vSDcd775n9BA/cU3DaNHP9wQfDe/2hWr/enIvjj++5LSfH7G84UsHfmjVmjGpl5ci8fibIzzfX+/Y5WweSQ15enubNm6clS5Zo3bp1uuSSS3T//fdr4sSJuuCCC5wuDwAA4CBxtVHU1tbK6/X2/2Iej/bu3TvsogA4JxoMuJJ4TzW3Zak02609HSE1doWVZyXmE7SwZQImS31/K8JtWfK6TPDXGbKVn4C2SNu2u8d8Hl2arbIcjypz3KrtCGn1vi4dV+78PLBlezv1+u727j9/vK9L04uzlNtXOjoEDQ0Namlp6XVbZ1hqC+ZJstWxd5e21vX93B3RTxXRLytysWW6/pK1mzedXXDBBbrzzjv1pz/9SZIZHbxt2zZ9+9vf1uc+9zmHqwMwWqLBXyo47DBz/d570qRJQ3uNWIO/Qw811++/L82aNbRjSWac59SpB98+aZIJwd5/Xzr99KG//lC98orZx++YY3rfPm2a9I9/jMwx16yRxo+X3Hx3asgKCsx1QwOdk+ht6tSpuvXWWzVp0iTdcssteuGFF5wuCQAA4CBxfWo7btw4ffTRR/3e/+GHH2rs2LHDLgqAc5J9j7+ofI+lLLclW1KXLz8hr2m7zKcjHpf5YL4vOW7ztpmocZ9N/rCa/GG5LenwEjP768gxZg+wNY3Jsc/f1paeMaTRMavbW4c5jyuioaFBh06dqsmTJ/e6fOYLV0qS6rZt1tQpkw+6P3o57bTTJEmBQDAh9aQjy7K6/z6zz58zfvazn6m1tVXl5eXq6OjQGWecoalTp6qgoED/8R//4XR5AEZJKgV/paUmsBtOR1o0+CstHfhxeXkmpHr//aEfSzLjPMePP/h2j8fsr+fUPn//+IcJNw/8d3/44dKHH0pdIzDdfe1aacKExL9uJonubkLHH/b3+uuv65prrlFVVZW+9a1v6eKLL9Zbb73ldFkAAAAHiavj77zzztN3v/tdzZ07V9nZ2b3u6+jo0B133KHPfvazCS0QwOjq3uPP4ToGY1mWSrNc2tUeUsCbq/LJfXzFO07Rjj/PAN2O2W5LzYHEBX91nSFJ0pgst7yRdGZKgemsrmkPyrbtfkPI0RAK29rZZkK+08fmanldp96v69S21oCmFw9/k6KWlhY17tunO59cqNKq6u7bu7x56pJUNXas7l/yYb/P37jyfd07/2qFQgR/A3FZptsvZNtK7kG+6amoqEgvv/yy3nrrLX3wwQdqbW3Vcccdpzlz5jhdGoBRlErBn2S6/oYb/I0ZIw0wMKbboYcOL5gLBqWtW6Xzzuv7/qlTnQv+3n+/707E6dPNvoYffdR7DGgirF4tnXlmYl8z0zDqE1G7du3Sww8/rIcfflgbNmzQqaeeql/+8pe69NJLlZeX53R5AAAAfYor+Lvtttv0zDPP6LDDDtP8+fM1PbJz+po1a3T//fcrFArpO9/5zogUCmB0RHeVS+ZRn1E5HpdyPWG1B6Wz5w//vWf/jr/+RPf56wrZCtv2sM9TXacJrMqye2YxlWa75bEkf9jWvq6wxmQ7N6dpd3tQQVvK8Vgqy3ZrYr5X79d1JqzjL6q0qlrl43rmKO3pCKorYKsgP09jSgv7fV59za6E1pGu3JalgGw6/hwQDof18MMP65lnntGWLVtkWZamTJmiqqoqx4N9AKMrFYO/Z5+VbFsaylvVzp2Dj/mMmjZN+tOfhn6s7dtNiDZuXN/3H3qo9NJL5jGxBJGJ4vdLH38snXFG3zW53aYjMJHBX0uLtGsXHX/DFQ3+GhqcrQPOOvfcc/XKK6+orKxMV111la699truz8EAAACSWVzBX2Vlpd5++219+ctf1i233CI70hlkWZbOOecc3X///apkB3EgpUWDgVT5LLo0y632QEBHnflZNYXaB3/CAGLp+PNYkjvSPdUVspXjGW7wZzr+ynJ63o5dlqXyHI92twdV2xF0NPiLBnwT8ryyLEsT8s2nZXs6QuoMhpWdoH3+DuQ3p0W+ZJ85myKipzFkk/yNJtu2dcEFF+jFF1/U0UcfrZkzZ8q2ba1evVrXXHONnnnmGT333HNOlwlglLS2SgcMTUlq06dLjY3S5s3SIYfE//wdO6SystgeO2GC1Nws1dXFHhbub+NGc91f8HfIISb0W7tWOuqo+F9/qD7+2By3r46/rCwzgnQ4XZV9WbfOXBP8DY/bbcI/Ov4ym9fr1Z///Gd99rOflZtNMwEAQAqJK/iTpEmTJunFF1/Uvn37tGHDBtm2rWnTpqmkpGQk6gMwyuwU2eMvyue25A75FfJkqT44vP8ZC7tMiOUZ4Ie3LEvZbkttQVudIVs5cb+L9lYfCf5KDwj3KvcL/o4oGf5IzaHaFgn+JkYCv3yvS2Oy3GroCml7W0DTihJfm23b8kcSaIK/xHCzx58jHn74Yb3++utatGiRPvWpT/W679VXX9VFF12kRx99VFdddZVDFQIYTS0tqdfxJ5lgaijB3/btsT+vOjLte9OmoQd/brfU33dQo3V8+OHoBn8rVpgv0x16aN/3H3aY6fhLpLVrzTXB3/AVFtLxl+mef/55p0sAAAAYkiG3apSUlOjEE0/USSedROgHpJFU2eNvf+6wGZfZGBxe1bY1+KhPyezzJw1/nz/btvsc9SlJlbnmz7Xtzu1dF7Zt7Wwzx492+kk9IeC2lsSO+4wK2lL0zHpT6RcxiUVH0iZoa0rE6I9//KNuvfXWg0I/STrzzDN1880367HHHnOgMgBOSLVRnyUlUlWVtGzZ0J6/Y0fsId7YseY62rkXrw0bTK2efr6QVVAgVVRIK1cO7fWHasUKafx4KTe37/unT5dWrZLahze0ope1a6XS0p5RlRi6ggI6/gAAAJCa+EgVQC+ptMdflCtkAqjG0PDe0sKuwUd9Sj3BX9cwU5TmQFiBsHkjLsk6uONPMnvdOaWmPSh/2Fa221JFTk99E/JNbdtbR6a2QKQtzesS+58lSE/HH8nfaPrwww81d+7cfu8/99xz9cEHH4xiRQCclGrBn2Q61VasiP95HR0mMIk1+MvLk4qLTcffUGzc2BMe9mfKlNEP/pYv77/bT5KOPloKhaTFixN3zDVr6PZLlPx8Ov4AAACQmgj+APQSTrFRn1JPx9++kKt779F4ZeUXSFZ01OfAj/W5e7qnhrNnWnTM55hst9wHBFzlOR5ZktqCtloD4T6ePfKi+/uNz/f2CuCiHX+1HUF1hhJfmz/EmM9EczHq0xENDQ0D7n1cWVmpfbQSABkjFYO/sWOlrVvjf97OneY61j3+oscaavC3YUPPuND+HHKINJrftbBtc7y+9veLmjjR/NwvvJC44xL8JQ7BHwAAAFIVwR+AXqI5VipFLq5wQOFQSH7b7L03FMWV48xrafBuR5dldXdQBYbR9VfXz/5+kuR1Wd23OzXu88D9/aIKfG4V+1yyJe0cga6/aM7pJfhLGDejPh0RCoXk6W/unCS3261g0LmuXgCjKxWDv8pKadu2nvVhrHbsMNfx7Nc3duzQRn3atgkMx40b+HFTppi6GhvjP8ZQbN4sNTdL06b1/xjLkk4+2QR/iWjKD4el9esJ/hKloIDgDwAAAKmp/0+jAGSkcGR3tVTKXCxJdds2qWLKNO3tCCrf64v7NYoiwd9g3X5RXpelUMjWcJrx6vvZ3y+qIsejus6QajuCOrQo/p9pOOz99/fLO/g/FRPzvWps6NK21kDCa/OH6fhLNBejPh1h27auueYaZWVl9Xl/V1fXKFcEwEltbakX/FVVmbGde/eaPfJiFQ3+4un4q66WXnstvvokqbbWnNvBOv6iIzdXrpROPz3+48QrOiJ1oI4/yQR/zz0nrV4tzZgxvGNu327+fRH8JUZhofTRR05XAQAAAMSPjj8AvfSM+kyt0KVm/ceShr4nXvHYaPAX288dDaX8w5id2NPx1/d3MCoj++rVOrDPX5M/rM6QLbdlxo4eaEKkCzA6DjSRonv8RUeqYvjo+HPG1VdfrYqKChUVFfV5qaio0FVXXeV0mQBGQSgktbenXvAXnVYc77jPmhqzb188P+/YsdKuXVJnZ3zHinYJDtbxN2GC5PGM3j5/K1ZIpaXSmDEDP+7YY6XsbOnFF4d/zLVrzTXBX2Lk55u9KgEAAIBUQ8cfgF5ScY8/yQR/s86+UHs6QkN6fnfHX4yBpzfytYlA2Fbf/XoDs227O/jrr+OvMte8RTsx6nN35JjlOZ4+w9CJBd7ux/lDdsJCupBtd4dTXr6akjD77/Fn23avPRsxcn7/+987XQKAJNHebq5TNfjbskU68cTYn1dTM3jgdaDqajPucutWafr02J+3YYO5Hjt24Md5vWZPvQ8/jK+uoXr//Z4uw4FkZZnw769/lb75zeEdc+1a83NWVQ3vdWAUFkpNTSa4dw9lwQ8AAAA4hI9VAXSzIxcptfb4k6Sa9askSXs7h9jxN4RRn1JPd1q82oK2ukK2LEljsvoJ/iKddo3+sDpDw5gpOgQ1keBvbG7f3w8p8rlVGN3nry1xXX/+SOrnsVKv6zSZRXPZ/f+OAwBGT0uLuc7OdraOeBUUmM69oXT8DSX4k8x+ffHYuNHsJRjLuZ0yZXSCP9uWli0bfMxn1EknSW+9ZUKm4VizxnT7EVIlRn6+uR7uvxcAAABgtNHxB2A/PUFLqnX87Y6M+qzrDClk292jDWNVVGU+bYq14y/a4RYIS33v3jWwukhAWZzlUnPjPrVEPxE8QK4rR+1hl1Zu3qkKb9/hX0FBgcbE++naIKIdf1X9BH+S2efvo8g+f1MKE7PPX3TPRG+q/QImuf3PZthOvb/fAJDqWlvNdW6us3XEy7JM19+WLfE9r6ZGKi6O7zmlpaZbLTq6M1YbNw6+v1/UIYdITzxhgrmR/H7Rjh3S7t3SEUfE9vhTTpF+8Quz19/VVw/9uGvXDj7yFLErKDDXDQ3xB9kAAACAkwj+AHSz9/sEJNVygcbd2+WRraBtqaEz1Oe+dAMprhovKfaOP8/+HVRW/F+rjo75LHSFdejUw9TYzwYi/+9nj+jIT52nb9zxH3rr8f/q8zHFJSXauGFDwsI/27YH7fiTzD5/0eAvUfzs7zciLMuS2zJ7/IVs/uMPAKMt+v2eVBv1KUkVFUPr+DvssPie43abcZ3xdvytXz/4mM+oQw4x/y62bpUmT47vOPH4+9/N9YwZsT2+qko69VTpS18yoz+/8IWhHXfNGumMM4b2XByssNBcs88fAAAAUg2f/QHoFg3+XFJK7gFW7AmrLujW3o74gj/blgorzCdGfe1n1xfLsuR1mQ61sCv+4K8hEvzl2n417tunO59cqNKqg7+u3uXLV5ekf/7arbrihhsPur++Zpduv2yuWlpaEhb8NXSF5A/b8lj97z8oSZPye/b5C4TthHTpRUensr9f4rkiwV/YtpV60T4ApLZU7fiTTCgV3UcvVjU1pottKMcayqjPWbNie+whh5jrlStHPvgbOza+LrHvfU/66U+lyy83Y0I//3np+OMlT4xL2tZWaedOs48hEiM66rOhwdk6AAAAgHgR/AHYj0lbUnUMYLHbBH97OoKaEccAzi5b8mZlS7bd3ckXC5/LUiBsK+SK/610X5cJ/gpcJugqrapW+biDP6lpC4RV0xGSlZWr8tKiuI8zFNFuv8pcz4D77BX5XCrwutQSCGtnW0CTC4Y/7jO6x58vVX8Jk5jbshSQrRCb/AHAqIsGf6nY8VdZKS1aFPt4zEBAqq+XSkriP1Z1dXwhY1OTCWViHfVZXm7C19WrpfPPj7++WL39duxjPqO8XumWW8yozv/8T+mee0xw+PLL0nHHDf78NWvM9YQJ8deLvtHxBwAAgFRFTwWAbtGOvxRs9pMkFbnNBnH1kVAtVu1h81Zo2eG4Oh2jHW7h4QR/7r737YvKioy89IejnVojL5b9/STT9Tgx0vWXiHGfYdtWMPIjssdf4kVPaZjgDwBGXSqP+qysNPU3Nsb2+L17zfVQBhGMHStt3mxCxlhEQ8JY97WzLGnSJBP8jZSuLun992Mf87k/yzJ7/P3lL9Kvf23C0xtukMIDLxclSUuXmu7AqVPjPy76lpNjRtAS/AEAACDVEPwB6NY96jNFk7+8SPdckz++4K8zHAk87Rg+VdnPUIO/UNhWk98cK9898CdbbqsnsAnEV96QxbK/X9SESPC3rtE/7GAy+vO5ZH5uJFb0nIZGKUAGAPSIdvxlZztbx1BUVZnrWPf5q6kx10MJ/qqrpbY2ac+e2B6/cWPP82I1caK0alX8tcXqgw9M+DeU4C/K45GOPFL62tek996Tfve7wZ/z9tvS9OmSb/gDGBBhWabrj1GfAAAASDWM+gTQzY6O+nS4jqHKj3TPNXWFZdt2zN17HZHgz2XHFxj6Iicq3uCv0R+SLbOPXY41cAhjWZayXJY6Qra6QnZ3B2AiNTQ0qCXSihC2pd1tuZIs2Y17tLVl4PpywlKWK091nSG9u6dDp1QOffOiruiYT7eVkntMJjsT6Nt0/AGAA1pbTfeQKwUXWZWV5nrLFumYYwZ//HCCv7Fmy2Vt2tRz3IFs2CAVFUkFBbEfY9Ik6a23Yh9dGq+//92Eb4novJs5UzrnHOnb35YuvlgqLe3/sW++KZ166vCPid4KCuj4AwAAQOoh+APQo7vjz+E6hija8dcVttUZspUT44Z9HXak4y+WOUr7iXb82S63vNmxB177usxxSrLcMX3g5HP3BH+J1tDQoEOnTlVj5BONyqlH6Ot/el2drS06+vhDZcfQHXb6F67TeTf9SG/ubtdhRVkak+0eUi3Rny+bdr8RQccfADinpcXsLZeKSkqkrKz4O/6GusefZDr5Zs8e/PEbN8bX7SdJkyebIHbHjpHZD2/pUumww8yefYnwpS+ZoPLOO6Vf/KLvx2zfbn6eo45KzDHRIz+fjj8AAACkHoI/AN3sFA/+PJaU57HUFjSjNHM8sX2tvqN71Gd8HX9ulyWXZbrkyiYeEvPzGiL7+43Jii0gi3b5dY1Aq1ZLS4sa9+3TnU8uVGlVtfzeXHVKysv26deLPxj0+fU1u3T7ZXM179b/UG3Qrf/d2qKTKnI0Ntej4hh/vqho8DcSXY1gjz8AcFK04y8VWZYZ9xlP8FdUZMZVxisnx3S1RUd4Dmb9+p4uwVhNnGiuV68eueDvpJMS93pjxkgXXig98oj0ox/1/Xv09tvm+sgjE3dcGHT8AQAAIBUR/AHoZisSgCl1g5fiLLfagkE1doVUFcMeddL+oz7j30TP67LUFbJVNunQmJ+zLxL8lWS5pcDgj8+KJDb+kB3XCNN4lFZVq3zcRLO/X9BWYV6OxoyZGPPzT8rr0sKWXO1uD+ovW8zY0FljsnT2hHx5YkiSbfUEmwR/IyO6d+cINI4CAAbR0pK6wZ8kVVSYUZ+xqK0deCTlYKqrzQjPWGzcKJ11VnyvX1VlOhg//lg6++z46xtITY0JSK+5JrGvO3eu9Nhj0nPPSZdffvD9b70ljR8/tPGqGFh+vlRf73QVQOLl5+f3ugYAAMOXTP99JfgD0MOK7PGXwrlLkc+tnW1BNflj794basefZPbp6wpJpROmxPychs74gj+vSzK7s0mBsOQb2iTNQdm2GZEqSTlxhm/5bluXTy3Sh/Vdqu0IqqY9qA8bulTfFdI/TylUvnfg7svoPokuy3RuIvHc3R1/JH8AMNpaW1N31Kdk9tuLNfirqRnamM+oceNMJ99gOjqkXbviH/Xpdpuuv48/Hlp9A1m40FwnuvNu/Hjp6KOl3/2u/+DviCMSe0wYhYWx/T4CqeaGG25wugQAANJOMv33NQW3lwcwUlJ91KckFfvM21qjP/buve6Ovzj3+JN69vkrjWPU5744R31aliXfCI77jAqETTeYpaF13VXneTV3Yr6unl6sSw8tVJbb0s62oP64vmnQsCnk9kky3Y0j0dEIyU3HHwA4prVVys52uoqhq6yMfdTn7t3DD/5i6fjbtKnn8fGaOFFatSr+5w3mt7+VTjhBKi9P/GvPnSu9+urBAWxrq/TBB+zvN1LY4w8AAACpiOAPQLfoqM9UDv6KImFaY1ds3Xu2bavTHk7HXyT4i7HjLxi21RwwAWNJHHvg7T/uc6R0hExdWW6reyzkUE0p9Oma6cXKdluq7wppXaN/wMeHXN7uY2NksMcfADinuTm1g7+qKhN+tLQM/tjhdvxVV5vRio2NAz8uGg7G2/EnSZMnm46/RDbBr1ljOu/OPTdxr7m/M84w42IfeaT37f/4hxQKSTNnjsxxM11h4eC/iwAAAECyIfgD0C3a8ZfKe/wVRTr+mmLs+GsP2rJlKRwOyxrSHn/mumxCbB1/0W6/LJel3DhmWkbHe/pHMLXpDA5tzKck7dixQ1u3bu11aa7ZoUO9XZKkN3c0HnT/1q1btWPHDklSyE3wN9KiwZ8txn2msvvvv1+TJ09Wdna2Tj75ZL377rv9PnbVqlX63Oc+p8mTJ8uyLN13333Dfk0AQ5Pqoz6j4Vq0y24gtbXD22su2sE3WNffxo0mTB3KsSZONGHOnj3xP7c/Dz0kFRVJp52WuNfcX06O9E//ZI7T1dVz+5Ilpitt0qSROW6my8+X2tt7n3MAAAAg2RH8AeiRBnv8FUcSsiZ/SHYM4UZrpPuubV/dkOLOaMdfQVmFAjFkKdHgryTLHddIS98Id/zZkjqi+/vFEUi2NTfJcrl02mmnafLkyQddrjj9WAX9XaoLuvXJCz5/0P2nnXaaPFnZ3Xv8ZRP8jZj9/4NP119qevLJJ7VgwQLdcccdWr58uY4++midc8452tPPJ9ft7e065JBD9KMf/UhVVVUJeU0AQ9PaaoKbVBVrGNfRYbobRyP427DBPHYoQwomTzbXidrnz++XHn5YmjNH8vkS85p9+dznzCjVb37T/Pnjj6Wf/tR0A7r4P/sRUVBgrvftc7YOAAAAIB4epwsAkDzSYdRnoc8lS2Yfs9ZAWAW+gcdpRoO/lr210riyuI/ntixZ4ZBsl1stocE/cekJ/uL7dCYa/AVt06013FGcBwpb7u693+Lpuutsb5MdDus7j/5F1ZP6HnfaYYUUkPTVB59Rbmdjr/s2rnxfTz3wC8my5LYkcr+RY1mWXJYJ/Qj+UtO9996r66+/XvPmzZMkPfDAA3rhhRf00EMP6eabbz7o8SeeeKJOPPFESerz/qG8JoChaWlJ7eCvsNB0Pg0WxtXWmuvhBH/5+VJxcWzB31DGfErmeR6PCc4+9amhvcb+/vpXae9e6bzzhv9aAznkEOkrX5F+8QvpuOOkH//Y7L94440je9xMVlhorhsazMhbAAAAIBUQ/AHoFh31mcpfGHZZlgp9LjX5w2r0xxD8BSPBX93Qgj9JctkhheRWa2jw1KohEvyNyY59fz9Jcrt6QptAWIpje8CYhDzm6+nZQ9zfb0zlWJWPm9jnfV0hWzvaggp6c1RcUtDdJSlJ9TW7NG7GMZJM4BhPFyTi5478DoUY9Zly/H6/li1bpltuuaX7NpfLpTlz5mjp0qVJ85oA+pbqoz4ty3TXDRbG1dSY6+Hs8SfFdqwNG6STThra63s8ZtxnIjr+wmETwM2YYYK5kXbhhdKHH0rXXmt+p37zm9QOlZNdUZG53rvX2ToAAACAeKTy5/sAEi466jO1w5fouM/GSMg2kGjHX/PemiEfzxUOSpJawrF0/JnjlQwhuRvJcZ9Bd7akoe3vN5gst9X9uo1dB++jePjpZ5vHpXKraYpwR/5uj9DEWIyguro6hUIhVVZW9rq9srJSNTVDe/8aymt2dXWpubm51wXA4NraUj+cqa6W1q8f+DHRt47hdPzFcqxAQNq2begdf5IJF9etG/rzox56SHr3XemGG4b/WrGwLOnf/12aPVu69VYTYGLkREPsaDcrAAAAkAoI/gB0i3b8pXjup6LIGM0m/8Eh04G6R33WDf3/5l1hEzC2xNLx1xnp+BtO8JfgOY2lEw5R0JMlScr3jsx/FqKjTVsCYQX3r9+bpemfOEuybRX4+E/SSIvmunT8YajuvvtuFRUVdV8mTJjgdElA0gsEpK6u1A/+xo8fPPirrZXc7p7xiEM1WMff1q1SKNSzH+BQVFdLmzYN/fmSVFcn3XSTdM450qxZw3uteOTlST/8ofSJT4zeMTNVfr7k9UpsfQsAAIBUwqesACRJbo+3O/FL9car7o4//+h2/LUO0vHXGQx3jxYtjXPUpyRFp5YmOvg77Ys3SJalXI8l3whtspfttpTltmSrdyDrKq6QJFn+9l4jQDEyujv+Bs/EkWTKysrkdrtVe0DLQW1traqGuOnQUF7zlltuUVNTU/dl+/btQzo2kElaW811qgd/1dXSrl1Se3v/j6mpMR1S7mGOJK+uNkFLS0vf92/caK6HE/yNHWu6BoPBob/Gt79tnj9a3X4YfZZlfqfp+AMAAEAqIfgDIEnKysvv/udUf2Mo8kU7/kYr+Iut468+Mnq0wOtSljv+sxzt+AskMPjrDEvHX3C5JKl4BDvuLMtSia+nEzNk2wrZtlyFpZIkdwfjAkdD9NeOUZ+px+fz6fjjj9eiRYu6bwuHw1q0aJFmz549aq+ZlZWlwsLCXhcAA4uGV6ke/EVDtoG65Gpqhj/mc/9jRQO+A23YYPbpKy8f+jGqq01ot23b0J5fWyv9/vfS1VcPf09DJDeCPwAAAKSaVP98H0CC+HJN8GfJhDSprDgyRrOpj/3kDpSYUZ/mq+KdtktdA7RS1UXGfA6l209Sd0dcICyFEzSqcUOXV97sHLlCfmWPULdfVK7Hks8l2ZL2dIRU3xmS5XKrZsNqWYHOET02jOi/4iCjPlPSggUL9OCDD+qRRx7R6tWr9eUvf1ltbW2aN2+eJOmqq67SLbfc0v14v9+vFStWaMWKFfL7/dq5c6dWrFihDfvNzxvsNQEMX7TjLzfX2TqGKxrGDTSCs6ZGKi4e+WOtXGn2thtOZ2F0f8D+wsXBvPaaZNvSpz419BqQGoqLGfUJAACA1OJxugAAySHa8ZcO0xajoz6bI/vJefr5oWzbVlsCOv4s2WrdV6f8kjLt6wqrKrfv71TUR4K/siEGf27L/PsJ2yb8G8I2gb10BsNa1+mVJGX522RZecN7wUFYlqWSLLdqO0JqD/YET28/8aC+cMNXR/TYMLpHfdosAFLRZZddpr179+r2229XTU2NjjnmGC1cuFCVlZWSpG3btsnl6nn/2bVrl4499tjuP99zzz265557dMYZZ2jx4sUxvSaA4UuXUZ8lJSa8HGifv61bzQjN4SoslAoK+g/+li2Tpk0b3jEqK01wuHGj9OlPx//8RYukKVMS0+GI5FZSYkJtAAAAIFXwuR8ASVLWfh1/qS7XY/aT6wrZaugKqSKn77e69qAtE/vZam3YO6xj1m/bpPySMjV2hVSV2/fx6jpNZ2BZ9tDeei3Lks9lqTNkyx+2lTXMDr1Xd7Wpy7a0Z/N6HVqWP/gTEiDf65LbktqCttqDYXW1tWrFi38m+BslnsivTCjB+0Ri9MyfP1/z58/v875omBc1efJk2TF0dw70mgCGL11GfVqW6cTrL4wLh6W1a6VTThnZYwUCpuPv+uuHdwyPR6qqGnrH36JF0jHHDK8GpIaSEmnNGqerAAAAAGLHqE8AktKr48+yrO6uumiXXV+iYz6zLCkcDA7rmPXbN0uSGrr6P95wR31KPfv8+Ye5SduWFr8+rO+SJD1z1zdGNfDN8bhUlu3WxHyvQjvWKtDZMYpHz2xuV0/HH9EfAIyOdBn1KZnxmP11/G3bJrW3S5MmJe5Yq1YdfPvHH0tdXdJhhw3/GGPHDi3427JF2rxZ2q+pGmmMUZ8AAABINQR/ACRJWXkFkiRXiu/vFxUN16Jddn2JBn85rsH3AhxM/bZNkqR9/QR//pCtZr85zlBHfUqSN/KuHRhGx1YgbGvhNvMp5NSsgLaueGfIr4XUEm0SNb896fF3HQCSXbqM+pQG7vj7+GNznajg78gjpeXLpY4Dvh+0bJnpCJw6dfjHqK4eWvD32mumhqOPHn4NSH4lJSbUbmtzuhIAAAAgNgR/ACSlV8ef1DNOs26gjr9gNPgbfu9T7aZ1kqQ9HX0HjdFOwFyPpRzP0N96fZHkxj+M4G9lfaca/WEVeF06Jtc/5NdB6nFZVnfcZ1ssAQBgNLS0SC6X5PM5XcnwjRsn7dghdXYefN/HH5tws6IiMceaNUvy+6V3Dvh+0vLl0sSJiQlSq6ulTZukGKYi9/Lqq6bjsLBw+DUg+UX3caytdbYOAAAAIFZ86gdAUs8ef+nyphDPqM8ca/jB387VKyRJeztDCvYRykU7D4cz5lPqGfUZCCumvbv6srHZhH3HlWXLmyZBL2IX7foLu9LlbzsAJLfWVjPmMx2GKowbZ0KyTZsOvm/1atPtl6j/vEyZIhUUSK+/3vv2ZcukadMSc4zqavPvZ28cWz3bNvv7ZZqSEnNN8AcAAIBUwad+ACT1BH/p8KGU1BOwNXSGFOonIGuIhIL57uEHf427dyjLshW2pb19dP1FA8hoJ+JQua2eAY2BIUwoDYVtbWsNSJKmFKZB6wHi5omEx7Y1vBAaABCblpb02N9PMsGf1Pe4z1WrTCdeorjd0syZ0pIlPbcFg9IHHyQ2+JPiG/e5bp20e7d03HGJqQHJr7jYXLPPHwAAAFLF8D6BBpA2svLyJKX2Hn87duzo/mfbljzKVVCWVm3erqI+wr2dzdmS3Ao2xvE17wHkBtvU5c7Xqh175M/uHf5ta8mS5JGrvUlbt9b3WXMsLMuS1yX5w0Pb529HW0CBsBk5Wpnj1ra4XwGprnufP0Z9AsCoaG1Nj/39JKm0VMrOltaskS64oOd22zYdf1/4QmKPN2uW9MgjZuSnzyetXWv2/DvssMS8/v7B3+zZsT1n8eKeUBKZoajIdLLS8QcAAIBUwad+ACSl9qjPtuYmWS6XTjvtNE2ePFmTJ0/WlCmTtfmj9yVJV1x/Y/ft3fcfcoj2tpvOt3mXXCRJCgT63p8v1uM//dB/SZJ+8/ifDzreBxu2SpK+fNXlvW4/7bTT4j62t3vcZ/zB3+aWSLdfgU9WCoe8GDp35N97mOAPAEZFOgV/liUddZQZdbm/Xbuk5mYz6jORZs0yQd+yZebPy5eb66lTE/P6OTkmzIyn42/FCvNzpsu/UwzO7TZdfwR/AAAASBV0/AGQJGXlRYK/FMyCOtvbZIfD+s6jf1H1pCndt3dkFykg6br/+KWy/D/s9ZyQ5VZbVrZk27rm5u/r3vlXKxQaWvAXPf7ss8+TJJ18/qU666wzu++3JbXkV0mSvn7Pb+Sye2Z0blz5ftzHNsGfPaRRn5sj+/tNKfTG/2SkBXck76PjDwBGR0tLeoVEJ54o/f73JpCL/lwff2yuEx38TZtmjvH666Yjb9kyafx4KT8/cccYOza+4O/DD6XJkxN3fKSGkhKCPwAAAKQOgj8AkiRfGuzxN6ZyrMrH9Wwus68rpIausLx5hSovH9Prsa2BsNo6QvK5LRWXVybk+IX5eQpICru9Kq2e0D02tStkq6UtKJekirHjenXa1dfsivs4+3f8xRPftQXCqu0wew1OKWB/v0zVM+qTPf4AYDSkU8efJJ10kvSb35iRl+eea277+GMpK0uqqkrssTwe02G4ZIn0r/9qjpmo/f2i4gn+bFv66CPpkksSWwOSX3Exe/wBAAAgdfB1fwCS9u/4S+Hk7wC+SEDm72MkZvQ2nzuBP2841B2q+EM9x+wImta8LLeVkPGavsg7d7yjPje3mG6/ihy38ry8/Weq6KhP28XvAACMhpYWsy9eupg0yQR8//d/Pbd9/LE0caIZiZhos2aZwG/KFLO34Kc/ndjXr66OPfjbvt2MND3kkMTWgORXXCzV1DhdBQAAABAbPvUDICm19/jrTzTUC4Ql2+4dkgUiwZwvgbNNLZlwT5K69gvl2oLmn/O8iTlWtOMvaJsxorHa3Gz29zuEbr+M5on8GrLHHwCMjnQb9WlZZtzniy/23LZqlTRhwsgc75RTzDFPP136n/8xIz8Tadw4M8KxpWXwx65caa4J/jIPoz4BAACQSvjUD4Ck1N7jrz8ey4RxtkxItr9oMJfI4E+SsiKv1xkJFoNhu/uf8zyJect1WT1v3mFX7BObd7SZ4G9yAfv7ZTJ35HeUPf4AYHS0tkq5uU5XkVgnnWS65DZsMOMvV60auX3vpk6VXnhB+sY3pLKyxL/+xMiU+DVrBn/sypVSXp5UmZgp8UghJSWM+gQAAEDqYI8/AJL26/hLo1GflmXJ65L8YTN6M9opZ9u2Amb6ZmJHfWq/jr9I2NceSRyzXJY8CQoZzc9lqStsxxz8dQbDavKbH7oyl7f+TNb9K2+55MvNc7QWAMgE6dbxJ0nHHWf233vxRamoSGps7AnQUk207tWrTSfjQFauNCNH02i5jBiVlJjfc79f8jE8AwAAAEmOT38BSOoJ/tLtc4wstyV/2FZ70FZepNEtGvpZ6hl7mMjjRY/RGQqrLbK/X6LGfEZ53VJXWAq7YttMZ09HSJJU6HUpJ0Gdh0hNLsvq7oQtKK1wuhwASHvp2PGXmyvNnCktWCCFQtJpp0knn+x0VUOTk2P2LFy9evDHfvjhyHU2IrmVlJjrPXuk8eOdrQUAAAAYDMEfANm2ujt/0mnUpyTle11qCYTUGgyrzHbJskwQKJluPyvBX9n2uCzleSy1BW3VtIcUafxL2JjPKNO9aCtsxfY2XtsRlES3Hwy3Zcbf5o8pd7oUAEhrti21taVfx58kXXihlJ0tXXGFdNRRTlczPBMnDh78BQLS2rXSmWeOTk1ILtHgr7aW4A8AAADJj0+AASgkyeU2nWPpFvzluC25LClsSx0hW7keS/5QdH+/kTlmRY5bO9uCikzWlNdlLokUHVsae8dfsLs2wOOyFAzZyqfjDwBGVGen6YhLx+DvjDPMJR1MnCitWDHwY9auNeHflCmjUhKSzP4dfwAAAECyY94bAAXsSNpn22k36tOyLOVHuu1aIjM+uzv+RijldFmWqnI93SFqrseV8M7CaJAY6x5/3R1/OXzfAz37/BWU0vEHACOptdVcp2Pwl04mTpQ2bZK6uvp/zMqV5vqQQ0anJiSX4mJzXVvraBkAAABATAj+AChgR//JTnhAlQwKIvvrtQVs+UO2OkM9oz5HitdlqTrXoyKfSyUj0FoY7fizXW5l5eUP+NhQ2FZdp9njj1GfkCR35O95PsEfAIwogr/UMGmSFA5L69f3/5iVK6XycqmwcPTqQvLw+aSCAoI/AAAApAaCPwAKRjr+LNse5JGpKcttyWNJtqTtbUGFbMljSdkjGPxFj1uW7ZZ7BDoL3ZbV3bVVOnHgr57XdYYUts3PW5jomaNISe7IrwF7/AHAyGppMdcEf8lt0iRzPdA+fytXMuYz040ZQ/AHAACA1MAnwAC6O/7SNfizLEv5+wVePpc0Ls8jV4p3N0a7/iomTxvwcbXd+/t50rKjE/HrHvVZXuVsIQCQ5qIdf7m5ztaBgRUVmT3cPv647/ttW1q2TDr00NGtC8mlrEzascPpKgAAAIDBMfMNQHfHnxR2tI6RVOhzqSUQVo7bUnmOO+VDP8nsUdgZslV12JHaMcCnEBvafJK8ygm2a+vWxl73DfQ8pC9P5Pe/uGq8w5UAQHpj1GfqmDix/46/LVuk3bulo44a1ZKQZMrLpa1bna4CAAAAGBzBH4C07/iTTHfcpPz06njLcltSQKo+fJZOO+20fh/3pd8+rynHzdZd3/qa3n/hqT4fEwgER6pMJKFot2hx1TiHKwGA9Maoz9QxcWL/HX9vvWWujzxy9OpB8qmokD74wOkqAADprKOjQy+88ILTZaStjo6O7utMPM/Rnx+ZgeAPQNrv8ReVTqGfJPnc5nrsYUfqO4/+RdWTDt54xpbUkl8pSZp38/f1Lzd9t9f9G1e+r3vnX61QiOAvk3gik29zi0oUsNucLQYA0hgdf6lj4kTppZekUEhyu3vf99ZbZh/AoiJnakNyqKiQamokv1/y+ZyuBgCQrghnRgfnGemO4A9AT8dfGo/6TEc+lyXbtpVfUiZvuF3l4yYe9JhA2FZLa1CWpMqqsQeFn/U1u0apWiQTl2VJdliyXGoPpVcgDgDJpKVF8nrNBclt8mSpq0vavFmaOrX3fW++SbcfpMpKs9/jzp3SlIO/bwcAwJDl5+c7XQIyCL9vmYHgD0DPHn9p3vGXblyWJfk7pawc2Z6+v3bcGTT/Tn1uK+06HjE8rnBIYbdLbWGX06UAQNpqaZFyc52uArGYNMlcr17dO/hrbJRWrZI+8xlHykISqagw19u2EfwBABLrhhtucLoEAGmGT/sAKJAhoz7Tkd3Vbq49WX3e3xEyXZw5bkI/9OYKhyRJbWF+NwBgpNTXS4WFTleBWJSVSSUl0pIlvW9futR8N+6oo5ypC8mjvNxcb9/ubB0AAADAYAj+ACi6u5slgr9UEw3+wv11/IXMv9Nsgj8cwLIJ/gBgpBH8pQ7Lks44Q/rjH80+f1FvvWUCwXHjnKsNySEnx+zzuG2b05UAAAAAAyP4A6CucLTjjz3+Uk1Px9/BwV8wbCsQ+Vea7SHcQW/Rjr92Rn0CwIgh+EstZ50l7dolvfFGz21vvmm6/ZiYDsns80fwBwAAgGTHp30A5LcJ/lKV3dVh/sHtVeiAUa3Rbj+fS3LzaRUO4LKjwR+/GwAwUurqCP5SyZFHSmPHSo89Zv4cCEjvvsuYT/QoLyf4AwAAQPJLiuDv/vvv1+TJk5Wdna2TTz5Z7777bkzPe+KJJ2RZli666KKRLRBIc10Ef6krHNK+XebTB3+o7+Av250Ub/VIMhZ7/AHAiKPjL7VYlnTmmdJTT0ldXdKvfiV1dEizZjldGZJFRQXBHwAAAJKf458GP/nkk1qwYIHuuOMOLV++XEcffbTOOecc7dmzZ8DnbdmyRd/85jd1+umnj1KlQPrqiuR9BH+padealZKkrgOCv46g+ffJmE/0Jdrx1xG2FLbZ3xMARgIdf6lnzhypqUm68krp3/9duuwyafp0p6tCsiD4AwAAQCpwPPi79957df3112vevHmaMWOGHnjgAeXm5uqhhx7q9zmhUEhf/OIX9f3vf1+HHHLIKFYLpB/btun4S3G7130kSeoK94Q3YduWP/KvM8dN8IeDWXZYQX+XbFlqCfB3HwASLRyWGhuloiKnK0E8Jk+Wpk41XX+f+5x0ww3s74ceFRVSS4sJhwEAAIBk5Wjw5/f7tWzZMs2ZM6f7NpfLpTlz5mjp0qX9Pu/OO+9URUWFrrvuukGP0dXVpebm5l4XAD26wrZsEfylsi0r3pEktQXs7n3+omM+PZbkcfFpFQ5mSWqq3SVJavbzdx8AEq2x0YR/dPylni99yVxuvJHQD71VVJhruv4AAACQzBwN/urq6hQKhVRZWdnr9srKStXU1PT5nDfffFO/+93v9OCDD8Z0jLvvvltFRUXdlwkTJgy7biCddARNQOTvaBOfa6Smje++ISvYJVtSU2Rua1sgsr8fYz4xgMaaHZKkJn/I4UoAIP3U15trOv5Sz4knSpdfTuiHg0U/uti+3dk6AAAAgIE4PuozHi0tLbryyiv14IMPqqysLKbn3HLLLWpqauq+bGeFDvQS3QeurbHB4UowHO62RklSkz+slkBYzZHRjQXelHqbxyjbt9sEf3T8AUDiRYM/Ov6A9DFmjOR20/EHAACA5OZx8uBlZWVyu92qra3tdXttba2qqqoOevzGjRu1ZcsWnX/++d23hcPmw0qPx6O1a9fq0EMP7fWcrKwsZWVljUD1QHqIdvy1NzZI+RUOV4Ohsvzt8rqkQFja02G6t4p8LuV6CP7Qv6Yagj8AGCl1deaajj8gfbjdZtwnwR8AAACSmaOfCPt8Ph1//PFatGhR923hcFiLFi3S7NmzD3r84YcfrpUrV2rFihXdlwsuuECf+tSntGLFCsZ4AkPQETIf+LfT8ZfSLEklPnf3n7NclkqzCP0wsJ6OP0Z9AkCi0fEHpCeCPwAAACQ7Rzv+JGnBggW6+uqrdcIJJ+ikk07Sfffdp7a2Ns2bN0+SdNVVV2ncuHG6++67lZ2draOOOqrX84uLiyXpoNsBxKY90vHHqM/Ul++11OiXgrZUmeuWxcY0GERjNPgL0PEHAIlWXy/l5kper9OVAEiksjKCPwAAACQ3x4O/yy67THv37tXtt9+umpoaHXPMMVq4cKEqI7tmb9u2TS4XXSvASInu8dfetM/hSjBclmVpfJ5HtiQXoR9iEB312eQPybZtwmIASKD6esZ8AumoslJ66y2nqwAAAAD653jwJ0nz58/X/Pnz+7xv8eLFAz734YcfTnxBQAbp2eOv3uFKkAiWZYnoBrFqrNkpyewN2RGylevhtwcAEqWujjGfQDqqqJB27pRCIbPnHwAAAJBsaKUDMlx0jz9GfQKZJ+jvUo5l3gOautjnDwASqb6e4A9IR5WVUjAo7drldCUAAABA3wj+gAzXHh31SfAHZKR8t+n63ednnz8ASKS6OqmgwOkqACRaVZW53rLF0TIAAACAfhH8ARmuMzLqk44/IDPlu0zg10jHHwAkFHv8AempstJcb93qbB0AAABAfwj+gAzX3fHXtM/hSgA4IdrxR/AHAIlF8Aekp5wcqbiYjj8AAAAkL4I/IIPZtq2OkPnQv72x3uFqADihu+OPUZ8AkDC2zR5/QDqrqqLjDwAAAMmL4A/IYP6wrbDJ/ej4AzJUvouOPwBItLY2ye8n+APSVUWFtHmz01UAAAAAfSP4AzJYR2R/P7dsBTo7HK4GgBPy3abTrzkQVjD6TQAAwLDURwYpEPwB6YmOPwAAACQzgj8gg3VE9vfLcvFhP5CpsizJG1kNNDPuEwASIhr8sccfkJ4qK6Vt26QwSycAAAAkIYI/IIO1Rzr+fBbBH5CpLEsq9rklSY1+xn0CQCLU1ZlrOv6A9FRVZcb51tY6XQkAAABwMII/IIN1hCIdf5bDhQBwVHGWCf72sc8fACQEHX9AequsNNdbtjhaBgAAANAngj8gg0X3+GPUJ5DZin1mOdBI8AcACVFfL3m9Una205UAGAnR4I99/gAAAJCMCP6ADNa9xx+jPoGMVpIVHfXJRjUAkAj19abbz2KqApCW8vOlggI6/gAAAJCcCP6ADBbd44/gD8hs0VGfdPwBQGJEgz8A6auqiuAPAAAAyYngD8hg3Xv8MeoTyGjFvmjHX0i2zfsBAAxXXZ1UWOh0FQBGUkUFoz4BAACQnAj+gAwW3ePPR8cfkNGKInv8BcI9ncAAgKGrqzNjAAGkr6oqafNmp6sAAAAADkbwB2Sw7j3+6PgDMprbZanQa5YEjX7GfQLAcNXX0/EHpLvKSmnbNolhCQAAAEg2BH9ABuvo3uPP4UIAOC66z98+9vkDgGGrrZVKSpyuAsBIqqqSOjqkvXudrgQAAADojeAPyFC2bas9uscfoz6BjFecFen46wo7XAkApLbOTmnXLmnsWKcrATCSKivNNfv8AQAAINkQ/AEZqj1oKxzJ+7IZ9QlkvCKf6fhrYtQnAAzL5s1m9F91tdOVABhJVVXmessWR8sAAAAADkLwB2So6Di/Qq9LbkZ9Ahmv2GeWBE1+Ov4AYDg2bjTXBH9AeisokHJzzT5/AAAAQDIh+AMyVDT4K4ns6wUgs9HxBwCJsWGDlJUllZY6XQmAkWRZZtwnoz4BAACQbAj+gAy1z0/wB6BHUaTjr9kfVthm/C8ADNXGjabbz8X/aQFpr6KCjj8AAAAkH/53FMhQjV1mnF9xFm8DAKT8yNhfW1JLgHGfADBU0eAPQPqrqGCPPwAAACQfPvEHMhSjPgHsz7IsFUa6/hq7GPcJAEO1YYM0dqzTVQAYDZWVdPwBAAAg+RD8ARmK4A/AgYq79/mj4w8AhiIUMt0/dPwBmaGiQtq3T2ptdboSAAAAoAfBH5CBOoNhdYbMHl7RD/oBoKg7+KPjDwCGYscOKRCQxo1zuhIAo6GqylzT9QcAAIBkQvAHZKB9kQ/18zyWfG7L4WoAJIuiyKhPOv4AYGg2bjTXdPwBmaGiwlxv3epsHQAAAMD+CP6ADLSvy3yoz5hPAPsrirwnsMcfAAzNhg2Sy2X2/QKQ/srKJLebjj8AAAAkF4I/IAOxvx+AvkQ7/prp+AOAIdm40YR+Xq/TlQAYDW63VF5Oxx8AAACSC8EfkIGi3TzFBH8A9hPd468lEFYobDtcDQCkno0bGfMJZJrKSjr+AAAAkFwI/oAMRMcfgL7keSx5LMmW1Byg6w8A4rVhgzR2rNNVABhN5eXSli1OVwEAAAD0IPgDMlBP8MdbAIAelmV1d/01+dnnDwDiYdvSpk10/AGZho4/AAAAJBs+9QcyjD9kqy1oRviV+Oj4A9BbdJ+/pi46/gAgHnV1UksLwR+QaSoqpF27pGDQ6UoAAAAAg+APyDCNkS6ebLelbA9vAQB6K8qi4w8AhmLDBnM9bpyzdQAYXVVVUihkwj8AAAAgGfCpP5Bh2N8PwECiHX+Nfjr+ACAea9eaa4I/ILNUVJjrrVudrQMAAACIIvgDMkxDpwn+xhD8AegDe/wBwNCsWSONHSvl5DhdCYDRVFlprtnnDwAAAMmC4A/IMHsjwV9ZNsEfgINFu4Gj3cEAgNisXi1NmOB0FQBGW06OVFRExx8AAACSB8EfkGH2dphd58tzPA5XAiAZlWSZpUF70FZnkHGfABCr1auliROdrgKAEyor6fgDAABA8uCTfyCDhGxbDV10/AHosWPHjoNuy7Zy1Gm79PHWnSr19B/+FRQUaMyYMSNZHgCkBL9f2rRJ+uxnna4EgBPKy6XNm52uAgAAADAI/oAMsq8rpJAt+VyWinw0/AKZrK25SZbLpdNOO+2g+65/8C865PhTdd1Xv6EV//d0v69RXFKijRs2EP4ByHgbNkihkDRpktOVAHDC+PHS3//udBUAAACAQfAHZJC6jp5uP8uyHK4GgJM629tkh8P6zqN/UfWkKb3u68gqUkDSlbf/VNfffEefz6+v2aXbL5urlpYWgj8AGW/NGnPNqE8gM02eLD35pNTWJuXlOV0NAAAAMh3BH5BB9naa/f3KchjzCcAYUzlW5eN6f1Ld2BVSfVdYvrxClZcT6gHAYFavloqKpOJipysB4IRot+/atdJxxzlbCwAAAMCsPyCD7I10/JVnk/kD6J/XZTqC/WHb4UoAIDWsWSNNmCAxUAHITNHg7+OPna0DAAAAkAj+gIxS1xkN/uj4A9C/aPAXCEu2TfgHAIP5+GMT/AHITLm5UmUlwR8AAACSA8EfkCECYVv7uiJ7/OXQ8Qegf97I6sCWFCL3A4AB2bYZ7xft+AGQmSZNIvgDAABAciD4AzJEfWdItqQct6U8D3OoAPTPsqzu8C/AuE8AGNDOnVJbmzRx4uCPBZC+Jk6UVq1yugoAAACA4A/IGHWdQUlSWY5bFhvQABgE+/wBQGxWrzbXBH9AZps8Wdq0SersdLoSAAAAZDqCPyBD7O2I7u/HmE8Ag9t/nz8AQP/WrJF8PqmqyulKADhp0iQpHJbWr3e6EgAAAGQ6gj8gQ0Q7/spz3A5XAiAVMOoTAGKzerU0frzkZokFZLToPp/s8wcAAACnEfwBGWJvp+n4K6PjD0AMejr+CP4AYCDr1kkTJjhdBQCnFRRIpaUEfwAAAHAewR+QAQJhW81+M6+vNJuvowMYnG+/UZ+2TfgHAP1Zu9Z0/AHApEkEfwAAAHAewR+QAeoj3X45bku5Hv7aAxic25KsyD+zzx8A9K29Xdqxg+APgDFpkrRqldNVAAAAINORAAAZoD6yvx/dfgBiZVmWfG4T/XWG6PhLFvfff78mT56s7OxsnXzyyXr33XcHfPxTTz2lww8/XNnZ2Zo5c6ZefPHFXvdfc801siyr12Xu3Lkj+SMAaWXDBnNN8AdAMsHf+vVSIOB0JQAAAMhkBH9ABoh2/BH8AYhHbiT4aw/S8pcMnnzySS1YsEB33HGHli9frqOPPlrnnHOO9uzZ0+fj3377bV1++eW67rrr9P777+uiiy7SRRddpI8++qjX4+bOnavdu3d3X/74xz+Oxo8DpIX16801e/wBkKRp06RgUHr7bacrAQAAQCYj+AMyQH1XNPjzOFwJgFSS6zHBX0fQZp+/JHDvvffq+uuv17x58zRjxgw98MADys3N1UMPPdTn43/xi19o7ty5+ta3vqUjjjhCd911l4477jj9+te/7vW4rKwsVVVVdV9KSkpG48cB0sK6dVJhobkAwBFHmC8CPPig05UAAAAgk5ECAGmioaFBLS0tfd5X05IjyaVQU722doQOun/Hjh0jXB2AVJTltuSSFJbUFbKV7bEGewpGiN/v17Jly3TLLbd03+ZyuTRnzhwtXbq0z+csXbpUCxYs6HXbOeeco+eee67XbYsXL1ZFRYVKSkp05pln6gc/+IFKS0v7fM2uri51dXV1/7m5uXmIPxGQHtatk8aNkyzeHgHIvBecd5708MPSL34h9fOfUwAAAGBEEfwBaaChoUGHTp2qxn37DrrP5Xbr+29vk8fr03lnnKrG3dv7fZ1AIDiSZQJIMZZlKcdjqS1oqz1ki6Zh59TV1SkUCqmysrLX7ZWVlVqzZk2fz6mpqenz8TU1Nd1/njt3ri6++GJNmTJFGzdu1K233qpzzz1XS5culdt98Hjou+++W9///vcT8BMB6WHtWvb3A9DbOedIv/ud9Ic/SF//utPVAAAAIBPxER6QBlpaWtS4b5/ufHKhSquqe90Xstxq8/okO6wfPPGC+vpC+saV7+ve+VcrFCL4A9BbrseltmBI7UFbY7KcrgaJ9oUvfKH7n2fOnKlZs2bp0EMP1eLFi3XWWWcd9PhbbrmlVxdhc3OzJrC5GTLYunXSBRc4XQWAZFJSIp1+uvRf/yV97Wt0BAMAAGD0EfwBaaS0qlrl4yb2uq0tEFZbR0g+t0sVB9wXVV+zazTKA5CCovv8dYVshWxbbj69ckRZWZncbrdqa2t73V5bW6uqqqo+n1NVVRXX4yXpkEMOUVlZmTZs2NBn8JeVlaWsLBJgQJL27ZPq6+n4A3Cwz3xG+uY3pZtukgIBKRw2YeA//ZNUXu50dQAAAEh3LqcLADCy/GFbkuRz8WE9gPh5XJa8kdVCR9B2tpgM5vP5dPzxx2vRokXdt4XDYS1atEizZ8/u8zmzZ8/u9XhJevnll/t9vGT2fK2vr9fYsWMTUziQxtavN9cEfwAOdOyx0tSp0v33S889Jz37rHTppWZP0GXLnK4OAAAA6Y6OPyDNBSLBn9dN8AdgaHI9LjX5w6rrDMllSdluS35vri68+cfqCjtdXeZYsGCBrr76ap1wwgk66aSTdN9996mtrU3z5s2TJF111VUaN26c7r77bknS1772NZ1xxhn62c9+ps985jN64okn9N577+m///u/JUmtra36/ve/r8997nOqqqrSxo0bddNNN2nq1Kk655xzHPs5gVSxbp25JvgDcCCXS4r857Z71OfevdK//Iv04ovS8cc7VxsAAADSH8EfkOb8IXNNxx+AoSr2udQeDCsQlna3h2RJsrOLdMql1+qDjoAOc7rADHHZZZdp7969uv3221VTU6NjjjlGCxcuVGVlpSRp27Ztcrl6hjmceuqpevzxx3Xbbbfp1ltv1bRp0/Tcc8/pqKOOkiS53W59+OGHeuSRR9TY2Kjq6mqdffbZuuuuuxjnCcRg3TqprEzKzXW6EgDJ6MDp6OXl0uGHS0uXOlMPAAAAMgfBH5DGbNvu7vgj+AMwVB6XpfF5HtV3htUcCMuW5AoHFXZ5tKnLo/rOoEqzWVKMhvnz52v+/Pl93rd48eKDbrvkkkt0ySWX9Pn4nJwc/e1vf0tkeUBGWbeObj8A8ZkxQ/rLXyTbPjgYBAAAABKFPf6ANBaypegUPi9/2wEMg8uyVJ7jVnWuueS17dWq116ULUtLdrU7XR4AjLq1a81+XQAQqxkzpH37pA0bnK4EAAAA6YwoAEhj/uj+fi7J4iulABIgx+NSjsclS9JLv/4PWbK1rsmvnW0Bp0sDgFFj2+aDezr+AMTjiCPM9d//7mwdAAAASG8Ef0Aa84cY8wlg5OzZvE5TfEFJ0tKaDoerAYDRs2OH1NoqTZjgdCUAUkl+vjR5MsEfAAAARhbBH5DG/OzvB2CEHZptgr+ajqDDlQDA6Fm1ylxPmeJsHQBSz+GHS2+/7XQVAAAASGcEf0Aa80c2+PO5Cf4AjIxCl3mjaQ2E1RUKD/JoAEgPq1ZJ2dlSVZXTlQBINTNmSCtXSm1tTlcCAACAdEXwB6Qp27YZ9QlgxPlcUr7HLCcaOkMOVwMAo2PVKmnSJMnF/00BiNOMGVIoJC1b5nQlAAAASFf8ryqQpoK2ZEf+2cvfdAAjaEy2W5JU30XwByAzfPSRCf4AIF6TJ0s5OezzBwAAgJFDHACkqZ5uP8my6PgDMHJKo8EfHX8AMkA4LH38Mfv7ARgat9vs8/ePfzhdCQAAANJVUgR/999/vyZPnqzs7GydfPLJevfdd/t97IMPPqjTTz9dJSUlKikp0Zw5cwZ8PJCp/GHGfAIYHWOyCP4AZI5t28zeXJMnO10JgFQ1dqy0davTVQAAACBdOR78Pfnkk1qwYIHuuOMOLV++XEcffbTOOecc7dmzp8/HL168WJdffrlee+01LV26VBMmTNDZZ5+tnTt3jnLlQHLrDv7cBH8ARla046+BUZ8AMsCqVeaa4A/AUJWXS9u3O10FAAAA0pXjwd+9996r66+/XvPmzdOMGTP0wAMPKDc3Vw899FCfj3/sscf0la98Rcccc4wOP/xw/fa3v1U4HNaiRYtGuXIgufWM+iT4AzCy9g/+wrY9yKMBILWtWiXl5kqVlU5XAiBVlZdLtbVSIOB0JQAAAEhHjgZ/fr9fy5Yt05w5c7pvc7lcmjNnjpYuXRrTa7S3tysQCGjMmDEjVSaQcmzblj9s/pmOPwAjrdDrkseSwrbU2BV2uhwAGFGrVpluP7ZQBjBU5eWSbUu7djldCQAAANKRo8FfXV2dQqGQKg/4umxlZaVqampieo1vf/vbqq6u7hUe7q+rq0vNzc29LkC6C0Q+d7ckefhQCsAIsyxLYyJdf/VdQYerAYCRtXKlNGmS01UASGUVFeZ6xw5n6wAAAEB6cnzU53D86Ec/0hNPPKFnn31W2dnZfT7m7rvvVlFRUfdlwoQJo1wlMPq69/dzWbL4OjqAUVCaFRn32ck+fwDSVzgsrVnD/n4Ahqe83Fyzzx8AAABGgqPBX1lZmdxut2pra3vdXltbq6qqqgGfe8899+hHP/qRXnrpJc2aNavfx91yyy1qamrqvmxnZY0M0L2/n9vhQgBkjNJsjySpnuAPQBrbvFnq6CD4AzA8eXlSfj4dfwAAABgZjgZ/Pp9Pxx9/vBYtWtR9Wzgc1qJFizR79ux+n/eTn/xEd911lxYuXKgTTjhhwGNkZWWpsLCw1wVId12Rjr8s9vcDMEpKu0d9EvwBSF+rVpnrKVOcrQNA6isvp+MPAAAAI8PjdAELFizQ1VdfrRNOOEEnnXSS7rvvPrW1tWnevHmSpKuuukrjxo3T3XffLUn68Y9/rNtvv12PP/64Jk+e3L0XYH5+vvLz8x37OYBkYdu2OoMm+Mt2p/Q0XwApZExk1Gd9Z0i2bTNmGEBaWr5cKiqSysqcrgRAqisvp+MPAAAAI8Px4O+yyy7T3r17dfvtt6umpkbHHHOMFi5cqMrKSknStm3b5HL1hBe/+c1v5Pf79fnPf77X69xxxx363ve+N5qlA0kpEJbCkixJPnI/AKNkTKTjrzNkqz1oK89L8Acg/bz+unTUURLfbQAwXGVl0rZtTlcBAACAdOR48CdJ8+fP1/z58/u8b/Hixb3+vGXLlpEvCEhhnaGeMZ903AAYLV6XpQKvSy2BsJr8IeV5+eYBgPQSCEjvvCNdeaXTlQBIBxUVposYAAAASDQ+lQPSTGcoLEnKYX8/AKOsMNJm3BwIO1wJACTeihVSe7s0c6bTlQBIB2VlUm2t5Pc7XQkAAADSDcEfkGb27/gDgNFUEOnya/ET/AFIP2++KWVlSdOmOV0JgHRQUSHZtrR7t9OVAAAAIN0Q/AFpJGy5FG20yfYQ/AEYXd3BHx1/ANLQm29Khx8u+XxOVwIgHZSXm+vt252tAwAAAOmH4A9IIyG3V5LkdUlu9vcDMMoKfG5JUos/5HAlAJBYti29/jpjPgEkTkWFud6xw9k6AAAAkH4I/oA0EnKbr6BnM+YTgAMKvezxByA9rV8v1dUR/AFInNxcKT+fjj8AAAAkHsEfkEZCrmjwx19tAKOvwMcefwDS05tvSpYlzZjhdCUA0klFBR1/AAAASDzSASBN+HLzukd95rC/HwAH7L/HX9i2Ha4GABLnzTelQw813TkAkChlZXT8AQAAIPEI/oA0cdipZ0mWJa9LIvcD4IR8r0uWJFtSW5CuPwDpwbalRYsY8wkg8crLpW3bnK4CAAAA6YbgD0gTR/7TuZKkPI9LlkXyB2D0uSxL+V7GfQJILx9+aD6Ynz3b6UoApJvyckZ9AgAAIPEI/oA0ELKl6ad/WpKUR7sfAAcVRvb5aw4Q/AFID88/L+XlSUcf7XQlANJNebm0Z4/k9ztdCQAAANIJwR+QBvYEXcopKJIVDinLTfAHwDkFdPwBSDPPPSeddJLk8zldCYB0U15uxgnv3u10JQAAAEgnBH9AGtjp90iSPMEuxnwCcFR38EfHH4A0sGOHtHw5Yz4BjIyyMnPNuE8AAAAkEsEfkOJs29YOv1uS5Al2OlwNgExX4DPvRy3+kMOVAMDw/fWvktstnXKK05UASEfl5eZ6505n6wAAAEB6IfgDUlxNR1Adtktd7W3yhLqcLgdAhiv0sscfgPTx3HPSrFlSQYHTlQBIR3l5Uk4OwR8AAAASi+APSHFr95md4Ne9tUgM+QTgtAIfe/wBSA8tLdJrr0mnnup0JQDSlWWZrj9GfQIAACCRCP6AFGbbttY0mi6/la8873A1ANCzx19rIKywbTtcDQAM3csvS34/wR+AkVVaSscfAAAAEovgD0hhtR0hNfrDcsvWmjdedrocAFC+1yVLUlhSW5CuPwCp68UXpUmTpOpqpysBkM7KyqTt252uAgAAAOnE43QBAIZubaTbr9obUqCz3eFqAGSiHX3Mpspx5ag97NL6bbtU6uk//CsoKNCYMWNGsjwAGBLbll54QfrkJ52uBEC6Ky+X1q1zugoAAACkE4I/IEXtP+Zzgi/ocDUAMk1bc5Msl0unnXbaQfd9+eEXNXHWibrqS1/Rqlf/2u9rFJeUaOOGDYR/AJLO++9LNTXSySc7XQmAdFdWJu3eLYXDkouZTAAAAEgAgj8gRe3pCGlfV1geS6r2hZwuB0CG6Wxvkx0O6zuP/kXVk6b0uq89u1hBSdf94D5lBX7Y5/Pra3bp9svmqqWlheAPQNJ58UUpL0+aOdPpSgCku/Jys59oXZ1UUeF0NQAAAEgHBH9AioqO+Tyk0Cev1eZwNQAy1ZjKsSofN7HXbXWdITX5w8ouLFFZdplDlQHA0P31r9Lxx0ter9OVAEh3ZZGl0s6dBH8AAABIDAZJAClqfZNfkjS92OdwJQDQm8cy18Gw7WwhADAEdXXSu+8y5hPA6Ng/+AMAAAASgeAPSEEtgZD2dprxnocUEvwBSC5el0n+gmGHCwGAIVi4ULJt6ZRTnK4EQCYoKZHcbmnHDqcrAQAAQLog+ANS0ObmgCRpbK5HOR7+GgNILp5I8Bew6fgDkHpeekk67DCJ7UcBjAa3WyotpeMPAAAAiUNiAKSgzc1mzOeUAjaeAZB8ot9HCNtSmPAPQIp5/XVp1iynqwCQScrKCP4AAACQOAR/QIoJ27Y2t5iOP8Z8AkhGbsvqXmAEGPcJIIXs2CFt3SoddZTTlQDIJGVl0vbtTlcBAACAdEHwB6SYmvagOkO2styWqvM8TpcDAH2Kdv0Fw3T8AUgdb7xhrmfOdLYOAJmFjj8AAAAkEsEfkGKi3X6T8r1yWZbD1QBA37yRff6CjPoEkELefFOaOJH9/QCMLoI/AAAAJBLBH5Biovv7MeYTQDLzRII/Rn0CSCWvv86YTwCjr6xMam6WWludrgQAAADpgOAPSCGdobB2tgUlSVMKvQ5XAwD98zLqE0CK2bdPWrWKMZ8ARl95ubmm6w8AAACJQPAHpJCdrUHZkop9LhX53E6XAwD98ljRjj+CPwCp4a23JNsm+AMw+qLB344dztYBAACA9EDwB6SQ7W1mf78J+XT7AUhu0VGfQUZ9AkgRb7xhxu1VVztdCYBMU1Zmrun4AwAAQCIQ/AEpZHsrwR+A1BAd9RmWFLLp+gOQ/N54w+zvF2lYBoBRk5UlFRVJ27Y5XQkAAADSAcEfkCICYVu7283+fgR/AJKdy7IUafqj6w9A0uvslJYtY8wnAOdMmCCtW+d0FQAAAEgHBH9AitjVFlDYlvK9LhX7+KsLIPl5rei4Tzr+ACS3Zcskv990/AGAE8aNk9audboKAAAApAPSAyBF7GiLdPvleWQxgwpACvBEVhkBgj8ASe7tt6XsbOnQQ52uBECmGj/eBH9MSAcAAMBwEfwBKYL9/QCkGk9k1meQD7AAJLm335aOOEJyu52uBECmmjBBamqS6uudrgQAAACpzuN0AQB6NDQ0qKWl5aDbw7a0oyVXkiV3815tbe/9KfqOHTtGqUIAiJ038vUiRn0CSGa2Lb31lnTOOU5XAiCTTZhgrteulcrKnK0FAAAAqY3gD0gSDQ0NOnTqVDXu23fQfeOPPFY3/uEltTft07HHT5fdz/yXQCA40mUCQMw8kbHEjPoEkMw2bZL27pWOPNLpSgBksnHjzPW6ddInPuFsLQAAAEhtBH9AkmhpaVHjvn2688mFKq2q7nVflzdPXZIK83L068UfHPTcjSvf173zr1YoRPAHIHl4XdHgT7Jtm/1JASSlt9821zNmOFsHgMyWlSVVVZngDwAAABgOgj8gyZRWVat83MRet+1qC0ohW0V5uSoeU3DQc+prdo1WeQAQs+ioT1tmnz8vuR+AJPT229LkyVJhodOVAMh048cT/AEAAGD4XE4XAGBgtm2rM2TG5OV4+CsLIHVYliVf5G2rK8S4TwDJ6e236fYDkBzGj5fWrHG6CgAAAKQ6UgQgyXWGbNmS3Ja6P0AHgFSR5TZtfn6CPwBJqLlZ+ugj9vcDkBzGj5c2bpRCIacrAQAAQCojRgCSXHsw2u1nsT8WgJQTDf66wgR/AJLPO+9I4bB01FFOVwIA0oQJUleXtH2705UAAAAglRH8AUmuIxr8ufnrCiD1+FyR4I+OPwBJ6G9/k0pLTZcNADhtwgRzzT5/AAAAGA6SBCCJhWy7u0sm10O3H4DUE+34C9lSiK4/AEnm+eelU06RXPxfEYAkUFEh+XzS2rVOVwIAAIBUxv/iAkks2u3ndUkeF8EfgNTjsix5I6sNxn0CSCbr1knr15vgDwCSgdttOpDp+AMAAMBwEPwBSSwa/OV6+KsKIHVFx336GfcJIIn89a+ms+b4452uBAB6jBtHxx8AAACGhzQBSFK2bas9GJYk5bjp9gOQuqLjPtnnD0Ayef556bjjpJwcpysBgB4TJ0offCDZLJsAAAAwRAR/QJJqD9oK2uYvaQ77+wFIYdGOP0Z9AkgWjY3Sm28y5hNA8pk1S9qzx4wiBgAAAIaC4A9IUs0B0+1X4HPJZRH8AUhd0Y6/QFgK8/V1AElg4UIpFJJmz3a6EgDo7aijzF5/S5Y4XQkAAABSFcEfkIQCYVvtkf39Cr38NQWQ2tyWuUjs8wcgOTz3nDRtmlRR4XQlANBbbq502GHS4sVOVwIAAIBURaIAJKFmf8/efj729wOQ4izL6u766yD4A+Cw9eulP/9Z+vSnna4EAPo2a5YJ/hiUAAAAgKEg+AOSjC2pJTLms9DHX1EA6SE3sldptJt5KGzbls0nYACG6Y47pNJS6cILna4EAPp29NHSrl3Spk1OVwIAAIBURKoAJBm/L08h24zFy/PQ7QcgPeR5zJKjM2QrGI4/vAuEbT20plG/XdOorlA40eUByBAffCD98Y/SlVdKPp/T1QBA32bOlFyuoY37tG3pC1+Q7rsv0VUBAAAgVRD8AUqeLpLxM45Rl69AkjQmyy3LIvgDkB48LkvRJuahdP39vbZdeztDqu8M6a2ajgRXB2CkBYNSe7vTVUi33SaNHy/Nnet0JQDQv/x8sw/pkiXxP/fll6Unn5RuvlnavDnxtQEAACD5EfwhYwXDtt6uadfj65v0sw/q9Yd1TUPqQkmUgC1d9sP/kixLeR5LBV5CPwDpJc9rlh1twfg69pr9Ib1T2xP2vbenQ3s7ggmtDcDIWbbMdK8ceaTU3OxcHU88If31r9LVV0sej3N1AEAshrLPn21L3/ueNH26VFgo3XTTSFUHAACAZEbwh4y1aGebXt/drm2tAQVtaVd7UEtrnfkqeihsa2lrlsomHiIrHFJ5Dt1+ANJPdNxnR9BWPF+zWLyrXUFbGp/n0bQin8KSXtrRmhSd2gAG9pOfSKecIoVC0p490oIFztTxzjvSNddIn/60dNZZztQAAPE4+mhp+/b4uvZeeUVaulSaN0/6l3+R/vznoXUNAgAAILUR/CEjtQRC+rC+U5J0xthczRmXJ0laWtuhPaPcRRII23p6c7N2BjwKdHUqp3Of3IR+ANKQz2X2L7UlBd1ZMT1nV1tAH+/rkiTNGZ+vs8blyWNJ21uD3bcDSE6rV0vf/rZ00UXS/fdLX/6y9LvfSS++OLp1bN0qXXCBGZv3zW9KLLMApIJjjpGysqSnn47t8dFuvyOOkE46SZozx/yzU1+4AAAAgHMI/pCR3q3tUCjSPTK7KlfHl2ebLhJb+r9trQqPUhfJ7vaAntjQpE3NAbll65GvfVGeUGBUjg0Ao82yrO6uv6AnO6bnrIh8SePIkixV5XpUnOXWqVW58lhSZ4iOPyCZ/ed/SiUl0vXXS16v9JnPSCefLF13ndTYODo1vPKKdMIJZrTnnXdKPt/oHBcAhisvTzr1VOmRR2Ib9/nOO9Lbb0tXXmm+4OBySZdfLi1fzl5/AAAAmYbgDxmnPRju/iD51KpcSebD6LMn5CnLbWl3e1Ar6joTflzbtrWrLaB393Roya42PbWxSY+sbdLOtqB8Lkv/VNCpje++nvDjAkAyyY/sXxrwZisrL3/Ax4bCttY1+iVJs0p7OgRPqsjRvxxRouPLc0auUADD0tJiPqw+77yesM2ypH//dxP6/fznI3Nc25Y2bJCeeUb6t3+Tzj5bmjxZ+vWvTQgJAKnk05+WVq2SPvhg8Mc+9ZRUWmq+YBF17LEmAHz11ZGrEQAAAMmHbe2Rcd7b06FAWKrMcWtKgbf79gKvW6ePzdUrO9r0Zk27jhyTpSz38LNx27a1ep9f7+7pUM0BY0QtSUeOydJpVblqqmkd9rEAINlluy15XVIg7NLx51+uHTt29PvYnX63OkPZyrbCCtfv1taGnvsKCgqkrDGjUDGAofif/5Ha2syIzf2Vl0vnny/dd5/0jW9IxcWJOd6SJdJvfiO99prZS1Ayrz1vnnTFFZLbnZjjAMBoOvFEacwY6dFHzejP/ti22c/vE58wQV9Ufr40fboJ/q67bsTLBQAAQJIg+ENG6QyFtSzSzTe7KlfWAZu8HFuarWV7O7SvK6x393To9LF5wz7m8rpOvbyjTZLZ2+rQQp8KfC7leVyaXuxTabb5a9g07CMBQPKzLEtFPpfqOsM65bJrdfrpp8ruZ37VpXfdr2M/c6leffx3+sZPb+11X3FJiTZu2KAxYwj/gGRj29KvfiWddppUUXHw/V/4gvS//2vCv+99b/jH+/vfpblzpXHjzJ5Ws2aZ/fxKStjPD0Bq83ikT31Keuwx6Sc/MX/uy/Ll0rZtptP5QMccIy1aZN6beU8EAADIDAR/SCsNDQ1qaWnp9/5VHV51hXwqdIWV3VijrQekbQUFBTpjbJ6e29Kid/d06NiyHOV7Y+/6O/D4ewIuvdqSLcnS9KyAjszxK8vVJoUkhaTWWina5zdQ1wsApJMCr0t72wIqnzRV3316sSpLD56/Z0tqya+UJM254J8197Of7b6vvmaXbr9srlpaWgj+gCT02mvS6tXSv/xL3/ePGdPT9ff1rw+v62/zZvNa06ZJ99zDHn4A0s/ZZ0tPPy29/LJ07rl9P+bpp6WiIunoow++79hjpT/+0bwvz5gxsrUCAAAgORD8IemEbVu2Lbld8X0dsaGhQYdOnarGffv6vN+bnaOb/rpM+WPK9dvvzNeNLzx10GOKS0q0Yf16jc31aHd7UIt3temzkwqGdPzC8irNf2yRCspy9MHCZ3TLrTfE9DqBQHDwBwFACnNZlsLNdXKXVCp37GSVlxcd9JjWQFgtHSF5LKmqquqgDm0AyeuHP5SmTjUfNvcn2vX34x9Ld989tOO0tZk9BLOzpbvuIvQDkJ6mTZOmTJH+8z/7Dv6iYz5nz+67I3DmTHP7q68S/AEAAGQKgj8khT0dQb2+u1172oNqDYQlS5pS4NXhxVk6vCRL3hhCwJaWFjXu26c7n1yo0qrqg+7v8uaqK7tIVjio6276rqybvtvr/mgHSWtrq84aV63/Wd+kjxq6ND7Pq2PKsuM6/piqarXnjFHIkyVXKKDTPnGqTl/y4YDP37jyfd07/2qFQgR/ANJfuGmv3CWVsn056gyFlX3AnqqtgbAkKc/rIvQDEmz1aunJJ6WsLNNtN2eO+WA5Ef7+dzNS7nvfG3ik3JgxZu+9n/zEhHennx7/sf7jP6RNm6QHHzSdLgCQjixLuvxy86WKd96RTj659/0ffyytX2/2NO1LdrZ05JHmvXn+/JGvFwAAAM4j+IOj/CFbb+xu03t7O9Vrhydb2tgc0MbmgN6qaddnJxVofL43ptcsrapW+biJvW6zbVtbW4OSLZXm+lRUPLGfZxvj8706Y2yuluxu10s7WlWW7Y7r+Fnl49XSGZIlaVxhjnwlEwZ9Xn3NrpheHwDSQqBL77/4lI497xLt7QhpfJ7VHfB1BMNqC5r/KhTEMW4ZwMDWrZNuu810huTnSy6X1BqZOT5vnnTHHdL48cM7xp13SpMnxxbkXXGF9N575vrDD82efLFas8aM9rziCmniwMs6AEh5Z55pxnXeeqsJ8Pb3xz+a9/Tjj+//+cceKz37rBQKSW73yNYKAAAA5/FpGhzTHgzrjxua9I9I6HdYkU//b1qRbjyyRP9yRLFOq8pVgdelRn9Y/7O+Sa/tbFPItgd93QPZtq29nSGFbMltxf4h8imVOZpe7FPYlp7d3Kza9tg68cKWS3WdIUnSmCyXfG46VQCgLy/c810pHJI/LDX6TYdf9D1bkgq9LmXxHgokRLRL5I03pG98w4R/zz0nvfiidMMN5s8zZpjxm0O1fLn0f/9nwjhXDMstt9t8iN3UJF13nflAOha2Ld14o1RRYbpgACDdud3StdeacZ37B38ff2y+BHHeeQOPOz7uOPNe+/77I18rAAAAnEfHHxzR7A/pyY3Nqu8MKcdt6fzJBTqk0KeGhgY11LdIkiZIqsyTlrf7tNnv1Tt7OrSxoVWfyO9SruvgAHDHjh19HmtfV1gtAfP48my3XIOMjNv/dWZaUq07W41Bt/6wdp9Oze/SOF/fn0rt2LFDLrdbHdnFsiVluS0V+cjWAaA/bY31crc2KFRYrn1dYVmSgrYUCJsvaozJ5j0USITXXpPOP1865BAzKi4/v+c+n0+65BLzofGPfyxdeKEZoXnzzQOP6jxQS4v0ta+ZjsEzz4z9eZWV0k03mW7DK66Q/vCHwffq+8MfzIffd99txpUCQCb4xCekI46QvvUt8yWLMWOk//f/pKoqEwoO5PDDpcJC6emnpRNOGJ16AQAA4ByCPwxJIGzLJcllKe69l/Z2BPXUxmY1B8Iq8Lp02dRClWV71NDQoEOnTlXjvn0HPWfGp87T57/3S9UVFOmxTW1a+Ksf6P0X/qRw8OAuvEAgKNu21Rmy1RLoHfrlDdDt19bcJMvl0mmnndbr9uz8Qn3xnt9r6kmf1OImrxb918+1+Pe/UPiAr6VbLpcuves/FfJkyZJUke1mXyoAGISrq1U+d4U6Qrbqu8Ldt5dmu+XmPRQYtoULpYsukmbNkr7/fSknp+/H5eWZffkeecR04S1dKv3+91Jp6eDHqKkxweG6dSZYjHeM3GmnmWPfdZf02c9KzzzTO5zc37JlpkPx7LOlU06J7zgAkMosy3Q733KLNHWqeQ9cuVL69a8H/xKE1yt96lPmPf4HP2DcJwAAQLoj+ENMgmFbq/d1aVOzXzvbgmoO9Hw4W57t1iGFPk0t8im3q1mt0c1i+lATcOnN1mwFbEsFrrA+lduuttoWtcl0zDXu26c7n1yo0qrqg54btrrUHgoof0y5Pn/HL3TJd38mb6BTLjsk2bbq6/Zq/coP1FlQri2tQYX3awos8blUOEj3XWd7m+xwWN959C+qnjSl1322pE5/uwK+XH36K7fonBv+XTmdTXKFg7Ik2bK0tyOo7Irxkm2rMtfDiE8AiIElqSrXrSZ/WB1BW11hW7luS/ke3kOB1lYzmrO21nTBFRdLZ5xhQrpYvPCCdPHFprvjjjsG76Rzucxef9OnSz/5iXT00dIvf2lCvezs3o9tbJT+8Q/plVekxx6T/H7pF7+QDj10KD+p2RPwxz82exAed5z0pz9JxxzT+zE1NdIFF0hTpkgLFgztOACQyo48Uvqf/zGX556TrrrKvGfH4pxzpL/8xYwKPfvsES0TAAAADiP4w0EaGhrU0mLGbXaFpQ1dXq3r9KjT7js429sZ0t7ODr2zp0P12zZq6VO/18ev/Z/27drW/ZjSCVP0T9d+Xcd+5lK5PZY2L1+q//n3q9XedHB3X2FphcrHTezzWGHbVrM/rH3+sMIuj/xZPV8Hz5tQrGMmTJMts/eLJSnfa6nA61KOJ/ZxcWMqx/Z5fNu21RqwVdcZUtjtU1teubwuyeuy1BG0lV0ghYJBZbXVK69ofMzHA4BM57IslWS5VcLIPkDhsPkw95e/lN56SzpwuEFWlnTWWWas24UXSp4+VvOhkPTAA2Yvv5NPlm6/3XR7xOrUU6UHHzSjND/3OdN998lPmvVVU5O0aZMJ4SQzau74480efZWVQ/6xJUnHHmvqvusuU/fNN5sxpNOmSU8+aboJ/X7TuciITwCZqrBQ+spXzBc1DvxSxkAOP1yaPFl6+GGCPwAAgHSXFMHf/fffr5/+9KeqqanR0UcfrV/96lc66aST+n38U089pe9+97vasmWLpk2bph//+Mc677zzRrHi9BUdt+kpKNHsL1yvEy68XL4c8/XwxpqdWvb849q8fKl2rv5Qsm35cvM0+ZiTNf20OTryU59R6cRD9dl//4E+++8/kBUOymWHZVsuhS1390Yx3kC7Zk2brJ8+v6TXsTeufF/3zr9aodDB4zujXJal4iy3Cn0utQTC8oekoG3LtqW2hj3628P/qfOv+VdVVY+T16VB9/OLh2VZKvBZyvFYqusMqT1oKxA2Y08lyfZ36o+3/quu/fYdCTsmAAD7S/SaybZt3XHHHXrwwQfV2NioT3ziE/rNb36jadOmjcaPg/2EQtIf/2hGsK1da0KwG280odrYsSYArKuT3n7bdAF+/vPShAkmcDvzTNPVt3evGft2xx1mJOYFF0hf/Wrf4eBgysule++Vtm41x/voI9MxmJcnffrT0qRJprtv0qT49gIczIQJZmzdgw9KP/2pdOedJuTr6pJOOsnsbVVenrjjAUCq6m90c38sywR+jz5quraLi0eiKgAAACQDx4O/J598UgsWLNADDzygk08+Wffdd5/OOeccrV27VhUVFQc9/u2339bll1+uu+++W5/97Gf1+OOP66KLLtLy5ct11FFHOfATpI+WQEgr6jp06U8f0ZTjZnff7goFlOVvVUGeSxMv/3/S5f+vz+dvWvmWXlz0ki6+6T9ke7Nluzzafxe8XI+lEp9L2Z4iSUUHPb++ZlfMtbosS0W+3hsTrFmzTa8/8mtdeMVVyhrBMZsel6WqXI/Ctq32oK1g2FaOx6XN61dp1asvSAR/AIARMBJrpp/85Cf65S9/qUceeURTpkzRd7/7XZ1zzjn6+OOPlR1PGwGGrLNTeuopE/itW2e67e6/X5oxo/fjPB5p/Hjp0kvNZd06sxfePfeY/fH2N3WqCc+OPHL49U2aZC6jyeczoef110srVkgbNph9ACf2PRACABCjT39a+u1vzTjlL33J6WoAAAAwUhwP/u69915df/31mjdvniTpgQce0AsvvKCHHnpIN99880GP/8UvfqG5c+fqW9/6liTprrvu0ssvv6xf//rXeuCBB0a19lQRsm0FQrb8YVth2+zX1xGy1R4Mq7ErpL2dIdW0B1XXGZKUZUI/21au16Uin0s5bo8sK3fQ49TX7NK7Tz+qy740X+MOmabOkDme2zJhmdeVXvs1uSxL+d70+pkAAMkr0Wsm27Z133336bbbbtOFF14oSXr00UdVWVmp5557Tl/4whdG74fLMJ2dZoznX/4i/eEPpvPilFPMmMtY92o67DAzCjMUkjZulNavl8rKTDg4dqzZry/V+Xymy2+AplYAQBzKysx76ve/b/aMjfW/OQAAAEgtjgZ/fr9fy5Yt0y233NJ9m8vl0pw5c7R06dI+n7N06VItWLCg123nnHOOnnvuuZEsNSa2beujhi7zz5GL7Og/m3GU+9/X68+RP0Rvt6UD/mz3ej1JCtlmzKQ/EupF/7kjEJQ/FFbAthS0pbBiDads5Yc69fQDP9fnrr5OldVD36fOZVnK9RCKAQCQCCOxZtq8ebNqamo0Z86c7vuLiop08skna+nSpQR/MQoEpOZmc2lpkTo6zKWry9zX3m6Cvfp607m2erX0/vsm/CstlebOlc47z4y4HAq324SAhx2W0B8LAJCm/v3fzdjk006T/vY36bjjnK4IAAAAieZo8FdXV6dQKKTKyspet1dWVmrNmjV9PqempqbPx9fU1PT5+K6uLnV1dXX/uampSZLU3Nw8nNL7ZNu2nv64IeGvmyihQEDBoF+hri51tDapvbFBzXt2a8+mtardtFbbPnxPHc2NkqSTT5mtrtb4zlHtti2SpN1bNsoeYJ8+np/456dy7Zn+/FSuPdWfn8q1Z/rzG2p3S5JaWlpG5L/n0deMfiknGYzEmil6nazrKkny+6XvfEd6/PH9vjBlm0s43PuSRP+6BlVYaDouovvjvfKK0xUBADLJscdKzz5r9pGVzH+Pnn3W7N2aaMm4rkpW0XM0UusqAACQ2uJaV9kO2rlzpy3Jfvvtt3vd/q1vfcs+6aST+nyO1+u1H3/88V633X///XZFRUWfj7/jjju6G+y4cOHChQsXLlxivWzfvj0xC54EGIk101tvvWVLsnft2tXrMZdccol96aWX9vmarKu4cOHChQsXLkO5JNO6Kllt377d8X9PXLhw4cKFC5fkv8SyrnK046+srExut1u1tbW9bq+trVVVVVWfz6mqqorr8bfcckuvMVfhcFgNDQ0qLS2VZSVmFGVzc7MmTJig7du3q7CwMCGvmc44X/HhfMWH8xUfzld8OF/xSdXzZdu2WlpaVF1d7XQp3UZizRS9rq2t1dixY3s95phjjunzNUdjXRWLVP3dGk2co8FxjgbHORoc52hwnKPBpfM5SsZ1VbKqrq7W9u3bVVBQkJB1VTr/Xo0Uzll8OF/x4XzFh/MVH85XfFL1fMWzrnI0+PP5fDr++OO1aNEiXXTRRZLMB0iLFi3S/Pnz+3zO7NmztWjRIn3961/vvu3ll1/W7Nmz+3x8VlaWsrKyet1WXFyciPIPUlhYmFK/KE7jfMWH8xUfzld8OF/x4XzFJxXPV1FRkdMl9DISa6YpU6aoqqpKixYt6g76mpub9c477+jLX/5yn685muuqWKTi79Zo4xwNjnM0OM7R4DhHg+McDS5dz1GyrauSlcvl0vjx4xP+uun6ezWSOGfx4XzFh/MVH85XfDhf8UnF8xXrusrR4E+SFixYoKuvvlonnHCCTjrpJN13331qa2vTvHnzJElXXXWVxo0bp7vvvluS9LWvfU1nnHGGfvazn+kzn/mMnnjiCb333nv67//+byd/DAAAgBGV6DWTZVn6+te/rh/84AeaNm2apkyZou9+97uqrq7uDhcBAAAAAACQWhwP/i677DLt3btXt99+u2pqanTMMcdo4cKFqqyslCRt27ZNLper+/GnnnqqHn/8cd1222269dZbNW3aND333HM66qijnPoRAAAARtxIrJluuukmtbW16Utf+pIaGxt12mmnaeHChcrOzh71nw8AAAAAAADD53jwJ0nz58/vd0zV4sWLD7rtkksu0SWXXDLCVcUuKytLd9xxx0Gjr9A3zld8OF/x4XzFh/MVH85XfDhfiZfoNZNlWbrzzjt15513JqrEUcHv1uA4R4PjHA2OczQ4ztHgOEeD4xxhJPB7FT/OWXw4X/HhfMWH8xUfzld8MuF8WbZt204XAQAAAAAAAAAAAGB4XIM/BAAAAAAAAAAAAECyI/gDAAAAAAAAAAAA0gDBh0/M3AAAEPFJREFUHwAAAAAAAAAAAJAGCP5idPfdd+vEE09UQUGBKioqdNFFF2nt2rV9Pta2bZ177rmyLEvPPffc6BaaJGI9X0uXLtWZZ56pvLw8FRYW6pOf/KQ6OjocqNhZsZyvmpoaXXnllaqqqlJeXp6OO+44Pf300w5V7Kzf/OY3mjVrlgoLC1VYWKjZs2fr//7v/7rv7+zs1I033qjS0lLl5+frc5/7nGprax2s2FkDna+GhgZ99atf1fTp05WTk6OJEyfq3/7t39TU1ORw1c4Z7Pcrivd6I5bzxXs9hor118BYbw2ONVZsWFsNjvXU4FhDDYw1E0YK66X4sH6KD2up+LCmig/rq/iw1opPpq+9CP5itGTJEt144436+9//rpdfflmBQEBnn3222traDnrsfffdJ8uyHKgyecRyvpYuXaq5c+fq7LPP1rvvvqt//OMfmj9/vlyuzPu1jOV8XXXVVVq7dq2ef/55rVy5UhdffLEuvfRSvf/++w5W7ozx48frRz/6kZYtW6b33ntPZ555pi688EKtWrVKkvSNb3xD//u//6unnnpKS5Ys0a5du3TxxRc7XLVzBjpfu3bt0q5du3TPPffoo48+0sMPP6yFCxfquuuuc7psxwz2+xXFe70x2PnivR7DwfprYKy3BscaKzasrQbHempwrKEGxpoJI4X1UnxYP8WHtVR8WFPFh/VVfFhrxSfj1142hmTPnj22JHvJkiW9bn///fftcePG2bt377Yl2c8++6wzBSaZvs7XySefbN92220OVpW8+jpfeXl59qOPPtrrcWPGjLEffPDB0S4vKZWUlNi//e1v7cbGRtvr9dpPPfVU932rV6+2JdlLly51sMLkEj1fffnTn/5k+3w+OxAIjHJVyevA88V7/cD2P1+81yORWH8NjPXW4FhjxY611eBYTw2ONdTAWDNhJLBeig/rp/iwloofa6r4sL6KD2ut+GTS2itN4svRF20rHjNmTPdt7e3tuuKKK3T//ferqqrKqdKS0oHna8+ePXrnnXdUUVGhU089VZWVlTrjjDP05ptvOllm0ujr9+vUU0/Vk08+qYaGBoXDYT3xxBPq7OzUP/3TPzlUZXIIhUJ64okn1NbWptmzZ2vZsmUKBAKaM2dO92MOP/xwTZw4UUuXLnWw0uRw4PnqS1NTkwoLC+XxeEa5uuTT1/nivb5/B54v3uuRaKy/BsZ6a3CssQbH2mpwrKcGxxpqYKyZMJJYL8WH9VN8WEvFjjVVfFhfxYe1Vnwycu3ldPKYikKhkP2Zz3zG/sQnPtHr9i996Uv2dddd1/1nkarbtt33+Vq6dKktyR4zZoz90EMP2cuXL7e//vWv2z6fz163bp2D1Tqvv9+vffv22WeffbYtyfZ4PHZhYaH9t7/9zaEqnffhhx/aeXl5ttvttouKiuwXXnjBtm3bfuyxx2yfz3fQ40888UT7pptuGu0yk0Z/5+tAe/futSdOnGjfeuuto1xhchnofPFef7D+zhfv9Ugk1l8DY701ONZYA2NtNTjWU4NjDTUw1kwYaayX4sP6KT6spWLDmio+rK/iw1orPpm89iIeH4Ibb7xRH330Ua8E+Pnnn9err76akfOrB9PX+QqHw5KkG264QfPmzZMkHXvssVq0aJEeeugh3X333Y7Umgz6Ol+S9N3vfleNjY165ZVXVFZWpueee06XXnqp3njjDc2cOdOhap0zffp0rVixQk1NTfrzn/+sq6++WkuWLHG6rKTV3/maMWNG92Oam5v1mc98RjNmzND3vvc954pNAv2drw0bNvBe34f+zhfv9Ugk1l8DY701ONZYA2NtNTjWU4NjDTUw1kwYaayX4sP6KT6spWLDmio+rK/iw1orPhm99nI6eUw1N954oz1+/Hh706ZNvW7/2te+ZluWZbvd7u6LJNvlctlnnHGGM8Umgf7O16ZNm2xJ9h/+8Idet1966aX2FVdcMZolJpX+zteGDRtsSfZHH33U6/azzjrLvuGGG0azxKR11lln2V/60pfsRYsW2ZLsffv29bp/4sSJ9r333utMcUkoer6impub7dmzZ9tnnXWW3dHR4WBlySl6vnivj030fPFej0Rh/TUw1luDY40VP9ZWg2M9NTjWUANjzYREYr0UH9ZP8WEtNXSsqeLD+io+rLXik0lrL/b4i5Ft25o/f76effZZvfrqq5oyZUqv+2+++WZ9+OGHWrFiRfdFkn7+85/r97//vQMVO2uw8zV58mRVV1dr7dq1vW5ft26dJk2aNJqlJoXBzld7e7skyeXq/VfW7XZ3f0Mh04XDYXV1den444+X1+vVokWLuu9bu3attm3b1u+M8EwUPV+S+ebU2WefLZ/Pp+eff17Z2dkOV5d8oueL9/rYRM8X7/UYLtZfA2O9NTjWWEPH2mpwrKcGxxpqYKyZkAisl+LD+ik+rKWGjzVVfFhfxYe1Vnwyau3lWOSYYr785S/bRUVF9uLFi+3du3d3X9rb2/t9jjJ4jm4s5+vnP/+5XVhYaD/11FP2+vXr7dtuu83Ozs62N2zY4GDlzhjsfPn9fnvq1Kn26aefbr/zzjv2hg0b7Hvuuce2LKvf2dfp7Oabb7aXLFlib9682f7www/tm2++2bYsy37ppZds27btf/3Xf7UnTpxov/rqq/Z7771nz5492549e7bDVTtnoPPV1NRkn3zyyfbMmTPtDRs29Pr9CwaDTpfuiMF+vw6Uye/1tj34+eK9HsPB+mtgrLcGxxorNqytBsd6anCsoQbGmgkjhfVSfFg/xYe1VHxYU8WH9VV8WGvFJ9PXXgR/MZLU5+X3v//9gM/J1L9csZ6vu+++2x4/frydm5trz549237jjTecKdhhsZyvdevW2RdffLFdUVFh5+bm2rNmzbIfffRR54p20LXXXmtPmjTJ9vl8dnl5uX3WWWf1+o9cR0eH/ZWvfMUuKSmxc3Nz7X/+53+2d+/e7WDFzhrofL322mv9/v5t3rzZ2cIdMtjv14Ey+b3etmM7X7zXY6hYfw2M9dbgWGPFhrXV4FhPDY411MBYM2GksF6KD+un+LCWig9rqviwvooPa634ZPray7Jt246vRxAAAAAAAAAAAABAsmGPPwAAAAAAAAAAACANEPwBAAAAAAAAAAAAaYDgDwAAAAAAAAAAAEgDBH8AAAAAAAAAAABAGiD4AwAAAAAAAAAAANIAwR8AAAAAAAAAAACQBgj+AAAAAAAAAAAAgDRA8AcAAAAAAAAAAACkAYI/AEiAyZMn67777nO6DAAAgJTHugoAACAxWFcBmYngD8CIsCxrwMv3vvc9bdmypd/7//73v0uSHn74YVmWpSOOOOKgYzz11FOyLEuTJ0/uvi36eMuy5HK5NH78eM2bN0979uwZrR8dAAAgoVhXAQAAJAbrKgCZwON0AQDS0+7du7v/+cknn9Ttt9+utWvXdt+Wn5+vuro6SdIrr7yiI488stfzS0tLu/85Ly9Pe/bs0dKlSzV79uzu23/3u99p4sSJBx27sLBQa9euVTgc1gcffKB58+Zp165d+tvf/pawnw8AAGC0sK4CAABIDNZVADIBHX8ARkRVVVX3paioSJZl9botPz+/+7GlpaW97quqqpLX6+2+3+Px6IorrtBDDz3UfduOHTu0ePFiXXHFFQcdO3qs6upqnXvuufq3f/s3vfLKK+ro6Djosf/93/+t6upqhcPhXrdfeOGFuvbaayVJGzdu1IUXXqjKykrl5+frxBNP1CuvvNLvzx79ZtiKFSu6b2tsbJRlWVq8eHH3bR999JHOPfdc5efnq7KyUldeeWX34lKS/vznP2vmzJnKyclRaWmp5syZo7a2tn6PCwAA0hPrKtZVAAAgMVhXsa4CMgHBH4CUcO211+pPf/qT2tvbJZkRCXPnzlVlZeWgz83JyVE4HFYwGDzovksuuUT19fV67bXXum9raGjQwoUL9cUvflGS1NraqvPOO0+LFi3S+++/r7lz5+r888/Xtm3bhvzzNDY26swzz9Sxxx6r9957TwsXLlRtba0uvfRSSeYbaJdffrmuvfZarV69WosXL9bFF18s27aHfEwAAACJdRXrKgAAkCisq1hXAcmIUZ8AHHfqqafK5er9PYTW1tZefz722GN1yCGH6M9//rOuvPJKPfzww7r33nu1adOmAV97/fr1euCBB3TCCSeooKDgoPtLSkp07rnn6vHHH9dZZ50lyXxzqaysTJ/61KckSUcffbSOPvro7ufcddddevbZZ/X8889r/vz5Q/qZf/3rX+vYY4/VD3/4w+7bHnroIU2YMEHr1q1Ta2urgsGgLr74Yk2aNEmSNHPmzCEdCwAAZA7WVQbrKgAAMFysqwzWVUDqoeMPgOOefPJJrVixotelL9dee61+//vfa8mSJWpra9N5553X5+OampqUn5+v3NxcTZ8+XZWVlXrsscf6Pf4Xv/hFPf300+rq6pIkPfbYY/rCF77QvbhrbW3VN7/5TR1xxBEqLi5Wfn6+Vq9ePaxvUH3wwQd67bXXlJ+f3305/PDDJZlRDUcffbTOOusszZw5U5dccokefPBB7du3b8jHAwAAmYF1FesqAACQGKyrWFcBqYqOPwCOmzBhgqZOnTro4774xS/qpptu0ve+9z1deeWV8nj6fgsrKCjQ8uXL5XK5NHbsWOXk5Az4uueff75s29YLL7ygE088UW+88YZ+/vOfd9//zW9+Uy+//LLuueceTZ06VTk5Ofr85z8vv9/f5+tFF2D7jzkIBAK9HtPa2qrzzz9fP/7xjw96/tixY+V2u/Xyyy/r7bff1ksvvaRf/epX+s53vqN33nlHU6ZMGfDnAQAAmYt1VW+sqwAAwFCxruqNdRWQOgj+AKSMMWPG6IILLtCf/vQnPfDAA/0+zuVyxbQwi8rOztbFF1+sxx57TBs2bND06dN13HHHdd//1ltv6ZprrtE///M/SzKLoC1btvT7euXl5ZLM3PNjjz1Wkg76Vthxxx2np59+WpMnT+53QWhZlj7xiU/oE5/4hG6//XZNmjRJzz77rBYsWBDzzwYAANAX1lWsqwAAQGKwrmJdBSQbRn0CcFx9fb1qamp6XTo7O/t87MMPP6y6urruMQOJ8sUvflEvvPCCHnrooe5NkqOmTZumZ555RitWrNAHH3ygK664QuFwuN/XysnJ0SmnnKIf/ehHWr16tZYsWaLbbrut12NuvPFGNTQ06PLLL9c//vEPbdy4UX/72980b948hUIhvfPOO/rhD3+o9957T9u2bdMzzzyjvXv36ogjjkjozw0AANIL6yrWVQAAIDFYV7GuAlIVwR8Ax82ZM0djx47tdXnuuef6fGxOTo5KS0sTXsOZZ56pMWPGaO3atbriiit63XfvvfeqpKREp556qs4//3ydc845vb5h1ZeHHnpIwWBQxx9/vL7+9a/rBz/4Qa/7q6ur9dZbbykUCunss8/WzJkz9fWvf13FxcVyuVwqLCzU66+/rvPOO0+HHXaYbrvtNv3sZz/Tueeem/CfHQAApA/WVayrAABAYrCuYl0FpCrL3n+oLwAAAAAAAAAAAICURMcfAAAAAAAAAAAAkAYI/gAAAAAAAAAAAIA0QPAHAAAAAAAAAAAApAGCPwAAAAAAAAAAACANEPwBAAAAAAAAAAAAaYDgDwAAAAAAAAAAAEgDBH8AAAAAAAAAAABAGiD4AwAAAAAAAAAAANIAwR8AAAAAAAAAAACQBgj+AAAAAAAAAAAAgDRA8AcAAAAAAAAAAACkAYI/AAAAAAAAAAAAIA38f8jdonzumSplAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Temperature\n", + "plotGraph(data.TEMP)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "B4P9qFEUFpsq", + "outputId": "c0611ca0-e895-4c2a-ad74-ba1f0228a8a2" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJOCAYAAAB/dnBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZxT9fX/8XeSWWFYlV0E3EEQqIriBijK5oJWrdrK4tpW6oJLi1rcpVZRrPIV7a+Cu9bdiiKI4G5bQKS4YxEsywzKMjMwk5lJ7u+P5N4kM1mHmdw7ua/n4zFmJrnJfHJznYS8c87xGIZhCAAAAAAAAAAAAECL5rV7AQAAAAAAAAAAAAB2H8EfAAAAAAAAAAAAkAMI/gAAAAAAAAAAAIAcQPAHAAAAAAAAAAAA5ACCPwAAAAAAAAAAACAHEPwBAAAAAAAAAAAAOYDgDwAAAAAAAAAAAMgBBH8AAAAAAAAAAABADiD4AwAAAAAAAAAAAHIAwR+AtNx8883yeDxZ+V3Dhw/X8OHDrZ+XLl0qj8ejF154ISu/f9KkSerdu3dWfldjVVZW6qKLLlLXrl3l8Xh05ZVXJty2d+/emjRpUsrbnDdvnjwej77//vsmWycAAKnUf95v6bL5mikbWsLrosYaO3asLr74YruX0cAXX3yhvLw8rV69uslvO93Xhdn07bff6qSTTlK7du3k8Xj0yiuvxN3u+++/l8fj0bx581LeZi4ftwCA3JLJ81s2LViwQIMGDVJRUZE8Ho+2b98ed7tM3kty4usQIFcR/AEuZD4pm19FRUXq3r27Ro0apb/85S+qqKhokt+zceNG3XzzzVq5cmWT3F5TcvLa0nHnnXdq3rx5+s1vfqMnnnhC559/vt1LAgDYxHxeX7ZsWcz5O3bs0JAhQ1RUVKQFCxbYtLqm07t3b+u1i9frVfv27TVgwABdcskl+uc//2n38pK68847E4YZjWV+MCrR17PPPpv2bTn1ddHTTz+tWbNmNcttf/jhh1q4cKF+//vfW+cl+rBZTU2NTj75ZHm9Xj366KOSGvd62gyFE31t3rxZktSvXz+NGzdO06dPb5b73hjNeYxMnDhR//nPf3THHXfoiSee0GGHHdbkvwMAkPvqPzd7PB517txZI0aM0Jtvvpn19dR/rZafn6999tlHEyZM0H//+98m+R0fffSRbr755oShXGP99NNPOvvss1VcXKzZs2friSeeUOvWrZv0dwBoXnl2LwCAfW699Vb16dNHtbW12rx5s5YuXaorr7xS9957r1577TUdcsgh1rY33nij/vCHP2R0+xs3btQtt9yi3r17a9CgQWlfb+HChRn9nsZItra//vWvCgaDzb6G3fHOO+/oyCOP1E033ZRy26+//lpeL5/zAAA3KS8v10knnaRVq1bp5Zdf1ujRo+1eUpMYNGiQrr76aklSRUWFvvzySz3//PP661//qquuukr33nuvzSuM/5rpzjvv1Jlnnqnx48c3+e+7/PLLdfjhhzc4f+jQoWnfhlNfFz399NNavXp10s4GjXX33XfrhBNO0H777Zd0u9raWp155pl644039Ne//lUXXHBBzOWZvJ42PfTQQyopKWlwfvv27a3vf/3rX2vs2LH67rvvtO+++zbuTjahxr6uT6Wqqkoff/yxbrjhBk2ZMiXptr169VJVVZXy8/Ob7PcDAHKP+dxsGIZKS0s1b948jR07Vv/4xz908sknZ3095mu12tparVixQo888ojmz5+v//znP+revftu3fZHH32kW265RZMmTYp5HbG7/v3vf6uiokK33XabRo4cmXTb888/X+ecc44KCwub7PcD2H0Ef4CLjRkzJuYTtdOmTdM777yjk08+Waeeeqq+/PJLFRcXS5Ly8vKUl9e8fzJ27dqlVq1aqaCgoFl/Tyot4c2EsrIy9evXL61tefEFAO5SUVGhUaNGaeXKlXrppZc0ZsyY3b7N6upqFRQU2P5Bkh49euhXv/pVzHl33XWXzjvvPN13333af//99Zvf/Mam1YVk4zVTtGOPPVZnnnlms91+S3hdlKmysjLNnz9fc+bMSbpdbW2tzj77bL3++ut6+OGHdeGFFzbYJpPX06YzzzxTe+65Z9LfPXLkSHXo0EGPPfaYbr311gzuXcuyZcsWSUrrzUqzshIAgGTqPzdfeOGF6tKli5555hlbgr/o12qTJ0/WAQccoMsvv1yPPfaYpk2blvX1pKOsrExSes/PPp9PPp+vmVcEIFOUgACIcfzxx+uPf/yj1q1bpyeffNI6P968mkWLFumYY45R+/btVVJSogMPPFDXX3+9pFBLA/PT55MnT7ZaG5g9y4cPH67+/ftr+fLlOu6449SqVSvruolm/QQCAV1//fXq2rWrWrdurVNPPVU//PBDzDaJ+oVH32aqtcWbCbJz505dffXV6tmzpwoLC3XggQfqnnvukWEYMdt5PB5NmTJFr7zyivr376/CwkIdfPDBabdYKysrs16UFhUVaeDAgXrsscesy81WEWvXrtX8+fOttSfrpR5vn3z++ec6/vjjVVxcrL322ku3336746scAQCpVVZWavTo0VqxYoVefPFFjRs3LubyDRs26IILLlCXLl2s5yizdaHJfK559tlndeONN6pHjx5q1aqVysvLNWnSJJWUlGjDhg0aP368SkpK1KlTJ11zzTUKBAIxtxMMBjVr1iwdfPDBKioqUpcuXXTppZdq27ZtTXqfi4uL9cQTT6hjx4664447Yp6b011D7969dfLJJ+uDDz6w2qPus88+evzxx2O2q62t1S233KL9999fRUVF2mOPPXTMMcdo0aJF1jb1XzN5PB7t3LlTjz32mPW8PWnSJC1ZskQej0cvv/xyg/v09NNPy+Px6OOPP26SfbQ7r9nqvy4y59Dcc889mj17tvbZZx+1atVKJ510kn744QcZhqHbbrtNe+21l4qLi3Xaaadp69atMet59dVXNW7cOHXv3l2FhYXad999ddttt8UcQ8OHD9f8+fO1bt06a03R6/D7/brpppu03377qbCwUD179tR1110nv9+fcn/Mnz9fdXV1ST/BXldXp3POOUevvvqqHnrooYxmASZ6PZ2J/Px8DR8+XK+++mrKbc1j7quvvtLZZ5+ttm3bao899tAVV1yh6urqlNf/73//q7POOksdO3ZUq1atdOSRR2r+/PnW5amOkUQ+/fRTjRkzRm3btlVJSYlOOOEEffLJJzHr7tWrlyTp2muvbfAY15doBpL5uruoqEj9+/eP+/8UAMC92rdvr+Li4gYfzEr1Pk9VVZUOOuggHXTQQaqqqrKut3XrVnXr1k1HHXVUg9e/6Tj++OMlSWvXrk263TvvvKNjjz1WrVu3Vvv27XXaaafpyy+/tC6/+eabde2110qS+vTpk9b7Q5L0/PPP69BDD1VxcbH23HNP/epXv9KGDRusy4cPH66JEydKkg4//HDrtWsi8Wb8GYah22+/XXvttZdatWqlESNG6PPPP0+6LgBNi4o/AA2cf/75uv7667Vw4cKEb3J8/vnnOvnkk3XIIYfo1ltvVWFhodasWaMPP/xQktS3b1/deuutmj59ui655BIde+yxkqSjjjrKuo2ffvpJY8aM0TnnnKNf/epX6tKlS9J13XHHHfJ4PPr973+vsrIyzZo1SyNHjtTKlSsbfJI6mXTWFs0wDJ166qlasmSJLrzwQg0aNEhvvfWWrr32Wm3YsEH33XdfzPYffPCBXnrpJf32t79VmzZt9Je//EU///nPtX79eu2xxx4J11VVVaXhw4drzZo1mjJlivr06aPnn39ekyZN0vbt23XFFVeob9++euKJJ3TVVVdpr732stqdderUKe37v3nzZo0YMUJ1dXX6wx/+oNatW+uRRx7JaB8CAJxn586dGjNmjP7973/rhRdeaPCJ5tLSUh155JHWh1Q6deqkN998UxdeeKHKy8sbtFO87bbbVFBQoGuuuUZ+v9+qyA8EAho1apSOOOII3XPPPXr77bc1c+ZM7bvvvjHVdpdeeqnmzZunyZMn6/LLL9fatWv14IMP6tNPP9WHH37YpJVkJSUlOv300/W3v/1NX3zxhQ4++OCM17BmzRqdeeaZuvDCCzVx4kQ9+uijmjRpkg499FDr9m6++WbNmDFDF110kYYMGaLy8nItW7ZMK1as0Iknnhh3bU888YS1/SWXXCJJ2nfffXXkkUeqZ8+eeuqpp3T66afHXOepp57Svvvum1a7zoqKCv34448Nzt9jjz3k8Xia5DVbPE899ZRqamr0u9/9Tlu3btWf//xnnX322Tr++OO1dOlS/f73v9eaNWv0wAMP6JprrokJmOfNm6eSkhJNnTpVJSUleueddzR9+nSVl5fr7rvvliTdcMMN2rFjh/73v/9Zr7XM9pjBYFCnnnqqPvjgA11yySXq27ev/vOf/+i+++7TN998k3Ke4kcffaQ99tjDCp3qq6ur07nnnquXX35Zs2fP1qWXXpr09uJJ9nq6fhAqhSpF63+q/tBDD9Wrr76q8vJytW3bNuXvPPvss9W7d2/NmDFDn3zyif7yl79o27ZtDQLsaKWlpTrqqKO0a9cuXX755dpjjz302GOP6dRTT9ULL7yg008/vVHHyOeff65jjz1Wbdu21XXXXaf8/Hw9/PDDGj58uN59910dccQROuOMM9S+fXtdddVVOvfcczV27Ni4LVCTWbhwoX7+85+rX79+mjFjhn766SdNnjxZe+21V0a3AwDIHTt27NCPP/4owzBUVlamBx54QJWVlTFdI9J5n6e4uFiPPfaYjj76aN1www1WS/nLLrtMO3bs0Lx58xpV6fbdd99JUtL3h95++22NGTNG++yzj26++WZVVVXpgQce0NFHH60VK1aod+/eOuOMM/TNN9/omWee0X333Wd1E0j2/pD5uvjwww/XjBkzVFpaqvvvv18ffvihPv30U7Vv31433HCDDjzwQD3yyCNW29RM245Pnz5dt99+u8aOHauxY8dqxYoVOumkk1RTU5PR7QDYDQYA15k7d64hyfj3v/+dcJt27doZgwcPtn6+6aabjOg/Gffdd58hydiyZUvC2/j3v/9tSDLmzp3b4LJhw4YZkow5c+bEvWzYsGHWz0uWLDEkGT169DDKy8ut8//+978bkoz777/fOq9Xr17GxIkTU95msrVNnDjR6NWrl/XzK6+8Ykgybr/99pjtzjzzTMPj8Rhr1qyxzpNkFBQUxJz32WefGZKMBx54oMHvijZr1ixDkvHkk09a59XU1BhDhw41SkpKYu57r169jHHjxiW9vehto/fJlVdeaUgy/vnPf1rnlZWVGe3atTMkGWvXrk3rdgEAzmA+r/fq1cvIz883XnnllbjbXXjhhUa3bt2MH3/8Meb8c845x2jXrp2xa9cuwzAiz7v77LOPdZ5p4sSJhiTj1ltvjTl/8ODBxqGHHmr9/P777xuSjKeeeipmuwULFjQ4v/5zdCKpnvvM1yavvvpqxmvo1auXIcl47733rPPKysqMwsJC4+qrr7bOGzhwYMrn3/qvmQzDMFq3bh339cm0adOMwsJCY/v27TG/Ny8vz7jpppuS/h7zcUr0tWnTppj90tjXbPVfF61du9aQZHTq1Clm3dOmTTMkGQMHDjRqa2ut888991yjoKDAqK6uts6rf1wZhmFceumlRqtWrWK2GzduXMzvNj3xxBOG1+s13n///Zjz58yZY0gyPvzww4T31TAM45hjjok5Xk3mPjWPh9mzZye8jd15PR3v68ADD2xw/aeffrrBa7Z4zNs99dRTY87/7W9/a0gyPvvsM+u8RK8Lo/dlRUWF0adPH6N3795GIBAwDCP5MRLP+PHjjYKCAuO7776zztu4caPRpk0b47jjjrPOM4+nu+++O+VtmttGr2HQoEFGt27dYo7FhQsXWo8jAMA9zOfm+l+FhYXGvHnzYrbN5H2eadOmGV6v13jvvfeM559/3pBkzJo1K+V6zNcVjz76qLFlyxZj48aNxvz5843evXsbHo/Heg2R6Pmtc+fOxk8//WSd99lnnxler9eYMGGCdd7dd9+d9vs4NTU1RufOnY3+/fsbVVVV1vmvv/66IcmYPn26dV46r3Pqb2uuoayszCgoKDDGjRtnBINBa7vrr7/ekBT3NTGApkerTwBxlZSUqKKiIuHl5ieSX3311Ua3iCwsLNTkyZPT3n7ChAlq06aN9fOZZ56pbt266Y033mjU70/XG2+8IZ/Pp8svvzzm/KuvvlqGYejNN9+MOX/kyJExn4Y65JBD1LZtW/33v/9N+Xu6du2qc8891zovPz9fl19+uSorK/Xuu+82wb0J/Z4jjzxSQ4YMsc7r1KmTfvnLXzbJ7QMA7FFaWqqioiL17NmzwWWGYejFF1/UKaecIsMw9OOPP1pfo0aN0o4dO7RixYqY60ycODFhNfivf/3rmJ+PPfbYmOe5559/Xu3atdOJJ54Y87sOPfRQlZSUaMmSJU1wj2OZlULm65dM19CvXz+rkkkKPTceeOCBMferffv2+vzzz/Xtt982yZonTJggv9+vF154wTrvueeeU11dXYNZholMnz5dixYtavDVsWNHa83S7r1mi+ess85Su3btrJ+POOIISdKvfvWrmFZaRxxxhGpqamJaSEUfV2bF4rHHHqtdu3bpq6++Svm7n3/+efXt21cHHXRQzGNrts5KdXz99NNP6tChQ8LLS0tLlZeXpz59+qRcSzKJXk+/+OKLDR6vuXPnNtjOXGO8is54Lrvsspiff/e730lS0tfKb7zxhoYMGaJjjjkmZt2XXHKJvv/+e33xxRdp/e5ogUBACxcu1Pjx47XPPvtY53fr1k3nnXeePvjgA5WXl2d8u/Vt2rRJK1eu1MSJE2OOxRNPPDHtWdgAgNwze/Zs6/n1ySef1IgRI3TRRRfppZdesrbJ5H2em2++WQcffLAmTpyo3/72txo2bFiD6yVzwQUXqFOnTurevbvGjRtntYCPnkMYzXx+mzRpkvV6Tgq9t3TiiSc2+j2wZcuWqaysTL/97W9jZuaOGzdOBx10UEyb793x9ttvW10hotvf1+8uAqB5uTr4e++993TKKaeoe/fu8ng8KVvCxGMYhu655x4dcMABKiwsVI8ePXTHHXc0/WKBLKusrIwJ2er7xS9+oaOPPloXXXSRunTponPOOUd///vfM3pDqUePHlbbsHTsv//+MT97PB7tt99+KfuX765169ape/fuDfZH3759rcuj7b333g1uo0OHDilnGq1bt07777+/vN7YP82Jfk9jmb+nvgMPPLBJbh8AYI+HH35YBQUFGj16tL7++uuYy7Zs2aLt27frkUceUadOnWK+zA/hlJWVxVwnUehRVFTUoIVQ/ee5b7/9Vjt27FDnzp0b/L7KysoGv6spVFZWSpL1fJ3pGtJ5/r711lu1fft2HXDAARowYICuvfZarVq1qtFrPuigg3T44Yfrqaeess576qmndOSRR2q//fZL6zYGDBigkSNHNvgyX2M1xWu2eOrvLzN4qR88m+dH78fPP/9cp59+utq1a6e2bduqU6dOVtC5Y8eOlL/722+/1eeff97gcT3ggAMkNTyW4zHqzWmO9uc//1l77723zjzzTKslamMkej193HHHNXi84rV1NddYf852IvVf3+27777yer1JXyuvW7cu7mvA3Xn9uWXLFu3atSvh7QaDwQZzuhvDXBuvawEA0YYMGWI9v/7yl7/U/Pnz1a9fP02ZMsVqNZnJ+zwFBQV69NFHtXbtWlVUVGju3LlpPzdLkQ9pvfPOO1q1apU2btyo888/P+H25u9O9Dz6448/aufOnWn//nRu96CDDmrS95ykhs/PnTp1SvrBKwBNy9Uz/nbu3KmBAwfqggsu0BlnnNGo27jiiiu0cOFC3XPPPRowYIC2bt0ad2YD0JL873//044dO5K+4VRcXKz33ntPS5Ys0fz587VgwQI999xzOv7447Vw4cK0+pw3x0y5RC++AoFAo3qvN0ai35PsDSYAAHZXv3799MYbb+iEE07QiSeeqA8//NAKYcyQ51e/+pUmTpwY9/qHHHJIzM+JnqfTeT4NBoPq3LlzTKAVLZPZtOlavXq1JFmvXzJdQzrP38cdd5y+++47vfrqq1q4cKH+3//7f7rvvvs0Z84cXXTRRY1a94QJE3TFFVfof//7n/x+vz755BM9+OCDjbqteJriNVs8ia6Xaj9u375dw4YNU9u2bXXrrbdq3333VVFRkVasWKHf//73aQWSwWBQAwYMsGbt1Bev6jXaHnvskfQDWd26ddOiRYt0zDHHaNy4cXr33Xc1cODAlOuKls7r6VTMNZozezKVyZuSAADkKq/XqxEjRuj+++/Xt99+a81uzsRbb70lSaqurta3336bUVcA80NaAJBNrg7+xowZozFjxiS83O/364YbbtAzzzyj7du3q3///rrrrrs0fPhwSdKXX36phx56SKtXr7Y+LbG77WAAJ3jiiSckSaNGjUq6ndfr1QknnKATTjhB9957r+68807dcMMNWrJkiUaOHNnkbzbUb6tlGIbWrFkT80Zlhw4dtH379gbXXbduXUyroUzW1qtXL7399tuqqKiI+TSY2YqqV69ead9Wqt+zatUqBYPBmKq/5vg98VqU1a8OAQC0PEOGDNErr7yicePG6cQTT9T7779vVUO1adNGgUAgK2887Lvvvnr77bd19NFHN8sHfeqrrKzUyy+/rJ49e1qf1G6uNXTs2FGTJ0/W5MmTVVlZqeOOO04333xz0uAv2euOc845R1OnTtUzzzyjqqoq5efn6xe/+EWTrVfK/mu2ZJYuXaqffvpJL730ko477jjr/LVr1zbYNtG69t13X3322Wc64YQTGrX2gw46SC+++GLSbfbZZx+99dZbGjZsmEaNGqX3338/bmVZIum+nk5m7dq18nq9ViVjKvXfiFyzZo2CwaB69+6d8Dq9evWK+xqw/uvPTPZzp06d1KpVq4S36/V6U4az6TDXxutaAEAqdXV1kiIdIjJ5n2fVqlW69dZbNXnyZK1cuVIXXXSR/vOf/8S0mW5K5u9O9Dy65557qnXr1pIyf2/LvF2zPbrp66+/btL3nKTQ83P0+3BbtmxJ2QkLQNNxdavPVKZMmaKPP/5Yzz77rFatWqWzzjpLo0ePtv5h8Y9//EP77LOPXn/9dfXp00e9e/fWRRddRMUfWrR33nlHt912m/r06ZN05lu843zQoEGSQqG5JOuFSLwgrjEef/zxmDkpL7zwgjZt2hQT4O+777765JNPrPYNkvT66683aCeUydrGjh2rQCDQ4NP39913nzweT9IPEGRi7Nix2rx5s5577jnrvLq6Oj3wwAMqKSnRsGHDmuz3fPLJJ/rXv/5lnbdly5aEFREAgJblhBNO0DPPPKM1a9Zo9OjRKi8vl8/n089//nO9+OKLVmVctC1btjTpGs4++2wFAgHddtttDS6rq6trstcGklRVVaXzzz9fW7du1Q033GC9AdIca/jpp59ifi4pKdF+++1nvfZJpHXr1gl/35577qkxY8boySef1FNPPaXRo0c3usIrHjtesyVjVgRGV1LW1NTo//7v/xps27p167itP88++2xt2LBBf/3rXxtcVlVVlbL91dChQ7Vt27aU85cHDBig+fPnq7KyUieeeGLMnMJk0n09ncry5ct18MEHp/3G4uzZs2N+fuCBByQp6WvVsWPH6l//+pc+/vhj67ydO3fqkUceUe/eva1ZeZkcIz6fTyeddJJeffXVmDajpaWlevrpp3XMMceobdu2ad2nZLp166ZBgwbpscceizlOFi1a1KjZhACA3FRbW6uFCxeqoKDA+oBYuu/z1NbWatKkSerevbvuv/9+zZs3T6Wlpbrqqquabb3Rz2/Rz7urV6/WwoULNXbsWOu8TJ6fDzvsMHXu3Flz5syJee365ptv6ssvv9S4ceOaZP0jR45Ufn6+HnjggZjXe7NmzWqS2weQHldX/CWzfv16zZ07V+vXr1f37t0lSddcc40WLFiguXPn6s4779R///tfrVu3Ts8//7wef/xxBQIBXXXVVTrzzDP1zjvv2HwPgNTefPNNffXVV6qrq1NpaaneeecdLVq0SL169dJrr70WM+y3vltvvVXvvfeexo0bp169eqmsrEz/93//p7322kvHHHOMpFAI1759e82ZM0dt2rRR69atdcQRRzS6MrZjx4465phjNHnyZJWWlmrWrFnab7/9dPHFF1vbXHTRRXrhhRc0evRonX322fruu+/05JNPat999425rUzWdsopp2jEiBG64YYb9P3332vgwIFauHChXn31VV155ZUNbruxLrnkEj388MOaNGmSli9frt69e+uFF17Qhx9+qFmzZiWduZiJ6667Tk888YRGjx6tK664Qq1bt9YjjzxiVRwCAFq+008/XX/96191wQUX6NRTT9WCBQv0pz/9SUuWLNERRxyhiy++WP369dPWrVu1YsUKvf3220364bVhw4bp0ksv1YwZM7Ry5UqddNJJys/P17fffqvnn39e999/v84888yMb3fDhg168sknJYU+sf3FF1/o+eef1+bNm3X11Vfr0ksvbdY19OvXT8OHD9ehhx6qjh07atmyZXrhhRc0ZcqUpNc79NBD9fbbb+vee+9V9+7d1adPHx1xxBHW5RMmTLDWEi+oTOb9999XdXV1g/MPOeQQHXLIIba8ZkvmqKOOUocOHTRx4kRdfvnl8ng8euKJJ+K2RD/00EP13HPPaerUqTr88MNVUlKiU045Reeff77+/ve/69e//rWWLFmio48+WoFAQF999ZX+/ve/66233tJhhx2WcA3jxo1TXl6e3n77bV1yySVJ1zt06FC99NJLOuWUU6wq2j322MO6vDGvp1944QWVlJQ0OP/EE09Uly5dJIXeaHz33Xf129/+Nun6oq1du1annnqqRo8erY8//lhPPvmkzjvvvKRtSv/whz/omWee0ZgxY3T55ZerY8eOeuyxx7R27Vq9+OKLVheKTI+R22+/3WqX+tvf/lZ5eXl6+OGH5ff79ec//znt+5TKjBkzNG7cOB1zzDG64IILtHXrVj3wwAM6+OCDraoOAIC7mM/NUmju79NPP61vv/1Wf/jDH6wPnqT7Ps/tt9+ulStXavHixWrTpo0OOeQQTZ8+XTfeeKPOPPPMmBCuKd19990aM2aMhg4dqgsvvFBVVVV64IEH1K5dO918883Wdoceeqgk6YYbbtA555yj/Px8nXLKKVYgGC0/P1933XWXJk+erGHDhuncc89VaWmp7r//fvXu3bvJwsxOnTrpmmuu0YwZM3TyySdr7Nix+vTTT/Xmm2826YfbAKRgwDAMw5BkvPzyy9bPr7/+uiHJaN26dcxXXl6ecfbZZxuGYRgXX3yxIcn4+uuvrestX77ckGR89dVX2b4LQNrmzp1rSLK+CgoKjK5duxonnniicf/99xvl5eUNrnPTTTcZ0X8yFi9ebJx22mlG9+7djYKCAqN79+7Gueeea3zzzTcx13v11VeNfv36GXl5eYYkY+7cuYZhGMawYcOMgw8+OO76hg0bZgwbNsz6ecmSJYYk45lnnjGmTZtmdO7c2SguLjbGjRtnrFu3rsH1Z86cafTo0cMoLCw0jj76aGPZsmUNbjPZ2iZOnGj06tUrZtuKigrjqquuMrp3727k5+cb+++/v3H33XcbwWAwZjtJxmWXXdZgTb169TImTpwY9/5GKy0tNSZPnmzsueeeRkFBgTFgwABrXfVvb9y4cSlvL9HvXrVqlTFs2DCjqKjI6NGjh3HbbbcZf/vb3wxJxtq1a9O6XQCAM5jP6//+978bXHbPPfcYkoyTTz7ZqK2tNUpLS43LLrvM6Nmzp5Gfn2907drVOOGEE4xHHnnEuo75vPv88883uL2JEycarVu3bnB+/dcJpkceecQ49NBDjeLiYqNNmzbGgAEDjOuuu87YuHGjtU285+h4evXqZb128Xg8Rtu2bY2DDz7YuPjii41//vOfCa+XzhoSPa/WX9vtt99uDBkyxGjfvr1RXFxsHHTQQcYdd9xh1NTUJN0XX331lXHccccZxcXFhqQGz8t+v9/o0KGD0a5dO6OqqirlvjCMyOOU6Oumm24yDGP3X7PVf120du1aQ5Jx9913x11P/eMm3vH54YcfGkceeaRRXFxsdO/e3bjuuuuMt956y5BkLFmyxNqusrLSOO+884z27dsbkmLWUVNTY9x1113GwQcfbBQWFhodOnQwDj30UOOWW24xduzYkXL/nXrqqcYJJ5yQ1n0wDMN47rnnDK/Xaxx++OFGeXn5br2eTvQVfd/ffPNNQ5Lx7bffprwv5u1+8cUXxplnnmm0adPG6NChgzFlypQGx1O814XfffedceaZZxrt27c3ioqKjCFDhhivv/56g9+T6BhJZMWKFcaoUaOMkpISo1WrVsaIESOMjz76KGabRMdTPOa29X/viy++aPTt29coLCw0+vXrZ7z00ktxX88DAHJb/edmSUZRUZExaNAg46GHHmrw/k2q93mWL19u5OXlGb/73e9irldXV2ccfvjhRvfu3Y1t27YlXE+y1xXREj2/vf3228bRRx9tFBcXG23btjVOOeUU44svvmhw/dtuu83o0aOH4fV603pP57nnnjMGDx5sFBYWGh07djR++ctfGv/73/9itkn274v6zG2jf28gEDBuueUWo1u3bkZxcbExfPhwY/Xq1Wm/NwZg93kMI85HK13I4/Ho5Zdf1vjx4yVJzz33nH75y1/q888/bzCgvqSkRF27dtVNN92kO++8U7W1tdZlVVVVatWqlRYuXKgTTzwxm3cBAAAAQAtUV1en7t2765RTTtHf/vY3u5fjCu+//76GDx+ur776KqPZfdkyfvx469+oqdx888265ZZbtGXLFj5JDwAAAIBWn4kMHjxYgUBAZWVlOvbYY+Nuc/TRR6uurk7fffedVQL+zTffSFKTDUQFAAAAkNteeeUVbdmyRRMmTLB7Ka5x7LHH6qSTTtKf//znuLMC7fTll1/q9ddf18qVK+1eCgAAAIAWyNXBX2VlpdasWWP9vHbtWq1cuVIdO3bUAQccoF/+8peaMGGCZs6cqcGDB2vLli1avHixDjnkEI0bN04jR47Uz372M11wwQWaNWuWgsGgLrvsMp144ok64IADbLxnAAAAAJzun//8p1atWqXbbrtNgwcP1rBhw+xekqu8+eabdi8hrr59+6qurs7uZQAAAABoobx2L8BOy5Yt0+DBgzV48GBJ0tSpUzV48GBNnz5dkjR37lxNmDBBV199tQ488ECNHz9e//73v7X33ntLkrxer/7xj39ozz331HHHHadx48apb9++evbZZ227TwAAAABahoceeki/+c1v1LlzZz3++ON2LwcAAAAAkAOY8QcAAAAAAAAAAADkAFdX/AEAAAAAAAAAAAC5guAPAAAAAAAAAAAAyAF5di8g24LBoDZu3Kg2bdrI4/HYvRwAAOAwhmGooqJC3bt3l9fLZ6SS4XUVAABIhtdV6eN1FQAASCaT11WuC/42btyonj172r0MAADgcD/88IP22msvu5fhaLyuAgAA6eB1VWq8rgIAAOlI53WV64K/Nm3aSArtnLZt29q8GgAA4DTl5eXq2bOn9ZoBifG6CgAAJMPrqvTxugoAACSTyesq1wV/ZruEtm3b8kIKAAAkRIul1HhdBQAA0sHrqtR4XQUAANKRzusqGqwDAAAAAAAAAAAAOYDgDwAAAAAAAAAAAMgBBH8AAAAAAAAAAABADiD4AwAAAAAAAAAAAHIAwR8AAAAAAAAAAACQAwj+AAAAAAAAAAAAgBxA8AcAAAAAAAAAAADkAII/AAAAAAAAAAAAIAcQ/AEAAAAAAAAAAAA5gOAPAAAAAAAAAAAAyAEEfwAAAAAAAAAAAEAOIPgDAAAAAAAAAAAAcgDBHwAAAAAAAAAAAJADCP4AAAAAAAAAAACAHEDwBwAAAAAAAAAAAOQAgj8AAAAAAAAAAAAgBxD8AQAAAAAAAAAAADmA4A8AAAAAAAAAAADIAQR/AAAAAAAAAAAAQA4g+AMAAAAAAAAAAAByAMEfANf5YptfH2zaJcMw7F4KAAAAAAAAAABNhuAPgKv8VF2nf3xfoQ8279JP/oDdywEAAGjRysulMWOkTZvsXgkAAAAAQCL4A+AySzbuklnnVxOg4g8AAGB3LFsmLVggrV5t90oAAAAAABLBHwAXWVdRozU7aqyfyf0AAAB2zxdfhE79fnvXAQAAAAAIIfgD4AqGYWjJhl0x5wWCJH8AAAC74/PPQ6cEfwAAAADgDAR/AFzhfzvrtLmqTgVej9oVhP701ZH7AQAA7BaCPwAAAABwFoI/AK6wqy4oSepc7FOb/NCfvoBB8gcAANBYhkHwBwAAAABOk2f3AgAgGwKh3E8+j8c6r45WnwAAAI22ZYu0dWvoe4I/AAAAAHAGgj8ArlAXru7L80pm3Bcg9wMAAGi0L76IfE/wBwAAAADOQPAHwBXM6j6fxxMV/JH8AQAANNbnn0t5eVJhoVRdbfdqAAAAAAASM/4AuERdOOPL83qUF+72GR77BwAAgEb44gtp772loiIq/gAAAADAKQj+ALhCIFzxl+eRfN5Q8kfFHwAAQOOtXh0K/goKCP4AAAAAwCkI/gC4QmTGn0d5HjP4s3NFAAAALdsXX0i9e0v5+QR/AAAAAOAUzPgD4AqBcFtPn0cK535WFSAAAAAys2WL9OOPUq9eBH8AAAAA4CQEfwBcIbriz6z0qyP3AwAAaJQvvgid9u5Nq08AAAAAcBKCPwCuUGdV/HnkUSjxY8YfAABA43zxhZSXJ/XoQcUfAAAAADgJwR8AVwhYFX9SwAjP+AvauSIAAICWa906qUuXUOhH8AcAAAAAzkHwB8AV6sLz/PI8Hilc8VdHxR8AAECjVFdLhYWh7/PzQz8DAAAAAOxH8AfAFcx5fj6vZATNij+CPwAAgMbw+0OBn0TFHwAAAAA4CcEfAFcIRFf8ec0Zf3auCAAAoOXy+0Mz/iQq/gAAAADASbx2LwAAssGs+MvzeuTzhCv+aPUJAADQKDU1VPwBAAAAgBNR8QfAFcyQz+eRwp0+VRe0cUEAAAAtGK0+AQAAAMCZCP4AuEKd2erT65GZ91HxBwAA0Dj1W30S/AEAAACAM9DqE4ArmK0+fZ7wnD8x4w8AAKCxoiv+CgoI/gAAAADAKQj+ALhCdMWfzxN7HgAAADJD8AcAAAAAzkTwB8AVAuH+nnkej3xeKv4AAAB2BzP+AAAAAMCZmPEHwBXqDLPiLxL41THjDwAAoFHqB3/V1fauBwAAAAAQQvAHwBUC4ZDP54m0+gzQ6hMAAKBRampig7+aGnvXAwAAAAAIodUngJxnGIbqzFafXo984b98tPoEAABonHitPmmmAAAAAAD2I/gDkPOCksz3ofI8oTl/UqQKEAAAAJmJDv4KCkKhX12dvWsCAAAAABD8AXCBuqiWnr6oij+zChAAAACZqd/qUwqFgQAAAAAAexH8Ach50S09oyv+DElBqv4AAAAyVr/Vp3keAAAAAMBeBH8Acp5Z8ef1SB6PR75w8Ccx5w8AAKAxoiv+CgpCpwR/AAAAAGA/gj8AOc8M98xKP1/UX75AkOQPAAAgU7T6BAAAAABnIvgDkPPMir+88F+86D98deR+AAAAGQkGpbq6hhV/1dX2rQkAAAAAEELwByDn1YXn+JkVfx6PR3nhbp8BZvwBAABkxKzso+IPAAAAAJyH4A9AzgsEQ6fRLT59Xk/MZQAAAEgPwR8AAAAAOBfBH4CcV7/iT5J8ntjLAAAAkJ6amtApwR8AAAAAOI+twd+MGTN0+OGHq02bNurcubPGjx+vr7/+Oul15s2bJ4/HE/NVVFSUpRUDaInqrIq/SPBnhoC0+gQAAMhM/Yo/c8YfwR8AAAAA2M/W4O/dd9/VZZddpk8++USLFi1SbW2tTjrpJO3cuTPp9dq2batNmzZZX+vWrcvSigG0RJGKv8h5ZttPWn0CAABkxgz4zMCPij8AAAAAcI48O3/5ggULYn6eN2+eOnfurOXLl+u4445LeD2Px6OuXbs29/IA5IhAMBz8eaNbfYa+p9UnAABAZsxWn3nhf01S8QcAAAAAzuGoGX87duyQJHXs2DHpdpWVlerVq5d69uyp0047TZ9//nk2lgeghaoLZ3u+6Iq/8PdU/AEAAGSmfqtPKv4AAAAAwDkcE/wFg0FdeeWVOvroo9W/f/+E2x144IF69NFH9eqrr+rJJ59UMBjUUUcdpf/9739xt/f7/SovL4/5AuAu8Sr+zO+Z8QcAAJCZRK0+q6vtWQ8AAAAAIMLWVp/RLrvsMq1evVoffPBB0u2GDh2qoUOHWj8fddRR6tu3rx5++GHddtttDbafMWOGbrnlliZfL4CWw6z4y/PEa/Vpx4oAAABaLjP4M1t9+nyhLyr+AAAAAMB+jqj4mzJlil5//XUtWbJEe+21V0bXzc/P1+DBg7VmzZq4l0+bNk07duywvn744YemWDKAFqQuXPHni/qLF2n1SfIHAACQCXPGn1npZ35P8AcAAAAA9rO14s8wDP3ud7/Tyy+/rKVLl6pPnz4Z30YgENB//vMfjR07Nu7lhYWFKiws3N2lAmjBzHaeMRV/VqtPW5YEAADQYtVv9Wl+T/AHAAAAAPazNfi77LLL9PTTT+vVV19VmzZttHnzZklSu3btVFxcLEmaMGGCevTooRkzZkiSbr31Vh155JHab7/9tH37dt19991at26dLrroItvuBwBnqwuGTmNm/IW/rWPGHwAAQEbMgI+KPwAAAABwHluDv4ceekiSNHz48Jjz586dq0mTJkmS1q9fL6830p9v27Ztuvjii7V582Z16NBBhx56qD766CP169cvW8sG0MKY4Z4vkvtZM/5o9QkAAJAZs9VnXtS/Jqn4AwAAAABnsL3VZypLly6N+fm+++7Tfffd10wrApCLAvEq/sKfJ6DVJwAAQGbitfqk4g8AAAAAnMGbehMAaNnqrBl/kfPMij9afQIAAGTG75e8Xsnni5xHxR8AAAAAOAPBH4CcZ7bz9EVV/JltP81qQAAAAKTH74+d7yeFfq6utmc9AAAAAIAIgj8AOa8uXNSX54lu9Rme8UfFHwAAQEZqauIHf1T8AQAAAID9CP4A5Lw6s+IvTqtPZvwBAABkxu+Pne8nEfwBAAAAgFMQ/AHIedaMvzitPs1QEAAAAOlJ1OqT4A8AAAAA7EfwByDnmXP88qL+4vm8VPwBaHlmz56t3r17q6ioSEcccYT+9a9/Jd3++eef10EHHaSioiINGDBAb7zxRszllZWVmjJlivbaay8VFxerX79+mjNnTnPeBQA5gFafAAAAAOBcBH8Acp5V8Rc94y/8LTP+ALQUzz33nKZOnaqbbrpJK1as0MCBAzVq1CiVlZXF3f6jjz7SueeeqwsvvFCffvqpxo8fr/Hjx2v16tXWNlOnTtWCBQv05JNP6ssvv9SVV16pKVOm6LXXXsvW3QLQAiWq+Kuutmc9AAAAAIAIgj8AOc+s+PNFt/oMf0+rTwAtxb333quLL75YkydPtirzWrVqpUcffTTu9vfff79Gjx6ta6+9Vn379tVtt92mn/3sZ3rwwQetbT766CNNnDhRw4cPV+/evXXJJZdo4MCBKSsJAbgbrT4BAAAAwLkI/gDkvEjFX+Q8n1XxZ8OCACBDNTU1Wr58uUaOHGmd5/V6NXLkSH388cdxr/Pxxx/HbC9Jo0aNitn+qKOO0muvvaYNGzbIMAwtWbJE33zzjU466aTmuSMAcoLfL+XlxZ5H8AcAAAAAzpCXehMAaNnMqj5fTKtPc8YfyR8A5/vxxx8VCATUpUuXmPO7dOmir776Ku51Nm/eHHf7zZs3Wz8/8MADuuSSS7TXXnspLy9PXq9Xf/3rX3XcccfFvU2/3y9/1Dv75eXljb1LAFqweDP+CgoI/gAAAADACaj4A5Dz6sLZXl7UXzxf+HuzDSgAuNEDDzygTz75RK+99pqWL1+umTNn6rLLLtPbb78dd/sZM2aoXbt21lfPnj2zvGIATsCMPwAAAABwLir+AOS8QLjiLy96xl+44q+Oij8ALcCee+4pn8+n0tLSmPNLS0vVtWvXuNfp2rVr0u2rqqp0/fXX6+WXX9a4ceMkSYcccohWrlype+65p0GbUEmaNm2apk6dav1cXl5O+Ae4ULzgj4o/AAAAAHAGKv4A5DTDMCIVf57o4C90yow/AC1BQUGBDj30UC1evNg6LxgMavHixRo6dGjc6wwdOjRme0latGiRtX1tba1qa2vl9ca+HPT5fAoG45dDFxYWqm3btjFfANynpoYZfwAAAADgVFT8AchpwahgzxfJ/azqv7ogyR+AlmHq1KmaOHGiDjvsMA0ZMkSzZs3Szp07NXnyZEnShAkT1KNHD82YMUOSdMUVV2jYsGGaOXOmxo0bp2effVbLli3TI488Iklq27athg0bpmuvvVbFxcXq1auX3n33XT3++OO69957bbufAJyvujp+q0+CPwAAAACwH8EfgJwW3cozXqtPKv4AtBS/+MUvtGXLFk2fPl2bN2/WoEGDtGDBAnXp0kWStH79+pjqvaOOOkpPP/20brzxRl1//fXaf//99corr6h///7WNs8++6ymTZumX/7yl9q6dat69eqlO+64Q7/+9a+zfv8AtBx+v9SuXex5+fmhSkAAAAAAgL0I/gDktLqobnXRFX9Wq08q/gC0IFOmTNGUKVPiXrZ06dIG55111lk666yzEt5e165dNXfu3KZaHgCX8PsTt/o0DCmquzoAAAAAIMuY8QcgpwXCFX8+j+SJehfKrP6j4g8AACAzNTUNW30WFIRCv7o6e9YEAAAAAAgh+AOQ08yKv+g2n1Kk4i+6FSgAAABS8/tDQV80Mwhkzh8AAAAA2IvgD0BOq4uq+IuWF67+CxqSQfgHAACQNr8/fsWfJFVXZ389AAAAAIAIZvwByAlbt25VRUVFg/N/qvNKKpaCAa1bt846v9aQpNaSpLXr1qt92zbq2LFjdhYLAADQgtXUxJ/xJ1HxBwAAAAB2I/gD0OJt3bpV++63n7Zv29bgst6Dj9Slf/uH1v33v+p9xlDrfF9+gW7/5wZJUr8BA1Scn6fv1qwh/AMAAEiBVp8AAAAA4FwEfwBavIqKCm3ftk23PrdAe3TtHnNZna9AuyR16dlLs99dZZ1vSDLrA2+Y97KmnzlSFRUVBH8AAAAp1NQkbvVJ8AcAAAAA9iL4A5Az9ujaXZ167B1z3s7aoHZVBZSfX9DgsoryWklSh85ds7ZGAACAlo5WnwAAAADgXF67FwAAzckIn3o8DS/zxPkOAAAAiQWDUm1tw4o/gj8AAAAAcAaCPwA5zQgnf/GiPTMMNOKlggAAAGigpiZ0yow/AAAAAHAmgj8AOS29ij8AAACkwwz2mPEHAAAAAM5E8Acgpxnh6C9uxZ+1DREgAABAOsyKv/oz/szgr7o6u+sBAAAAAMQi+AOQ06xWn/Eq/jz1vwEAAEAyZkUfrT4BAAAAwJkI/gDkNKvVZ5zLiPsAAAAyk6jVJ8EfAAAAADgDwR+AnGZV/MWJ+TzhSj9afQIAAKQnUatPgj8AAAAAcAaCPwA5LRg+jdvqU0kuBAAAQAOJWn36fKEvgj8AAAAAsBfBHwBXiPfHzoz7qPhDSxAIGlpfWau6oJF6YwAAmkmiVp/meQR/AAAAAGAvgj8AOS0Y7vUZt+LPPI/cDy3Aih+r9fS3O7RsS5XdSwEAuFiy4K+ggOAPAAAAAOxG8Acgp5m1UfGyPU+c7wCn2uYPSJK2+4MptgQAoPmYM/6o+AMAAAAAZyL4A5DTwgV/SWf80eoTLYE/EDqYa2n1CQCwUaqKv+rq7K4HAAAAABCL4A9ATotU/DUM92j1iZakOhCq9Ksh+AMA2IhWnwAAAADgbAR/AFzLDAOp+ENLYFb81QQI/gAA9qHVJwAAAAA4G8EfgJyWtNWndR7BH5yPVp8AACdIVvFH8AcAAAAA9iP4A5DTIq0+GyL3Q0tiVfwR/AEAbOT3hz485fM1vIzgDwAAAADsR/AHIKelE/zR6hMtgT9I8AcAsJ/fH5rlF6+bgs8n1dZmf01AtFWrpEGDpOpqu1cCAAAA2IPgD0BuS5aRkPehhTAMI9Lqkxl/AAAb1dTEb/MphYK/urrsrgeo7/PPpc8+k9avt3slAAAAgD0I/gDkNCOc/MWd8RfnO8CJ/FFVflT8AQDs5PcnDv7y8gj+YL+qqtDpxo32rgMAAACwC8EfgJyWrNWnhdwPDuePqvILGFLAIPwDANgjWfDn9RL8wX4EfwAAAHA7gj8ArsWMP7QU/nrtPWn3CQCwC60+4XQEfwAAAHA7gj8AOc0sjIrb6pO8Dy1E/eCPdp8AALskq/jz+aTa2uyuB6iP4A8AAABuR/AHIKdFWn2S8qHlqg4EY34m+AMA2CVV8EfFH+xG8AcAAAC3I/gDkNOSzfizwkBK/+BwtPoEADgFFX9wOjP427DB3nUAAAAAdiH4A5DbyEeQA2j1CQBwCmb8wemo+AMAAIDbEfwByGlWxV+SGX8GbUDhcAR/AACn8PulvLz4l+XlEfzBfmbwt2lTZN43AAAA4CYEfwByWvJWn0DL0LDVp00LAQC4HjP+4HRm8FdVJe3YYe9aAAAAADsQ/AHIWUbaH/ElAoSzVQeCMT9T8QcAsAutPuF0VVVS27ah72n3CQAAADci+APgCnFbfTb4BnAmWn0CAJyiuprgD862a5fUvXvoe4I/AAAAuBHBH4CcFR2NJMv2iFDgdGbwlxc+kGsJ/gAANqHVJ5yuqkrq1i30PcEfAAAA3IjgD0DOShX8eSj5QwthBn9tCkJP2zUBgj8AgD0I/uB0VVVSmzahdp8EfwAAAHAjgj8AuStFNkLch5bCDP5K8sPBHxV/AACbpJrxV1ub3fUA9VVVSQUF0p57EvwBAADAnQj+AOSsmIq/eEP+Ihc2+1qA3VEdCEqS2ub7JFHxBwCwT7KKv7w8Kv5gv6oqqbBQ6thR2rTJ7tUAAAAA2UfwByBnmdFIoljPU287wKnqV/wx4w8AYBdafcLpzOBvjz2kDRvsXg0AAACQfQR/AHKWEc5GEtbzUeiHFiAQNFQXPpatGX8EfwAAm6Rq9UnwB7tVV0eCP1p9AgAAwI0I/gDkvgQBn8e6gAQQzuWPautJxR8AwG5+f6ilZzxerxQIZHc9QH3mjL899gi1+jR42QQAAACXIfgDkLNStfoEWgJ/OOQr8HpU5A0dzcz4AwDYpbaWij84V11d6Mus+KupkbZutXtVAAAAQHYR/AHIWUY4+ks5489DNAjnqg4EJUmFPo/yfeHgj4o/AIBN6upCAV88BH+wW1VV6LSwUNpzz9D3tPsEAACA2xD8AchdKbIR8j60BGarz0KfRwXhij9afQIA7FJbm7jVp88nBYOhL8AOZvBntvqUCP4AAADgPgR/AHKW1eozZcBHAgjnqg4Hf0U+jwp8tPoEANjHMJJX/JmBIFV/sEt0xV/HjqHvCf4AAADgNgR/AHJWqhl/xH1oCeJV/NUZUtAg/AMAZJcZ6CWr+IveDsi26OCvoEBq00bassXeNQEAAADZRvAHIGeZuYgnVcRHz084WCT48yrfGzlWafcJAMg2M9BLNuMvejsg26KDP0nKz5dqauxbDwAAAGAHgj8AuS9Brhed93kTvYMF2MwfCA1KKvR55PNEnrhrCP4AAFlWWxs6peIPThU9408KHasEfwAAAHAbgj8AOSuTVp9eX4J3sACbRbf69Hg8ymfOHwDAJgR/cLr6wV9+fuS4BQAAANyC4A9AzkoV/EXzJnoHC7BZdTjgKwoHfuacv9qgbUsCALgUwR+crn6rTyr+AAAA4EYEfwBylpGiIIqKP7QE0RV/UiT4o+IPAJBtZvCXasYfFVawS3V16JTgDwAAAG5G8Acg53nSKPnzEfzBoazgzxt6yrZafTLjDwCQZakq/szzqfiDXeJV/BFEAwAAwG0I/gDkLCPc7DPhjL+oRJBWn3AqfyDU07N+xV8twR8AIMto9Qmnq6oKfegvPz/0MxV/AAAAcCOCPwA5y2z1mazgz7yM4A9OVb/VZ374mZuKPwBAthH8wemqqkLVfubn+6j4AwAAgBsR/AHIfWm0+mTGH5zKH2TGHwDAGdKd8UfwB7uYwZ+Jij8AAAC4EcEfgJxlxiLpVPz5Er2DBdgs3OlTeeHAr8BHq08AgD2o+IPT1Q/+fD4q/gAAAOA+BH8AclYk+EsS/YUv8ublN/t6gMYIhHvWhnM/5ZsVfwR/AIAsI/iD01VVSQUFkZ+p+AMAAIAbEfwByFnWjL/UuR+tPuFIhmHI7OiZ56HVJwDAXrT6hNPR6hMAAAAg+APgclbwl0erTzhPMOr7cIdPWn0CAGyTquLPPJ/WirALFX8AAACAzcHfjBkzdPjhh6tNmzbq3Lmzxo8fr6+//jrl9Z5//nkddNBBKioq0oABA/TGG29kYbUAWpp0ZvyZfLT6tF1NwND/+3KbFv5QafdSHCMQlfz5vPUq/gj+AABZRsUfnC5exR9BNAAAANzG1uDv3Xff1WWXXaZPPvlEixYtUm1trU466STt3Lkz4XU++ugjnXvuubrwwgv16aefavz48Ro/frxWr16dxZUDaAmsVp9JtjHbgNLq034/Vtfpx+qAvtzmt3spjmHO95MiFX/5tPoEANiEGX9wuvoVf/n5VPwBAADAfWx9p3vBggUxP8+bN0+dO3fW8uXLddxxx8W9zv3336/Ro0fr2muvlSTddtttWrRokR588EHNmTOn2dcMoAVKo+TPm+ij68gas3UllWwRgajw2mvO+KPVJwDAJmagR/AHp6LiDwAAAHDYjL8dO3ZIkjp27Jhwm48//lgjR46MOW/UqFH6+OOPm3VtAFoeI9zsM2nFX/iUVp/2qw23tQwYUh2hlqRIxZ8v6iCm1ScAwC5U/DnXrl3SVVeFgi8327WLGX8AAACAY4K/YDCoK6+8UkcffbT69++fcLvNmzerS5cuMed16dJFmzdvjru93+9XeXl5zBcAd0hnxp8nfCmtPu0XXcFGG8sQc8afOd9PotUnAMA+zPhzrk8/lWbNktw+AYOKPwAAAMBBwd9ll12m1atX69lnn23S250xY4batWtnffXs2bNJbx+Ac1kz/tIo+fPm0erTbtEVbFSzhcSt+KPVJwDAJlT8OVdFRejU7RV/8YI/Kv4AAADgNo4I/qZMmaLXX39dS5Ys0V577ZV0265du6q0tDTmvNLSUnXt2jXu9tOmTdOOHTusrx9++KHJ1g2g5aPVp3NEt/f0U80mKTLjz+dpWPFntkYFACBbamslrzf0FY8Z/FFhlX1m8Ldrl73rsFtVVWyrz/x8jkcAAAC4j63Bn2EYmjJlil5++WW988476tOnT8rrDB06VIsXL445b9GiRRo6dGjc7QsLC9W2bduYLwDuEGn1mazkL4RWn/aLrmDzU80mKX7Fn9n107wMAIBsqa1NXO0nUfFnJ4K/kPoVfz4fFX8AAABwH1vf6b7sssv09NNP69VXX1WbNm2sOX3t2rVTcXGxJGnChAnq0aOHZsyYIUm64oorNGzYMM2cOVPjxo3Ts88+q2XLlumRRx6x7X4AcCar1WeSbczLvImG1SBrapjx14BZBRk948+s/iMbBQBkW6rgz6wEJPjLPlp9htQP/qj4AwAAgBvZWvH30EMPaceOHRo+fLi6detmfT333HPWNuvXr9emTZusn4866ig9/fTTeuSRRzRw4EC98MILeuWVV9S/f3877gIAB7NykdQFf7T6dIDaAMFffUGr1WfkPPN7Q1KQqj8AQBalCv48ntDlBH/ZR8VfSHV1bKtPn4/gDwAAAO5ja8WfkcYblkuXLm1w3llnnaWzzjqrGVYEIBclrfgLX0irT/tFz6zzBxlgJ0l1VqvPyFEcVfynoBH7MwAAzSlV8CeFghaCv+wj+At1+4hX8UerTwAAALiNrRV/ANCcIjP+ErNafebR6tNutbT6bCAQp+LPGxUCMucPAJBNBH/ORatPye8PnUYHf3l5UiAg8ZkyAAAAuAnBH4CclU5VsYlWn/aLDv78DLCTJAWCDSv+fPUq/gAAyJba2lCwlwzBnz2o+IuEnvWDP4l2nwAAAHAXgj8AOc+TpOTPqvij1aftqPhryKr4i3q29sS5HACAbEgn+MvLI2SxA8FfJPiLnvFH8AcAAAA3IvgDkLPSafUpa8YfrT7tFlPxR6IlKdLKM7riz+PxWFV/QVp9AgCyiFafzkWrz+QVf8z5AwAAgJsQ/AHIWWYmkt6MP1p92i2m4o8elpLiz/iTJK8V/GV3PQAAdyP4cy4q/uIHf/nhl/hU/AEAAMBNCP4A5Cyr4i9Jr09POPrzUfFnu9pg5HtafYbEm/EnSd7wzwEq/gAAWVRXx4w/p6Lij4o/AAAAwETwBwCSvKk+vo5mR6vPhuLN+JMiFYDsJgBANlHx51xU/DHjDwAAADAR/AHIWenM+DMLqWj1ab8aWn02YFb05dWr+DMrANlNAIBsIvhzLoI/Kv4AAAAAE8EfgJxlzfhLlvyFeWn1abu66OCPUjZJkYo+b8IZf+wnAED21NbS6tOJDEOqrAx9T/AXP/ij4g8AAABuQvAHwNXMPMXno9WnnYKGEdO20k8pm6TIjL/6FX9eWn0CAGyQTvCXl0fwl21VVVIwKJWUEPxJVPwBAAAABH8AclZarT7Dp7T6tFf91p7+gCGDarZIxV+DGX+e8OXsIwBA9qTb6pPqquwy23x26EDwJ8XO+MsPv8TnmAQAAICbEPwByEnRoVHSTp/mjD9afdqqNk6FX23QhoU4TKIZf5FWn9leEQDAzZjx50zRwZ8ZfrlRVVXo+Ix+WW9+T8UfAAAA3ITgD0DuS5L8WRV/tPq0VW0gdFrg9ViPSf0qQDcyK/589Y5hs+KPXQQAyKaamtStPr1egr9so+IvpKoqts2nRMUfAAAA3IngD0BOis5Dklb8hXlTfXwdzcqs+Mv3SgXhlMsfoOTPnPHnSzjjj+QPAJA9VPw5ExV/IfGCP2b8AQAAwI0I/gDkpHSDP/MyH8GfrSLBn0eF4VSrJkCoZVX81Xu2ptUnAMAOtbWpK/4I/rLPDP7atw+FX279XFCy4I+KPwAAALgJwR+AnJTuGx4ea8YfwZ+dooM/q+KPVMuq6Ktf8Wf+TMUfACCbqPhzpuiKP0mqrrZvLXaqqpIKCmLPo+IPAAAAbsQ73QBynseTutknwZ+9ooM/8+Gi4i/ZjL/QKdkoACCbqPhzpoqK0IfZ2rUL/bxrl1RcbO+a7EDFHwCgJXn44YdVWVlp9zKQoZKSEl166aV2LwNIiXe6AeQkMw9JFfl5wlvQ6tNe0cGf2cbST/CnuoQz/kI/E/wBALIp3Yo/QpbsqqiQWrWKhH1unfMXr+IvPz90SsUfAMBpKisrVWGW7QNAE+OdbgA5yeyAmLrWL4SKP3vVBkOn+T6PVc1WQ6plBXuJZvzR6hMAkE0Ef85UUREK/cxqt1277F2PXeJV/JkVqhyTAAAnK86hUv2qqE8g5er9AloC3ukGkJOsOCRF8mde7KXiz1ZmyJfvCVX9SbT6lKS6lDP+sr4kAICLpRv8UV2VXWbFn9uDv+rqhhV/Hk/omOWYBAA4VXFxscaNG2f3MprM/PnzVVVVlbP3C2gpeKcbQE5LWfEX3oBWn/ayWn36PCoIB39+Kv4iFX/1DmSvNeOPfQQAyJ66Omb8OVH9ij+3vicVL/iTCP4AAADgPt7UmwBAy2OEA5HUM/5CaPVpr7qoGX8FPir+TIlm/Pms4C/bKwIAuFm6FX8Ef9llVvwVFYV+dmvFX01N/OMzP59WnwAAAHAXgj8AOcnMQzzptvpM9fF1NCuz1WeB16NCs+KP4C/JjD+z1Sf7CACQPQR/zkTFX0ii4I+KPwAAALgNwR8ASPLl5du9BFerjar4KwynXDWUsyWZ8Rc6ZRe5z+zZs9W7d28VFRXpiCOO0L/+9a+k2z///PM66KCDVFRUpAEDBuiNN95osM2XX36pU089Ve3atVPr1q11+OGHa/369c11FwC0YOkEf3l5BH/ZVl4eG/xR8ReLij8AAAC4DcEfgJxkVfyl2M7MU2j1aa/aQMNWn1T8SYGEM/48MZfDHZ577jlNnTpVN910k1asWKGBAwdq1KhRKisri7v9Rx99pHPPPVcXXnihPv30U40fP17jx4/X6tWrrW2+++47HXPMMTrooIO0dOlSrVq1Sn/84x9VZPaLA4Ao6c74I2TJLrPVp9uDv9raUMhXn89HxR8AAADcheAPQE4yOyB6UkZ/IbT6tFdtMHSa7/WowMuMP1Mg5Yw/9pGb3Hvvvbr44os1efJk9evXT3PmzFGrVq306KOPxt3+/vvv1+jRo3Xttdeqb9++uu222/Szn/1MDz74oLXNDTfcoLFjx+rPf/6zBg8erH333VennnqqOnfunK27BaAFodWnM5nBX15e6ItWn7Go+AMAAIDbEPwByEkZz/ij1aetIq0+pcJwqkWrz6iKvwYz/kKn7CL3qKmp0fLlyzVy5EjrPK/Xq5EjR+rjjz+Oe52PP/44ZntJGjVqlLV9MBjU/PnzdcABB2jUqFHq3LmzjjjiCL3yyivNdj8AtFyGEQr0CP6cx5zxJ0lFRe6t+GPGHwAAABBC8AfA1czgz5fqXSw0q+gZf2bFnz8QtHNJtgsahhVg5zWo+DNbfZL8ucWPP/6oQCCgLl26xJzfpUsXbd68Oe51Nm/enHT7srIyVVZW6k9/+pNGjx6thQsX6vTTT9cZZ5yhd999N+5t+v1+lZeXx3wBcAczzEun1SfBX3ZVVoYq/qRQu083B3/xWn3m5VHxBwAAAHfhnW4AOSnS6jMFa8YfrT7tFB38uanib+vWraqoqIh7WZ0hSa0lSRv+94Pyow7mHVX5kgpUVe2X1Ka5l4kcFQyGwvXTTjtNV111lSRp0KBB+uijjzRnzhwNGzaswXVmzJihW265JavrBOAMZnBC8OcswaC0c2ds8OfWVp+JWtEy4w8AAABuQ8UfgJyUfqvP0Aa0+rRXTMVfOPirDeb2DLutW7dq3/32U+/eveN+9R9wiLXtQfvvH3PZHbffKkl6+dXXtHXrVrvuArJozz33lM/nU2lpacz5paWl6tq1a9zrdO3aNen2e+65p/Ly8tSvX7+Ybfr27av169fHvc1p06Zpx44d1tcPP/zQ2LsEoIUxgz9afTpLZWXolFafiSv+mPEHAAAAt6HiDwBExZ/d4rX6lKSagKGivJR1my1SRUWFtm/bplufW6A9unZvcHnQ41X4vTzdv3h5TPVqTX4rVUsKBA1VVFSoY8eO2VgybFRQUKBDDz1Uixcv1vjx4yWFKvYWL16sKVOmxL3O0KFDtXjxYl155ZXWeYsWLdLQoUOt2zz88MP19ddfx1zvm2++Ua9eveLeZmFhoQoLC3f/DgFocQj+nMlsHECrz8QVf8z4AwAAgNsQ/AHISeZ0tFSRkTXjz8efQzvVhsf55Xs9yvN65PNIAUPyBw0V2bu0ZrdH1+7q1GPvBufXBQ1VVobeOe1c7/IdNQFVVwfli/exduSsqVOnauLEiTrssMM0ZMgQzZo1Szt37tTkyZMlSRMmTFCPHj00Y8YMSdIVV1yhYcOGaebMmRo3bpyeffZZLVu2TI888oh1m9dee61+8Ytf6LjjjtOIESO0YMEC/eMf/9DSpUvtuIsAHIzgz5nqB38FBe5t9VlTk7jVJxV/AAAAcBPe6QaQk9Kd8We2AqXVp30Mw7Dm+eWHCy8LfB5V1RmqCeRuq89UrHa1cS4zW9T6OG5d5Re/+IW2bNmi6dOna/PmzRo0aJAWLFigLl26SJLWr18vrzfSxf2oo47S008/rRtvvFHXX3+99t9/f73yyivq37+/tc3pp5+uOXPmaMaMGbr88st14IEH6sUXX9QxxxyT9fsHwNmY8edMVPyFGEbiir/8fCr+AAAA4C4EfwByUroz/kyhVp/uDZnsFJ3t5YfbfBZ6PapSJBB0Iyu8jnMMW5WqqcoukHOmTJmSsLVnvCq9s846S2eddVbS27zgggt0wQUXNMXyAOQwKv6cqf6MP7cGf4FA6LVTvGYIVPwBAADAbbypNwGA3GUGKF4CFNvURoV75ny/Al/o1E/FX/yKPypVAQBZRvDnTFT8hZgVfYkq/vz+7K4HAAAAsBPBH4CcFGn1mV7JX15+gXUdZJdZ1efzSN5wopUXPg24+EExjNRzKn35BdlZDADA9cwwL53gzzCkYLD51wSCP1Oy4I+KPwAAALgNwR+AnJRuq8/oi90bMdnLrPgz23xKkvmtiwv+kh7DtPoEAGRbJjP+JKr+sqWiIrTPC8KfBSoqcmfwl6wilRl/AAAAcBuCPwA5Kd28KDpUcXHGZKt4wZ8v/MC4uVognVafPlp9AgCyJN1Wn+blBH/ZUVERqvYzXxsUFkpVVfauyQ5msBdvxl9eHhV/AAAAcBeCPwA5Lb1GnyEuzphsVRsIncav+HNvHJtOu1pmUwIAsiWTGX8SwV+2mMGfiVafDS/Ly6PiDwAAAO5C8AcgJ0VCk+RiWn26N2OyVaTiL3KeVfHn4scknVafecz4AwBkSabBHxVW2VE/+HNrq0+CPwAAACCC4A9ATjLCsUmqGX+x14Edks/441GJx9xTVPwBALKFGX/OtGtXqMrPVFAgVVfbtx67mMcnrT4BAAAAgj8ALufxeKxSv2BGjUHRVOLP+AudBlyc+yWrWvWEE21m/AEAsoXgz5lqamLDrqKi0GPltv1PxR8AAAAQQfAHICel2+ozmpvbStopfsWf2erTvQ9KslafJir+AADZwow/Z6qtjQ1jC8JdwKuq7FmPXcxgL17FX34+FX8AAABwF4I/ADkpndCk/tbujZjsFbfiL/zs5OqKP7NdbZzLzPOo+AMAZAvBnzPVD/6KikKnbpvzl6ziz+ej4g8AAADuQvAHICdZwV8GNX8uzphsVRO31adZ8WfLkhwheavP0KkvvyBr6wEAuFu6wZ95OcFfdtTWxj4m5rw/gr+I/HyORwAAALgLwR8A1/OEA5agvctwrdrwjs+PekbyWjP+3Jv8JatajVT80eoTAJAdzPhzppqa+MGf21p9JgummfEHAAAAtyH4A5CTrGqpDFp9urm6zE51VPzFlU7VqpdWnwCALMm01Scz1bKjfvDn9laf8Wb85eWFjkcXf54MAAAALkPwByAnRUKTTK6TydZoKmZVny8m+Iu9zI2ShdfmWV6v19XhKAAge2prJa839JUMFX/ZVX/GH60+G15G+1kAAAC4DcEfAJgVfzavwq0C4eDKFxVwmRmgm0OtZHc9OgzkuAUAZEP9WXKJEPxlV6IZf25r9ZlO8EcVKgAAANyC4A9ATrKqpdLY1tzGxcVltjLDPa+nYatPN1f8mVIdw+whAEA2EPw5U6IZf26r+DNDvXitPs3zmPMHAAAAtyD4A5CTjHAcktaMv3C4RIBiD6vVZ9RjFWn1acOCHCKdVp+Su6siAQDZU1dH8OdE9QNZN8/483jit6Jl7iQAAADchuAPQE5qzIw/WibaI1LxFznPrP5zc6hlhddxLvN4PFYyGGQ2JQAgC6j4c6b6j0tBQejUja0+8/Pjf2CKij8AAAC4DcEfAIQFDQIUOwTDAVZsq8/QqZtbfabbrtbN4SgAIHsI/pyp/uPi8YSq/txY8RevzafEjD8AAAC4D8EfgJyUrE1inK2j/otsM9t5+uJU/Lm61Wf4NPExbFb8AQDQ/GprI6FeMgR/2RUvkC0sdF/wlyyYNs+n4g8AAABukcZnNgGg5Ym0+kyd/JlbEKDYIzLjr2HFX9DNFX/h01THsHv3EAAgmzIN/qiuyo6amoaPS2GhO1t9pgr+OCYBJPPwww+rsrJSJSUluvTSS+1eDgCgBXLScwnBH4CclFEYYlDxZ6f4M/5CpwEXp7GpWn16DEOGh1afAIDsoNWnM9XWNmxxSavPWFT8AUhHZWWlKioq7F4GAKAFc9JzCa0+AeSmNOejRSNAsUek1Wd0xV/o+6CL49jUrT5Dghkd5QAANA7BnzMlavVJxV8EFX8AAABwG4I/ADkp3dAkemuDAMUWZjtPKv7iS3xUMuMPAJA96bb6NEMWgr/sqKtr+Lj4fO4LuZIF02YlIBV/AAAAcAuCPwA5KTIfLTVm/NkraFX8Rc4zK/4Cbp7xl+KuW8ete3cRACCLqPhzpniPS16e+4I/Wn0CAAAAEQR/AHKOkWlYZJjXa/q1ILWAVfEX3eozdOrmUMsIH5gJq1YNKv4AANmTbvDn9Yaeuwj+siNei0s3VvzR6hMAAACIIPgDkNMyafVJgGKPQJyKP6/XE3OZG6VbtRo0aFELAGh+6bb6lELbEfw1v2Aw9EXFX3rBHxV/AAAAcAuCPwA5JzoryiQScXHGZKtgOHGNX/Hn3kfFvOuJw2sj6r8AADSvTII/NwZPdjD3MRV/VPwBAAAA0Qj+AOScTIM/j1nxR4Jii0B4/8ef8WfHipwhUvEX/yj2hDegUhUAkA3ptvqUqPjLlkTBnxuD12THpzn7j4o/AAAAuAXBH4Dc08iwyMioPhBNxQxcvdGtPqn4S6PVJ4E1ACB7CP6cxwyy6ldiUvEXy9w/btsnAAAAcC+CPwA5J6biL50hf1RO2SoQNCv+Grb6dHXFX8pWnyFBAmsAQBZk2uqT4K/5Jav48/uzvx47MeMPAAAAiCD4A5BzUldKxb+Gi4vLbBW/4s8Tc5kbpTqOrRa1WVkNAMDtqPhzHjP4M1tZmtzY6tPvb7gfTF6vO6sgAQAA4F4EfwBczwxWCFCyzzAMa7/Hr/hzZ/JnpHO/DXPb5l0LAAASwZ8TmUEWrT5TV6Tm51PxBwAAAPcg+AOQc9JtkRh1jaj/IpuiK/p8cSr+AkaaIVgOS3wcU/EHAMieTFp9EvxlR6JWn/n57gv+amoSV/xJ7qyCBAAAgHsR/AHIORm3+rRm/DErLduiZ/h541T8Se4MZGPmVKbY1s3tUAEA2ZNp8EfI0vzMCrZ4M/7ctv+TzfiTQpdR8QcAAAC3IPgDkHOMcGzCjD/nC0bt9NiKv8j3ARc+LtHHYuoZfwTWTvff//7X7iUAwG6j1afzJKr4c2PwSsUfAAAAEEHwByD3NDIoomVi9sVW/EW+j57358Y5fzEVf4l6fVqVqnC6/fbbTyNGjNCTTz6p6upqu5cDAI1C8Oc8iYI/N4ZcqY5PZvwBAADATQj+AOQcq9VnmoVQ5mbui5fsZ1b8eRQbcEVX/7mxlWV67WqpVG0pVqxYoUMOOURTp05V165ddemll+pf//qX3csCgIxkEvzl5RH8ZQPBX0Q6rT7dtk8AAADgXgR/AHJOxjP+zJaJBChZZ1b8+eo9WB6Px3r8XFnxF77LyY5h8zIq/pxv0KBBuv/++7Vx40Y9+uij2rRpk4455hj1799f9957r7Zs2WL3EgEgpUxm/Hm9BH/ZQPAXkU6rTyr+AAAA4BYEfwByTsY5kWGeMCst24JW8Ndw35thoBsD2fSqVpnx19Lk5eXpjDPO0PPPP6+77rpLa9as0TXXXKOePXtqwoQJ2rRpk91LBICEaPXpPGaQVT+QdeuMPyr+AAAAgJBGBX/77LOPfvrppwbnb9++Xfvss89uLwoAmkLC2WgNmAEKss2s5vPGeTYyw8CACx8YQ5EWqEk2kuTOYLSlWrZsmX7729+qW7duuvfee3XNNdfou+++06JFi7Rx40addtppdi8RABIi+HMeM8iqX+nmxpCrtpaKPwAAAMCU5j/dYn3//fcKBAINzvf7/dqwYcNuLwoAdkemrT6tGX8EKFlntfqM82h5rYo/Fz4wZqvPtCr+4HT33nuv5s6dq6+//lpjx47V448/rrFjx8obTrz79OmjefPmqXfv3vYuFACSqKsj+HOaZK0+3bb/U7WidWMYCgAAAPfKKPh77bXXrO/feusttWvXzvo5EAho8eLFvGkFwHaNnvHXDGtBcmao543zYIUq/gwrHHSTdO6yFVg350LQJB566CFdcMEFmjRpkrp16xZ3m86dO+tvf/tbllcGAOnLZMafG1tN2sHcx7T6ZMYfml9dXZ2WLl2q7777Tuedd57atGmjjRs3qm3btiopKbF7eQAAADEyCv7Gjx8vKdQ+b+LEiTGX5efnq3fv3po5c2bat/fee+/p7rvv1vLly7Vp0ya9/PLL1u+IZ+nSpRoxYkSD8zdt2qSuXbum/XsB5LhGz/hDtlkz/uK0+nRzxV9a4XV4v7gxGG1pFi1apL333tuq8DMZhqEffvhBe++9twoKChq8tgIAJ8mk1afX676KMzskq/irqQm9VEi7830LFgiEvlLN+CP4Q2OtW7dOo0eP1vr16+X3+3XiiSeqTZs2uuuuu+T3+zVnzhy7lwgAABAjoxl/wWBQwWBQe++9t8rKyqyfg8Gg/H6/vv76a5188slp397OnTs1cOBAzZ49O6NFf/3119q0aZP11blz54yuDyC3WaFJhm90UPGXfdaMvzgPlhkGujHYMrNOT9Lozwj/1wXv6LVw++67r3788ccG52/dulV9+vSxYUUAkBnDSB2sRHNjq0k7mEFWvOBPCj1mbpBo1mE0N1ZBoulcccUVOuyww7Rt2zYVFxdb559++ulavHixjSsDAACIr1Ez/tauXdskv3zMmDEaM2ZMxtfr3Lmz2rdv3yRrAJB7jHAgkv6Mv3CAYhCgZJtZ8RfvUyhmGBhwc8VfkkPSvCjovt3T4hgJjuHKykoVFRVleTUAkDkzxKPVp7MkavVpBn+ZVGm2ZIn2Q7T8fCr+0Hjvv/++PvroIxUUFMSc37t3b23YsMGmVQEAACTW6H8GLF68WIsXL7Yq/6I9+uiju72wZAYNGiS/36/+/fvr5ptv1tFHH51wW7/fL7/fb/1cXl7erGsDYL9ItVRmqPjLvoDV6jNOxZ/V6jOLC3KI9OZUMpvS6aZOnSop1CJ9+vTpatWqlXVZIBDQP//5Tw0aNMim1QFA+tIJVqL5fFT8ZYMZ7NX/oJD5ONXWSlHFSTnLDPRSVfwR/KGxgsGgAnFKaP/3v/+pTZs2NqwIAAAguUYFf7fccotuvfVWHXbYYerWrZs8WRoc0K1bN82ZM0eHHXaY/H6//t//+38aPny4/vnPf+pnP/tZ3OvMmDFDt9xyS1bWB8Bh0v7TZET9F9lkVvP54jxWkYq/bK7IGazwOnWnT4I/B/v0008lhSr+/vOf/8R8SrygoEADBw7UNddcY9fyACBtiWbJJeLzSVGfvUQzSVTRF13x5waJWp5Gy8+Xqquzsx7knpNOOkmzZs3SI488Iin0oa7KykrddNNNGjt2rM2rAwAAaKhRwd+cOXM0b948nX/++U29nqQOPPBAHXjggdbPRx11lL777jvdd999euKJJ+JeZ9q0adYn7qVQxV/Pnj2bfa0A7JNetVTDK7ixssxuVqvPOA+WGQa6sdWnKdkxbLaoDdKi1rGWLFkiSZo8ebLuv/9+tW3b1uYVAUDjNCb4o+Kv+dXUxH9MzMo3twV/zPhDc5k5c6ZGjRqlfv36qbq6Wuedd56+/fZb7bnnnnrmmWfsXh4AAEADjQr+ampqdNRRRzX1WhplyJAh+uCDDxJeXlhYqMLCwiyuCIDdIsFfeoGIh4o/20Qq/uK1+gyd58ZA1sjgaHTh7mlx5s6da/cSAGC3NCb4I2Rpfokq/qJbfbpBOscnM/6wO/baay999tlnevbZZ7Vq1SpVVlbqwgsv1C9/+UsVu6GfLgAAaHEaFfxddNFFevrpp/XHP/6xqdeTsZUrV6pbt252LwOAkzQyCQlmPBUQuytZxZ/XxRV/abX6ZMafo51xxhmaN2+e2rZtqzPOOCPpti+99FKWVgUAjcOMP2eqrY1f5Uarz4by8tyzP9A88vLy9Ktf/cruZQAAAKSlUcFfdXW1HnnkEb399ts65JBDlF/vXxv33ntvWrdTWVmpNWvWWD+vXbtWK1euVMeOHbX33ntr2rRp2rBhgx5//HFJ0qxZs9SnTx8dfPDBqq6u1v/7f/9P77zzjhYuXNiYuwEgR1kVfxnmeC7Ml2xnBn/xK/5it3GTtNrV0qLW0dq1a2fNQG7Xrp3NqwGA3UOrT2dixl9IOq0+8/Ko+EPjme9JJTJhwoQsrQQAACA9jQr+Vq1apUGDBkmSVq9eHXOZJ4N32pctW6YRI0ZYP5uz+CZOnKh58+Zp06ZNWr9+vXV5TU2Nrr76am3YsEGtWrXSIYccorfffjvmNgAg8xl/VE7Zxazmi1/x54nZxk3SaVfroeLP0aLbe9LqE0BLR/DnTLW18asw3Rr8UfGH5nLFFVfE/FxbW6tdu3apoKBArVq1IvgDAACO06jgb8mSJU3yy4cPHy4jyRu68+bNi/n5uuuu03XXXdckvxtA7rLaJKa5vbmd++Il+wWo+IsrvVafIbSodb6qqioZhqFWrVpJktatW6eXX35Z/fr100knnWTz6gAgNYI/Z6qpYcafFLmfqSr+3LI/0PS2bdvW4Lxvv/1Wv/nNb3TttdfasCIAAIDkvHYvAACaTfolf5LcGTDZLZik4s9nVfxlc0XOkF7VamgrFxZEtjinnXaa1SJq+/btGjJkiGbOnKnTTjtNDz30kM2rA4DUmPHnTLT6DDEr/pIdnz6fe/YHsmP//ffXn/70pwbVgAAAAE7QqIq/ESNGJG3p+c477zR6QQCwu4xwIJJpHRT5SfZFKv4aXua1Kv54ZOIyZ/zZuwqkYcWKFbrvvvskSS+88IK6du2qTz/9VC+++KKmT5+u3/zmNzavEACSo+LPmQj+QtKZ8ccxieaQl5enjRs32r2MtNx8881pnQcAAHJDo4I/c76fqba2VitXrtTq1as1ceLEplgXADRaxjP+wmiZmH1mqBe/1aeLK/7SaPXpoVK1xdi1a5fatGkjSVq4cKHOOOMMeb1eHXnkkVq3bp3NqwOA1BoT/LkldLITwV8IM/7Q3F577bWYnw3D0KZNm/Tggw/q6KOPtmlV6UsU8N18882EfwAA5KhGBX/mp9bru/nmm1VZWblbCwKA3ZZpEBJOWchPss8MreK1+jTPC7iw4i+TqlUCa+fbb7/99Morr+j000/XW2+9pauuukqSVFZWprZt29q8OgBIjYo/Z6qtjd/e0jzPDMRyXboz/jgm0Vjjx4+P+dnj8ahTp046/vjjNXPmTHsWlab6wV79sI/wDwCA3NSo4C+RX/3qVxoyZIjuueeeprxZAMiIVfGXZh5ibkblVPYFrOAvXsVf6DTowl6WaVWthgNRF+6eFmf69Ok677zzdNVVV+mEE07Q0KFDJYWq/wYPHmzz6gAgtUxn/BGyZEdNDRV/UnoVf1ShYncEm+kfJH6/X36/3/q5vLy8WX6PyQz4CPuSq6ysdHygi9xA8UzLxN8IJOOk/6+bNPj7+OOPVVRU1JQ3CQAZi4Qm6VZCUfFnl4DV6rPhZZFWn+57ZNJr9RlCYO18Z555po455hht2rRJAwcOtM4/4YQTdPrpp9u4MgBIT6bBn88nBQLNtx6EJKr4I/hriFafcKIZM2bolltuycrvSlX5hwjDMFRRUWH3MgA4FH8j0FI0Kvg744wzYn42+5svW7ZMf/zjH5tkYQDQWFZokuH1gvLIMAx50i0VxG5Lr9Vn9tbjFOmF1wTWLUnXrl3VtWvXmPOGDBli02oAIDO0+nQmZvyFpFvxZxihThJeb3bWhZZt6tSpaW977733Nup3TJs2Leb3lJeXq2fPno26rVTitfhEfB6PRyUlJXYvAy5QWVkpw4UfdG7p+BuBZJz0/3Wjgr927drF/Oz1enXggQfq1ltv1UknndQkCwOA3ZZuq8+oP8hG+ldDE4hU/MVp9RlO/qhoS47A2vl27typP/3pT1q8eLHKysoatIv673//a9PKACA96cxQi0bwlx2Jgj+zCtAtwZ+5H5K9FIoOQwsLs7MutGyffvppWtvtzmvwwsJCFWbxgDTDP0K/5EpKSnT11VfbvQy4wMyZM6kca4H4G4FknPT/daOCv7lz5zb1OgCgyaQ1Hy2BgBG/+gzNwwz14rX6ND+MTavP+AisW46LLrpI7777rs4//3x169aNkBZAi9OYVp8Ef83P76fiTwpV/KUKpQn+kKklS5bYvYQmkarSjxAQAIDctFsz/pYvX64vv/xSknTwwQdr8ODBTbIoANgdmQd/kQAlaBChZFMgnPx5qfiLkekxTGDtbG+++abmz5+vo48+2u6lAECjNKbVJ20Vm19trdSqVcPz3Rj8pTo23VYFCURLVOVH6AcAQO5qVPBXVlamc845R0uXLlX79u0lSdu3b9eIESP07LPPqlOnTk25RgDIyO70UnZjyGQns+Fh3Io/a8af+x6U9IK/yH4JGIbyCawdq0OHDurYsaPdywCARmtM8Gdej+qq5pOo1afHEzrfLSFXphV/QGMsW7ZMf//737V+/XrVmIMlw1566SWbVpU+Qj4AANylUZ+//N3vfqeKigp9/vnn2rp1q7Zu3arVq1ervLxcl19+eVOvEQAapTHd9Aj+sisQ3t9xK/48sdu4iRlep3sMc9w622233abp06dr165ddi8FABrFrKhK93mJkCU7amsTB15uC/6o+ENzevbZZ3XUUUfpyy+/1Msvv6za2lp9/vnneuedd9SuXTu7lwcAANBAoyr+FixYoLffflt9+/a1zuvXr59mz56tk046qckWBwCNkWmbRI+kutoa5eUXuLK6zE5Bq9Vnw8vMMDDowscknWPYIykYCMjr8xH8OdzMmTP13XffqUuXLurdu7fy671Lu2LFCptWBgDpSVRZlogZsjDnr3nV1iaeu+im4C9ZAGoyj1+OSTTGnXfeqfvuu0+XXXaZ2rRpo/vvv199+vTRpZdeqm7dutm9PAAAgAYaFfwFg8EGb1pJUn5+voLBYJxrAED2mDlRJgV/wbpaKb+AACXLzGq+eK0+3Vzxl65AXa28Ph+BtcONHz/e7iUAwG5pbPDnluDJLskq3Xw+9+z/dCr+qELF7vjuu+80btw4SVJBQYF27twpj8ejq666Sscff7xuueUWm1cIAAAQq1HB3/HHH68rrrhCzzzzjLp37y5J2rBhg6666iqdcMIJTbpAAGi0DJK/QPjjvwR/2RUM17Zt/elHrasIxFy21e+TVKRdVdVat257wtto06ZNzs1Ps8LrFMdwoLZW+YVFHLcOd9NNN9m9BADYLZkGf4Qs2ZHscXFTxR+tPtHcOnTooIqKCklSjx49tHr1ag0YMEDbt2+nlTsAAHCkRgV/Dz74oE499VT17t1bPXv2lCT98MMP6t+/v5588skmXSAAZCrSJjH95C8YDv6onMouf01ov//6kkv0xdI3Yy7rN2Kszp/5mP61bLkuvGBcwtto36GDvluzJqfCv3SP4WBd6N0rjlvn2759u1544QV99913uvbaa9WxY0etWLFCXbp0UY8ePexeHgAklU6wEo3gLzsI/kKo+ENzWb16tfr376/jjjtOixYt0oABA3TWWWfpiiuu0DvvvKNFixbx4XcAAOBIjQr+evbsqRUrVujtt9/WV199JUnq27evRo4c2aSLA4DGyHTGn0TFn13qAgFJPp179R/V8Za7Yi6r9RWqStI+AwZp9rur4l7/p80bNf0Xo1VRUZGjwV9yHLctw6pVqzRy5Ei1a9dO33//vS6++GJ17NhRL730ktavX6/HH3/c7iUCQFLM+HOmVMFfTU1212OXTGb8EfwhE4cccogOP/xwjR8/XmeddZYk6YYbblB+fr4++ugj/fznP9eNN95o8yoBAAAayij4e+eddzRlyhR98sknatu2rU488USdeOKJkqQdO3bo4IMP1pw5c3Tsscc2y2IBIB3ptkmMZlZOBUWCkk2BcLTVtkNHderaNeayXXVBVe0KKC+/QJ167G3H8myTdqtP87jlsHW0qVOnatKkSfrzn/+sNm3aWOePHTtW5513no0rA4D00OrTmaj4C6mpiYTNiRBGozHeffddzZ07VzNmzNAdd9yhn//857rooov0hz/8we6lAQAAJOXNZONZs2bp4osvVtu2bRtc1q5dO1166aW69957m2xxAJAtBCj2SNah0sy83PiQpF3xVxv6KD+tPp3t3//+ty699NIG5/fo0UObN2+2YUUAkJnGVvy5JXiyS7LHxedzz/6n1Seay7HHHqtHH31UmzZt0gMPPKDvv/9ew4YN0wEHHKC77rqL13EAAMCxMgr+PvvsM40ePTrh5SeddJKWL1++24sCgN2xO60+A+QnWRU0vyG4shgZ7AuO25ahsLBQ5eXlDc7/5ptv1KlTJxtWBACZaeyMP6qrmldtbeJKN7dV/KVq9UkYjd3RunVrTZ48We+++66++eYbnXXWWZo9e7b23ntvnXrqqXYvDwAAoIGMgr/S0lLlJ3lFnZeXpy1btuz2ogCgsaJDk0yCP6vVJwFUVpnBX7zHymxz6eaHJFWrT47bluHUU0/Vrbfeqtrwu40ej0fr16/X73//e/385z+3eXUAkFqygCkeQpbsSDbbzk3BXzoVqVT8oanst99+uv7663XjjTeqTZs2mj9/vt1LAgAAaCCj4K9Hjx5avXp1wstXrVqlbt267faiADhfJlVJtskg+TMrp2j1mV2R/d1wx3vCD6DbHpLo+5uy1SfHbYswc+ZMVVZWqlOnTqqqqtKwYcO03377qU2bNrrjjjvsXh4ApMSMP+cJBqVAIHEg66ZWn34/wR+y47333tOkSZPUtWtXXXvttTrjjDP04Ycf2r0sAACABjL455s0duxY/fGPf9To0aNVVFQUc1lVVZVuuukmnXzyyU26QADOs3xLld7btEvn7tdOXVtl9Gek2WUSmkQLBghQ7BBM8ii5dcZfZsEfM/5agnbt2mnRokX68MMP9dlnn6myslI/+9nPNHLkSLuXBgBpIfhzHnPfJnpc3FTxV1MjFRQk34YqVDTWxo0bNW/ePM2bN09r1qzRUUcdpb/85S86++yz1bp1a7uXBwAAEFdG79jfeOONeumll3TAAQdoypQpOvDAAyVJX331lWbPnq1AIKAbbrihWRYKwDm+K6+RP2BoXUVNzgR/kVlpBCjZZAWtyfa7yx6S6F3hSdHrkxl/zhcMBjVv3jy99NJL+v777+XxeNSnTx917dpVhmGkfIwBwAkynfFnhizM+Gs+BH8RNTVSq1bJt2HuJBpjzJgxevvtt7XnnntqwoQJuuCCC6z3wQAAAJwso3fsu3Tpoo8++ki/+c1vNG3aNKvVn8fj0ahRozR79mx16dKlWRYKwDn84ZRhV53z0obG5naRWWlNuBikZO7upDP+srUYh0i2T+rjuHU2wzB06qmn6o033tDAgQM1YMAAGYahL7/8UpMmTdJLL72kV155xe5lAkBKzPhznlTBn5tafSabdWjimERj5Ofn64UXXtDJJ58sXyZ/BAEAAGyWcalOr1699MYbb2jbtm1as2aNDMPQ/vvvrw4dOjTH+gA4ULUV/AVtXklymVTSBKwAhQQlmyJHULwZf4kucYd0jt7IjD+37iVnmzdvnt577z0tXrxYI0aMiLnsnXfe0fjx4/X4449rwoQJNq0QgNOsWyetWSOdcILdK4lFq0/noeIvIp2KVI5JNMZrr71m9xIAAAAaxdvYK3bo0EGHH364hgwZQugHuIy/zrnBXybVUtGCtEzMOsMwZCSJ9zz1tnULI4OD2Kz447h1pmeeeUbXX399g9BPko4//nj94Q9/0FNPPWXDygA41f/9n+TEzwJk2uqTkKX5pVPxV1OTvfXYKZ3jk4o/AAAAuEmjgz8A7lUdCAV+Ox3c6jPT4C9Ay8Ssiw6rPPH2u0tHn2USXtfVht7Ro+LPmVatWqXRo0cnvHzMmDH67LPPsrgiAE63Y4e0ebPz5pAx4895zFCPir/QvkjV6tPrDX25ZZ8AAADA3Qj+AGQkEDRk5n27ap1b8ZdpaBQMBEKnBChZE4jZ1ykq/pp9Nc5hzc9NY1sqVZ1t69atSWcfd+nSRdu2bcviigA4XWWlFAxKpaV2ryRWpjP+qPhrfua+TfS4uC34SyeYzssjjAYAAIA7EPwByIg/KmHYVRd0bAtGKv6cL9W+dm3wFz5NZ0Qlx62zBQIB5SV5J9Ln86mOdyABRKmoCJ1u3GjvOurLdMYfbRWbXzoz/tzS6rO2NnXFn+SuMBQAAADulsE/3wBAqo4K/uoMqSZoqNDnnJ6MhtKvlooWmZXmjgTFMAx50kmWmlEmYZVhyDWtPzNp9RkwK/5I/hzJMAxNmjRJhYWFcS/3+/1ZXhEApzODvw0bpMMPt3ct0dINVkxeb+R6ucbvDwWzffrYuw5z3yZ6XHy+3Nz/8WRS8eeWfQIAAAB3I/gDkBF/ILa95646Q4UZtH5qbtaMvwxDIjNAyfX8ZJs/oI9Ld+mLrX4N695ah3cutm0tZshaV1sTN+SyO5i0S2ROZer7HzBn/DXngtBoEydOTLnNhAkTsrASAC2FUyv+amoya/Xp8eRuW8XHHpOmTpW2bJGK7XsZRavPKOlWpLppnwAAAMDdCP4AZMRfb5jYrrqgOjgp+Wskq2WizetoTv8s3aWlG3dZFWVry2tsDf7MkDWQ5B0Yj0IVcDmex8aXRu4ZmfHnyj3keHPnzrV7CQBamMrK0OmGDfauo75MW31KuRuyrF0r7dwpffKJNGKEfesw23gma/WZi/s/nnQr/txUBQkAAAB3Y8YfgIxU1wv+dtY6KyrLpE1iNDcEKP/Z6pchqX1B6E9/VcDe+2rua7PNajzm45jDD0sDmbX6ZMYfAOQSp1b8EfxFlJaGTpcssXcd6cz4y8X9X59hMOMPAAAAqI/gD0BGGlb8OStxyKRNYjQ3BChVdaGQdki4ym9Xnb2hrXko1YXbVcZjdvvM4YelgcgxnJobjlsAcBOz4u9//7N3HfU1Jvjz+XKz1efmzaFTpwd/bqluM4+xdCv+cvGYBAAAAOoj+AOQkeoGM/6cVfFnybDkLxjI7Rl/hmGoKhzSdiwKtWattjm0Nfd1kHdgYlgVf2kcw2ab1FyuVAUAtzCMUPCXn++8Vp/ptlKMlqvVVZs2SQUF0r/+Je3aZd86qPgLSdXyNJpb9gkAAABA8AcgI/Ur/nY6LPhrbKvPQJ0Z/OVmgOIPGtb8wj3CMxn9QUMBG5NOM6wKpNXqMzcfl3iM8FGczjEcpOIPAHJGdbUUCEh77UWrTycrLZWOPDIUOH3yiX3rIPgLIfgDAAAAGiL4A5ARc8ZfgTcUS+zKmRl/uR2gmNV++V6pdb7X2j92zvkz93UgyTswtPpMLuCC2ZQA4BZmm8+ePaUdO+ytJquvro7gT5KCQamsTBo8WGrfXlq61L61pAq88vLc0dYyVQAazS3tTwEAAACCPwAZMSv+OhSG/nw4dsZfhslfoDa3AxRzvl+xzyuvx6MinyfmfDtkVPGXhfU4TjqtPnM8sAYAN6moCJ3uvXfo1ElVf8z4C/npp1BV5h57SIccYu+cPzPA8vniX56LwWs8fn/oND8/9bYEfwAAAHALgj8AGTFn/HUMt4t07Iy/DOV6gGJW/BXnecKn3pjz7ZDJjL8czWPjyqRq1Zrxl6sHLgC4SHTFn+SsOX+0+gwpLQ2dduwoDRpk75w/Wn2GmJWP6QR/bqmCBAAAAAj+AGTEqvgrCgV/zpvxl/58tGi53urTDGjNwM8MAKsCDqj4q61JuI0n09LNHBBp9Zn6vlvHbXMuCACQFWbFnxn8OaXiLxgMVbklqixLJBerqzZvDp126BAK/mpqpI8/tmctqYI/ny/0uOX6h6cyCf5y8ZgEAAAA4iH4A5ARM/gzK/6q6gwFHfSOQibz0aIFAwFJOdzqM/y4tTKDP59zKv4CST567cZWn1bFXwatPm0c1Ygsmz17tnr37q2ioiIdccQR+te//pV0++eff14HHXSQioqKNGDAAL3xxhsJt/31r38tj8ejWbNmNfGqAaTDrPjbYw+pdWvnVPxlMkMtWi6GLGbFX4cOkZas339vz1pqakKPSaLXC+bjlWuPQX2ZtPp0SxUkAAAAQPAHICORGX+h4M+QVO2gOX/WSjKd8ZfjFX/WjD+r1acTZvyFT+uSVPyFT3P0YYkro1af4dDUSeE7ms9zzz2nqVOn6qabbtKKFSs0cOBAjRo1SmVlZXG3/+ijj3Tuuefqwgsv1Keffqrx48dr/PjxWr16dYNtX375ZX3yySfq3r17c98NAAmYFX/FxdKeezqn4s8MStIJVqLlYlvFzZtDoWxxcSjYbNVKKi+3Zy2p2q+al9UkfpmVE6j4AwAAABoi+AOQkeqoyrFiXyiacFq7Tynzir9IgNL0a3ECa8afz2z1Ga74s7FUzAyrklX8mdyUa2VStWq2SbWxYyuy6N5779XFF1+syZMnq1+/fpozZ45atWqlRx99NO72999/v0aPHq1rr71Wffv21W233aaf/exnevDBB2O227Bhg373u9/pqaeeUn6m7+wDaDJmxV9xcajqz2kVf7T6DAV/HTpEfm7d2vnBX649BvWZFX/pVKTm4jEJoOmUlJSoTZs2KikpsXspAIAWyknPJRk2bAHgZkHDUE04GSv0edQq36uqQMCaH+cEmcxHixaZ8ZebCZM5y8+s9GsVPrXzsTMzR3Pfx+PCEX+W9Fp9hgNrV9VEulNNTY2WL1+uadOmWed5vV6NHDlSHycYMPXxxx9r6tSpMeeNGjVKr7zyivVzMBjU+eefr2uvvVYHH3xwynX4/X75zXdZJZXb9Y43kIMqKqSCglCA4aTgz6yoyrTVZy62VSwtlTp2jPxsd8VfsjDWvCzXHoP6Mqn4y8vL/QpIAI136aWX2r0EAEAL56TnEir+AKStJqo6rNDniQqPnBM6ZDIfLVquz0ozA76GM/7sC/7MkLWuNp1Wnzn6wMSRyX0N5niLWkT8+OOPCgQC6tKlS8z5Xbp00ebNm+NeZ/PmzSm3v+uuu5SXl6fLL788rXXMmDFD7dq1s7569uyZ4T0BkEhFRShIkkKtPp0S/DV2xp/Xm3utPjdtktq3j/xsd8VfsrDLLRV/mbb6zLVjEgAAAIiH4A9A2sw2n/leyefxqHU4RHJiq89MtZTKKcMw9N7GnVqyYafKqtJ/56LaavUZitKKrBl/9t3fSMVf4vthBX/OfliaVEatPsP7LlcDazSv5cuX6/7779e8efPkSfPTEtOmTdOOHTusrx9++KGZVwm4R2VlqM2nFAr+Nm1yxvNfY4O/XKz427w5tuKvuNi+4K+mhlafUqTVZ7oVf7m+PwAAAACJ4A9ABszgrzBcLWZWj+2qdU7wZ1X8ZXi9llI5taMmqI9Kq/TPsio9+tV2Pfb1du1MY/+bFX/mbL9W1ow/G1t9Bs0Zf0negQk/kA5/WJpUJlWrkRl/btpD7rTnnnvK5/OptLQ05vzS0lJ17do17nW6du2adPv3339fZWVl2nvvvZWXl6e8vDytW7dOV199tXr37h33NgsLC9W2bduYLwBNI7rib489QoHG1q32rkki+IvmtFafBH+ZtaLNxWMSAAAAiIfgD0Da/OGQqChcNdY6Pxz8OanVZwbVUtGCgXDFn3PuSlz+cPjqkeT1SJt21WltRfJhJYZhWJV95ow/s/LPzoo/c18HkrwD48YRf5HwOvW9N0NT50TvaC4FBQU69NBDtXjxYuu8YDCoxYsXa+jQoXGvM3To0JjtJWnRokXW9ueff75WrVqllStXWl/du3fXtddeq7feeqv57gyQho8+kubPt3sV2RVd8depU+jUCe0+Gzvjz+vNrXlqdXXSjz9KHTpEzmvdWtqxw571MOMvJJOKP58v9/cHAAAAIEkZ/vMNgJtFKv5CgYQ5489JrT7N+WiZz/gzWyY6O/mrCadl7Qu96lycp6+311hhYLLrmI+QWfFnnlYHDAUNQ95Md1gTMNeUrOIvFH4Zjmh1li2ZhNdmm9Sgm3aQi02dOlUTJ07UYYcdpiFDhmjWrFnauXOnJk+eLEmaMGGCevTooRkzZkiSrrjiCg0bNkwzZ87UuHHj9Oyzz2rZsmV65JFHJEl77LGH9thjj5jfkZ+fr65du+rAAw/M7p0D6rn3Xmn9emncOLtXkj0VFZHgz5wjt2WLbcux7E7Fn5PnqdXWSl9+Gfry+aQzz0y+/ZYtoefo+hV/dnU8puIvhIo/AAAAoCGCPyBN1YGg1uyo0UHtC5XndWMdUqTaLBL8mRV/zgn+GivQQlp91gbNOYse63FIFfyZVX353tD1pEjlnxQK/1rlZf+Ytlp9Jqv4c3Grz3SSP/O4ZcafO/ziF7/Qli1bNH36dG3evFmDBg3SggUL1KVLF0nS+vXr5fVGmjkcddRRevrpp3XjjTfq+uuv1/77769XXnlF/fv3t+suAGnbvFnavt3uVWRXdMVfYWHotLravvWYdif4q6pq+vU0lXPOkV56KfLzzp2RVqvxmJ2To4O/1q1p9Wk3c9ahN41eRj6fs8NoAAAAoKkQ/AFpWlZWrQ8279KWqoBG9Ght93JsYQZMReEZf4XhEKnGQalDo1t91rWMVp/mvi7weqzHoTrF/rfm+/ki74h4PaHg0B8wVFUXtELcbDL3dTDZjL8whz8szSKdY9isVA22/OwdaZoyZYqmTJkS97KlS5c2OO+ss87SWWedlfbtf//9941cGdC0ysrcF/yVl0vm2MyCgtBpSw/+nBw6ff+9NGyYdPTR0p13hlp2Jgv+Nm8OnUa3+rRzxp8ZeCXiluDP70+vzafk/GMSAAAAaCrM+APSVF4bkCR9ud0vw6Vt9arDM/7MSjNfOPirc9D+sOajZdzq06yccs59icds9VkQU/GXPPWpP9/PZPecP3NfJ2/16T6ZhNeB2lB/q4Aro1EAuaysLBTEOPxpuUlVVESCJycFf42d8ef0eWo7d4ZmKXbuHPo5VYCXKPirqLDnOE1V8eeWGX81NQR/AAAAQH0Ef0CazEqr8pqgSqsCNq/GHpGKv1AkYbaNzIFOny2v1afPY1Vcpmz1GQ4Gi+tV9Zk/V6UIDpuLueykrT7Dp2564zeTOZXBFnLcAkAm/P5Q6FdT44zgK1uiW306Kfgzn6bNICldTm+ruGtXaH+3Djfy2LEj+falpVKbNpHHRgpdNxgM3Va21dYmf0zMMCzXg65Mgj+nh9EAAABAUyH4A9JUG/XO+jfb/TauxD71Z/yZBWSOrPjLsFYsWBcKc4MOui/x1Mat+Etvxp9Z4Wcy5/rtsqniz/xfKmnFnzXjz9mPS1OKHMOpWa0+HX7cAkAmtmyJfO+mdp8VFZHgz+MJBUxOmJFnBiXphismp1dX7dwpFRVFgr90Kv6i5/tJkQpNO9p9pgr+aPXZkNOPSQAAAKCpEPwBaYoOV77eUWPjSuxTXT/4syr+nBM6NH7GX8uonDIrT/MzCv7iV/xZMwJtKtkMWq0+U5cDOPxhaVIZtfo0W9TmQNUtAJjKyiLfuyn427kzEvxJoeDPSRV/uTbjb9cuqbAws4q/+sFfuqFhc0hV6eamVp/pHptOr0IFAAAAmgrBH5Cm6Iq/n6oD+rHaff9qjLT6DP3pyHNgq8/Gz/gzK6eadj1NzZrx50s/+DMr+lo1aPVp94y/8Glt4iDdehgd/rg0pcgxnPogNtukBiXXzh4FkHtKSyPfb9tm3zqyqa4uFPKZFWRSKJRyQvBnzvjLpVafgUBo3xYVpV+1t2mT1L597HktoeKvJsc/r+j3x7ZfTSYvz7nHJAAAANCUCP6ANJmBi9ku8ZvtOf6v6Diqw2VF9Vt9GpICLTx0sCqnHH4/Ylt9hv6Epz/jr36rz9D1d9lULmZW/AWTvAPjiTrG0FB0m1QH5e8AsFvcWPFXWRk6peIvO8yZfMXFoXUWFaWu+NuypWHwZ3fFX7LHxC2tPjOp+HPyMQkAAAA0pQz/+Qa4l9lisW+HQq34sVrf7KjRUV1bpbhWbolU/MW2+pRC7T59vkwbbDY9N7X6NB+HqkBQ69atS3idbZVFknzaue0nrdsVsM7fVZ0nqVDlu/yS2jTjquMz88q6pBV/ofvo8IelSWVyDEeHpkFDcsD/ggCw28rKQqFXTY17gr+KitBpdMWf04K/TGf8+XzODVnM4K+oKHTaunXq8G7HDqmkJPY8uyv+ooPi+twU/KV7bDr5mAQAAACaEhV/QJrMir992oZ6yWz3B5JtnpP89Wb8RYcMTmn3aYQjoka3+pSzWybGa/UZMKR99ttPvXv3jvu16suvJUkXTvhVzPlXXfYbSdL7/1qmrVu3Zv2+BNKp+AufOvghaXKZtKuNrvhzerUqAKSrtFTq3DkUXLgl+GsJFX/eDP/l6OSQZefO0KkZ/JWUpK74Ky+PDWYl+4O/ZJVubpnx5/dnNuMvGAx9AQAAALmMij8gDYZhqDb8D8SS/NC7HrVOLw1rYoZhRAV/oX3g8XiU55HqDKnOIaFDY1dRv2VihmNsssY8DkOtPiPJ0M3PvKk9OneJe52K1p1lSLr8nofkC0ZCtjpfgXZJKmjdRhUVFerYsWMzrrwh83+h6H3fgAtbfVrBXxrbBqOPWycfuACQgbIyqUOHUDjjluDPrPhzYvBntlLM9ENVeXmhWXpOVD/4S1XxZxihx8hs7WnKzw/NYnRiq0+fL/SY5Xrwl2mrTym0TwoLm29NAAAAgN0I/oA01ESFfK3zIlVWQcOQN9N3QVqomqBhBRLRgVOe16O6gKE6hwWhGbf6DLSMlonmsZjv9cjr8ShPhurkUYcu3dWpe48G2xuGofKK0H3bs0u3mPas/oChXTvr1Kpdh+wsvh6z1WcgaatPd4muNk3nvhuGIY8MGfIo4Kp4FEAuKy0NzVLbvt19wV/9Vp9VVfasJ1qqyrJEnDxPrX7wV1ycvOKvsjIU/tUP/qT02oQ2h3QeFyc/Bk3F70+/1ae5v+rqCP4AAACQ22j1CaTBDFs8korzIv/buKnqL7qVZ54n+ntPg8vt1PgZf9HBn3Mf19pwWlYQDvDyPaGfjQQBdPQ98dbbxAw3W7XraEsrTXM/B2j1GVe6nykw/yK56M8RgBxXWhqq+CspcU/wF6/VZ36+Myr+amszn+8ntaxWn6nCO/Oy+q0+zfPsCv58KSr93RD8ZTLjzy1zDwEAAACCPyANNWbY4vPI54mEEbUOCbuywWzlmecJtfg0mTmo01p9ejKsxIxp9emMuxKXVfEXfqMn3HlWhif+n/NAVBBavzrVDP58eXmqtSX4C58mafVpLtlwSTVbY+6l+ag6+bgFgEyUlYUq/lq3dk/wl6jizynBX2Mq/pw8T23XrtCpGfy1apX8WDODPSr+nCfTGX9S7u8TAAAAgOAPSEP0XDWPx6P8cOmUuyr+wsFfvbIx82entfrMlBEMyoxdAg6+K2bwZ1b8FaSo+AuEA9n61X5SOBwNX15nQ1PNgFXxlyT4C586+CFpUtH5ebqPiPnYBlr4/4MAIIX+Dm7ZEqr4a91a2rbN7hVlR2Wl5PWGwj6TU1p9ZjJDLVp0W0WnMSv+zArLkpLk4Z3ZBjRe8GdnxV+qSje3BH/pVvwR/AEAAMAtCP6ANPgDoeSvIFwiZVZZuSv4C502CP5ypNWnFN0y0bmPa23UjD8pqtVngj/n5iEaL/hT+JqSVGdjxV+y4M9toh+GdKtWvS0gsAaAdG3bFgqKzFafbgn+KipCAVL0n/6WXvHn5LaKZvBnBq2tWiWf8Zes1WdxsT3BX00NrT4lWn0CAAAA8RD8AWmIrviT5M6Kv6hWn9Gc2+oz8+s6fVZaIGhYa4vM+Av9nKjiz9zel+Byj1nxZ9hR8Rc+TfLui9Xq06GPSVOzjt8MrmOGukHX1EUCyGVlZaHTDh2kNm3c0+qzsrJhqNTSgz8nV1ft3CkVFkbW2Lp1pN1qPGawV1LS8DK7WtLS6jMkk4o/J1ehAgAAAE2J4A9IgzXjz83BXwtp9dmY4MRkhkwBh6ZMNVH7ON8X2+pTCWb8par489hYLZZeq8/Qwp35iDS9xlSsOj2wBoBMmMFf+/ahkMUtwV9FRaTtpKmlB39ODll27ozM95MiwV8gEH97sxqw/mMk2dvqM9Xj4vPlfvCXSStaKv4AAADgFgR/QBrMwCXf597gL2BVjsWeb7X6dMCu2N0lOD1AMY9DnydSwZefYsaf2bY04R/78OW1NlT8pdPq03Uz/sKnmVSsmo9twCHtdgFgd5SWhk7NVp87drij6ruyMn7w15Jn/Dm54m/Xrtj9bc7uq6yMv315eWj7eK01W7e2J/irq0vd6jM/35n7vyll0urTycckAAAA0JQI/oA0mIFLYTjwM6vcahN8KjgXJa74i73cKRrX6jN0Hxx2Vyy19SpPpahWnyln/CVv9WnHoWxV/NHqc7eY+8jJsykBIF1lZaGQqaQk9FVXFwppcp3TK/5SBUzxOLm6qn7Fn9lmNdGcv/Ly+G0+zevaNeMvnVafNTXZWY9dMmn1SfAHAAAAtyD4A9JgtvrMt1p9hs6vddEb7WZFX57H2a0+TbvT6tOpAUr9ylMp0uozYcVf+DRRq0+zxsyOGX/mIRNMUvHnNkb42Mus1ad97VoBoKmVlUkdO4aek82gxQ3tPp0e/KUbrERzcshizvgzmcdaogBvx46GMxhNrVqFHr9svnwMBkNtSVM9Lm5p9ZnpjL9c3ycAAAAAwR+QBjNwKTDnqlkVf+55pz1S8Rd7vpNafTYu7ouwWiY64r40ZB2HMRV/ZvCXqOIv3Ooz0Yw/wwz+mmqV6Yu0+kw8/IdWn6lZLWpds5cA5LLS0tB8P4ngr6AgVM1kt92t+GsJM/7MUC9R8FdeHmkHWl/r1qF9lM3Hygyu0qn4y/WQK5OKP4I/AAAAuAXBH5CGmnotFvNcOePPnC/n3Faf0StoTATo9Bl/tXGDv9Bp4hl/odOEwV+4JtCO4M9q9Zlsxl/Uug2HVmI2JSv4y+A65mPLjD8AuaCszL3BX/2KMrPiz+6nv5qa3G/1aYZ6yVp9Jqv4M7fJFrN9JxV/ofuX7gxKJ4fRAAAAQFMi+APSUFuv4i/fhcFfbThUyG8w489BrT6jUiJPI4b8Ob7VZ72Ws1Kk1acSVPwFrOAvwf4wK/52s1oyU4ZhWGsLJBk+E70qZz4qTcs89DwZPB5OD6wBIBObN7sz+KusbFjxV1gYel6wO7jJJFiJ5vRWn/GCv0Th3fbtiYO/VNdtDlT8RWTS6tPJxyQAAADQlAj+gDT461VauTH4C4Tvq8/RrT5DGhthmbPSnFo4ZYavBb44rT4T3Gur1WeC2/RYM/6aZo3pit7HdbUEf6bGtPr0eMwZf27YQwByXVmZ1KFD6Hsz+Nu2zb71ZEuiVp+S/XP+3BD8FReHnnup+GtZAoH0Zh2anHxMAgAAAE2J4A9IQ20gUfBn25Kyri4cKuQ5uNVn0834c8J9aSj+jL/QaeIZf6HTRK0+zRKzgJHdir/otpSBdN99cebDYrvIjD8AaPmig7/CwlD45YaKv6qq2CBKigR/VVXZX0+0mprGBX9Obqu4c2fo+DJ5PKHKvWQz/swguj47Kv7M4M/tFX/p7geTk9vPAgAAAE2J4A9IQ02DVp+h891U8VcXThXy6rf69Din1ac5564RXT5jrueAuxJXvFaf+VarT0/cFqVmGFR/NqPJtoq/qLUG6pJU/EWt26EPS5OKtPpMnxVYO/XABYA01dSEKt/atYuc16aNO4I/v79h1ZKTKv5yccZf/QrLkpLEFX87djiz4i9V4JXrFX/pVj6anHxMAgAAAE3J1uDvvffe0ymnnKLu3bvL4/HolVdeSXmdpUuX6mc/+5kKCwu13377ad68ec2+TiASuCh86r5Wn5GKv9jzzSCw1kG7ovGtPkOc+rCax1t+1F/ufI8UDIbivfrrNgwjZcWfx5zxl+2Kv6i1BlOUApgrc+jD0qQa0+rT6/DAGgDSZVa2RVe+lZTkfvBnGKFwzwz6TE4J/hpb8efktor1W31KoQAvUXhXURGp7KvP6TP+koxSbvH8/tBppsGfE6tQAQAAgKZka/C3c+dODRw4ULNnz05r+7Vr12rcuHEaMWKEVq5cqSuvvFIXXXSR3nrrrWZeKdzOrPgrDA+4c2PwZ7Zm9NWv+POal7f8feH0Vp+19SpPpVBA5N9ZISlO8Bf1fapWn9l+/yNgzR5Mva+t4M+ZD0uTMsL7o1EVf27YQQBymhn8RbdgbN0694M/M8RxcsVfusFKNCeHLLt2NQz+WreOX/EXDCYP/goKQvfViTP+3NLqkxl/AAAAQKxGfHaz6YwZM0ZjxoxJe/s5c+aoT58+mjlzpiSpb9+++uCDD3Tfffdp1KhRzbVMwAr+rIo/n/uCv4QVfx7n7AsjHJc0uuIv3DbTAXclrngz/iSpurJcxW3aKShD0fc++n4k2ieRVp/2VPyl8+kTj0eS4ZKKv0a0+jQfQ6cetwCQLjP4i658c0PFnxnsObXir7GtPp0cssQL/hJV/FVURC6PJ9V8wOZAq8+QTCv+nHxMAgDcq6qqSvPnz7d7GU2mKvyiPlfvF9BS2Br8Zerjjz/WyJEjY84bNWqUrrzyyoTX8fv98pv/IpBUns1/kSEnGIZhtfq0Zvw5KOzKFnOGX4MZf+GfA07YFbs74y986tSHNd6MPykU/EkN1x2MCtc8iXZKOGnK9uNnVfxlN290vN1p9emI/wcBYDfEC/5at5a2bbNnPdli/lOlfvBnVj46IfhrTKtPp85Tq60NfcWr+IsXMpv/fExU8SclbxPaHKj4C0k3ADX5fKHXWLm8TwAALVOuhkq5er+AlqBFBX+bN29Wly5dYs7r0qWLysvLVVVVpeL6E9olzZgxQ7fccku2logcVBdVaWRWWkUq/mxalA3qwjshz1M/+Atf7qC0bPdn/DnnvkSL1+pTkqorEgV/qcM1s1qsNtsVf2br2IxafcZWNCLE6cctAKQrXqvPkhJpwwZ71pMtTq/4y7UZfzt3hk7jVfxt2tRw+3SCP6dW/Lkl+MukFW2u7xMAQMtRUlJi9xLQCDxuaClaVPDXGNOmTdPUqVOtn8vLy9WzZ08bV4SWpiaqjMYK/sLvtLux4s9Xrzejk1p97m4o5HF45VSk5WyaFX/h06TBn1nx1yQrTF86oaTJna0+0z+WI8Ff068HALIpUfDn9lafdn9Qencr/pw242/XrtBpujP+zPMStfo0L8tm8GcGV+kEf2Y4losybfUpEfwBAJzj0ksvtXsJAHJYiwr+unbtqtLS0pjzSktL1bZt27jVfpJUWFiowuh3D4AM1UbN9zPbJZrBizPCruxoCa0+rTaJjQwAvdasNAfcmTislrMJg7/YdVutPpP2jWwBM/7Cp858VJpW41p9mu1a3bCHAOQyMwCrH/y5tdWnUyr+cq3VZ6KKv0RVe+Z5yT7cTatPezS24s9pYTQAAADQ1NJ5z9Uxhg4dqsWLF8ect2jRIg0dOtSmFcEN/HHCFjcGf2ZQk6jVpyP2xW7O+HN65VTmrT5Dp8kr/kJ1gXVZvs91mVT8haM/N+RakfA6feZx64TwHQB2R7wZfyUloYqrXH4OMIO9+uFFSw/+vOZrRIcFT2bwV/9zo6mCv1QVf/GqBZsLrT5DzNA8k+Mz1/cJAAAAINkc/FVWVmrlypVauXKlJGnt2rVauXKl1q9fLynUpnPChAnW9r/+9a/13//+V9ddd52++uor/d///Z/+/ve/66qrrrJj+XCJeGFLflSVm1Orw5papOIv9nwzCMyFaiMzhHJqgJKy1We97QPphGvhbYLyZPVYtkLJdOr4XDTWL9LqM33m4+vUwBoA0pWo1WcwKFVW2rOmbEjU6tPnC33ZHfw1dsafx+PMkMUM/uo3hWnVKrSv67fG3LEjdF8SNJixbstsIZoNBH8hjan48/lye58AAAAAks3B37JlyzR48GANHjxYkjR16lQNHjxY06dPlyRt2rTJCgElqU+fPv+/vTePs6Sqz/+funvvPXvPDMwigyyCrIKDJhglP0jQQEwACUbEPZEEwjdGcIFvNAZ/X18azU8TYoz6TURFE8UdxWGJyoQdERiGZYbZu3tmel/ufn5/nHvq3u6+Sy2nllv3eb9sa7i3bt1zqk5VV5+nnueDH/3oR7j77rtx2mmn4dOf/jS+9KUv4cILLwyk/aQzqCe21P47FE43H1AOraWOP+V+BETA4p+oyCVOdSL1ubCKuaYI3UD4Wyy+qqEZb2KBNGqEt7yPY9kUJS2s21lRn7KXdlyrYR+3hBBilUaOPyDacZ+Noj7Va0ELf8WiM+EPCGesYqOoTzXWFrv+pqakGzDW5KYlkwmn8Bd1kctp1GeU9wkhhBBCCCFAwDX+Xve61zUVCr761a/W/czjjz/uYasIWUi9umqJmkn5QhlIx/1ulf+UKnaypTX+atYRC/eN71S+23XUp5bG6KUsBAqVhjWu8bf4M3LZSlwrl0qIxeMolAUyPo1lNZ6sRX1KOkHWctJH5ZoMq1OVEEKsMj8vxZVaMUO5rJRYE0UaRX0C0kkWtPDnNOoTCKfIogS6xQ4+FeU5NQWsXFl9fWqqecwn4L/jT+3TTnf8KdGcwh8hhBBCCCELaasaf4QEQb5O1KdhGEhWzp5ihzn+FpWXQ7JGZSsG7jhy6fgzKrGXQXejDrXO0uSigzA/JYvKLBH+0Drq0wCQn5czVYWS+3ZaxZbjr9L+wIeXH7iK+uyEHUQIiTLz81JAqX2AR8UxKjdgFAm7469QkM4xJ4TRcdbI8dfTI5eLa/VNTlbfa0Qm4+8YVfGrzVyIQDgdlzpxGvUZ5X1CCCGEEEIIQOGPkJbUc/wB1bhPP+MRg6TYwPFX+5/FMFrlbKAuiGGsV1io2beLXZWzE0cBNI76jLWwQObnZyvf4WfUp1zGjNbf2UEl/kzHnx3XanXc6m4NIYT4Sza7tO6aEsOCFr+8pJnjL5UKVvQslWSNxahFfRrGUqFViXuNoj6bEUSNPyvHJOruNiWa2xmfUd8nhBBCCCGEABT+CGlJPccfUBX+OqbGX1nV+Fv4epjcj2aNP7dRnyE8pLX1/YxFHZwdV8Lfws9Uhb/m2zYdfz523GoMaS2iA8I+TeHPhtwZ5nFLCCF2UI6/WjrB8aeEvzA6/pRAYsdRVUtYHX+ZzNL7xUaOP6tRn0E4/lqRTMr9X27zh/MaYdX5WEsYxyQhhBBCCCG6ofBHSAvy5eaOv04Q/spCmHXvFjv+ACBemTkJPOrTWLCwTZgjExs5T4Gq8FcWWFA3VfUjjMJfqUF0bD06KepT9dGOeG2EeNwSQogd6gl/SgyLsvCXy0nxol6cZliEv6hFfS6u7wc0dvxNTNRfv5Z0WopQfrkbCwVrYqwSB8N2DHRhVQCthY4/QgghhBDSCVD4I6QFraI+O0H4q43wrCf8qX0RfNSnqvHnTPpTnwpjZKISoJN1Jt7mJsfMf9cOR6uuOiX8+RlbW7Lh+FPHJYSHRTtVx591YpVPhXHcEkKIHebnl7relBAY9ajPRiJOWIQ/N1GfYRNZ5uaW1vcD5L5OpYDx8YWvT00Bvb3Nt6m255dAnc9bE/7UOqoWXtTI5ey7UcMoRhNCCCGEEKIbCn+EtKBV1GfwYpf31NaOq+fQUq+1f9SnbH8YtdxCA+cpAJSLRUDIgViqJ/y12CGFIGr8Vb4rZkHOU0JuCA+LdkzHn43PqCERxtqUhBBih3rCXyc4/rLZ+jGfQPDCnxKMolbjr57wBwDLlgGjowtfsxr1Cfgr/FmN+lTrR5F8vvG504gwitGEEEIIIYTohsIfIS1oJLiounZ+uqSCQgl6MaO+iGSKoEELDx0Q9ZlskNsZM4U/uZ6oiWcNZ9SnXLZqG9BhUZ8VedOOeM0af4SQqJDNLo36TCblNTHKjr9cbmm/FUELf1F0/DUT/gYHlwp/k5PVGNBGqOM3N+e6eZaw6vhTxy3Kwp/dsRmPh0+MJoQQQgghRDcU/ghpQSPBpaOiPitdTDRQIxIhcT+ajj+Hn1efC+MhbeQ8VRjlhY6/2i60FP6ylahPH7MizfqDvn1je+As6lMSxnFLCCF2qOf4MwwpqkTd8ddIxEkm/ROT6uFW+IvFwin8NRJaly0DRkYWvjY9HU7hz0rdRTWucjlv2xMUjPokhBBCCCGkPg7/hCOkc2gd9RmN2faxsTFMT0/XfW+yaADohiHK2LNnz5L3i/kMgHgI9oXLqM8QRyY2i/oEAGOR46/2ULTaHVXHn7s22qFoOv6sRH1KwndU9CPM/WJ9EBuGqvHXCXuIEBJl6gl/gHwtysJfLtc86jPIvnei469W+CuV5Pqtoj7V9vwS/goFOv4A687HWij8EUIIIYSQToDCHyEtUC6odAPHXxSiPsfGxnDcli2YGB+v+/66k16Jv7h9G0YOHsCmM85Y8v41X/gWXr71dzA5PQMsa/AItR84tfpVCLNzqlXUp7Goxl9tlKbRssZfEFGf1h1/pvAXwuOiG6W92hnK6oH/MI5bQgixw9xcfQEsnY521GerGn8Nbs98oRNr/O3cWf3vqSm5tOr4C1uNPzWuoir85XL2x2YiEd39QQghhBBCiILCHyEtUMJesqHjz/cmaWd6ehoT4+P42B13YcXQuiXvF+NJzAFYvmYIX7j/ySXvTxhdAICZ+WBn5dxHfS51y4UFJcq1FP4q41FFaTZIBl1AEDX+yjXCZCvMGn8d4PlT4qYd16palY4/Qki7Mz8P9PYufb2Toz7bvcZfWKM+ly+v/97gIHD4cPW/rQp/fjv+rAp/dPwtJYwuVEIIIYQQQnRD4Y+QFuQbRCxGscbfiqF1WLV+w5LX54plzM2VkEgk6r9/dApFACUf2tic6Ed9Nhb+5N4vL4r6jFmQQYMQ/kpl+zX+wndU9OOoxl9l5QhdigghHcr8fP3aa0GLX17TrE5Z0H2PatTnuqXPuQGQjr+ZGSngdXdXhb9WUZ9B1PizckzUuKLwVyUej+7+IIQQQgghRGFnzpUQV0wXSvi/OyfwxJH2mrkpNIhYTFbOHhXBGGVMF1IDOUI55UrCZdamWwy1cNYOdUEM4xFVNfESDa7asUVRn8qIasVRF4jwZwqT1mv8hfLAaETUCM62hL/KksIfIaTdaRR5GXSdO69pFvUZdMypW+EvjPXUWkV9AsDoqFweOrTw9Ub4LfwVCvYcf7mct+0JCidRn2Eck4QQQgghhOiGwh/xjZemCjg0V8TDh9tn5kYIYQouS4W/StRnCN1hujFdSI3UiMo+CNrxJ1w6/qqRiXrao5NiRdVJNOhctcafcvxVHHVWhL9scDX+rESRVqM+o01t/+yM4ZihhPeo7yFCiFOGh4FS0L+kLdCpjr8wR30qZ1Q83ny9RrRjjT8AGBmRyz17ZFzpqlXNt6mEWzr+/IVRn4QQQgghhNSHwh/xjfmKmjKWLbVNPGaxppmLnVZm1GcYVSLNVB1/9ak6/vxpT2Pc1firRiYG3pElmMJfqxp/yvFno4aecvzlA3H8tUY5OMN3VPSyQPiz8Tk6/gghzZibA7ZsAb773aBb0ppmwl+nOv6CFv6UQGJXXFGEMVZxft668PfSS1L0ayWyxWJym36NU6tOt6gLf04cfxT+CCGEEEJIJ0Dhj/jGfFEKEwLA6HzIHv1tQLFmJn2x4KKEPz/FkqBo7fiTi6CjPtXXOxb+sLA+Xpho5DxV1Ap/Qoga4a/13ijMz8plucWKGrHjSFSrhFCP1Upt/wwblr+qUzXiO4gQ4oidO6XDac+eoFvSmk6O+gyr4y9qUZ9CNHf8DQzI+10V9blnD7BmjbVtp9P+Ov6siLHquEVZ+KPjjxBCCCGEkKVQ+CO+MV9jnxuZaxPhrzKRbgCIG/WFv6KPYklQCFT3Qz1Mx59P7WmMu6hPdUEMo4CiROhG0ZhK+ANkfb+ijSjNsNf4UwMvfEdFL6bAbvNzVaeqztaEm/0zBTw7nsNELvirDiFh59ln5XJsLNh2tEIIKe51ovCXyzV3/BWLwcVlKoEkKlGfuRxQLgNdXfXfj8el+Ffr+Fu92tq2/Rb+6Pizvh9qicfDNSYJIYQQQgjxAgp/xDfmahSykbZx/MllPZeViv5sl9hSN5hRn61q/AW9Kwx3UZ9GiAUUNc4aOv5Q4/wqA/nKwUhZsNTl5yqOPx8PYMmB4y/qtDzPGmA6VSHdnp3AE0ezuPOlaewYzwXdFEJCz44dcnn0aLDtaEWhIK+D9aI+0+loC3+toj4BKVgFgRKMnDr+wuaumpW3PHXHmWL58oWOv6Eha9vOZPwT/goFa8dErRPU+PEaJ46/sLlQCSGEEEII8QIKf8Q35ktV4W90vj1cGtW6akvfU4JKRwh/lWWsgQRTdfwFHPVZWbp1/IXxkCpNrlGNP6Dq7isJgXzldEtZsPwF4virtM9ajT9J1DUtx46/mn+Hcex6wXRlgPeleBtDSCvaxfGnhL1GNf6CjLv0mlZRn2qdINBR4y9MIosS/hpFfQJVx1+hABw8aC/q0y+BmlGfEqv7oZawidFeEfX7ZkIIIYQQ0hzOmBHfqI36PDxfNGt8hRlT+KujJCU7SPgrt3QihaU2nnL8OVP+DLMfgXdkCc1EaEW8MibnKyphDEDCStRnNoioz2obW2GYUZ/hOy46ETXRwnao1YIDd936xHSlIGVfkrcxhLTimWfk8siRYNvRimbCX9Qdf82iPtX+CFr4cxP1GSaRRTnymgl/y5ZJ4W//fhkLalX489PxZzXiMhaT60VV+GONv8ZccAFw661Bt4IQQgghhAQFZ8yIb8zXRH0WBXA0G37XX6GJyyrRQcJfKyeSUREsiiJgx5/LqM+Y6ZjT0x6dFJqI0Apl7lMieypuwLBgf1SOv6LwT/Q0a/wZrb/PdPx515xQ4NSxWrt6GEVr3QghMJWXvz/6Uw5nognpEIpF4Pnn5UR3uzj+GtX4i7rjr1XUZ5DCn2E4F/7CVk9N7cdmUZ+Dg1L427NH/rdV4S+V8lf4syp4JZPRFf7o+KuPEMBDDwFPPx10SwghhBBCSFBQ+CO+IIQwxYiBSjRbO9T5sxL1WRTRr6tl1h5rsV65xft+EcWoz2ITEVqhhL9sRVVLW4j5BKrCH+CfkK0cf5RtquiI+gyjaK2bbEmY5wMdf4Q056WX5MT4y18e/hp/rYS/qDv+WkV9BtV/q86yRoQt6lMJf42EVqDq+LMr/KXT4XP8AdEX/uyOz7CJ0V5w+DAwM1OtVUkIIYQQQjoPzpgRX8iVhSkKbeqTMxsjc+H/i6tZ1GetAFMIi+LlESpisaGgVhFxghcdXDr+KsswuqYsRX0uOkCpJiLhgm3nslCyk19juer4a72uGfUZvsOiFVNgt6lcG0a4x65upir1/boSRlMhnBAC7Nghl6ecAoyPB9uWVjDqs/57YXD8Oa3vB4TPXdVMYFYsWyYdsi+8AKxY0dwdWEs6Xa0h6DWFgj3hL5fztj1B4TTqM+rC365dcnn4cLDtIIQQQgghweHi+U1CrJOt2DOSMWB9TxK/PprDyHz4oz5VOmm9yeVao0mhLJCy6K5qR1o5/lRtvKJjyc09hmGYCpHTVii9xW8Bc2xsDNPT003XKZS6ARgYOXgQs/FqA/fv32/+e/EQtJOCmABQhH+Ov3Ll3LJU469yRKMuaSnN1cn4jRnSqRq8+O49qr5fP91+hLTk2WeBnh5g82YpSORy1kUMv2kWwZhKRVe4KJeliBNm4c+N4y9swp9Vxx8APPoosHq19W2n08DEhOOm2YKOP4mTqM+wuVC9gMIfIYQQQgih8Ed8Ya6ioHXFY1jTJYfdyHwRQgjb7hY/KYiqYLkYwzCQjEmHVNTr/LWsPVbZT0HuhniqOlPoPOpTdkAAvo3NsbExHLdlCyZaWDFufUz+5f7qc16FmaNLc3sKhSLSDh1/AJAwBIrCQN4n5UhFfbLGXxVhwwW5mLhhoChEKGNqdTNdkA+N9CUZFEtIK3bsADZsAAYG5H8fPQqsWxdsmxrRyvGXzcrrZIhvGx2hBM1WUZ/tLPyFyV3VbJwplPD30EPSLWuVTMa/qE87TsxEItrCn93xmUgApVI0ryeKF1+UyyNHot1PQgghhBDSGAp/xBdUfb+uhIGVmThiBpArCUwXyui3Y0vymMXOq8PZBIA08vPz2LNnYsn6MSFdWHv2H8BkQqCvrw/Lly/3rb1+Ua09Vv+vRuX4C9JtlEhWH912G/UJSPeVHyNzenoaE+Pj+Ngdd2HFUP3ZWAFAjcpPfmebub8B4MXfPI7PXHs1SqXiAsdfMgbEbPyVnzDkF/lX408uLTn+OiXqU0XqOvisEgs7IepzuhL12Z+i44+QVjzzDHDMMUB/v/zvsbHwC3+NavwBUiTLZPxrkx+0cqAFLfx1ao0/QArlQ0PWt80af/7j1PEHNHfatjvK8ZfLyVp/fX3BtocQQgghhPgPhT/iC/MlVZMphnjMQFfcwGxRYL4o0B+SP7jqOa9e+9Y/w8U3fAzfv/M7eOtH37/kM3/zw0exbN0GvPGSS7H/6ccxuGwZXnzhhciJf9XaY81XKAUY9ZlIuc8uq+1fWSyNzvSSFUPrsGr9hrrvlYTA9LR8XH7VumMWOBGPDh80/x2v0UHsuP2Aal/9E/4qjj8L63bKQ8qtInWbIes7io6I+pyqRH32MeqTkKYIIaM+L7usKvwdPRpsm5phRfibn6fw5zduHX/xeDgdf80En8HB6r/XrLG+bb+EPyHsHZeoOv5KJfnjpMYfEG3h78UXpYA9Pg6MjlL4I4QQQgjpRCj8EV+YU46/irqQqgh/+RDl0tVzXuVSvcgBOOd334jzf/u3lnxmpnslygA+8C/fwOSBl3DzFRdheno6esJfZdloml0JFUGKDvHKX+4G4Diis7Z/JSGQtCDBPDA8h6fHc/iTLQPo8UiIsGriitf0O21TtUxUjrIfwp8QVYHKjj7pZwRrELSM1G1CJzr++uj4I6QpIyPA5CSwceNCx19YaRbBWCv8KTdWVFBRn1EV/sIW9ZnNSqEo1uRXSCYDdHdLEc+O4y+TqY5jL1H7s9Mdf6pPToW/MI1L3ezaBZx0EvDAA7LO33HHBd0iQgghhBDiNxT+iC9ki1XHH1B1I/lVT8wOtc6ro9kScvkyunt7sXLlwJJ1czNF5MoC/StWI1GK4F/UFZSY0FiQqDr+ghJmEkk5U+jmmxdEfVocmo8dzmKmWMa+mQJOXObedViPatRqc1GzVuuz6/hL+Oj4q/2GmIXKfRHV+ZbQKlK3Gepwh/CSqp1pOv4IscSOHXK5YQPQ2yv/HXbHXyxWX8xQYmBQ4peXtHL8KVHDD0GpHjocf2GK+pyfb17fT7F8uRT+7Dr+/DhOdgWvZLIqMEcJp8JfbdRnFMlmgYMHgYsuqgp/hBBCCCGk8+CsGfGFuZoaf4B0/AEIleOvHrWCSz3M2mN+NCZAWu6HGpdRUMJDQs2YuRCJDKP6cStDc6ZQxkxF1J6rLL2gZdRqhZhhmOKfbcefoRx/dltnn9oxYkWfrF0lyuea1eNcD+X2DPkl1TVCCEwXSgAQqvqwhISRF16QQtq6dXKiu68v3I6/bFYKJ/WugUqoCUr88hIl/DUSLwxD9r+dHX+lUnjq9Kpx1goV92lX+MtmgbLH91JK8Or0qE+7+0FRG/UZRV56SZ5vJ50k/5vCHyGEEEJIZ0Lhj/iCqvHX3QaOv1pa1dwyFq0XVVrXHqvugGJAykNt1Kcbqs6p1v0YnqtmBM16KfxVllb6trY7gXXdcSQcOv78EONLNd9hRbrpGOGvsnQyhu2M23YmWxKmOE3HHyHNmZyUcYVqkntgIPyOv0aCTNBxl17SKupTvRdU3/N5944/IDwiy/y8tbpug4NSLO/psb5tVX/Sa4HartMtqsKfOnfo+FvIrl1yuWGDjHmm8EcIIYQQ0plw1oz4wrzp+JNDLh2Xy1zI7SkCzSMuzbpakZYjamuP1d8RBoBSpVBGMSjHn4aoT6C2VlrrdWuFvzkPO66iVq1oeem4YZ5ndlCOPz+E21q93/bxivCpRsdfa1TMZ1fCsC1uE9JpzMxI4U8RdsdfM+GvExx/YRX+CoWqUOKEsNVTy2atCX9r18r6mHZQ43Ruzn677KAEKzr+5NJpjb+oCn8vvij3yYoVUsCm8EcIIYQQ0pmwxh/xhXlV468SP9gujr8yHX8ArDj+gGI+h3giEZzjr/JXv9t6cDHDACBMsa0ZCxx/HmZkunGCWUXN6flR40+50uKGteNVKzhH+VQzHzRw8NlOcfxN5VnfjxCrzMwAXV3V/+7rC7/jr5Eg0wmOv2biRTtHfYbNXWW1xt873mFfLPNLoHYS9RnFGn9OHX9RF/527ZIRz7GYdHpT+COEEEII6Uw4c0Z8YbHjr91q/MUaOd06rcZfE0WikJOzHEEJf4mUHsdf3I7jb77W8edDjT8Ppb9qjT//HH9xGyqtKbLrb05osCKwN8KOU7WdMev7JVnfj5BWTE8vFP76+8Mv/LWK+qTjz3901PhT22nGz38OnHIK8M1vevtAnVXHXyYjzxk7qKhPrx1/dp1uqVQ0hT+njj8lRofFhaqbXbukYxWg8EcIIYQQ0slQ+COeI4TAXKkazwa0j+OvdY0/Y8F6UUQIYclxVqzMSAUX9Vmp8efS8qdE3lZDc6ZQxkyNy8+XGn8eWv6U4Omn489OUmMnuGvdHOe4OW4jvIMATCvHX4q3L4S0ot0cf80EGQp/wdb40xH12Ur4e/hh4OmngSuvBF73Ou9iaefn7QtFVvEr6tOJ4y/KUZ92hemoO/5eeGGh8Dc6Gmx7CCGEEEJIMHDmjHhOvixMF0p3mzr+Gk3Eq9e9k3zCRTNBopiXjxL7IRzVI67J8Vd1TjXvh4r5VImD3tb4k0svoz4TUDX+PPySCpXnAEyx0Qqd4K6tCuz2j7Qdp2o7M1UR2/sZ9UlIS2Zmqg4kQE4Ah1n4s1Ljr1OjPlOp4ETPfN6dUGbVXTU+DhxzDPD//r/Af/838L3vOf/OZmSz1qI+neC38Gf1uCST0RT+nEZ9hi1+VidCALt3V4U/1vgjhBBCCOlcOHNGPEfFfCYMIFlRVdKVZa4UbsmsleMvtmi9KFLbtWYXDBX1WQos6rPi+HO5HasCihL+NvTK2YZcSXgWc6o8l3YccnapmHF9EePLZo0/L6XM9sO83jjYLcqpGnXhj44/QqyzOOqzr0+KK2G9Z2lW4y+RkPWqouz4ayZeJJPB9d2tQ86qyDIxAfT0AOecA3R3y//2Aj8cf14fK7UvrToxo+74Y42/KiMjcvytWyf/m8IfIYQQQkjnwpkz4jnzRRXzWR1u7eL4K1cEl1aOPxFhH5LVQ1SsPHZbCGhGMZGsOP5cakkxi5GJqr7fpr6UKch5VefPTe03qyjB048ajWaNPxu/gapRn9E918yaog4+q8Zg5KM+K46/Pjr+CGnJ4qjP/n7pkPHajeSUZsKfYQQbd+klKuK02f1LOh1cjTarNfEaYVVkGR8Henvlv3t7gclJ59/ZjGbOUreEtcYfHX8LUetHcZ/s3SuXa9bI5cCAHPOzs8G1iRBCCCGEBANnzojnzFdm+VV9P6D9avw1OlE6qu4YmtfPK+TkbFxQJk5djj+rLs6RiuNvqDuBnoqo7VXcpx81/hKG/BY/a/zZcfx1QtRnq3jZZsRN4U9TY0KIEALThRIAoD/louAUIR3CYsdff79celU7zS1zc80Fpkwmmo6/XK61sBak489K+5qhhD8rUZ9K+Ovp8c7x51bIbEZYa/wlk8EJx17itMafEv6iuE+mpuRSnUuDg3JJ1x8hhBBCSOdB4Y94jnJBdcXbz/FXFVzqCxSdUOPPqtss+Bp/moQ/CwLKbKFsOo/WdCXQXRG1ZwteO/68U/6UjOKP8CeXdqJLTZFde2vCg+n4cxX1Gd09VCjLHwCm2E4IaUw9xx8Q3jp/rZxYUXb8tXKgBVnjz61QZjXqMwqOv7DW+GPU50LUeI7i9WRmRi7VtZ/CHyGEEEJI58KZM+I5qsZfdxs7/hrX+DMWrBdFrLrNClk5I1Vs86hP5UIrN5GYJvMV11EyhlTcQHdFhJj1KOpTbdUfx59336Fw5PjrhHPNRaSr1dqU7Yx6UMQAwKRPQlqzWPjr65PLsDr+WglgQYpfXpLLtRYu0un2Ff6sRn1OTFTHqJc1/rx0/MVictteC39qX9px/EVR+HMb9RlFx9/0tFxS+COEEEIIIZw6I55Tr8Zfuk0cf60El06IH1Q11VqJESrq0yPtqyXVqE936pgVx1+u8qYaxz1JFfXprePPywt2IDX+7BwqLwschoRWDuNmVGtTamxQyFAPiqRihqN9REinMTsrBRTFwIBchtnx10yQCVL88hIrQlSQbke3UZ9OHH9eRn22Gmdu8SOS1m7EZSLRev+3I4z6XMrMjNwfqo/quk/hjxBCCCGk86DwRzynWY2/Qjm80XSipl2s8dfabaaiPv0QjuoRT1aEP5d6QDUysfE6i4U/0/HnVdRn5ShEpcZfubKb7Dn+JBE+1RbU07SLSlIO6/VUB+pBkZQtxZiQziSflxP9tY6/7m7pSAqr46+Toz5bCVFRcPw1q/EnhIz2VI4/L6M+vXT8AVL4C1vUZ5Qdf/F4VVy2StSFv+7u6t8MqZQ8nyj8EUIIIYR0HhT+iOfMN6nxB4TX9VfbqlaOv2axkO2OVTHCdPwFJDyYwp/L7ShjajMBc4njryJqzxW96bubCEirqIel/RD+1BiJ2/gN1BHCnzrOTmr8VZad4vgjhDRncdwbIEW//v5wO/4Y9VmfoB1/dqMUa7Hi+Juelg8F+eH481r4S6f9E/6sCl7JpDyOUXs2KJ93NjYNI7oPEkxPL7zuAzLuk8IfIYQQQkjnQeGPeI6q8ZepcfzFjergC2udv9o/jhvX+Fu6btSoihHNJ9uLgUd9Vmr8ud1OpZ/NhL9sSXYyU1GuvK7xZ9V16YZ4xfFXFAvdrl6gdq0tx5+K1Y3yuVZZOqvxp5yq0d1B6iGRJB1/hLRkZkYuF08Ah1n4ayXIRHWiPuxRn37U+FMinxL+vHb8NROY3eKX48+O082K67IdcSr8AXJMR9Xxt/i6PzBA4Y8QQgghpBOh8Ec8RzmIal0ahmGYrr/2cPzVn2hWr4ezB3ow6xy2WC9ox59Z48+lJpCsjNNm5r1c2d8af2XT8eed4FGjy8OjxFKTknL82ehO1fEXzbOtVmx15PizUJuy3aHjjxDrNBP+whj1KUTr2mtRdfxls+F1/BWLQKnkvfA3Pi6XtY6/qSn9D/sUi/LHS8efH+O0ULAneKl1oxb36caNqlyQUWN6emFtV4DCHyGEEEJIp0Lhj3hOo7pMpvAX0pnqqtjSmI6o8VfpW6u5dlP4C0jITST1PL6toj6bRV42qvE3V/Ao6rOy9FLvqH1o3OtjqE55O46/qLPgQQMHn7dSm7LdYY0/QqyjhL/FE8B9feF0/BUK8n6DUZ/1CUr4U8KIjqjPZm4z5fhTNf56euT6up1zah966fjzK+pTCapWUOtGTfhr9bBAM6LqIJ6Zka7TWgYGgJGRYNpDCCGEEEKCg8If8Zx8HccfAKRj4Rb+rIgt1Rp/0UU5rFpNtQcd9RlP6arx1zrqs1GNv9li2ZOYTDcRkFYxjKrrz2sXbqmyfTtCZtSjPq1ECzcjbjr+IrqDUB2XaTr+CGlJvRp/gHRUhVH4U4JeM0EmnY6m8GdFvEinpThaKvnTJoUSRtw45KzU+Fvs+FNL3XGfavxEocafHeEvqo6/VnVBmxFlx99i4Y81/gghhBBCOhMKf8RzChWRJBmr7/jLhdSiogScZlPMtSdQOHvhHrPGX4v1ikFHfSY1RX1aqPHXyPEnAGQ9ELLNseix3pG0IHrqwInjrxr1GU2sRAs3Q11eQ3o51UK+we8SQshSGkV9dnUBs7P+t6cVVoS/KDv+rNT4A/x3KClhxO8afz09C1/XhQ4hsxXptPfnmN3admrdqAldboS/qNb4qxf1OTgYzgc+CCGEEEKIt1D4I57TMOqzTRx/zebgF74XzcloK/sBAAp5+ddzYFGfKfmXv9s6eAkrNf5M4U9eQuMxA5l41fWnGz8cf0BVUCl4LN6WVY0/G7+B1HEN59XCPW6PcdyM+ozqHmLUJyF2aFfhr1WNvyhG81mp8afEDb+FT7W/3UR9KuGvWdTn+Lh0KanvaWfHXybjveOvUKDjD6Djrx4zM0uv+93d8vVylCNqCCGEEELIEij8EU8pC2G6exZHfZo1/kJqUbFT4w8ARETnoquOv+YdLGblbErgUZ8uj4O1Gn+yk7WRg8r1N1vQvwPMseiT48+DLizAkeOvQ6I+nR5jNRRD+hyFFtRDIot/lxBCljIzIyMWFws2XV1VUTBMWBFkohr1mc2G1/HnV9TnxATQ31/9b6+EPz9q/PnhTGWNPwlr/C2lnuOvq0veZ0bx+kkIIYQQQhpD4Y94Sq2otyTqs00cf7EmM/ELI/miORmtNKCWjr/Aoz6V48/ldhzU+AOA7kqBvLlmVkGHmGPR4zFmip4en5OqDh2NW1VcO/4q47YTavzR8UdIa2Zm5OTv4t/dYXX8WRFkojpRn8u1dtS1c9SnYUjxr1WNPyX2Ae0d9emH489p1GfUhL+5OefHMpHoHMefqvkXxoc+CCGEEEKId1D4I56iBIQYlk7yh93xZ3UiXp1EIqLCn9IRWl0sioFHfVYcfy63o2r8NXf8yfcyNYO6Jyn30JwXUZ9+O/48Fo+UrmjHuBX1Gn8qotOpmU2dnyG9nGpBPSSSpuOPkJZMTy+d/AXkBPDsbPjc01Zq/NHxF1zUp1uhrFU9tYmJhcJfVxcQi3kX9eml4y+d9kf4o+OPNf7qUU/4U/8dxoc+CCGEEEKId1D4I56iRL1k3FjkjqtO3ubC6vizKLaY73utygSEqEgtLR1/WeX487pF9YlXHmfWFfXZSL8TQiBbx/HX41HUpxDC9xp/Xou3VcefjajPyjJsk9W6cHuMq7UpI7qDsPD3CSGkOfUmfwEp/JXL4ZvwtiLIRNXx1w5Rn25q/AGtXXCLHX+GIf+bjr/62BX+1PEL23nvlrk5dzX+onY9EaK58EfHHyGEEEJIZ0Hhj3iK0kDq1WQKv+OvIni1WK/qRIrmZHS1xl9zivmK8BfQ8YzrjvpsIKAUylWRJh2vXkJVjT8voj4V/tX481j4q1wX7Og3Zo2/iHr+rNbSbIQSrEsB1dj0A9b4I8Q6jYS/sDo/rNT4S6Wk4FGO2HXOStSnEjfa1fFnRfhT8Z6Knh7vHH9eCn/ptPeCUqHAqE/AneMvisLf/Ly8n6TwRwghhBBCAAp/xGOaTdSGvcZfmY4/ANUaf81qHQI1Nf7aPeqzhestV5lxNAAka66g1Rp/mh1/Nf/2y/Gn2bS4BCeOP0U4rxbuMR1/Dg9ywugcxx9r/BHSmmaOP/V+mLAiyKgJ/qhN1udy4XX86ajxpz7fSvjr61v4Wm+vfuHPSi1Jt6ioTy9/Hefzsm6iVaIc9el0bCaT0XNATk/LZXf3wtcp/BFCCCGEdCYU/oinNItmC7/jTxJrIbeo9zvd8Rd01GciVXH8uRRgE0Zz8StXE/NZ+10q9lN3dG3t6eH1CFOuMc8df5XNx238BjL7Hs7LhWu0RX1GzAlTiyn80fFHSEtaCX9hdfy1ivoEoiX8CWFN+Iu6429xjT9AOv50R3365fgDvB2nTqM+oyj8uanxF6VrCVAV9uj4I4QQQgghAIU/4jGFJhO1YXf8scafxKoTKeioz0RSj+OvWuOvgeOvTn0/wDshu1YQcitqtsKvGn9lJzX+zKjPaGL1etOIiuE0sPPPD/INzj1CyFKmpqoiXy1hjfrMZoFYrLmYEZT45SXFoowubRXbGHSNP7dCmXLBNWJiYqnjr7vbG8dfImHPLWcXdd55WefPrvAXVcff3Fz965wVouz4o/BHCCGEEEIACn/EY0zHX52R1i6Ov06v8adEmpaOv0rUZ0kAIoC4wbjp+HO3nWSLGn8Nhb+YR8KfRcelDpIe9WExpuPPTo0/01kbTazWFG1Eq9qU7Y4Qoub3STSvtYTopFWNv7BNAKsJ/Ga/w6Po+LMqrAUVc5rLSZHMrVCWTjcWbPN5efwXO/56e71x/Hnp9gP8Eait1IWsRfU5akJXNuv8eKZS0dsf6rq+OOozmZTib9iu+4QQQgghxFso/BFPaVbjTwkn0XH8edqcwDAjT1s5/mr+eg4i7lOf4695ZGIj4S9dya3UPZ7d1n6zg1+OPyc1/kyBPZyXC9e4dvxFPOqzNnq306M+v/CFL2DTpk3IZDI499xz8dBDDzVd/9vf/jZOPPFEZDIZnHrqqfjxj39svlcoFPDBD34Qp556Knp6erBu3Tq87W1vw8GDB73uBvGYVsJf2Bx/8/OtnTtRdPxZraGnxLcgoj7tCEyNaOb4U+KeH1Gf2ay39f0Af+J0CwV7jj8l3EbN8ec26jOqwl+jaz+FP0IIIYSQzoLCH/GUQrMaf5XJ21xIHX9liw4cdRJF1fFn1XGmoj4B/+MGhQDilZkpXVGfhbKo61ysCn8LL59eRdcKi45LHSjxqFF9Q12UKtu3o99EPuqzsnR6nNUlNqqOP+X2M1DfQd4p3HHHHbjhhhtwyy234LHHHsNpp52GCy+8EKOjo3XXf+CBB3DllVfine98Jx5//HFceumluPTSS/HUU08BAObm5vDYY4/hox/9KB577DF85zvfwc6dO/EHf/AHfnaLeECrGn9hmwCem2s9ga/EsSgJf3aiNIOoSaZLKEunGwth4+NyWc/xpzvq00/Hn5fCn92oTyUcR0n4KxSAUsn5+Ewmo+UeBhpHfarXwvbAByGEEEII8RYbfzIQ0pqxsTFMq786AByeSwJIITszgz17xhasO1c2AHQjXyrjpZf2wDCAvr4+LF++3N9GN0DNn7cSJzqnxl/z/pVLJRgQEDB8F/5KNf92HfVpVCMly2JpHGWuolqlFw2M2uhaIYS2enxKg/NjeKVM4S98jr+oUxXYne0T5dYsCxnPG4vYvq11j3td6zLMfOYzn8G73/1uXHPNNQCA2267DT/60Y/w5S9/GTfeeOOS9T/3uc/hoosuwgc+8AEAwMc//nHcfffd+PznP4/bbrsNAwMDuPvuuxd85vOf/zzOOecc7N27Fxs2bPC+U8QTZmaWxr0B/ogSTrAj/EVpst6O8NcsLtMr3EQp1pJOy7qT9VCuvsU1/rwQ/vxw/PnhqrUr/AFS6IqS8KfOBafjM4o1/uj4I4QQQgghtXTwc/NEN2NjYzhuyxZs2rTJ/Pm3r/xfAMBtX/j/Fry+adMmnH7KyQCkU+7lJ52ETZs24bgtWzA2Ntbsa3yj6sBpPslcrT0WzcnoskUBFABUCRi/oz5rdSpdUZ8AUGji+Msk6tf4E9DrmDMFaB/GV63b0UvU5uM2fgNFPuqzsnSqadWKqFGM+1SOv5SdwpARI5/P49FHH8UFF1xgvhaLxXDBBRdg+/btdT+zffv2BesDwIUXXthwfQCYnJyEYRgYHBys+34ul8PU1NSCHxIuhGjs+IvHpeuvHYW/KEd9WonTDMLxl8vpE/4aRX02cvz19EgHU6m09DNO8cPxp1y1jfqrg3zefgRr1IQ/tX/dRH1GaX8A8nxJp+vX5KTwRwghhBDSedDxR7QxPT2NifFxfOyOu7BiaB0AYD4zgAKA3/vTd+HSK65csL4AoLyBn/nZwxg/tB83X3ERpqenQ+H6s1/jL5oT0nYiCOOGFP38dvzp1DlqdYViGVU1s0JWRX0uUkJr4wfzZaFNoIhmjT+5jBuG5WNXjfqMpvLnNuozUTP+pKMyWtcj5fhLdnB9vyNHjqBUKmHNmjULXl+zZg2effbZup8ZHh6uu/7w8HDd9bPZLD74wQ/iyiuvRH9/f911br31Vvzt3/6tgx4Qv8jngWKxvvAHSGEibBPAc3Ota/zR8de+Nf4ymdY1/uo5/gApZjR4DsE2uhyMzQhjjT8geg43dS60um40QkV9ChGdP+EaOb0BCn+EEEIIIZ0IhT+inRVD67BqvYwHG54rolAU6BsYxEBqxZJ1Z6YKEACWD61HTITLpmJ1Ij7KNf5qa9xZ+aM4bghABBD1KZQq5D5i0zAMJGPStVevH9Uaf8aSz6VjBnJlIUUKDRNlgPUaizpI+h71aV20NR1/nrQoeKw+aNCImGEgZkg3ZaEs0GC+v22h4897CoUCLr/8cggh8M///M8N17vppptwww03mP89NTWFY4891o8mEos0i3tTr4fN8WfFiRVFx1871PjT5fhrdNzGx6VDafF47emRy4kJfcKfn44/r6M+7QqyiUS0HG46oj4BKaJ6PSb8opHTGwjnAx+EEEIIIcRbKPwRT2kVlxkzpPvHZ53IEuXKTHyraebqRH30JqRrD4slx19l6XvUp/kvPV+cMAwUIFoIf0tzKlPxivCncUAH4fjTGVVaD+X4s1OHLnpn10KUk9FNPxOGgbwQ5v5tBxbXhW3EwVwcQAblfA579uwBEK6asH6wcuVKxONxjIyMLHh9ZGQEQ0NDdT8zNDRkaX0l+u3Zswf33HNPQ7cfAKTTaaS9LpJFXNGOwl+n1vizE/UZhONPV9RnK8dfb+/S+xwl/Oms86fLwdiMZBKIxVjjz2vUueAm6hPQN8bDwPR0c8efhdstQgghhBASIVjjj3hKq/pw6vVyCAt3qRa1SpYznUhRyYmpwW7tvLghP+B71KdyS2kaR6rOXz0BM1eWqthixx9QrfOXK+lTztS54cfF2jfHX7nq+LNM1dQZSXQ4O1Xcp9/nn1Pq1YVt9PPXN94EALjv5z8zXwtTTVg/SKVSOOuss7Bt2zbztXK5jG3btmHr1q11P7N169YF6wPA3XffvWB9Jfo9//zz+PnPf44VK5a680l7oSZ3G00Ah9H5MTvbegI/kZDOsE51/KloQj/RJZS1cvwtjvkEqlGfOoW/+XnnQpFVDMN7cd2J8BdVx58O4S8qNHP8MeqTEEIIIaTzoOOPeIopWjQS/mAAEKF0/FmdiO8Ex58BWIrQrDr+fI761LzvlYBSTwBrFPUJVGMI29Xx16zfOqmt8WcV5RoO4aVCC0oqtuOCXEzCkNfTdhH+6tWFbUQu2YMcgNNe8zq8+v4ncXT4YKhqwvrFDTfcgKuvvhpnn302zjnnHHz2s5/F7OwsrrnmGgDA2972Nqxfvx633norAOC6667D+eefj09/+tO4+OKL8c1vfhOPPPIIvvjFLwKQot8f//Ef47HHHsMPf/hDlEols/7f8uXLkYqKDaLDaOX4y2TC6fhbvbr1ekG43rzEbo2/dhX+MhkZqVgoLN2ecvwtpjbqUxd+RH0C3p9jTqI+UykKf7Wo/RclB/H0dOOah2G87hNCCCGEEG+h8Ec8pVWdPDXHHa7qfpKq4NJ8It4UJKKn+9muO6a0sKLPB7Sqc+gRPJTzrVnUZ6aJ4y+vMWuxKkB7P8Ca9VsnZo0/GzbGjqnx52IbzZyqYaa2LmwjxnIl5HJldHX3YNWKxjGUUeeKK67A4cOHcfPNN2N4eBinn3467rrrLqxZswYAsHfvXsRi1RPrvPPOw9e//nV85CMfwYc+9CEcf/zxuPPOO3HKKacAAA4cOIDvf//7AIDTTz99wXfde++9eN3rXudLv4herAh/YXN+WHViBVHnzktU/GWjyfpaksn2jfpU25ifXypYjY/XF/68cPxls/rqBTajq6txtKkOikVnjr8oudvU/nUr/EVpn0xP0/FHCCGEEEKqUPgjnlKN+mxc4w8IZ3xf2eJEfNXNGD3lr5VwuxgV9em1Y2wxpcrS0PS1CaNx5GU2wo6/ZI1wVBbClfusEaKmBp0tx1+IrxU60HGc2y3q0w5lmw8hRJlrr70W1157bd337rvvviWvXXbZZbjsssvqrr9p0yaIqJ5UHUw7Cn9WavwB0XP8zc3JenBW3FuplP99ryfUOUEJm/PzwOISouPjVXdfLamU/NHt+LPiLHWLH44/Rn3KJaM+q8zM1I/NBSj8EUIIIYR0IqzxRzyFNf7am1ZRrYtRUZ8ln49nWej1gzVyTgkhTDdfuo5dzRPHX2Xpx+hK1hxor1ybtXvGTo2/6J1dC9FxnJVg7XfUrh+IFr9LCCFVWgl/Xtcfc0InC3+ZjLWHGoLoezarx/Gnjm09F1wjxx8gX9ft+PO6xh/grfAnBIU/gFGf9ZieblzbNYzXfUIIIYQQ4i10/BHPEEK0nMwOa42/WgcEa/zZcfzJZcHnqM+S+S93A2n//v0AgGIuDSCBkcNH0DNVNN8vCEBAPpY+cmAfjtbsmL6+PqTjcnYsp3FA2xVf3ZCo+Y5CWZgORp3UaqJ2HH8KAXl+Wqk52U6oa46bbsVNx5+GBoUM8zwIuB2EtAPT03KSv5FTK6yOPytxl+m0txGKfmO130AwMafZLLBihfvtqD7WO3aTk8Dxx9f/nG7hz68af+m0dyJLqSTFP7tOzCgKf4kEEI+3XrceUXX8NXvgI5erX2eTEEIIIYREE86hEc+olT5aOv48b409atveaiJenURRdPxVa/xZ65uK+iz5rOSq8WM4dDrNTk3CiMXw2te+Fps2bcJPf/ITAMCHPnozNm3aZP6cde5WAECpUMCWzZsWvHfcli0o5+WMXLs6/gzDQLIyoL2Ka60dG7Ycf9E7vRag4zgnleMvbE9SaECd417EzxISNdTkb6PTJYzOD6tOLK8jFP3GqtMRCCbqU1eNv2aOv8nJxo6/nh69UZ9+Of68FP6UeGfX8ZdMRk/4c3Msoyj8tarxB0Tr+kkIIYQQQppDxx/xjFoNpqHjL6R1u6y03XzfnFmL3oS0KahZXF89dFvwPerT3eezc7MQ5TI+/O/fw7qNmzGfGUABwOXXfxh/+v7rzfVKsQRmASTiMXzh/ifN148OH8TNV1yEciEPIKVX+PO5tlkiZqBQFt4JfzWbteNirF1VIHpnm3mcXWwjbkbUhuyCqgHW+CPEOs1cH0D4xLNiUQoSVqM+o+b4syP8BeH401njb/GxE0IKf/Vq/AEytrAdHX9enmOFglzaPS7JZLRiLefnrbtl66H2X5SEv9nZ1sLfzAwwOOhbkwghhBBCSIBQ+COeUSsaNXKMqVfLQoTKflrrQGzldotyjT+7dbWU48/vqMFS5SgYLqM+l69Zi1XrN+DwfAmFQhndA4NYnq5mXM0Xy5idKyEej2PV+g1LPp+s9D+vUTSrOsH8GV9Jw8A8hGeusVJNdKmduM7Fwl/UMI+zi+uIimqNYtSneS0KthmEtAXtJvzZqdUVtra7xY7wl04HI/x56fjLZqWQ1azG3/i4++9X6HIwtqKrCxgd9WbbyrVnN+IyalGfc3PujmXUavyVSvJaakX4I4QQQgghnQHn0IhnlC2IRiq2LWzz1HYmmaNd469Sd8zi+moOwu+oQfPrNDmd1DFdvLlWY1oJL+3s+EtW8je9qtOo9qGb8oERNLRpcfwllOMvklGf/tW6JKTdaSX8dXXJye5SqfE6fqLEIKs1/qIm/Nmp8dfuUZ+L26/cfM0cf9PT7r8fkOM9n29/x58S75w4/qIk/LmN+oya408Jet3d9d9X15koXT8JIYQQQkhzQiH8feELX8CmTZuQyWRw7rnn4qGHHmq47le/+lUYhrHgJ+Mm54N4hhCtRSOzxl/I5qmr7pvW61Z1P8OVWyeM2BWdlJjjd9Sg7rlL08W56PVWdcaU4y+ncUCb36lti81RdeK8i/qU243bPFcMw2h4XKKAnWtOIxIdEPXJGn+EtKZZnScgfBPASvjrVMefVSEqlfJfpMjlvI36bCX8dXXpE/7UvvND+Atjjb+oOf5Y428hSvij448QQgghhCgCF/7uuOMO3HDDDbjlllvw2GOP4bTTTsOFF16I0Sb5KP39/Th06JD5s2fPHh9bTKxSFUkar2NO5IdsntqKaKmo7V8iHS0Ruio6WZtsV1GfJZ8tnGWhJ+pT0djxp0Sr+p9LqKhPrY4/saBNXpOo/FbwusafE8dfWB8UcItAbaSrc5Tj1O/zzw+sOMgJIRIrjj8gPAKacoFZeY4vk4lejT+rzy+qqE8/75l1RX0mk/I+xq7wp9PxZydS1i1dXeGs8Rc14Y9Rn1XUeULhjxBCCCGEKAIX/j7zmc/g3e9+N6655hqcfPLJuO2229Dd3Y0vf/nLDT9jGAaGhobMnzVr1vjYYmIVKw4NcyI/ZB4esz6hHccfgGTEhD/bjr/K0ivRqBGmzqEr6tPc7sLttRIfkirq05Maf/6QjHns+Cs7c/wBtQ8KhOt6oRMdjr9CxPaPEML384CQdmZ6urmYFDbhr5Mdf7Oz1oUovx1K5bIUmXQIf4ZRX7SdmJDLRjX+dAp/SuDxK+rTq1hWp46/ZDI67jbAvfBnGNHaJ62iPin8EUIIIYR0HoEKf/l8Ho8++iguuOAC87VYLIYLLrgA27dvb/i5mZkZbNy4EcceeywuueQSPP300340l9jESs0qs8ZfyOapqzX+Wk8z18Z7Rs3xZ3eyXbm4Sn5HfWqoj1aLEvYa1/hrEPUJLxx/culbjT+P4yJLLpxbphNTX3NCglHnX/ZRwl/UHH+1x5uOP0Ja08rxp0TBsEwA2xX+oub4syv8+VXnT3c0Zr1jpxx/jYS/ri45TnXckvjp+FN99eJWilGfEjvnTiPS6egJf42u/WpfheW6TwghhBBCvCdQ4e/IkSMolUpLHHtr1qzB8PBw3c+ccMIJ+PKXv4zvfe97+NrXvoZyuYzzzjsP+/fvr7t+LpfD1NTUgh/iD8otZSXqM3TCX2VpVWxRJ1Iy3WSmrQ2x7/iTHyj4HfWpufqbqia3pMafKQjXR0Ut6qzxVxVf/VE8qo4/b7Zv1vhzoOAoIT5s1wu3CEOT8BdQjU2vqT3e1P0Iac30dGPXBxBexx+jPpujBDi/ognV9+io8Qc0F/4aiRXd3UCxqEec8dvxJ4Q3Iq0S7zo96lOH8Bclx1+rqM94XI5LCn+EEEIIIZ1D4FGfdtm6dSve9ra34fTTT8f555+P73znO1i1ahX+5V/+pe76t956KwYGBsyfY4891ucWdy5lC6JRrMbBE6apaituxVpUH5NWZ2/aBFO8tbi+cvwVfVZmTIOdrqjPFjX+Gkd9isp6+vaB37XNPI/6dFHjL+qOPwMLHcR2UY4/v88/r6kV3N3sH0I6BauOv7AIf3acWOm0d06qIJifty5eqPX8Fv50CWWp1FIhbHJS1veLx+t/RgnYOuI+/Xb8Ad6cY3T8SeycO41IJqNT46+V4w+Q5xOFP0IIIYSQziFQ4W/lypWIx+MYGRlZ8PrIyAiGhoYsbSOZTOKMM87ACy+8UPf9m266CZOTk+bPvn37XLebWMNKXOZCMSM8E7pW3Iq1qNU6vsZfQI4jsyajpu2pC+Ni01tVtKr/TYmal3XU+Quitlmy0nnvhD/nNf7MmqARmfBVKMefW3E3YSjhz22LwoVdBzYhnU4rx1+7R30KEZ3JeieOv6hFffb0NP6MEjF0CH9+O/4Ab4S/QkEu7Tr+UqnoCX9uj2UqFS3Hn6ql2QgVnUsIIYQQQjqDQIW/VCqFs846C9u2bTNfK5fL2LZtG7Zu3WppG6VSCb/5zW+wdu3auu+n02n09/cv+CH+oOaerUR9Agvj7oLGiluxlqrjL2JRn5Wl1ZhJFfXpt/BQFYJ0O/4Wbq+V+y5mVMU/HXX+gqhtFmrHX2UpIub5EzWOPzckKr/Roxf1ae9BDEI6GSFaO/7CGvVpZRI/bG5Ftzip8deujj/l1qxlcrJxfT9Ar+MvCOHPi1haOv4kOhx/URL+Zmbk+dLsb9dMJjrXTkIIIYQQ0hqbfzLo54YbbsDVV1+Ns88+G+eccw4++9nPYnZ2Ftdccw0A4G1vexvWr1+PW2+9FQDwsY99DK9+9auxZcsWTExM4FOf+hT27NmDd73rXUF2g9TBilvMMKSkJFcNz6yuFbdiLVXHX7SEP7sCaFCOvxJMpU7L9hpVDKy61Rp/Nh03UCwK5DQIf0HUNkt4LPyVK6JwzIHQ3yiCte3R5PiLRz7qMzy/IwgJK9msvM42E/6SSRmtGBbnh3K9Wfm14KWgEgTz89Ydf0rk8Mvx54fwNzHR3PHnRdRnuzv+KPxJ7Jw7jYha1Gez6z5Axx8hhBBCSKcRuPB3xRVX4PDhw7j55psxPDyM008/HXfddRfWrFkDANi7dy9isaoxcXx8HO9+97sxPDyMZcuW4ayzzsIDDzyAk08+OagukAZYrQ8XM6QLKFSOv8rS6kS8FDEEElGL+qwsLdf4Mx1/Pkd92qzJ2IrGNf7ksplolYobmC0KPVGfqj3wr7ZZ0hSPvNl+obJTkw785rHKYwIRS7KEMOTOcCKG1pJUUZ/R0v2qUb7h+RVBSGhRAkmzCWDDkO+HxflhZwI/So6/QgEoFsPr+NMd9dnI8eeX8Kf2mx81/rx01ToV/pJJ+VBAqdS4pmI7MTfnfmwmk9Fx/LWKeAbk9ZPCHyGEEEJI5xC48AcA1157La699tq67913330L/vsf/uEf8A//8A8+tIq4xYpIIt8Pn/Bnt7ad6fhz++hpyFBRl7Ydf35Hfap/aLKCKWdRbTeEqApOzRx/qYpwpiPqs1W0qBd4HfWptpt00KmoOv50RX3GK2JqKWKOPxHAeUBIu6ImdVtNAIdJ+LMTdxklx5/qQ9gdf3ZryTUinV465iYmmo9VnTX+/HT8qWMVphp/SijM51s7w9qBbNa9iBsl4W9mpvW1hI4/QgghhJDOItAaf1Fl3m/VI6RYFc+qsYrhGY5mTSmL65s1/iLq+LM63x5Y1KdQwonuGn/V12q1lGYCRKqyE3Q4/oKobaaceJ4JfyUXwl9lGS1ZC9qiPhOGt6JtUNi9HhPSyVhx/AHhcn6oqE8reCmo+I2d2oa167Vrjb9MZqlo2arGn07hL5uVv27tOuWc4KUzVR0Xu/1QxzEKcZ9C6KnxF6WoT6uOPx3nEiGEEEIIaQ84j6aR2UIZ//TUGD7/1FjkHBdOMOMyW6xnOgJD5PirRn2yxh9gfT+oqM+yqE7W+4Fuqb1WYFKuR2Xgi6F57KZOx59d4VUHXtf4c+P4Ux/xc2z5gdAl/FU2oGHohQq71yFCOpmoO/6UENSJjr92F/5SqfpRn82Ev3hcn1ihhCI/fpV4GfU5Oyv7YTeus9bx1+4UCjK2lFGfVaamWOOPEEIIIYQshMKfRroTBvJlgZIADmdLQTcncKy6ldT77Rz1qfoQ1Rp/dh1/gL9xn6bQoUkQqnfcrY7ndCVvMafF8YfKd/p3bqRCLPyZgmzEhK1q1Ke745zw2K0ZFHZrrpLOplgE7r036FYEhx3HXzsKf1F0/Fntu4p29CvqU3eNv0xmqfA3MdG8xh8g39fl+POjvh8gRblk0huBenbWulhcixo/URC61DngtsJCKhUdx9/UlLUHPij8EUIIIYR0DhT+NGIYBtZ2y8cpD84WAm5N8FgVz9QgFL76mppj1a2oUBP20avxJ5eWa/zV/NvPuE91vHRFfdYed7Vt0/HXYl94UeMvWo4/uXRV409je0KBIUecrqjPUsSU0SAib0n78v3vA69/PfD000G3JBisOv7S6fBMAM/PWxeXOrnGn2HI4+a3409njb/a4yaEFCtaCX9dXXodf37hlavWTjRuLVFy/CnhjzX+qlD4I4QQQgghi6Hwpxkl/B2aKwbckuCpimfNZ2tNUckIz3BUE81WBa8o1vgTQth2/BlGTZ0/H11HqsafFygNRY3neItBobPGnzoCfgoe6bg+4bIeVcef/c+qa0nEDG3mQw+6oj6L5WpEbRQoWxTdCQGAZ56Ry3vuCbYdQWHV8RemCWA7jr9kUrqpOtHxp9b1y/GnuybeYsff3BxQKrUW/rq79Ql/utyLVvDKVevW8RcF4c9ufcxGdFqNvzBFPBNCCCGEEO8Jj9ISEdb2UPhTWHb8VVYIk+NP2JxoNmv8ZVr8xdVG1MoGdibca8UHv1DBuoa2qE9jQZ0/wLrryAvHn5+Ch2p/ziPhL+8m6jOijj8Vc+z2MCdq9k+UxFHzPAjR7wgSXp59Vi47Ne5zZsZa/a9MJjzCnx0hwzDqR0a2I3Ydf4C/0YS5nN6aeItFy8lJufTL8Tcz01oQ14mXwp+TfkRJ+NPl+EulouP4syL8qTEZoWfDCCGEEEJIEyj8aWZtt/yr6ki2hFzJR+UjZNS6xVrW+FOfCVGNP6tuRYXqY6QcfzX/tnNklPjgZ9RnQTn+hL5zTg1HJTooHcxXx58Z9enfuaEcf0VRFTt1oqPGnxftChRDOf7c1virft7P889rrP4uIQQAduyQp9R99wHlDrwNm562Jgq0a40/IFxtd0M7OP50xXwC8rgVCrIOJ1AV/np7m3+Owt9CZmedCV6M+lxKpwl/XV3y92JUXI6EEEIIIaQ5FP4005uMob+SYTfcwa6/2rm2VoOsGvUZnlldu7XtTMdflIS/Gt3AsHFsqo4/f4QHIQSKpkCm7zurtSflNq2679KmY879jLMpQPvp+ItXv8yLuE9T+Ivb75TaD9GRtCS6oj5rd6mfjluvsRu9TDoXIYCdO4FXvxoYHweefDLoFvnPzEzryV8gXJFv8/P2XG90/HnTnsVks3qjMZVIo0Qbq8Jfd7esX+YWq6K4Lrwap06FPyXiRkHo0lnjLwoiWKkkx5qViGcgPG5vQgghhBDiLRT+PIBxn/ZEo+pkfjiGo0CNw8TiZ1QXE06KboSUaryePRKGv1GfJVEVTnRFfQI1sZKm40/+o5Ve5Ynjz0fBI24Ypmsz54F4q4S/lJuoz4gpf6JS39TtYTZqjl2UHH+s8UescuCAnBS/8EI5IdyJcZ9WxY2w1fizIzBFyfGXSNiroee3488L4U+JYRMTculX1Of0tLPaeE7xapzOzDjrBx1/S0kmoyGEqmu5lXOpdn1CCCGEEBJtwqG0RIx13RT+7EzUqjjN8ER9VtthdaJZ9SHd1eIvrjZCyQZ2D0uiclXxS3hYKLBpFP4WbbE6pltEfWqt8VepK+h6S/ZQcZ9e1PlzE/WpzrMImdkkZtSn+0357bj1A9b4I1ZR9f22bAFe8YrOFP7a0fE3N2dPyEino+P4syvg+OlQyuW8Ff6s1vjr7tYn/Fk5N3SRTntzjjkZN0D1WFL4qxKVqE/liLUS9QlQ+COEEEII6RQo/HnAkBL+ZjtZ+LMuWJiT3SER/pwIkKoP6d4+za0JDqHi9Wx+zm/hQQls+fk5rbKAcqpWHX9y6afjrxr16e+5YfbBC+GvJJeOavxF1fFnRn26P85+O269RggRSOQtaU+efVYKI0NDwOmnA/ffX60n1ilYdTWpGMIwXE87tcbf/Lx94aKdoz7VuKwV/gyjtUNVl/AXRI0/LwSW2Vk6/pzUx6xHMhmN/aHOD0Z9EkIIIYSQWij8eYAS/qYKZcwUIjL7ahM7E7XmZH5I3BzmJDys17Yzhb/uFoVK2gjHjj+fhQclsOXm9P4Vqy6OqhummN1K+NPo+Asi6hOo9sFbx5/9z9a6MEUYZqs1ITQ6/uI+O269prYXFP5IK559Fjj2WCAel8Lf1BTw+ONBt8pfrEZ9ZjKyLlQY3C7ZLB1/Vkml/I36VHXhdFDP8dfbC8Ra3A90d+sRKoKo8eeFQD0766wf6lhGQehS54BbYVo5aNv9lkkJf4z6JIQQQgghtVD484B0PIaVmTgA4NBcIeDWBIPVWES5jlyGJuqz0g47zVHrpnui4/hzGq/nd9SnEpLyc3pnV5bW+JPLVmM67YXjz/WW7JGuqEc6+lCLEMLcpqOoz5qPtPkczSKMmv93RzJiUZ+13QjJbwgSYp59FjjmGPnvE0+UE++/+EWwbfIbq3GGagI4aOdcuWzfWeaVk8pv7DodAX+FP91Rn0rkVO1Xwl8rVD1Kt7eVVmNwdaFctbpx6vhTwp9fjlEvmZ+XDsZ43N12Uik5rtrdGW436jPo6z4hhBBCCPEHCn8eoVx/o/OlgFsSDE5q/MEIx3AUlXbY0SVUHzIREv6c1/gLKupTs/BXWQoIGTdoNeqz0v9CueoSdIr6vO+OP4+iPkuiOq5STqI+a/7d7k9nK5KZLq01/tT49MCsGQjVBxCsO7BJ57JjB7Bhg/x3MgmsXQvs3Rtsm/zGjuMPCF5AUyIQHX/WiJLjb2KitUMJkGKGEO7FCqdOOad46fhzEnGZSkl3ZRREn/l5Z+LnYpSwHQbnsxvsRn0qoZAQQgghhESbcCgtEaS/kmM326lRnxZjEWvXCV/Up/X2qD6kenojI0iYMZM2P2dGffq0H8yoT80zGUpjKIuq8w6wEPVZowy6Fc6EDQFdJ2kV9alZvC3UbM9Zjb/qZyJymi2IB9ZxmBOm8ByNPVSG9d8lpLOZngYOHqwKfwCwbBkwMhJcm4LAah0z5QzRUTvNDU5qdXV1RUO8cOr487PGn9dRn1aFP8DdWM3n5U8UhD+nopdh6KuXGDRO6mPWIyouSHVMWzn+Uin5MznpfZsIIYQQQkjwUPjziJ6K8NexNf5sxESac/mGgXhC4wyDUxxEfapJ6VgshjZPizFx7viTy3Z3/KmxK1AdzwZaR30mYobpunIrnFWjPv1VPVRcaa6k9/qlxKgYgLhDJcesvehw1744mcd0PjxO7FS3nPU0oMfRpoR3zYcuMOy4x0lns3OnXNYKf4ODwKFDgTQnMKw6/tQEcdDODyUCdarjz26UZjrtr+PPi6jPWuHPTiytG8FKOVv9Fv50j9Ni0Z2AqWJT2x0nonk9ouL4m5qSfbEi1Pf2UvgjhBBCCOkUKPx5hBL+ZosRmX21iSlYWIr6rJLusVDsw2NMx5+dGn+Aac8qimjMUJuuTZuf8z3qUzn+PKzxZ1d8yFSEs6xL26PpuvQ76jPmTdSnEv6SrfJSm2AeFweffWk6j2/vmsJ3d4fncfdUlxT+dAlbSngvRMR6bKdeLOlsnn1WLo89tvra8uXA8HAw7QmK2VlrYoqqrRb0BLASsexM4nvlpPIbJ5GN7ez4Sybl7/DaqE8rNf50OP6sOqJ0kslIQamk8VkjNe6dxlzS8bcQNb7bXfibnrbmngXkekFf9wkhhBBCiD9Q+POI3gSjPgFrk9mGYZh+plR3CIQ/VW/LxmekU0f2uRCN+Xbnjj+foz4LpvCn9xHmao0/oFQZz1b1qkxcjp6sC9uVEMI8Bn5fqFVcqf6oT7l0EvOpUB91Uj9x70wBAHBwroij2XB4c9PduoU/5fiLxoWo1m1LSDOefRZYvXrhxP7y5Z0V9VksSrHGihtITRIHPQHsJOozKsJfO0R96nT8GcZCF5yfUZ9BOf4Ava4/t8JfJhMNx9/8vJ6xGRXhb2rKuqhN4Y8QQgghpHOg8OcRtVGfIiLOCzvYdUgpcUlNggeKg6hPADCEEv6iMUVdrfFnrz9Jn2uMmVGfHjn+ykLYdh1VozKd7wM7dQV1o9qv2/Gn3JlJF795agVZuwzPVsW+Z8bDMcujXM66DrHfwrvXCNb4IxZ57jngmGMWvrZsmXQVtfukrlXUhL7V+MRYLPgJYCdRn5mMf3GXXjI3Z1/AaeeoT2DhsfNT+AvC8adERp0iNR1/Eqd1DhejxncUavzZEf6CjngmhBBCCCH+QOHPI3oqjr+iqE52dxIlm0KJGojhiPqUrbEbLWcIKdVExfGnhCe7AqgO0csOeY8cf2pMOnP8VaI+XeyDIJ8XUFGfuo9hoaSEPzdRn5XaizabJoTAobmFwl8YHsqoRn3qUbb8rrHpNazxR6xy8CCwYsXC15Yvl8vRUf/bEwRqQt+Kq8kwwuH8cOL4S6ertc7aGaeOP7+E7FzOG+GvNurTivDXrjX+1LHVKfw5EcpryWSc7cdPfAJ41auAP/9z4NvfdvbdOtHl+ItKjT87wl93d/DXfUIIIYQQ4g8U/jwiFTfMyfPZqChBNlDz6VYHmJrUVZPggaIcf3Y/hmjV+LN7DBVmTKSLmEs7KOHPK8efkxp/Whx/Nfvf8Lm+men40x71KbeXchP1WVnaHV2T+TLmSwIxA0gYwHiujJF5jYV3HJLyKOozesJfNK6rxDtGR6XDrxYl/HVKnT+74kZvb/ATwMr9ZUfIUP3TGaEYBE4cf6mU3Gd+PLfiheMvnZb9FsJ6XbJMRrpT283xp45tmBx/XV3O9uN//qd8uOIHPwAuv1z+O0gY9bmQqSnr1/2eHim6E0IIIYSQ6EPhz0N6knKicqbYeXX+yjbj2dSkbigcf6rGn9155qhFfVaOYdgdfwWvoj4r0q90/MnXrIoPmYSGGn+qHQEMp5RHUZ+Fsg7Hn1zanfQcrrj9VmcS2DIgZ4ueHgs+20nFGzPqsz50/BGrjIwsFf7Uf3dKnT87jj8gXI4/O5P4XjipgsCp469cBgoFb9pUi5fC38yM7Eevhdt+w3AfURmE4y+MUZ9OhD8hgF27gDe+EfjYx+RrL77o7Pt1MTtr/9yphxL+2j3q067wF/R1nxBCCCGE+AOFPw9RcZ+zhc4T/uwKJWqtMDj+BJwJf1GL+qzW+LNHxqOYyEZ4FfWpIhOzJYFS2VnUpzvHX3C1zbwSb7UIf5WlsFnlT8V8DnUncPIyOVu0YyJv7uegSHXLWU9dxzkeuajPynkQcDtIuMnl5MTn4ODC1wcHpWjQaY4/O7Wegp4AdhL1qUSPdnf8OalTpib3Z/Te8tTFi6hPJfypcWdF+AOcO9UU09NAPF4VevzAS8efUwGzu9v+2Bkbk9fXtWuBoSH52u7dzr5fF4z6XIjdGn9BX/cJIYQQQog/cC7NQ3qTcvfOdKDwZ9elodYLg+OvGvVps8ZfxKI+1ai1G7EXXI0/vY/+d8UNJAw5lmeK9kS4tIYaf9WoT//Hk1njz6OoTzfCn/qo3aYp4W9tTwIv608hFTMwUyjjSDbYuM90t94af0nT8RcR4a+yZNQnaYaq4aeiPRXxuBT/6PirT3e3nNAPEuV6i9n4i8QLQcVvhHDm+FNCmR8T97mcfqFMCX+HD8v/thL1Cehx/HV3+5ui4IVAHYTjb9cuuVy3Tn5+xYrqa0ExP6/X8dfuwt/UlD3hL+jrPiGEEEII8QcKfx7SUxH+Zjss6rN2utm28NcdvPDn3PGnoj51tygYnDr+0hXLkW7RqBF5r6I+DQOD6YWXyLjVqM+4ivp0vg+CjPpUxzBfEhAaBST1DIQ7x18lgtVGs4QQGFGOv64EEjEDy9NxAMBkPljhT7mcdR3meGXf+lRi03MY9UmsoIS/xY4/QIqBdPzVp7s7+FpPTurcRcHxl8vJ32N2+66EMq+FPyG8c/xNTQF/8RfAqlXApk3WPufW8Tcz42/MJ+Cd488wnB8XJ44/Feu5bp1cDg2Fw/HnVPysRe3Hdo/6tOv4m5kBSsGXuSaEEEIIIR5D4c9Dejs06lMY1WFldYCpyfxUdwiiPivttz3PbEZ9RmOG2qnwlKpx/OkUjRrhVdQnAPQlYwsEB7uOv5wL9SVIwUM5/gSqYp0Oqo4/59tQ49FOs8ZyJeTKAgkDWNUlBb/+lGzEZD7Y63PKdPzp2V6isp1C1KI+o3FZJR6hHH2La/wBnef4i8WsiwJhiHxz4tyJguPPScQp4J/wl8/LpRfC389+Bjz4IHDzzdYdf11d7uJN7QgjuvCiFqUSyp0+FKb2o53b8127gIGBqtt0aCh4x5/uGn/t7vhTjlYrqONI1x8hhBBCSPRJBN2AKDI2Nobp6WlkcwkAaRyZnsWePWOWP9/X14fli/Oq2gjlmDMgXVNWCJPjT/01bdvxBzr+gKroBUhRLm21MJ5DCpUnVnU7/gAZLziQjGG8Ig5Zd/xVoj6Lbhx/8rNB6B3JmPxeAXkMU5qOoSn8udie0gztTFqpmM813QkzMnKgIvxNBSz8pTXX+Esox19Uoj7NyFtCGtPK8XfokK/NCQy7cYa9vcELf07iLqPg+Jufl8uwOv6UA0p31Kfq7/veB5xyivXPtaPjLxaT/dXt+HPTj64uoFyWx9fqdl58Udb3U6xdC9xzj/M26GBiAujrc78dw5BjvJ2Fv3LZvuMPkNeQeg/LEEIIIYSQ6EDhTzNjY2M4bssWTIyP4+XnvQHXfP6bePSpZ/H2K3/H8jYGly3Diy+80L7inwPhTK0bCsefGfVps8afiFqNP2dOm4QhP1MW0vVXSVT0DOX4y8978+j/QCqGibzcG1b1Kh11DoN0/BmGgVTcQK4kZJSqpok/daxSbqI+Kx8VsL5vh1XMZ3f1V15/Sg7MqYCjPlWNP7s1RRuhhL+oGM1Z449YYWQE6O+vL1IsWwa89JLvTQoEu66mMDj+nER9euGk8hunjj+/avw5bV8rzjtPCvRvfrO9z7mtRzk97b/wB3gj/LmJuFTXBzv7o57wd+iQFA91xG3aJZ+X47NX07OiqVR7C39qfDkR/gghhBBCSLSh8KeZ6elpTIyP42N33IXBdRswC2D98SfhC/c/aenzR4cP4uYrLsL09HTbCn8qKtOJ8BcGx58wqo5FOxgRi/qsCk82BVDDQDpuYL4oXAlfVhBCVKM+Z/VHfQKyZtq67jjKqIoqrVA1/vQIf8GMp3RMCn+5chmAHvW2GvXppsafxE6S5ZGsFPfWdNUKf9GO+oyc4y8al1XiEaOjjZ0LnVbjz4640dMjxRQhgqknCzhz/Kn129nxp9puVzhJpaTA7fWkvdq+LnFFcd558scu3d3AkSPOv3dmJhiRqqsrXMKfuj7MzACrV1v7zIsvAr/929X/XrtWXjP27AFOOMF5W5wyPi6XOhx/gDyf2rnGnxLEKfwRQgghhJDFUPjziBVD67BszVrMzhQhYnGsXHes5djLdkcJZ1ZjEYGq2yXdE7zwB9PxZ/NjIlpRn24m3NMxA/PwXvirdTXlPIj6VGQS9oIGVdRnrixQFsKReGfWWLT9ST2k4wZQcCdeLkaH8Kf2pZ1WqThPJfYBwEBIHH+pLs3CX2VDxQjU+KutEdohvz6JQ0ZG6sd8AlIQnJ6W0YpBOH78xK6rqacHKJWkCGW11ppu5uft15HzIkLRb9w46vyIaJ2YqH5XGHAb9Tk15X+NP0DuP7UvdaDT8WeFXA44cABYt676mnL/7d4djPCne2y2u+NPHUu7Nf4o/BFCCCGERB+WzfGQ2lhAj/WPUCEqw8rOPG1Yoj4TqbTrGn9RiPoUohqk6Ej40xB1aYWCKW4IFLLhefS/tq6h031QFs6iVnWh6vrlQyb8mVGfFpslhMB0pRBkf7LqXFQ1/maLIlCRTD3soOswJwwl/GnaYIDUHhberJBmNBP+VHjCyIhvzQkMJ8IfEOwEsBPHHyDFjyg4/pz03Y+I1rAJf93d7VfjD5D7b8x6mfeWOD1fFLWOPyu89JK836oV/latAhIJKfwFgW7HX6cJf2G47hNCCCGEEH/gXJqHGIZhin8dJfyZjj/rnwlL1Get8Og86lNjgwKi5HLCPa2iLj0WVFTMZ9isy/GYgWRlxzkV/pSwFZSMrOrwaXX8Vcx1rhx/laVVXStbEqYztK/G8ZeJV4/RVIBxn1XHn64af3JZjEDUpzoqBtAxjnnijFaOP7VO1LErboTB+TE761z461THX6cKf1bFqnrYrX+pi74+vcKf346/Xbvkslb4i8eBNWuq7/kNoz4XYjfqM5WSwq2bmpmEEEIIIaQ9oPDnMUr8ikLsmmXMGn92oj4l6YAdf2oS3slEs2FGfbb/BLUZ8wlnE+5pD9xi9VDbTxrhO7+U+Jl16virLAOr8aeOocZrV9Xx53wbVceftXZNV1S/roSxQHA0DAP9IYj7TOuu8RehqE/W9yNWaVXjD+iMOn9TU+3p+HMiZETF8eek734Jf/F4MHXx6tHVJfdZyeGv66Acf2ET/uw6/l58UYpEK1cufH1oKHjHH6M+JXYdf4bhzzWEEEIIIYQED4U/j1F17jrR8WdnslaJG0HX+FOT8M60lkrUJwzLokRYcRszWY369NZJZTr+QigMqDp/WYf7IGjRI7RRn5Wl1VaZ9f3qqI0DldcmC8E4/oQAkl1ypkZ71Gd7X4IABB93S9qDchk4cqSx8NffL2vCdYLwZ1fcUMJfkM4Pp0IGHX9627OYiQkpWoXFbK1EDaeuv9nZaAh/MzN6hD87jr9166QIXMvQkBQFg2BiQoqRukTpdnf82RX+AH/qhBJCCCGEkOCh8OcxKnat1OZCkB1UjT87k7XKGdnVv8xy7S4vUFGfTk4MFfUJ6HVJBYHSeuIOZ3z8qvGnRKlECB1/GZf7IOioz7SK+tQ4lvMahD/1kIDVZqn6fn3J+JL3lONvMiDHXxFALGb/etkMM+qzza9BQK3zOCQzzySUjI1JF1Aj4S8el+91QtSn3TjDMDj+xsacRfal0+3v+EsmlwoqVujpqUZxesXERHhiPgH7EZW1CBGc46+/P1yOv3hcnjt2HH9DQ0tfX7cuWMefTlG6q6u9Yy+npqQQmkxa/wwdf4QQQgghnQGFP4+h488aat14IhFojbxUxX3jdBK+VCgA8D7i0mvcus2UaOQ05tIqhRA7/tJxd/ugjGDdTqF3/Flslun4S9Vx/FVeC6rGX1HFAguh3fFXEtbjUMNKNe420GaQkKMEvUY1/gAZ99kpjj87wp8SQoKcAB4fl+KIXaLg+HMq4Pjl+AuT8KfaomIe7TA3J+8ZgnL8TU5KZ7IO3IwbRXe3dQH1xRcX1vdTDA3Jfjk5Hm5Rwp8udLsy/WZ6Wl4T7AihFP4IIYQQQjqDRNANiDqdWOPPFP5sTGXHDAMQZcCIIRdgjTyzxp+Dx0gNALm5GXQPLEOuLKDxb1LfcSs6+eb4U0JSKB1/UlRyug+q4mtQNf7ctX8xZSHMByBSboQ/pZUten3//v111z80kwKQRGl2Cnv2HF3wXj4XB5AJUPhT/xKOrjn1iNfom0UBJNtYNGPUJ7HC6Khcqlp+9egUx59dV1M8HuwEcC4nxTunjj8Kf94xMWFPRPaagQG5PHq0+Xr1cBKFqIu+Pik6Tk42diXbwa3jD5DXCCuOPyGkq++3f3vpe0oM3L1bT7/sMD6uV5Tu7QX27NG3Pb+x6/QG5PoU/gghhBBCog+FP49JxDrP8QfDWXSdIcoQAQt/aRdRnwCQm51G98Cytnf8uY/6rIhGHgve1ahPT7/GEabjr+hMVAo66jOlOeqzULOdZNx5r9S5KSAdbbNTkzBiMbz2ta+tu/67/uW7OO5Vr8WHbvhLPPGT/1rw3sbTz8X7vvxDjGcLjtvjBuX4MzQ682rdlKWycOWuDJqg61yS9sCK429wEDh0yI/WBIfTOMMghT/lsulUx5+T+n6APGZeRxNOTFSjYMOAOr+PHLH/WSVyBeX4A+RY1yGQ+en4Gx2V31fP8bd2rVzu3g2ceaa79thFt/DX1xeMc1EXU1P2hT8/4oIJIYQQQkjwUPjzGDW/3Vk1/uxHfQIV4Q9Arhyg408Jfw6bkJuVswvtLvy5jvr0ICayHnkz6jN8+zvjOupTEpToofsYFmr0TzdCba0WLQBk52YhymV8+N+/h3UbNy9Zf7pnFQSAaz78CSRuvGXBe0ePHAYAzBQFykL47q4smOKuvvEbMwwYkPumIARczg8GStCuV9IejI5KAaXZxOfy5cDzz/vXpiBwGmfY2xu88OfE8ZfJVN2e7Yhbx9/MjKxt6aRGoBXGx4EVK7zZthN6emRfnQh/QTr+lKg9NgYcd5y7bQnhr+Nv3z65XL166Xv9/XJ/BlHnj8LfQpw4/np6gAMHvGkPIYQQQggJDxT+PEY5popl6U7RFecWZoTp+LPXV0NIZSAcUZ/OPp+tCH9eO928xm3EXjXq09sIRbNmnKff4gw3cae1tdmCumSYjj9Nx7Ba389ZlK6i9pO1p9nyNWuxav2GBesKITA9XQQArFy9Zon7TQCYKBQQTyYxUyijP+XRDGoDamv86SQdN5AtCeSKAn1hPDksovZK9H9rEjeMjEgnTbPLyvLlcj0hgrumeo2ayHcyARy08OfU8Tc3p7c9fuLW8QdIp49XMYsTE8DGjd5s2wmGIV1/hw/b/2wYHH86hKVcTtYKdNuPTMaa408lqK9atfQ9wwDWrKmu4yfj43rHZm+v3B9eCuleMjXVXg98EEIIIYQQ/3CaaEgskqjsYYGqgyfqmDX+bE6uxZTwF+COqkZ9OpsZzM3Kv6Tb3fHnNuqzKhp5ux9yZtRn+PZ3pnLyZx0IZ7WfCOoibTr+NInY6pxwGz1pVBxtwNI6f4spieo69VyGBoDJ0YMAEEidv6Jqh9D73d2VsTfX5tch1vgjVhgdbS1+rFghhRav4xGDRE3k250ADrLWkxvhLwo1/twKf14et4kJva4qHQwMuHP8BSH81Tr+3KLGu9Nxo+jqsi78JZPV+oqLWbmy6gr0k/FxZy7hRqhj1K7Rl06EvyAf+CCEEEIIIf5B4c9jYoZh7mSPzU+hwIjFqjX+7H42DI6/bneOv1xkHH9y6d7x5+1+KJhRn55+jSPcOf6q/w7KJZzSHvWpR/gDqudnK6NcVcBuvB8nhmXWUSDCn6rxpzHqEwC6KifEvMP6kmGBNf6IFUZGGk9MK1RkYZTr/ClRs51qPbmJ+rQqXoSV2dlwC3+Tk+ET/vr726/GXyYDJBJ6hD/lcPWrxt+BA9LtF2vwB11UhL/aOoztiNOoz5kZ6SAlhBBCCCHRhcKfD8Qre7nYAXX+0t3VWQL7Nf7k/glU+MvIv5yc1/iLhuNPX9SnWBBbqRvlRkuG0fHnQvgLg+ChW7xVwl9KQ6fUL65yC8GsaArDjb9z4pCctZrMl1y3yy6qxp/uqM+uyi+d+WL4zgs7sMYfsYKK+mxGJwh/qt7d4KC9zwUd9dnb6yxeb2BAip2Fgv52+cHhw86cjkBVkPPKwZrNyljJMAp/TqI+g3T8GYZst07Hn9t+WK3xt39//ZhPxapV/kd9lkryeOocm2pb7Vrnb2qq+jCAVXp65K1nOz88QQghhBBCWkPhzwfUpHMnOP4yfXIWw4B9p5Lp+CsH7/hzemLk5uRf0u0u/LmN+lSiURmAl9pD3oz69O47nJKJq6hPB8JfRdAK8gKtBLqiAEoahKkgHH/qYYtEkx05cUjOWk0V/L9AF5TjT7fwFzXHX7DNICHHjvB38KD37QkKJfzZrfnW0xNcBOrRo86dO0rgdOIACwOHD9sXaRVeO/7UdsMm/DmN+pyZkS65oOq39fXpFf7cOv6sumX37ateO+uxahUwPOyv+O7F2NRZhzEIpqedRX0C0Y6/JoQQQgghnE/zhUQHOf4yvVL4czK3H42oT/mXdKdHfaZi1TpsXsZ9VqM+w7e/lfjppMafulQEaXRSUZ+AHiFbq/BXWbZqldK9Ek2+c7wi/AXh+MuWlfDnTY2/+bZ/AEG2Px5CYZ+Eh8OHW4tdXV1yojPqIL0LJAAARENJREFUjr/eXiCVsve5oB1/Tl1vSjRz4gALA4cPt46obYTXwp+Kfo2S8Gc3ClEn/f16RCVdwp/VqE8rjj8hpPjnF2o/ehH12c7Cn93xrc5t1vkjhBBCCIk2FP58QLmm2tx8YQktwl+Ajr9Mj/zrLwZnbVA1/trZ8SeEMAUVpxqNYRimcJTz0OqaK4VX+FNRn4Wyfcdc1ekU3LkQNwzTSalDvFWGOh3Cn4p+bKWvFy3UgFRRn0HU+FPCX0zoFR2V42+ujX/pCCGqzmMW+SMNmJmRda+sOKdWrIi+8OfEQRak409FfTqhnYW/fF7uc6eOv3Ra1o3rROHv6FH7n3PiiNJJT0/4HH9qW40QQtb4W7my8TpKFPQz7tML4a+rS7pB21H4K5edCdtqfQp/hBBCCCHRhsKfDyjHn464vLCTdiGchcHx17tc/hUbd3hmZCPg+KvVeNxcINIxvTXi6mG6yDz7Bueka2xKdvdBVfDQ2SL7qD7kNYxnsx6jhj6Zjr+WUZ9y2czxNzFcifrMlz2tR1mPeeGN469LOf7aWPgro+ropOOPNOLAAblsNjmtWL6cwl89enqkEJXNam9SS8bG3Ed9qojTdkK51pwKf4bhrVMzzMLf3Jz8scPMTLDCX1+fM8FyMarfOhx/2SxQLDZeZ2xMrtPK8Qe0v/BnGHJ77Sj8HTkixb/ly+19zmvXMCGEEEIICQcU/nzAdPy1rxZkmUxvRfhz4fjLC6AckEjau3I1AOe17XIzUvhrZ8dfbV0tu3Uaa0nHvRf+8iGO+owZhlknz+4+KIYk4jDtok7hYkyRVkOnzBp/Ldaz5PgblspBviy09NMO1ahPzY6/uKrxF77zwirKKBxD1eFJyGLUhHOzyWnF8uVVoTCKuBH+gGAmgI8edR712dUlY03b0fGn2uw06hOQolwnCn+AfREtaMdff3/4HH+AFEQbYeXa2tsr2+Kn8OfV2GxX4U/FrNoV/hj1SQghhBDSGVD48wHT8dfGLjCr6Ij6BAxkA5iwLgugd5m0DTQTCpqRm5N/lbe38Cfb7jZdzxfhr9Ra2AmSjMM6f2r1RMCCR09Sfv9Mwb1zTGeNP/WLq9kDAkIIS46/Yi6LdEU4nvQ57tOM+ix75PjzMGbXa8z6frxLIU2wI/xFPepzZKT9hD83Nf4MQ/a3nYU/p44/wHvHXywWrFhWDyX82a3zNzPjXixzgy5RaXZWRrwmXcZcqOParM6flWurYQCrV/vv+DMM/TUbe3vbU/hTv9PsCn+ZjIw3pfBHCCGEEBJtOKXmA4kax5/fUXJ+40r4AzA/NQEAmAtgwjqrIkaFcCx65cyoz3aecJdLbcKfR4J3uUbYSYbQ8QfU7AObQnZYRI++ZByAXuEvpbHGXzNNufa9VibDnpjs31Rer/OuGfmSQBHeRH12J9rf8aea7tR9TTqDffuAZcuk86sVK1ZU3RFRZGRE7gu7BOn8GB93F9m3bBmFPy+YmJDHJWyXX6fC39SUfqHIDv39cqy7/RNwdlaPgGnV8RePtxaUVq70X/jr65PCtE7aVfhz6vjzOi6YEEIIIYSEAwp/PlA76dzGRjBLdA/KvzycRrPNTsgsnCAmrOfL1Ul4pxGXuVn5V3RbO/4qS7cT7iom0ivHX6FGUAyr4y9tOv7sRn3KZdCiR2+lIN+0BkFMp+PPSt3UQk3MZ6vzuSfmv+NPiam52RkYLUNL7dFVE9EaVGyyW0oWYloJ2b/fmtsPkBOj09PNJ7vbFSGkmORE+AvK8ZfPy+Ph1PEHSCGoXYW/VMqdo66721vhL2wxn0BV+LN7zIOu8dfbC+RywPy8u+3MzurphxJBWzn+VqyQ4l8zVq2SD2D4hduHBRrR16cnjtVvhoflNdTKwy+LofBHCCGEEBJ9KPz5gGEYpvjXxnqQJQaH1gNwPlk7NyELd8wVA3D8aai3la04/vJtHOuqP+rTm2OpxNUYwnshyziskRcW0UMJf1ocfyWNwp9yUTdplmqyle/rjsu2+en4m600fvroqPZtZ2oGTru6/kzxW8N4IdFl/37pOLGCWi+KcZ9TU1JIa6eoT+WucTOJPzAgnY7txuHD8li5ebanp6da70w3ExPVcREmMhkgnbbv+AtDjT/AvbA0Nyf77xarjj8rD1WsWuV/jT8vROl2rfF36JB9t5/CyzqhhBBCCCEkHIR1vjxyVCeq23MS1ir9q9cBaF5TqxlBOv7MelsuYvdU1Geh3Lz+WJhRQ9S18BfztsafEleTcSN0cVSKjBm5aH1MCSHMBwSCFj36lONPS9SnXOoQ/lQEarHJOVa04TA0oz419NMqswXvhL+YYZj1Jdu1zp8ZdxvSc5uEg717rQt/K1bIZRSFv9HKZaSdHH9KBOlUx5+bmE/A+6jPMAp/hiGPuZMaf0EKf0rcdiss+en427fP2rV11Sp5TS359NzU+DiFv1qGh51d9wFvXcOEEEIIISQcUPjzCSsT1VFgYM1aAM6dSlXhz//J6vlKjT/DRX0+FfUJtG/cpyk6uY769Fb4UxpNOsSOoH4HwlkZMIMfgxY9+jQ6/kyhVsNvHfUgRTNNq1C51iYsfF8gUZ/K8XfYG7tKV5vX+VPHNhFWVZ+Egv37gdWrra2rXBEHD3rXnqBQwp8TMSkel2LC1JTWJrVECX9uHH+Dg+0r/KnYSqd4LfyFMeoTcCb8haHGH+De8ednjb8DB6w7/orF6jXIa8bGKPzV4sbxx6hPQgghhJDoQ+HPJ6xMVLc7ZQH0r6oIfw7FmHaP+iwV8kgacqJdh0sqCPRHfXojPChxOB20OtaE/pQsjjJpI0JSXSNicF4rUxe1UZ/C5UMLSjzs0aD8qQcpykDDrDQ7DkMl/Pka9Vlp4IwHjj8A6K4onkFcS3WgHpKJ8y6FNGBuTk7UWq3x19MjJ83p+FtKEJFvOhx/g4NyDBSLWprkG6Oj4Rb+xsfD6fgD7At/8/OyP8rxGwRK3NYh/OmI+kylpODfzPFnR/gD/Iv79Mrx19sr90e7XUvcCH/9/e0ZlUwIIYQQQqzDKTWf6ATHX1YYiCcSgBCOnUqz4xXHXwBuuXkNUZ9ATWygj+4hnWiL+qwMAq/qHar9258K72VMtc3OWCiFSPBQwl9R2K9TWIsQAtMFKar1J+Ou2xUDYA7PRLLuOk6iPueKAgWf4phnPIz6BGBGfWbb1fFXaTYdf6QRBw7IpVXhzzBkdF0Uhb+RETmR79Q919/vv3NOl+MPAI4edd0cX9EV9TkzA7gIqWhImB1/dseqEqSsOoO9QO3LsDj+DEO6/ho5/qampAhmNeoT8Ff4c3PNaITapld1M71ieNi58Dc0JOOyCSGEEEJIdAnB1HJnYDr+2nMO1hLzpmOuDMPhZO1cgFGfWVFtvxtM91DBP/eQTnRFfaY8dvxNKiEp5V5I8ooBR8KfXLrd/zpIxAx0VY6jGwdrriRMB16fBqHWMAzz4QIjnlryfrmmTqKVqM+kAaQqAqFfrr/ZorfCXzs7/oQQ5gMIITb0koDZt08u7UzoL18e3ajPwUEg5vDyuno1sGeP1ia15OhRGb+YrP/shiWUeOZXzKAujhzR4/gTorlryylhFv7sOv6cXCd0E4/L/ek2SnJmRo/jD5DnXqOxo0Q8Kw9V9PdLB6Ffwp9XY1NXHUY/mZuTx9Cpm3X1avnQSC6nt12EEEIIISQ8UPjzCTX5XPTJTRIEc6ZjzvnE+awZ9Rmc488ou5v47w6gXphO9EV9ykHvlfBnOv50FI3zCCVK5soCWYsCjLpGOK2TqZteDXX+piqf7Yoblhx4VjDjhOs4/lRTY4Y1AdUwnLkz3WA6/jyr8Sf7E4R72i21l/8Ql/AkAaMmmq24UhTLl0fT8Tc66jzmE5DOj9279bXHCmNj7mI+garw1051/kol2Xe3jj8lfngR9zk5GT3hz6oz2Cv6+907/g4e1BdZ2szxZ0f4MwwpIPkh/Akhx6YXjj813ttJ+Bselkunjr81a+RSnSOEEEIIISR6hHfGPGKoyec2TV2zxJwG4Wx2XAp/fjv+hBBmjT/3UZ+qXli7Cn9y6Vr4iynHnzf7oR2iPpMxA10VBc+qEGw6/kKiePRVhD83jj91rHS4/RRKGDXqCn+VmE8brknlzvRLsJ/1OOpTOTWDcE+7pVQjfjt1j5Pos3+/FAHsOGBWrIiu48+Ng2zNGun48zONfmzM/QS+6nM7CX9jY3I/64j6BPQLf9ms/Amz8Hf0qPWxum+f3Ne6nHJO6etzJ/yVy7IvupyLrRx/hmFdZFy50h/xaHpaCud0/El0CX9+u70JIYQQQoh/hHfGPGKoSeqykCJTFJkry+HkxvE3N6GEP3/3Ub4sUIKuqE9V46+zoz4zlUGfLQlPxvxkZf8OhDjqEwAGKjXtrEa/mjX+QqJ39KbcO/501vdTxJs4/qr1/axvT7kz/Thvy0KYruYZRn0uIUxxtyS87N9vfxI8qsLfyIg7IWloSLp//Jz01iH89fTIqNB2Ev5UW3VEfQL6hT+1vTALf4WC9YhTnWKZG3p73Ql/o6MyklGJNW7JZBo7/l56SV4rrcbw+iX8qeuTlzX+Okn4U45O1vkjhBBCCIkuFP58ImYAagozqq6/quPP+UTzbKXGX64sTNeHH8wW5HdlZ6ZhwN33dsfb1/EnKj+A+4tDXzKGmCEn8adciEb1KAthOtDC7PgDqu2z6iRTOk1YRI8+HVGfHrgzTcdfvHHUZ8KGa9JPx998UVTOM4HZcRuZZTaoFd7bjaISv8N9apOA2bfPXswnICdIp6aA+Xlv2hQUbqM+lZjw0ktammOJo0fdT+Abhux3Owp/YXX8TUzIZZiFP8B63Oe+fcHHfALuHX9KnBka0tOerq7G4ukzzwAbN1rf1urV/kQFq7HphfDX1QUkEu0l/B06JNvsNDI5lZK/Q+n4I4QQQgiJLpxW8wnDMEwHT1Tr/Omo8ZednjSFNz9rU5n1to64r7eloj6nC2WzXl67IIzqJcFt0mTMMDBYcVGN5/S6qGYLZZSFFNN7Q1zjD6gKSlaFYOX4S4SkW2r/TrsQxMyoT43Hqur4Sy15z4z6tDGI+206M92grjcZQ6Bc8ub72trxp4TbkIjfJJw4mdBXQmHU6vyNjrp3/AH+TgDrqPEHSCFo1BvjtCfoEv68qvHXLsKfVbF3795wCH9ua/ypc1OX46+vr/F585vfAJs2Wd/Wpk3AgQPyoQovUfvPi7FpGHKftJPwNzwsnZlubpVWr6bjjxBCCCEkyoRkarkzUJPQms1PoUFHjT8hBFKVP2D8nLCeLeqrt5UxBOKGdM65qYsWBKLiS41BT22tZWl5idEt/CkHYV8qhljIxQG7EZJhiznsqwhi7qI+PXT81Yv6FE6iPv1z/KnrTSbm3YMB1Rp/7fXwAVB7DgTbDhJu9u+3P6GvItEOHNDfnqAoFOSEuBvH38CAjP7z0/GnI+oTkG1vN8dfIuFevMhkgHi8KtTpol2Ev3Zz/PX2SperU/bskS5PXcdlwwbg2WeX1krMZoEXXgA2b7a+LSUSPvOMnrY14oUXgFjMu+jWdhT+nMZ8Klav9ve6TwghhBBC/IXCn4+kK7OYuTaMXmtFWQjMa3D8AUDaqDj+fBT+lKiho96WYVSdTe0W96kcf27dforlaSkajWX1Cn9KnOkPudsPsCcoCSFCJ3qYjj8XTjglevZprMdoCqOLhD8hhKOoz2VpJdCWkff4Gm06/rwU/iqOv2xJtJ3zmFGfpBXz83IS3e6E/tq1cuL4uee8aVcQKAHEjfBnGNL156fj7+jRznX8DQy4c+kA8vNr1wIvvqinXYooCX/T09KFFgbhb+VK6TQuFJx9fs8e6fbT9UzYxo1y3yx2Pz/7LFAu2xP+NmyQ19WnntLTtkbs2AGsXy8jKr2gt7e9hL9Dh9xd9wE5phj1SQghhBASXTit5iOpykx+PoJRn7PFMgQMlIpFGMKd2NVVmQyf8FE0mzWjPvXMHimX16RFl1dYKMcSAOwJJs1QYsqYbsdfZb8OaBSSvGLAhuOvVm8Ki/CnROzZojMBSdTWY9Qo1KooVCMWR7qnOkNZa3BL2NiHPcmYKXKOzBd1NLEh6nrTZXgp/FU7n20z1x+jPkkrlGPP7oR+JgMceyzw61/rb1NQKNHLbXSkn86PQkGKMjocf+1Y48/tsVIcc4wUQ3QyMSFFnK4uvdvVRTIpBRorwt++fXLplUPMDps3y3H/wgvOPr9nj95+NHLpKfHOTo2/dFoKck8/raVpDXnmGXn99op2FP7cOv7WrJHu+XJ7PadKCCGEEEIsQuHPR1IVMSVfEhBt5sBohar/NX1kBG6nagcTclujHk++1zJTrLZfB3bruoWFclwKfylNwp9y/I3n9O4HtV91Rkd6hRoLs0XRsr5nrdtPR9SqDroThvmLwknc51yx6mLUWeMvZlTb1b9qyHy9Wt/P/j4c6pLjf3jO22vPjA9RnzHDMF3m86X2ug6V6PgjLdi/Xy6dOHk2bYqm8OfW+TE05J/wp1xluhx/7Sb86eg3IMUZ3cLf2JgUQGIhvv4ODgIHD7ZeT10nwiD8KaHNqTj20kt6+zE0JJ1zi9vz1FPyvZ4ee9vbtEnWBvSSHTuku9Ar3Max+o2OqM81a4B8HhjR8+cvIYQQQggJGSH+sy56KI2ijIWulCigHD2TI+4L5yyLy22NeDz5Xovp+NMQ9QlUBal2E/5KMRmbmNZkN1uWkcLfRL6kNW5QOSnbQfjLxA2z1lyr8aCEwbC4/QApniknnBPhT10behIG4royZCsoYaivRvhTCcFJB9811O2P8Gc6/jwU/gAp2gJSfG0XhBDm78ew1Lkk4cON8HfcccCTTy6tbdWuKOFPRSA6Zc0a/4S/sTG51OH4GxyU2yu1ScDC6Kj7Y6XYsEE6webn9WwPkOLKMcfo254XWBXv9+2T0ZgrV3repJYMDkpx3qnwt3evFOR0EY9L4bie40+JlHbYtMlbx9/srNwHdpyIdmmnGn/lsryWrFjhbjtKTN67132bCCGEEEJI+Aj/rHmEMAzDFP+8riHlN0rQmBw51GLN1gzG5ezN4fmSb87I2aK+Gn9ANerTSrxjmFBRn7r0tP5kDHEDKAu9IqjaVjtEfRqGYXk8qMuCrqhVXVTr/Nk/hlOmSKv/WKkoyFrHX7bibnMj/Hke9akcfx5GfQJAV0UZ9bNeqlvKDqNaSWfxwgtyEj2Tsf/Zl71MOs4OuH9OKRSMjspYRrfRjENDwOSk/PEaVWNxzRr32xoclCJuuzh1dEZ9btwo+75zp57tAcDjj8tzJMxs2QI89lhr8X7fPumISiabr+cXmzY5q4M3NSXPSx3nSy0bNiwV637zG+fC3/BwVdTXjbpmeOn4ayfh7+hRoFh07/hTYjLr/BFCCCGERBMKfz6j6vzlIlbnTwkCU6MWsnda0B8XiBtyH0365Jib0Vzjb6AilEw6EEqContgGURMijMpTZYzwzA8qfM35UHNOC+xOh7MiMOQCR5uHH/qWOmM+VQox58S/oQQprut24FqpIS/o9mSpw9nKOHaa8efqvM330YPmii3XyxEcbckfDzwAHDCCc4+e9xxcvnkk/raEyQjI+4nf4GqqODHBPAjj0jxS5fwB7RP3KdO4U+JIM8+q2d7uZzcljpHwsrxx0uBRtXwa8S+feGI+VRs3OhM+FPnpG7hT7n0lIA6NSWdX5s329+W+oxXrj8Vaeu18KdiiMPO8LBcur329/TIHzr+CCGEEEKiSXvMmkeIdE2dvygxXXH1TGiI+owbwIpKRKQfdf7KNWKBrhp/tQ6vdqnnuGbLSQCkyyamccJ9mVnnT4/wly2VkaucP164yLxAtXPSouMvbBGHfSkXUZ8e1mNc7PjLl+U+NCAjVu3Sm4yhNxmDgHfXnplC2XygYTDu7YMBXQm5z+fa6AEEdW7rqjNKokepBDz4IPCKVzj7/Jo1spZTVIS/3/wGWLvW/Xb8dH488gjw8pfLGEa3tJPwp5yJuqI++/pk1J+uOn87dkgXUTsIf4B0JzZj795wxHwqNm2SbuV83t7n1DmpW8TcuFEKXaq+m4r9dCL8HXMMkEg4EzatsGOHPJa9vd5sH5C1N6enZaxo2DlUCdhxK/wZhvydSMcfIYQQQkg0ofDnM8pJlY+o409H1CcArOnyJ3IPqLbdgMDshJ6sKCWUFMpAtk1E3qEtJwPQ5/ZT6Hb8KbdUJm5ob6tXDFis+RjGGn9A1Vl5NGv/GKqoT08cf5X91LdSzljPVSItuxKGY/F6qHLtOeRRnb+9MwUAwOquuLZI3UYMVgRnP66jupivRLV2he0kIKHhmWekM+WUU5x93jBklKGVGmFhp1wGfvUr4NRT3W9r2TIZieh1nT8hqsKfDlasAGKxahRgmFHxfMuW6dvmhg36hL8nnpDLsAt/K1dKwbeV8Bc2x9+mTfL42x2re/ZIUc1tPbfFqHp5SvB76il5Ljlx1SWTwLHHeuv489LtB1SvSQ8/7O336EC5XXW4vVevpvBHCCGEEBJVKPz5jHIxFMrSaRYFhBCmm2tSg+MPAFZXJt9H572vkbd3Wk7ED8bLEGU9zphkzDCjBv2KK3XL0PEV4U+z02a5ZsfflIcOMq/otyD8CVQjGdMhEz2O7ZUFcvbMFGxft5Sw7kmNv8pYHVgj7S5uYj4VKu5z2CPhb19F+NvQ633RoY198jv2zhTawnkshMB85RhmWOCPNOCBB4B4HDjxROfb2Lw5GsLfM8/I2l86hL9YTLr+vJ4APnhQ1iV0GtW6mK4uua3779ezPS/51a/kUpfoCUixRZfw9+tfS+dWd7ee7XmFYUhxUgmV9RAC2L8/fMIfYF8c27NHurJimm9716+Xgp0S/p5+Wh7/dNrZ9jZulA5kL3jmGe+Fv02bpKPwl7/09nt08N//LZ2vqZT7bVH4I4QQQgiJLu0zcx4REjHDdKlEJe5zZL6E2aJAHALDzz+jZZuru/yL+txdEf7WJfWKjAM1cZ/twNDxMupTt+i0LC0vM/qEP7mdgTaJ+QSqrsfR+aJZx28x5VgSZSEvyk5iKr1kqDuBTNxAriRwcNbeOemlUKtE6o2nnYNSusd013YnnH+XEv68csmpBw38EP7WdieQMKQgesSBW9NviqIadxu2c4CEhwcekBOemYzzbRx3nHTdZLP62hUEv/iFdAK5EUFrWb3ae8ffI4/IpS7hDwBOOw24555qrbKwcs89MpZVRzSrYsMG4PnnZQSuW554Qrph24EtW4DHHmv8/sSEjGxctcq3JrVkYEC69uwKf3v3eiNgxuNy/Kj2/OY3VXHSCZs2Sdeg7vOwWJQRqV4Lf7GYjJAOu/AnBHD33cCZZ+rZnh8PfBBCCCGEkGCg8BcAarK6TYxgLXl+MgcAWJssoZCd17JNFfU5mS8jW/RuR5WFwO4pWWxjSLPwp4QOXYKXlwgBrDlOCn+6HX9K9JrIlRuKXnZoR8ffUHcC3QkD2ZLAnorws5hiQj5i3ZUwYISsxl/MMLC54h7bNWW9OE1ZCNPx50XUZypuoDQxCgAo9cnZvWRMOm6dooS/o9mS9oczZgtlHK1cD471QfhLxAwcU+PWDDum2y/uPKqVRJ9f/Qo4+WR32zjuOCmU6HJKBcUvfylF0K4uPdsbGvJe+Hv0URlPp7P22umnA8PDUgALMz//OXDGGXq3uXEjkMsBu3e7244Q0vEX9phPxfHHy7jDow0S+lUUYpgcf4AUx+wKfy+9JB1/XqCEvx//WLrI3Dqpx8ako1cnu3YBhUI1mtRLTjkF2L5dj5DuFTt2yBp/Z52lZ3urV0vn+NSUnu0RQgghhJDw0D4z5xFCOaqypWgof89PSiFgfUrfX0mZRMysKzbqoVNlZK6I+ZJAOmZgZULv8VjfIyfcn52wLpQExWzZQLq7BxACuvWZvmQMCUNGWU7m3O/j/bOVaNY2cvzFDAMnDkphb8d4ru46Svhz41bzkpf1yzyhXQ2Ey3pM5csQAAwAvR4IfwBQPrIfB5/9jcz+gvv915uMoTcZg4B+15+K+VyViaPLp+O8sSL87bVx3IJC1fej2480YnQUePFF6cpww+bNcvnkk+7bFCS/+IWemE/F0JAUz/Ie3rY8/LCMutSp7Z96qnQv3Xuvvm3qZnhYxhV6IfwBwLPPutvO/v3A+Hh7CX9A47jPF16Qy7AJfxs3SlecHfbs8a4fGzdKMf7NbwbOPRe47DLn21JjR7djTj2g4bXjD5DC39SUd7UKdfDzn8uIVl3XfnUu3XOPnu0RQgghhJDwEM4Z5ojTValdNFMQWhxQQTKRK2F0vgQDwPqk3kny1RXnzahHtbaAqoixsS8JzUY3vGJZGjEAh+aKOOxDZKkbJkryUhArF7W7zQzDMF1/R7Lu9sPh+SL2zxZhADhxmYbCFj6ihL/nJvMolRee9139gyjFpEDjpj6dl2yuCH/Dc0XMFawJuL8Zkzl663sS3jm4hMA3bnwXUKnP2aNh/x3bI689TxzRmwO4V9X36/Pe7afY0EZ1/rIVx19XSM8BEjwPPCCXp5zibjtdXbKWVTvX+du7V7qadAp/r3mNnPT+/vf1bbMWIWTUp84ad4CsSXfiieEW/lTbdMXzKVaulP13615V50K7CH/r18u438cfr//+7bfLvuh0lupg0yb58EKu/jNgS8jlpGjsleNv0yZgbk4K0h/9qIwOdsr69fKhjNtu09Y8AHJs9/bKmFSvOfFEuQ9UPc4w8vOfy9+BbuKua9mwQUYv/9//q2d7hBBCCCEkPFD4C4CuuIFUTDqgpto871O5/Y7pTSCteTSpOn8HPRT+VMyncjPppCcZw5YBud0nj4a7kJAS/uJlb1xBKm7w0cPu9sPjFSHm+IEU+pLt4/gD5DnSk5B18l5a5L7a8urXAYa8LiR0K9Ca6E3GzHNy93RrO0ipLEzh7KxVmnLoGnBk7y4kJg9hdSauxS127ppuAMAz4zmtUb2m8OdDzKdibXcCqZiMmR2ZD292VaEsUGR9P9KCBx6Qzhcd7pfTTgO+8Q1gXk9Cue+oiWm3ImgtmzfL7f3rv+rbZi379wNHjugX/gB5PO+9N7x1/rZtk/t3+XK92zUMOXGvQ/jr6/NOYNJNPC7r/NUT/oaHpXj9+7+v11mqg02bZIzkzp3W1leuZJ11IWvZuhW44Qbgb/8WSGn4U+hNb5LClM7Y3YcflmPcj2OZyUgHXFjr/BUKwH336X+A4Hd/F/jRj+T1mRBCCCGERIdQCH9f+MIXsGnTJmQyGZx77rl46KGHmq7/7W9/GyeeeCIymQxOPfVU/PjHP/appXowDAODqu5ZvoxyWGcpLKCEv5cPpLVv+2V98i/QHeM5HJrVL0hli2UcmJWi4uZ+bybiX7lCPo759HgutO7OXKmMXTn5iG+s5I3w9+o1XYgZss7YHguiUT3yJYGnKzGZZ6zU9Jirj8QMAyeouM+JhY96v/y81wOAb/GPTlHn5K6p1uNk50Qes0WB3kQMLx/03p0ZK+bRl4ppcawOdSdwXH8SAsADw3PuGwdZ3+9I1r/6foqYYeDYXnl+7w1xnT9V3y/N+n4t0X3PJITAzTffjLVr16KrqwsXXHABng9hsTQhZBSZ25hPxZVXAocPA1/8op7t+c0vfyknwwcH9W73938fuPtub2r9PfKIXJ5wgv5tn366jIJ1G3npFdu2yTZ6wYYNwIMPmsZ3RzzxhHTItdPl97jj6vf7q1+VwuDv/m4gzWrKy14mxSWr7qpbb5VOOp3O3lpSKSnW6RD9AOB3fgcYGNDn+vv1r4Hvfhf4f/4fPduzwiteEV7h7+GHgelpffX9FG94g/wd+41v6N0uIYQQQggJlsBnme+44w7ccMMNuOWWW/DYY4/htNNOw4UXXojRBpXBH3jgAVx55ZV45zvficcffxyXXnopLr30Ujxlt2BCwPQmDCQMoCyAaYuxeWFjplA2a1YdP6B/Yv+Y3iResSwNAeAn+2a0C2fPT+YhAKzIxDHgUb24l/Un0ZMwMFcUeHEynLX+7j0wh9lyDGMH9iBV8Mb6MJCK4/SKCPqLQ3OOIgd3TOSQKwkMpmLY5GNUok5OWiaFv+cn82aNz2wZOOG8NwAIb8ynQgnkL07lMdHCCffoETmWTl+ZQbydZhIrvGZIuv6eHsu17GsrSkLgh3umAQBruuK+13FUDsPdU/lQxn2WjZjprOyi268pXtwz/Z//83/wj//4j7jtttvw4IMPoqenBxdeeCGy2XA51b/0JVmLStdk/vr1cjL57/9eRt21E0IA99+v1+2neN3rZHTkV76if9s//7mM6/MifvGUU2REXxjjPnfvlkKqbpeO4vd/X9YP/Jd/cfb5I0fkeNqyRW+7vOZ1r5OxmZ/5TPW1clmK+eefLx2MYaOnB7jqKuAf/1Ees2Y8/rgUvd76VncRnH6SSgEXXQR8+ct63NQ33ihjmS++2P22rHLKKTJKef9+/77TKj//uYw91e2aHhwEXv1qKZoTQgghhJDoELjw95nPfAbvfve7cc011+Dkk0/Gbbfdhu7ubnz5y1+uu/7nPvc5XHTRRfjABz6Ak046CR//+Mdx5pln4vOf/7zPLXeHdP3J3T+eK2O2UA7lhGwjRueL+I/nJiAgJ7KVg1E3r1/fg0zcwOh8CQ+N6BOlnhrL4q59MwCAl3sgWipihoFTl0vB65fDczjqssadbl6ayuOJSgzpf/3tdTDg3RjcOtSFhAHsny3iOZsi6HiuhIdHq0KS7jqEfnFMTwJ9yRhyJYEv7ZjA9uE5/HiyG30rV8Mol0IvehzTm8SKdBzZksDtz082HM+7pvI4MFtEzJDHqx1Z15PE5r4kygB+sGfacZ1OIQR+uncGu6cLSMaAi47t1dtQC6go493TBdy1b2ZJjckgSff2Ya5rOYoCSBjAQCrw25JQo/ueSQiBz372s/jIRz6CSy65BK985Svx7//+7zh48CDuvPNOH3vWnOefB66/HnjjG2U0nS7e+lZgbEx/TSqv+ehHgaefBl77Wv3b7uoCXv964N/+TUYS6uJb3wL+6Z+AP/xDfduspasLOOkkKVhOTnrzHU75938HYjHvHH+nnSaFkQ9+0L5YUSoBb3mLjBD84z/2pn1ecfrpwBVXADfdVHWT3nuvFFrf+MZAm9aUyy8HhoaAv/iL5tG0t9wiRa8wOheb8aY3ARMTwNe+5m47994L3HUX8M53+it8Knfl7bf7951WeOkleV0+80zpaNXN7/4u8Nhj8ncLIYQQQgiJBoE+P5jP5/Hoo4/ipptuMl+LxWK44IILsH379rqf2b59O2644YYFr1144YWhmqCySl8yhsl8GYUyMDxfQiZuoJzqxTl/9DbsziUwPZaFkgEMGGb8jikNqH8s+qOx3t+QYtE/RJ21Fr+y+I9RAWCuWMZ4roRnxnMolOUk7Zs2evdIbU8yht9Z34Of7J3B/Yfm8Mx4DscPpNCdiCERMxA3gHjMQMyQDVRNFoAppKrXykLWVDycLWLnhBSeThhM4byKs8crTl+ZwWNHshidL+HfdkzglOVprMhI10980UGtlX0WSEA1x7pRH4WoeV2tU3O8a98vlAX2zhSwt1Jr7vh0Abse8baSfV8yjjNWZvDw4Sy+u3sa67rncfxACl2JGFIxOb5rh1ypLDBXLONwtoSnx3IQAFKxqpDajhiGgUs39+EHL01jIl/G/YfmABgYfmEHjlu7EsbguqCb2JS4YeAtx/fjjhemcCRbwn88N4nj+lNYmYkjETNQLAu8OJXH/kqE7kmDafQm21fI+e113dj33CQOzBbx5WcncNKyNJan4+hLxRCvOWcNGKj8D4B0+BXLwJFsEftmChiZL8EAcMmmfqzt8d+tuqorgTes78E9B2bx66M5jM6XsLkviYFUHMp8uLgP8rWaf9RcP8ylqP4uWXzNWbKuub6kJAR2zabwl1+/B+V4EnEDWNeTCG2NyzDgxT3T7t27MTw8jAsuuMB8f2BgAOeeey62b9+Ot7zlLfo7YpNiUQp0y5cDf/7nere9bp10/f3d30kX2p/8SfidNZ/6FPCJTwDve59eEbSWiy8GfvAD4O1vl1GDxxzjbnsPPQRcfTVwwQVyH3vFe94DfOhDwG/9lhQM1gX8K7VYBP7X/5Lurssvl04dr3jf+4D/+R95jnznO9bH8Uc/KgWWT32qfer71fLOd8qY0ssvB847T8bUbtrkjRtWF6mUPE4f+pB0ab7rXQuPlxDS2fWDH0hR0wuRx0vWr5duzPe9T4qwt9wCpG1WhNixA/irv5Ji/m//tifNbMjy5fIBhRtvBKamgI9/XAr3QfLUU/J3VSwGvPe93nzHq18tHanf+56+SG1CCCGEEBIsgU5vHDlyBKVSCWsW/aW5Zs0aPNugSMfw8HDd9YeHh+uun8vlkMtV62lNVh4DnpqactP0hkxPyzi3A7uex/zsTMv1BQyUUz3IJ3uQrYhAv3fd/8Z9I3lg5JAnbdTF6kQJ58azGH7xIIYBHDx4EID1vi9mrNLfnTt3mvsRAGICWFdI4aVcAvtmDOzTVHj8hEweW2YK2FmJ2vGq/QBwHgw8mUvhYCGBh2am6308MJbHS+g+vBuAN31f8F0CWJlP40A+jl0zBnbVT6ery1CyiFMyeezeufS8cHvsRva+BAA49NKLECX7zi6r/Ve8WgDPFZN4MZfE8vwEPvLW38UH/+XryE9P2P5uv9sOAGeWgV/MZzBeiuPROs4KAwLHpopYP5VHqxTmII+dlb7/lmHgyWwKBwoJPObw3DUgcEZ3Htl9w3hqX/V1L685i+kCcCbieHAmjd0zBnbbOPe8pHtwBeYnx9GTm8ChsvXjp/o+PT3tye9ztc0wOfG9uGdSyzDfVz3yiBSOXvlK4Jvf1L/9RAIYH5fC1NVXV19PpeSEeyzmf90z80EdIZ1YhUXlOQ1DxpN6EcepWL1aOnZqXTvJpNxf9fZJbZtLJSCfX/oA2cqV3kfJnXUWcN99UnxQJBJL263rmNb2sVyu9r2WFStkXTcvjxcALFsmxaJkzfMl8bgcy6q/9cZTb6+spfbrX3vbPq849lgplO2Wt7L4nd9pn8jCP/sz+dOIvXu9HzdesH69HIe33ip/FPXORSHkuVMvXfqcc4I5lr298ufv/17+KNLp6u8F3Sy+hhYKS+tXvulNwE9/qv+7a5mYkIKnbsJ4XxVW1D7y6r6KEEIIIe2NrfsqESAHDhwQAMQDDzyw4PUPfOAD4pxzzqn7mWQyKb7+9a8veO0LX/iCWL16dd31b7nlFmWA4g9/+MMf/vCHP/yx/LNv3z49Nzwa8OKe6Ve/+pUAIA4ePLhgncsuu0xcfvnldbfJ+yr+8Ic//OEPf/jj5CdM91VhZd++fYEfJ/7whz/84Q9/+BP+Hyv3VYE6/lauXIl4PI6RkZEFr4+MjGBoaKjuZ4aGhmytf9NNNy2IuSqXyxgbG8OKFSvatk5YPaampnDsscdi37596O/vD7o5nsP+Rp9O6zP7G23Y3/ZCCIHp6WmsCzorsAYv7pnUcmRkBGvXrl2wzukNCpJ1yn2VHdp9vBMJj2M04HGMBjyO0UAdx71798IwjFDdV4WVdevWYd++fejr64vUfVWnndPsb7TptP4Cnddn9jfatHt/7cxXBSr8pVIpnHXWWdi2bRsuvfRSAHICadu2bbj22mvrfmbr1q3Ytm0brr/+evO1u+++G1sbFDpJp9NILyosMDg4qKP5oaS/v78tB61T2N/o02l9Zn+jDfvbPgwMDATdhAV4cc+0efNmDA0NYdu2babQNzU1hQcffBB/1iB/rtPuq+zQzuOdVOFxjAY8jtGAxzEaDAwM8DhaJBaL4Ri3xXVDTKed0+xvtOm0/gKd12f2N9q0c3+tzlcFKvwBwA033ICrr74aZ599Ns455xx89rOfxezsLK655hoAwNve9jasX78et1YKBFx33XU4//zz8elPfxoXX3wxvvnNb+KRRx7BF7/4xSC7QQghhBDiKbrvmQzDwPXXX4+/+7u/w/HHH4/Nmzfjox/9KNatW2eKi4QQQgghhBBCCCGkvQhc+Lviiitw+PBh3HzzzRgeHsbpp5+Ou+66C2vWrAEA7N27F7GaCtrnnXcevv71r+MjH/kIPvShD+H444/HnXfeiVNOOSWoLhBCCCGEeI4X90x/8zd/g9nZWbznPe/BxMQEXvva1+Kuu+5CJpPxvX+EEEIIIYQQQgghxD2BC38AcO211zaMqbrvvvuWvHbZZZfhsssu87hV7UU6ncYtt9yyJH4rqrC/0afT+sz+Rhv2l+hC9z2TYRj42Mc+ho997GO6mthxcLxHAx7HaMDjGA14HKMBjyNRdNpYYH+jTaf1F+i8PrO/0aaT+msIIUTQjSCEEEIIIYQQQgghhBBCCCGEuCPWehVCCCGEEEIIIYQQQgghhBBCSNih8EcIIYQQQgghhBBCCCGEEEJIBKDwRwghhBBCCCGEEEIIIYQQQkgEoPDXRtx666141atehb6+PqxevRqXXnopdu7cuWCdbDaL97///VixYgV6e3vxR3/0RxgZGQmoxe7553/+Z7zyla9Ef38/+vv7sXXrVvzkJz8x349af2v55Cc/CcMwcP3115uvRa2///t//28YhrHg58QTTzTfj1p/AeDAgQN461vfihUrVqCrqwunnnoqHnnkEfN9IQRuvvlmrF27Fl1dXbjgggvw/PPPB9hi52zatGnJ8TUMA+9///sBRO/4lkolfPSjH8XmzZvR1dWF4447Dh//+MdRW0o3SscXAKanp3H99ddj48aN6OrqwnnnnYeHH37YfD9q/SWdSyfeg3UCnXCvFVU66X4qqnTifVNU+O///m+86U1vwrp162AYBu68884F71s5bmNjY7jqqqvQ39+PwcFBvPOd78TMzIyPvSC66bR7pU6eqwI64x6K81XRvr/ifFX077s4XwVAkLbhwgsvFF/5ylfEU089JZ544gnx+7//+2LDhg1iZmbGXOd973ufOPbYY8W2bdvEI488Il796leL8847L8BWu+P73/+++NGPfiSee+45sXPnTvGhD31IJJNJ8dRTTwkhotdfxUMPPSQ2bdokXvnKV4rrrrvOfD1q/b3lllvEK17xCnHo0CHz5/Dhw+b7Uevv2NiY2Lhxo3j7298uHnzwQbFr1y7x05/+VLzwwgvmOp/85CfFwMCAuPPOO8Wvf/1r8Qd/8Adi8+bNYn5+PsCWO2N0dHTBsb377rsFAHHvvfcKIaJ3fD/xiU+IFStWiB/+8Idi9+7d4tvf/rbo7e0Vn/vc58x1onR8hRDi8ssvFyeffLK4//77xfPPPy9uueUW0d/fL/bv3y+EiF5/SefSifdgUadT7rWiSKfdT0WVTrxvigo//vGPxYc//GHxne98RwAQ3/3udxe8b+W4XXTRReK0004T//M//yN+8YtfiC1btogrr7zS554QnXTavVKnzlUJ0Tn3UJyvivb9Feeron/fxfkqISj8tTGjo6MCgLj//vuFEEJMTEyIZDIpvv3tb5vr7NixQwAQ27dvD6qZ2lm2bJn40pe+FNn+Tk9Pi+OPP17cfffd4vzzzzdvpKLY31tuuUWcdtppdd+LYn8/+MEPite+9rUN3y+Xy2JoaEh86lOfMl+bmJgQ6XRafOMb3/CjiZ5y3XXXieOOO06Uy+VIHt+LL75YvOMd71jw2pvf/GZx1VVXCSGid3zn5uZEPB4XP/zhDxe8fuaZZ4oPf/jDkesvIbV06j1YVOike60o0un3U1Gh0+6bospi4c/KcXvmmWcEAPHwww+b6/zkJz8RhmGIAwcO+NZ24i2deK8U9bkqITrrHorzVQuJ+u9lzldF6/hyvkrCqM82ZnJyEgCwfPlyAMCjjz6KQqGACy64wFznxBNPxIYNG7B9+/ZA2qiTUqmEb37zm5idncXWrVsj29/3v//9uPjiixf0C4ju8X3++eexbt06vOxlL8NVV12FvXv3Aohmf7///e/j7LPPxmWXXYbVq1fjjDPOwL/+67+a7+/evRvDw8ML+jwwMIBzzz23bfusyOfz+NrXvoZ3vOMdMAwjksf3vPPOw7Zt2/Dcc88BAH7961/jl7/8JX7v934PQPSOb7FYRKlUQiaTWfB6V1cXfvnLX0auv4TU0mn3YFGj0+61okYn309FiU67b+oUrBy37du3Y3BwEGeffba5zgUXXIBYLIYHH3zQ9zYTb+ike6VOmasCOu8eivNVnXF/xfmq6B1fzldJEkE3gDijXC7j+uuvx2te8xqccsopAIDh4WGkUikMDg4uWHfNmjUYHh4OoJV6+M1vfoOtW7cim82it7cX3/3ud3HyySfjiSeeiFx/v/nNb+Kxxx5bkDmsiOLxPffcc/HVr34VJ5xwAg4dOoS//du/xW/91m/hqaeeimR/d+3ahX/+53/GDTfcgA996EN4+OGH8Zd/+ZdIpVK4+uqrzX6tWbNmwefauc+KO++8ExMTE3j7298OIJrj+cYbb8TU1BROPPFExONxlEolfOITn8BVV10FAJE7vn19fdi6dSs+/vGP46STTsKaNWvwjW98A9u3b8eWLVsi119CFJ10DxZFOu1eK4p08v1UlOi0+6ZOwcpxGx4exurVqxe8n0gksHz5ch7biNAp90qdNFcFdN49FOerOuf+ivNV0bvv4nyVhMJfm/L+978fTz31FH75y18G3RTPOeGEE/DEE09gcnIS//mf/4mrr74a999/f9DN0s6+fftw3XXX4e67717yREJUUU+WAMArX/lKnHvuudi4cSO+9a1voaurK8CWeUO5XMbZZ5+Nv//7vwcAnHHGGXjqqadw22234eqrrw64dd7yb//2b/i93/s9rFu3LuimeMa3vvUt3H777fj617+OV7ziFXjiiSdw/fXXY926dZE9vv/xH/+Bd7zjHVi/fj3i8TjOPPNMXHnllXj00UeDbhohntFJ92BRoxPvtaJIJ99PRYlOvG8ipFPolHulTpmrAjrzHorzVZ1zf8X5qmgeX85XAYz6bEOuvfZa/PCHP8S9996LY445xnx9aGgI+XweExMTC9YfGRnB0NCQz63URyqVwpYtW3DWWWfh1ltvxWmnnYbPfe5zkevvo48+itHRUZx55plIJBJIJBK4//778Y//+I9IJBJYs2ZNpPpbj8HBQbz85S/HCy+8ELnjCwBr167FySefvOC1k046yYyLUP0aGRlZsE479xkA9uzZg5///Od417veZb4WxeP7gQ98ADfeeCPe8pa34NRTT8Wf/umf4q/+6q9w6623Aojm8T3uuONw//33Y2ZmBvv27cNDDz2EQqGAl73sZZHsLyGddg8WNXivFQ069X4qanTifVMnYOW4DQ0NYXR0dMH7xWIRY2NjPLYRoJPulTplrgrgPRTA+aqo/l7mfFV077s4X0Xhr60QQuDaa6/Fd7/7Xdxzzz3YvHnzgvfPOussJJNJbNu2zXxt586d2Lt3L7Zu3ep3cz2jXC4jl8tFrr9veMMb8Jvf/AZPPPGE+XP22WfjqquuMv8dpf7WY2ZmBi+++CLWrl0bueMLAK95zWuwc+fOBa8999xz2LhxIwBg8+bNGBoaWtDnqakpPPjgg23bZwD4yle+gtWrV+Piiy82X4vi8Z2bm0MstvDXajweR7lcBhDd4wsAPT09WLt2LcbHx/HTn/4Ul1xySaT7SzoP3oNFA95rRYNOvZ+KGp183xRlrBy3rVu3YmJiYsET9/fccw/K5TLOPfdc39tM9MB7pejOVQG8hwI4XxXV38ucr4r+fVdHz1cJ0jb82Z/9mRgYGBD33XefOHTokPkzNzdnrvO+971PbNiwQdxzzz3ikUceEVu3bhVbt24NsNXuuPHGG8X9998vdu/eLZ588klx4403CsMwxM9+9jMhRPT6u5jzzz9fXHfddeZ/R62//+t//S9x3333id27d4tf/epX4oILLhArV64Uo6OjQojo9fehhx4SiURCfOITnxDPP/+8uP3220V3d7f42te+Zq7zyU9+UgwODorvfe974sknnxSXXHKJ2Lx5s5ifnw+w5c4plUpiw4YN4oMf/OCS96J2fK+++mqxfv168cMf/lDs3r1bfOc73xErV64Uf/M3f2OuE7Xje9ddd4mf/OQnYteuXeJnP/uZOO2008S5554r8vm8ECJ6/SWdSyfeg3UKUb/XiiKdeD8VRTrxvikqTE9Pi8cff1w8/vjjAoD4zGc+Ix5//HGxZ88eIYS143bRRReJM844Qzz44IPil7/8pTj++OPFlVdeGVSXiAY67V6p0+eqhIj+PRTnq6J/f8X5qmjfd3G+SggKf20EgLo/X/nKV8x15ufnxZ//+Z+LZcuWie7ubvGHf/iH4tChQ8E12iXveMc7xMaNG0UqlRKrVq0Sb3jDG8wbKSGi19/FLL6Rilp/r7jiCrF27VqRSqXE+vXrxRVXXCFeeOEF8/2o9VcIIX7wgx+IU045RaTTaXHiiSeKL37xiwveL5fL4qMf/ahYs2aNSKfT4g1veIPYuXNnQK11z09/+lMBoG4fonZ8p6amxHXXXSc2bNggMpmMeNnLXiY+/OEPi1wuZ64TteN7xx13iJe97GUilUqJoaEh8f73v19MTEyY70etv6Rz6cR7sE4h6vdaUaXT7qeiSCfeN0WFe++9t+7vxKuvvloIYe24HT16VFx55ZWit7dX9Pf3i2uuuUZMT08H0Buii067V+r0uSohon8Pxfmq6N9fcb4q2vddnK8SwhBCCL/chYQQQgghhBBCCCGEEEIIIYQQb2CNP0IIIYQQQgghhBBCCCGEEEIiAIU/QgghhBBCCCGEEEIIIYQQQiIAhT9CCCGEEEIIIYQQQgghhBBCIgCFP0IIIYQQQgghhBBCCCGEEEIiAIU/QgghhBBCCCGEEEIIIYQQQiIAhT9CCCGEEEIIIYQQQgghhBBCIgCFP0IIIYQQQgghhBBCCCGEEEIiAIU/QgghhBBCCCGEEEIIIYQQQiIAhT9CSKh43eteh+uvv77pOps2bcJnP/vZwNtBCCGEEBJmeF9FCCGEEOIe3lMRQtqNRNANIISQWr7zne8gmUwG3QxCCCGEkLaH91WEEEIIIe7hPRUhpN2g8EcICRXLly8PugmEEEIIIZGA91WEEEIIIe7hPRUhpN1g1CchJFQsji0YHR3Fm970JnR1dWHz5s24/fbbm37+Zz/7GTKZDCYmJha8ft111+H1r389AODo0aO48sorsX79enR3d+PUU0/FN77xjabbNQwDd95554LXBgcH8dWvftX873379uHyyy/H4OAgli9fjksuuQQvvfSS+f59992Hc845Bz09PRgcHMRrXvMa7Nmzp+n3EkIIIYQ4hfdVhBBCCCHu4T0VIaTdoPBHCAk1b3/727Fv3z7ce++9+M///E/80z/9E0ZHRxuu/4Y3vAGDg4P4r//6L/O1UqmEO+64A1dddRUAIJvN4qyzzsKPfvQjPPXUU3jPe96DP/3TP8VDDz3kuJ2FQgEXXngh+vr68Itf/AK/+tWv0Nvbi4suugj5fB7FYhGXXnopzj//fDz55JPYvn073vOe98AwDMffSQghhBBiB95XEUIIIYS4h/dUhJCww6hPQkhoee655/CTn/wEDz30EF71qlcBAP7t3/4NJ510UsPPxONxvOUtb8HXv/51vPOd7wQAbNu2DRMTE/ijP/ojAMD69evx13/91+Zn/uIv/gI//elP8a1vfQvnnHOOo7becccdKJfL+NKXvmTeIH3lK1/B4OAg7rvvPpx99tmYnJzEG9/4Rhx33HEA0LQfhBBCCCE64X0VIYQQQoh7eE9FCGkH6PgjhISWHTt2IJFI4KyzzjJfO/HEEzE4ONj0c1dddRXuu+8+HDx4EABw++234+KLLzY/VyqV8PGPfxynnnoqli9fjt7eXvz0pz/F3r17Hbf117/+NV544QX09fWht7cXvb29WL58ObLZLF588UUsX74cb3/723HhhRfiTW96Ez73uc/h0KFDjr+PEEIIIcQOvK8ihBBCCHEP76kIIe0AhT9CSOR41ateheOOOw7f/OY3MT8/j+9+97tmdAIAfOpTn8LnPvc5fPCDH8S9996LJ554AhdeeCHy+XzDbRqGASHEgtcKhYL575mZGZx11ll44oknFvw899xz+JM/+RMA8qmq7du347zzzsMdd9yBl7/85fif//kfzb0nhBBCCNEH76sIIYQQQtzDeypCiJ8w6pMQElpOPPFEFItFPProo2Z8ws6dO5cUQ67HVVddhdtvvx3HHHMMYrEYLr74YvO9X/3qV7jkkkvw1re+FQBQLpfx3HPP4eSTT264vVWrVi146un555/H3Nyc+d9nnnkm7rjjDqxevRr9/f0Nt3PGGWfgjDPOwE033YStW7fi61//Ol796le37A8hhBBCiBt4X0UIIYQQ4h7eUxFC2gE6/gghoeWEE07ARRddhPe+97148MEH8eijj+Jd73oXurq6Wn72qquuwmOPPYZPfOIT+OM//mOk02nzveOPPx533303HnjgAezYsQPvfe97MTIy0nR7r3/96/H5z38ejz/+OB555BG8733vQzKZXPB9K1euxCWXXIJf/OIX2L17N+677z785V/+Jfbv34/du3fjpptuwvbt27Fnzx787Gc/w/PPP8/sdEIIIYT4Au+rCCGEEELcw3sqQkg7QOGPEBJqvvKVr2DdunU4//zz8eY3vxnvec97sHr16paf27JlC8455xw8+eSTC6ITAOAjH/kIzjzzTFx44YV43eteh6GhIVx66aVNt/fpT38axx57LH7rt34Lf/Inf4K//uu/Rnd3t/l+d3c3/vu//xsbNmzAm9/8Zpx00kl45zvfiWw2i/7+fnR3d+PZZ5/FH/3RH+HlL3853vOe9+D9738/3vve9zraL4QQQgghduF9FSGEEEKIe3hPRQgJO4ZYHARMCCGEEEIIIYQQQgghhBBCCGk76PgjhBBCCCGEEEIIIYQQQgghJAJQ+COEEEIIIYQQQgghhBBCCCEkAlD4I4QQQgghhBBCCCGEEEIIISQCUPgjhBBCCCGEEEIIIYQQQgghJAJQ+COEEEIIIYQQQgghhBBCCCEkAlD4I4QQQgghhBBCCCGEEEIIISQCUPgjhBBCCCGEEEIIIYQQQgghJAJQ+COEEEIIIYQQQgghhBBCCCEkAlD4I4QQQgghhBBCCCGEEEIIISQCUPgjhBBCCCGEEEIIIYQQQgghJAJQ+COEEEIIIYQQQgghhBBCCCEkAlD4I4QQQgghhBBCCCGEEEIIISQC/P/vyQ9mcQ2pzgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plotGraph(data.id)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true + }, + "id": "0lw-thtcR4VG", + "outputId": "908a354d-7e7d-4591-808d-030017e86479" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJOCAYAAAB/dnBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrXElEQVR4nOzdeXxU9bk/8CchJOwIigKKgLjjRq3Wfd8QF/SqP60L4noV61bbSq17lVo3rPW63RbctVqXVuu+V2uvivtSRVERBFSEsCaQnN8fYYYEEsgyyUwy7/frNR1y5syZJ2lgjuczz/MtSJIkCQAAAAAAAKBVK8x2AQAAAAAAAEDTCf4AAAAAAACgDRD8AQAAAAAAQBsg+AMAAAAAAIA2QPAHAAAAAAAAbYDgDwAAAAAAANoAwR8AAAAAAAC0AYI/AAAAAAAAaAMEfwAAAAAAANAGCP6gDbvooouioKCgRV5rl112iV122SX99QsvvBAFBQXxwAMPtMjrH3vssTFgwIAWea3Gmjt3bpxwwgnRu3fvKCgoiDPPPLPOfQcMGBDHHntsg1+jOX7u48ePj4KCgvjiiy8ydkwAWrdl3/dbu5Y8Z2oJreG8qLH23XffOPHEE7NdxnI+/PDDKCoqivfffz/jx27seWFz+vTTT2OvvfaK7t27R0FBQTz88MO17vfFF19EQUFBjB8/vsGvkfp7+d133zWt2Gra8t8NAFpOU97fmtMTTzwRW2yxRXTo0CEKCgpi1qxZte7XlOs8u+yyS2yyySZNK3QZuXiuA62d4A9aidSbcurWoUOH6Nu3b+y9997xhz/8IebMmZOR15k6dWpcdNFF8fbbb2fkeJmUy7XVx+WXXx7jx4+PU045Je644444+uijs10SAFmSel9/4403amyfPXt2bL311tGhQ4d44oknslRd5gwYMCB97lJYWBirrLJKbLrppnHSSSfFv//972yXt0KXX355nWFGY6U+oFPX7d577633sXL1vOjuu++OsWPHNsuxX3nllXjqqafiV7/6VXpbXR96Ki8vj/322y8KCwvjz3/+c0Q07nw6FT7VdZs2bVpERGy88cYxbNiwuOCCC5rle2+M5vwdGTFiRLz33ntx2WWXxR133BE//vGPM/4aALR9y743FxQUxOqrrx677rprPP744y1ez7Lnau3bt4911lknjjnmmPj8888z8hqvvvpqXHTRRXWGco31/fffx2GHHRYdO3aMG264Ie64447o3LlzRl8DaD2Ksl0A0DCXXHJJDBw4MBYtWhTTpk2LF154Ic4888y45ppr4m9/+1tsttlm6X1/85vfxLnnntug40+dOjUuvvjiGDBgQGyxxRb1ft5TTz3VoNdpjBXVduutt0ZlZWWz19AUzz33XGyzzTZx4YUXZrsUAHJQaWlp7LXXXvHuu+/GQw89FPvss0+2S8qILbbYIn7+859HRMScOXPio48+ivvvvz9uvfXWOOuss+Kaa67JcoW1nzNdfvnlccghh8Tw4cMz/nqnn356bLXVVstt33bbbet9jFw9L7r77rvj/fffX+Fkg8a68sorY/fdd4911113hfstWrQoDjnkkPjHP/4Rt956axx33HE1Hm/I+XTKjTfeGF26dFlu+yqrrJL+83//93/HvvvuG5999lkMGjSocd9kBjX2vH5lFixYEP/617/ivPPOi9NOOy1jxwUgf6Xem5MkienTp8f48eNj3333jb///e+x3377tXg9qXO1RYsWxYQJE+KWW26Jxx57LN57773o27dvk4796quvxsUXXxzHHntsjfOIpnr99ddjzpw5cemll8Yee+yRseMCrZPgD1qZoUOH1vhE7ejRo+O5556L/fbbLw444ID46KOPomPHjhERUVRUFEVFzfvXfP78+dGpU6coLi5u1tdZmfbt22f19etjxowZsfHGG2e7DABy0Jw5c2LvvfeOt99+Ox588MEYOnRok4+5cOHCKC4ujsLC7A75WHPNNeOoo46qse2KK66In/70p3HttdfGeuutF6ecckqWqqvSEudM1e24445xyCGHNNvxW8N5UUPNmDEjHnvssbjppptWuN+iRYvisMMOi0cffTRuvvnmOP7445fbpyHn0ymHHHJIrLbaait87T322CN69OgRt912W1xyySUN+O5al2+//TYiIqMXKwHIb8u+Nx9//PGxxhprxD333JOV4K/6udrIkSNj/fXXj9NPPz1uu+22GD16dIvXUx8zZsyICO/PQBWjPqEN2G233eL888+PL7/8Mu6888709trWq3n66adjhx12iFVWWSW6dOkSG2ywQfz617+OiKqRBqlPn48cOTI92iA1szw1x/vNN9+MnXbaKTp16pR+bl1r/VRUVMSvf/3r6N27d3Tu3DkOOOCAmDx5co196prlXf2YK6uttvU65s2bFz//+c+jX79+UVJSEhtssEFcddVVkSRJjf0KCgritNNOi4cffjg22WSTKCkpicGDB9d7xNqMGTPSJ6UdOnSIzTffPG677bb046lREZMmTYrHHnssXXtDZqnPnDkzzjnnnNh0002jS5cu0a1btxg6dGi88847te5fn597RMS///3v2GeffaJ79+7RqVOn2HnnneOVV16pd10ANN3cuXNjn332iQkTJsRf//rXGDZsWI3Hp0yZEscdd1ysscYa6feo1OjClNR7zb333hu/+c1vYs0114xOnTpFaWlpHHvssdGlS5eYMmVKDB8+PLp06RK9evWKc845JyoqKmocp7KyMsaOHRuDBw+ODh06xBprrBEnn3xy/PDDDxn9njt27Bh33HFH9OzZMy677LIa7831rWHAgAGx3377xT//+c/0eNR11lknbr/99hr7LVq0KC6++OJYb731okOHDrHqqqvGDjvsEE8//XR6n2XPmQoKCmLevHlx2223pd+3jz322Hj++eejoKAgHnrooeW+p7vvvjsKCgriX//6V0Z+Rk05Z1v2vCi1Ds1VV10VN9xwQ6yzzjrRqVOn2GuvvWLy5MmRJElceumlsdZaa0XHjh3jwAMPjJkzZ9ao55FHHolhw4ZF3759o6SkJAYNGhSXXnppjd+hXXbZJR577LH48ssv0zVVr6OsrCwuvPDCWHfddaOkpCT69esXv/zlL6OsrGylP4/HHnssFi9evMJPsC9evDgOP/zweOSRR+LGG29s0FqAdZ1PN0T79u1jl112iUceeWSl+6Z+5z7++OM47LDDolu3brHqqqvGGWecEQsXLlzp8z///PM49NBDo2fPntGpU6fYZptt4rHHHks/vrLfkbq89dZbMXTo0OjWrVt06dIldt9993jttddq1N2/f/+IiPjFL36x3P/H9fHuu+/GscceG+uss0506NAhevfuHccdd1x8//33te7/3Xff1etndOedd8aWW24ZHTt2jJ49e8bhhx9e6/kvALlvlVVWiY4dOy73wayVXedZsGBBbLjhhrHhhhvGggUL0s+bOXNm9OnTJ7bbbrvlzn/rY7fddouIiEmTJq1wv+eeey523HHH6Ny5c6yyyipx4IEHxkcffZR+/KKLLopf/OIXERExcODAel8fuv/++9PvcauttlocddRRMWXKlPTju+yyS4wYMSIiIrbaaqv0uWtD1Odcr7o333wztttuu+jYsWMMHDiw1g9nNeXcD2gaHX/QRhx99NHx61//Op566qk6L3J88MEHsd9++8Vmm20Wl1xySZSUlMTEiRPTQc9GG20Ul1xySVxwwQVx0kknxY477hgREdttt136GN9//30MHTo0Dj/88DjqqKNijTXWWGFdl112WRQUFMSvfvWrmDFjRowdOzb22GOPePvtt5f7JPWK1Ke26pIkiQMOOCCef/75OP7442OLLbaIJ598Mn7xi1/ElClT4tprr62x/z//+c948MEH49RTT42uXbvGH/7wh/iv//qv+Oqrr2LVVVets64FCxbELrvsEhMnTozTTjstBg4cGPfff38ce+yxMWvWrDjjjDNio402ijvuuCPOOuusWGuttdLjznr16lXv7//zzz+Phx9+OA499NAYOHBgTJ8+PW6++ebYeeed48MPP1xu1ER9fu7PPfdcDB06NLbccsu48MILo7CwMMaNGxe77bZbvPzyy7H11lvXuz4AGmfevHkxdOjQeP311+OBBx5Y7hPN06dPj2222Sb9IZVevXrF448/Hscff3yUlpYuN07x0ksvjeLi4jjnnHOirKws3ZFfUVERe++9d/zkJz+Jq666Kp555pm4+uqrY9CgQTW67U4++eQYP358jBw5Mk4//fSYNGlS/PGPf4y33norXnnllYx2knXp0iUOOuig+NOf/hQffvhhDB48uME1TJw4MQ455JA4/vjjY8SIEfHnP/85jj322Nhyyy3Tx7voootizJgxccIJJ8TWW28dpaWl8cYbb8SECRNizz33rLW2O+64I73/SSedFBERgwYNim222Sb69esXd911Vxx00EE1nnPXXXfFoEGD6jWuc86cOfHdd98tt33VVVeNgoKCjJyz1eauu+6K8vLy+NnPfhYzZ86M3//+93HYYYfFbrvtFi+88EL86le/iokTJ8b1118f55xzTo2Aefz48dGlS5c4++yzo0uXLvHcc8/FBRdcEKWlpXHllVdGRMR5550Xs2fPjq+//jp9rpUaj1lZWRkHHHBA/POf/4yTTjopNtpoo3jvvffi2muvjU8++WSl6ym++uqrseqqq6ZDp2UtXrw4jjjiiHjooYfihhtuiJNPPnmFx6vNis6nlw1CI6o6RZf9VP2WW24ZjzzySJSWlka3bt1W+pqHHXZYDBgwIMaMGROvvfZa/OEPf4gffvhhuQC7uunTp8d2220X8+fPj9NPPz1WXXXVuO222+KAAw6IBx54IA466KBG/Y588MEHseOOO0a3bt3il7/8ZbRv3z5uvvnm2GWXXeLFF1+Mn/zkJ3HwwQfHKqusEmeddVYcccQRse+++9Y6AnVFnn766fj8889j5MiR0bt37/jggw/illtuiQ8++CBee+215T64WJ+f0WWXXRbnn39+HHbYYXHCCSfEt99+G9dff33stNNO8dZbb+l+AMhxs2fPju+++y6SJIkZM2bE9ddfH3Pnzq0xNaI+13k6duwYt912W2y//fZx3nnnpUfKjxo1KmbPnh3jx4+Pdu3aNbi+zz77LCJihdeHnnnmmRg6dGiss846cdFFF8WCBQvi+uuvj+233z4mTJgQAwYMiIMPPjg++eSTuOeee+Laa69NTxNY0fWh1HnxVlttFWPGjInp06fHddddF6+88kr6Pe68886LDTbYIG655Zb02NSGjh2vz7leyg8//BD77rtvHHbYYXHEEUfEX/7ylzjllFOiuLg4PWK9qed+QBMlQKswbty4JCKS119/vc59unfvngwZMiT99YUXXphU/2t+7bXXJhGRfPvtt3Ue4/XXX08iIhk3btxyj+28885JRCQ33XRTrY/tvPPO6a+ff/75JCKSNddcMyktLU1v/8tf/pJERHLdddelt/Xv3z8ZMWLESo+5otpGjBiR9O/fP/31ww8/nERE8tvf/rbGfoccckhSUFCQTJw4Mb0tIpLi4uIa2955550kIpLrr79+udeqbuzYsUlEJHfeeWd6W3l5ebLtttsmXbp0qfG99+/fPxk2bNgKj1d93+o/k4ULFyYVFRU19pk0aVJSUlKSXHLJJelt9f25V1ZWJuutt16y9957J5WVlen95s+fnwwcODDZc88909tSv3uTJk2qV+0ArFzq39b+/fsn7du3Tx5++OFa9zv++OOTPn36JN99912N7YcffnjSvXv3ZP78+UmSLP33f5111klvSxkxYkQSETXeL5IkSYYMGZJsueWW6a9ffvnlJCKSu+66q8Z+TzzxxHLbl32PrsvK3vtS5yaPPPJIg2vo379/EhHJSy+9lN42Y8aMpKSkJPn5z3+e3rb55puv9P132XOmJEmSzp0713p+Mnr06KSkpCSZNWtWjdctKipKLrzwwhW+Tur/p7pu33zzTY2fS2PP2ZY9L5o0aVISEUmvXr1q1D169OgkIpLNN988WbRoUXr7EUcckRQXFycLFy5Mb1v29ypJkuTkk09OOnXqVGO/YcOG1XjtlDvuuCMpLCxMXn755Rrbb7rppiQikldeeaXO7zVJkmSHHXao8fuakvqZpn4fbrjhhjqP0ZTz6dpuG2ywwXLPv/vuu5OISP7973+v8PtJHfeAAw6osf3UU09NIiJ555130tuWPS8888wzk4io8bOcM2dOMnDgwGTAgAHpc8YV/Y7UZvjw4UlxcXHy2WefpbdNnTo16dq1a7LTTjult6V+n6688sqVHjO1b/Uaavtduueee5b7+1zfn9EXX3yRtGvXLrnssstq7Pfee+8lRUVFNbYv+3cDgOxKvTcveyspKUnGjx9fY9+GXOcZPXp0UlhYmLz00kvJ/fffn0REMnbs2JXWkzqv+POf/5x8++23ydSpU5PHHnssGTBgQFJQUJA+h6jt/W2LLbZIVl999eT7779Pb3vnnXeSwsLC5Jhjjklvu/LKK+t9jaW8vDxZffXVk0022SRZsGBBevujjz6aRERywQUXpLfV5zxn2X2r11Dfc73UtcGrr746va2srCz9/ZeXlydJ0rBzv7quCwKNZ9QntCFdunSJOXPm1Pl46pOujzzySFRWVjbqNUpKSmLkyJH13v+YY46Jrl27pr8+5JBDok+fPvGPf/yjUa9fX//4xz+iXbt2cfrpp9fY/vOf/zySJInHH3+8xvY99tijxqehNttss+jWrVt8/vnnK32d3r17xxFHHJHe1r59+zj99NNj7ty58eKLL2bgu6n6uafWaKqoqIjvv/8+PfZrwoQJy+2/sp/722+/HZ9++mn89Kc/je+//z6+++67+O6772LevHmx++67x0svvdTo3xEA6m/69OnRoUOH6Nev33KPJUkSf/3rX2P//fePJEnS/1Z/9913sffee8fs2bOXew8YMWJEnR31//3f/13j6x133LHG+9z9998f3bt3jz333LPGa2255ZbRpUuXeP755zPwHdeU6hRKnb80tIaNN9443ckUUfVp6Q022KDG97XKKqvEBx98EJ9++mlGaj7mmGOirKwsHnjggfS2++67LxYvXrzcWoZ1ueCCC+Lpp59e7tazZ890zRFNO2erzaGHHhrdu3dPf/2Tn/wkIiKOOuqoGqO0fvKTn0R5eXmNEVLVf69SHYs77rhjzJ8/Pz7++OOVvvb9998fG220UWy44YY1/r9Njc5a2e/X999/Hz169Kjz8enTp0dRUVEMHDhwpbWsSF3n03/961+X+/9r3Lhxy+2XqrG2js7ajBo1qsbXP/vZzyIiVniu/I9//CO23nrr2GGHHWrUfdJJJ8UXX3wRH374Yb1eu7qKiop46qmnYvjw4bHOOuukt/fp0yd++tOfxj//+c8oLS1t8HFrU/13aeHChfHdd9/FNttsExFR63ntyn5GDz74YFRWVsZhhx1W43erd+/esd566zXLv10AZNYNN9yQfn+98847Y9ddd40TTjghHnzwwfQ+DbnOc9FFF8XgwYNjxIgRceqpp8bOO++83PNW5LjjjotevXpF3759Y9iwYekR8NXXIazum2++ibfffjuOPfbY9PlcRNW1pT333LPR18DeeOONmDFjRpx66qnRoUOH9PZhw4bFhhtuWGPMd1M15FyvqKioxnSF4uLiOPnkk2PGjBnx5ptvRkTTz/2Apmkzoz5feumluPLKK+PNN9+Mb775Jh566KEYPnx4g46RJElcffXVccstt8SXX34Zq622Wpx66qlx3nnnNU/RkGFz586N1Vdfvc7H/9//+3/xv//7v3HCCSfEueeeG7vvvnscfPDBccghh6RDpZVZc80102PD6mO99dar8XVBQUGsu+66DVrfrjG+/PLL6Nu3b43wK6JqNFbq8erWXnvt5Y7Ro0ePla5p9OWXX8Z666233M+vrtdprMrKyrjuuuvif/7nf2LSpEk1ZqzXNmpiZT/31MXP1Az42syePXuFF9gAaLqbb745zj777Nhnn33i5Zdfjg022CD92LfffhuzZs2KW265JW655ZZanz9jxowaX9cVenTo0GG5EULLvs99+umnMXv27DrPJZZ9rUyYO3duRET6/bqhNdTn/fuSSy6JAw88MNZff/3YZJNNYp999omjjz46Nttss0bVvOGGG8ZWW20Vd911Vxx//PERUTVCc5tttol11123XsfYdNNNV7hWXSbO2Wqz7M8rFQIuGzyntlf/OX7wwQfxm9/8Jp577rnlAqDZs2ev9LU//fTT+Oijj+ocZVWf369kmXWaq/v9738fY8eOjUMOOSSeeuqp2H777Vd6vNrUdT690047pcdx1afGZcdV1mXZc7ZBgwZFYWHhCs+Vv/zyy3RoW131889NNtmkXq+f8u2338b8+fNr/BtU/biVlZUxefLk9Ajdppg5c2ZcfPHFce+99y73/3ttv0sr+xl9+umnkSTJcvulZHJEMQDNY+utt64Rqh1xxBExZMiQOO2002K//faL4uLiBl3nKS4ujj//+c+x1VZbRYcOHWLcuHH1fm+OqPqQ1o477hjt2rWL1VZbLTbaaKPl1husLvXadb2PPvnkkzFv3rzo3LlzvWtY2XE33HDD+Oc//9mg461IQ871+vbtu9z3sv7660dE1drS22yzTUbO/YDGazPB37x582LzzTeP4447Lg4++OBGHeOMM86Ip556Kq666qrYdNNNY+bMmbWu5QC56Ouvv47Zs2ev8IJTx44d46WXXornn38+HnvssXjiiSfivvvui9122y2eeuqpes05b8i6fPVV18lXRUVFo2avN0Zdr7OiC0wt6fLLL4/zzz8/jjvuuLj00kujZ8+eUVhYGGeeeWajOgFSz7nyyitjiy22qHWfhq7XAkDDbbzxxvGPf/wjdt9999hzzz3jlVdeSYcwqX+rjzrqqDo/qLFseFXX+3R93k8rKytj9dVXj7vuuqvWxxuyNm19vf/++xER6fOXhtZQn/fvnXbaKT777LN45JFH4qmnnor//d//jWuvvTZuuummOOGEExpV9zHHHBNnnHFGfP3111FWVhavvfZa/PGPf2zUsWqTiXO22tT1vJX9HGfNmhU777xzdOvWLS655JIYNGhQdOjQISZMmBC/+tWv6nUuUllZGZtuuml6rZ1l1db1Wt2qq666wg9k9enTJ55++unYYYcdYtiwYfHiiy/G5ptvvtK6qqvP+fTKpGqsT0hYm4ZclGytDjvssHj11VfjF7/4RWyxxRbRpUuXqKysjH322adev0vL/owqKyujoKAgHn/88Vp/l53TArQ+hYWFseuuu8Z1110Xn376aaM+ePLkk09GRFV3+aefftqgqQAr+5BWW5OJc71lNfXcD2iaNhP8DR06NIYOHVrn42VlZXHeeefFPffcE7NmzYpNNtkkrrjiithll10iIuKjjz6KG2+8Md5///30pyiaOiYGWtIdd9wRERF77733CvcrLCyM3XffPXbfffe45ppr4vLLL4/zzjsvnn/++dhjjz0yfrFh2bFaSZLExIkTa1yo7NGjR8yaNWu553755Zc1Rg01pLb+/fvHM888E3PmzKnxabDUeIL+/fvX+1gre5133303Kisra3wCP9Ov88ADD8Suu+4af/rTn2psnzVrVq0Xllb2c0+NNe3WrVtencwC5KKtt946Hn744Rg2bFjsueee8fLLL0evXr2iV69e0bVr16ioqGiRf6sHDRoUzzzzTGy//fbN8kGfZc2dOzceeuih6NevX/qT2s1VQ8+ePWPkyJExcuTImDt3buy0005x0UUXrTD4W9F5x+GHHx5nn3123HPPPbFgwYJo3759/L//9/8yVm9Ey5+zrcgLL7wQ33//fTz44IOx0047pbdPmjRpuX3rqmvQoEHxzjvvxO67796o2jfccMP461//usJ91llnnXjyySdj5513jr333jtefvnlOrvAalPf8+kVmTRpUhQWFqY/9b4yy16InDhxYlRWVsaAAQPqfE7//v3jP//5z3Lblz3/bMjPuVevXtGpU6c6j1tYWJiRC3Q//PBDPPvss3HxxRfHBRdckN6+olG8K/sZDRo0KJIkiYEDB9b75w5A7lu8eHFELJ0Q0ZDrPO+++25ccsklMXLkyHj77bfjhBNOiPfee6/GyPNMSr12Xe+jq622WrpDrqHXtlLHTY3ITPnPf/6TsWtODTnXi4iYOnXqch2Mn3zySUREjffnppz7AU2TN2v8nXbaafGvf/0r7r333nj33Xfj0EMPjX322Sf9Hxh///vfY5111olHH300Bg4cGAMGDIgTTjhBxx+twnPPPReXXnppDBw4MI488sg696vt9znV7VVWVhYRkX7Tri2Ia4zbb7+9xjopDzzwQHzzzTc1gvpBgwbFa6+9FuXl5eltjz76aEyePLnGsRpS27777hsVFRXLffr+2muvjYKCghV+UKAh9t1335g2bVrcd9996W2LFy+O66+/Prp06RI777xzRl6nXbt2y3Uf3n///TXW3qluZT/3LbfcMgYNGhRXXXVV+iS6um+//TYjdQNQP7vvvnvcc889MXHixNhnn32itLQ02rVrF//1X/8Vf/3rX9OdcdVl+t/qww47LCoqKuLSSy9d7rHFixdn7NwgImLBggVx9NFHx8yZM+O8885LXwxojhq+//77Gl936dIl1l133fS5T106d+5c5+utttpqMXTo0Ljzzjvjrrvuin322afRHV61ycY524qkuqiqn4uUl5fH//zP/yy3b+fOnWsd13jYYYfFlClT4tZbb13usQULFsS8efNWWMO2224bP/zww0rXX950003jsccei7lz58aee+5Z57nSsup7Pr0yb775ZgwePLjeFxZvuOGGGl9ff/31ERErPFfdd9994//+7//iX//6V3rbvHnz4pZbbokBAwbExhtvHBEN+x1p165d7LXXXvHII4/UGDM6ffr0uPvuu2OHHXaIbt261et7WtnrRCw/VWPs2LF1PmdlP6ODDz442rVrFxdffPFyx02SZLl/AwDIfYsWLYqnnnoqiouL0x8Qq+91nkWLFsWxxx4bffv2jeuuuy7Gjx8f06dPj7POOqvZ6u3Tp09sscUWcdttt9V4333//ffjqaeein333Te9rSHvzz/+8Y9j9dVXj5tuuqnGuevjjz8eH330UQwbNiwj9TfkXC+i6rz85ptvrrHvzTffHL169Yott9wyIpp+7gc0TZvp+FuRr776KsaNGxdfffVV9O3bNyIizjnnnHjiiSdi3Lhxcfnll8fnn38eX375Zdx///1x++23R0VFRZx11llxyCGHxHPPPZfl7wCWevzxx+Pjjz+OxYsXx/Tp0+O5556Lp59+Ovr37x9/+9vfaiz2u6xLLrkkXnrppRg2bFj0798/ZsyYEf/zP/8Ta621Vuywww4RURXCrbLKKnHTTTdF165do3PnzvGTn/yk0R2wPXv2jB122CFGjhwZ06dPj7Fjx8a6664bJ554YnqfE044IR544IHYZ5994rDDDovPPvss7rzzznRXWkpDatt///1j1113jfPOOy+++OKL2HzzzeOpp56KRx55JM4888zljt1YJ510Utx8881x7LHHxptvvhkDBgyIBx54IF555ZUYO3bscrPnG2u//fZLf1ptu+22i/feey/uuuuuGh2R1a3s515YWBj/+7//G0OHDo3BgwfHyJEjY80114wpU6bE888/H926dYu///3vGakdgPo56KCD4tZbb43jjjsuDjjggHjiiSfid7/7XTz//PPxk5/8JE488cTYeOONY+bMmTFhwoR45plnMvohtZ133jlOPvnkGDNmTLz99tux1157Rfv27ePTTz+N+++/P6677ro45JBDGnzcKVOmxJ133hkRVZ/Y/vDDD+P++++PadOmxc9//vM4+eSTm7WGjTfeOHbZZZfYcssto2fPnvHGG2/EAw88EKeddtoKn7flllvGM888E9dcc0307ds3Bg4cWGNdtWOOOSZdS21B5Yq8/PLLsXDhwuW2b7bZZrHZZptl5ZxtRbbbbrvo0aNHjBgxIk4//fQoKCiIO+64o9aR6FtuuWXcd999cfbZZ8dWW20VXbp0if333z+OPvro+Mtf/hL//d//Hc8//3xsv/32UVFRER9//HH85S9/iSeffLLG2j7LGjZsWBQVFcUzzzwTJ5100grr3XbbbePBBx+M/fffP91FW31N5MacTz/wwAO1jozcc889Y4011oiIqguNL774Ypx66qkrrK+6SZMmxQEHHBD77LNP/Otf/4o777wzfvrTn65wTOm5554b99xzTwwdOjROP/306NmzZ9x2220xadKk+Otf/5qeQtHQ35Hf/va36XGpp556ahQVFcXNN98cZWVl8fvf/77e39OKdOvWLXbaaaf4/e9/H4sWLYo111wznnrqqTo7CiJW/jMaNGhQ/Pa3v43Ro0fHF198EcOHD4+uXbvGpEmT4qGHHoqTTjopzjnnnIzUD0DzSL03R1St/Xb33XfHp59+Gueee276gyf1vc7z29/+Nt5+++149tlno2vXrrHZZpvFBRdcEL/5zW/ikEMOqRHCZdKVV14ZQ4cOjW233TaOP/74WLBgQVx//fXRvXv3uOiii9L7pYKx8847Lw4//PBo37597L///rWu/9e+ffu44oorYuTIkbHzzjvHEUccEdOnT4/rrrsuBgwYkLEwsyHnehFVa/xdccUV8cUXX8T6668f9913X7z99ttxyy23pNfWbeq5H9BESRsUEclDDz2U/vrRRx9NIiLp3LlzjVtRUVFy2GGHJUmSJCeeeGISEcl//vOf9PPefPPNJCKSjz/+uKW/BVjOuHHjkohI34qLi5PevXsne+65Z3LdddclpaWlyz3nwgsvTKr/NX/22WeTAw88MOnbt29SXFyc9O3bNzniiCOSTz75pMbzHnnkkWTjjTdOioqKkohIxo0blyRJkuy8887J4MGDa61v5513Tnbeeef0188//3wSEck999yTjB49Oll99dWTjh07JsOGDUu+/PLL5Z5/9dVXJ2uuuWZSUlKSbL/99skbb7yx3DFXVNuIESOS/v3719h3zpw5yVlnnZX07ds3ad++fbLeeuslV155ZVJZWVljv4hIRo0atVxN/fv3T0aMGFHr91vd9OnTk5EjRyarrbZaUlxcnGy66abpupY93rBhw1Z6vNpee+HChcnPf/7zpE+fPknHjh2T7bffPvnXv/7V5J/7W2+9lRx88MHJqquumpSUlCT9+/dPDjvssOTZZ59N75P63Zs0aVK9agdg5VL/tr7++uvLPXbVVVclEZHst99+yaJFi5Lp06cno0aNSvr165e0b98+6d27d7L77rsnt9xyS/o5qX//77///uWON2LEiKRz587LbV/2PCHllltuSbbccsukY8eOSdeuXZNNN900+eUvf5lMnTo1vU9t79G16d+/f/rcpaCgIOnWrVsyePDg5MQTT0z+/e9/1/m8+tRQ1/vqsrX99re/TbbeeutklVVWSTp27JhsuOGGyWWXXZaUl5ev8Gfx8ccfJzvttFPSsWPHJCKWOycoKytLevTokXTv3j1ZsGDBSn8WSbL0/6e6bhdeeGGSJE0/Z1v2vGjSpElJRCRXXnllrfUs+3tT2+/nK6+8kmyzzTZJx44dk759+ya//OUvkyeffDKJiOT5559P7zd37tzkpz/9abLKKqskEVGjjvLy8uSKK65IBg8enJSUlCQ9evRIttxyy+Tiiy9OZs+evdKf3wEHHJDsvvvu9foekiRJ7rvvvqSwsDDZaqutktLS0iadT9d1q/69P/7440lEJJ9++ulKv5fUcT/88MPkkEMOSbp27Zr06NEjOe2005b7fartnPSzzz5LDjnkkGSVVVZJOnTokGy99dbJo48+utzr1PU7UpcJEyYke++9d9KlS5ekU6dOya677pq8+uqrNfap6/epNql9q7/u119/nRx00EHJKqusknTv3j059NBDk6lTp9b4O9DQn1GSJMlf//rXZIcddkj/9/6GG26YjBo1qsZ/49f23wwAZM+y780RkXTo0CHZYostkhtvvHG56zcru87z5ptvJkVFRcnPfvazGs9bvHhxstVWWyV9+/ZNfvjhhzrrWdF5RXW1vb8lSZI888wzyfbbb5907Ngx6datW7L//vsnH3744XLPv/TSS5M111wzKSwsrNf1lvvuuy8ZMmRIUlJSkvTs2TM58sgjk6+//rrGPiv674tl1Xadp77neqlrg2+88Uay7bbbJh06dEj69++f/PGPf1zudep77lff629A/RUkSR3RfStWUFAQDz30UAwfPjwiIu6777448sgj44MPPlhuse8uXbpE796948ILL4zLL788Fi1alH5swYIF0alTp3jqqadizz33bMlvAQAAyGGLFy+Ovn37xv7777/cGrw0j5dffjl22WWX+Pjjjxu0dl9LGT58ePq/RVfmoosuiosvvji+/fbbjI6JBQAAyItRn0OGDImKioqYMWNG7LjjjrXus/3228fixYvjs88+S7eGpxYlzdRCqQAAQNvw8MMPx7fffhvHHHNMtkvJGzvuuGPstdde8fvf/77W9WKy6aOPPopHH3003n777WyXAgAA5Lk2E/zNnTs3Jk6cmP560qRJ8fbbb0fPnj1j/fXXjyOPPDKOOeaYuPrqq2PIkCHx7bffxrPPPhubbbZZDBs2LPbYY4/40Y9+FMcdd1yMHTs2KisrY9SoUbHnnnvG+uuvn8XvDAAAyBX//ve/4913341LL700hgwZEjvvvHO2S8orjz/+eLZLqNVGG20UixcvznYZAAAAUZjtAjLljTfeiCFDhsSQIUMiIuLss8+OIUOGxAUXXBAREePGjYtjjjkmfv7zn8cGG2wQw4cPj9dffz3WXnvtiIgoLCyMv//977HaaqvFTjvtFMOGDYuNNtoo7r333qx9TwAAQG658cYb45RTTonVV189br/99myXAwAAADW0yTX+AAAAAAAAIN+0mY4/AAAAAAAAyGeCPwAAAAAAAGgDirJdQFNUVlbG1KlTo2vXrlFQUJDtcgCANiBJkpgzZ0707ds3Cgvz5zNSzqsAgExzXuW8CgDIjIacV7Xq4G/q1KnRr1+/bJcBALRBkydPjrXWWivbZbQY51UAQHNxXgUAkBn1Oa9q1cFf165dI6LqG+3WrVuWqwEA2oLS0tLo169f+jwjF7z00ktx5ZVXxptvvhnffPNNPPTQQzF8+PD040mSxIUXXhi33nprzJo1K7bffvu48cYbY7311qv3azivAgAyLRfPq1qC8yoAINMacl7VqoO/1LiEbt26OZECADIql8YyzZs3LzbffPM47rjj4uCDD17u8d///vfxhz/8IW677bYYOHBgnH/++bH33nvHhx9+GB06dKjXazivAgCaSy6dV7UE51UAQHOpz3lVqw7+AADywdChQ2Po0KG1PpYkSYwdOzZ+85vfxIEHHhgREbfffnusscYa8fDDD8fhhx/ekqUCAAAAkEX5s7IyAEAbNGnSpJg2bVrsscce6W3du3ePn/zkJ/Gvf/2rzueVlZVFaWlpjRsAAAAArZvgDwCgFZs2bVpERKyxxho1tq+xxhrpx2ozZsyY6N69e/rWr1+/Zq0TAAAAgOYn+AMAyEOjR4+O2bNnp2+TJ0/OdkkAAAAANJHgDwCgFevdu3dEREyfPr3G9unTp6cfq01JSUl069atxg0AAACA1k3wBwDQig0cODB69+4dzz77bHpbaWlp/Pvf/45tt902i5UBAAAA0NKKsl0AAAArNnfu3Jg4cWL660mTJsXbb78dPXv2jLXXXjvOPPPM+O1vfxvrrbdeDBw4MM4///zo27dvDB8+PHtFAwAAANDiBH8AADnujTfeiF133TX99dlnnx0RESNGjIjx48fHL3/5y5g3b16cdNJJMWvWrNhhhx3iiSeeiA4dOmSrZAAAAACyQPAHAJDjdtlll0iSpM7HCwoK4pJLLolLLrmkBasCAAAAINdY4w8AAAAAAADaAMEfAAAAAAAAtAGCPwAAAAAAAGgDBH8AAAAAAADQBgj+AAAAAAAAoA0Q/AEAAAAAAEAbIPgDAAAAAACANkDwBwAAAAAAAG2A4A8AAAAAAADaAMEfAAAAAAAAtAGCPwAAAAAAAGgDirJdAACQf2bOnBlz5sxp9PO7du0aPXv2zGBFAAAAAND6Cf4AgBY1c+bMGLTuujHrhx8afYxVevSIzyZOFP4BAHll4cKIQw+NuOqqiA02yHY1AADkIsEfANCi5syZE7N++CEuue+JWLV33wY///tpU+OC/7dPzJkzR/AHAOSVf/4z4tFHIw4/XPAHAEDtBH8AQFas2rtv9Fpz7WyXAQDQajz1VNV9EyamAwDQxhVmuwAAAAAAVi4V/M2dm906AADIXYI/AAAAgBw3fXrEO+9U/VnHHwAAdRH8AQAAAOS4Z5+tuu/eXccfAAB1s8YfAAAAQI57+umIddeNaN9exx8AAHXT8QcAAACQw5Ik4sknI370o4gOHXT8AQBQN8EfAAAAQA776KOIb76J+PGPIzp21PEHAEDdBH8AAAAAOeyZZyKKiyM226wq+CstzXZFAADkKsEfAAAAQA77+uuINdaIKCmJ6NTJqE8AAOom+AMAAADIYfPnV63tF2HUJwAAKyb4AwAAAMhhCxZUdftF6PgDAGDFBH8AAAAAOWz+/Ko1/iKqOv4EfwAA1EXwBwAAAJDD5s9f2vGXCv6SJLs1AQCQmwR/AAAAADls2eAvSaq2AQDAsgR/AAAAADmsevDXqVPVvXGfAADURvAHAAAAkMOW7fiLiJgzJ3v1AACQuwR/AAAAADlswYKIDh2q/qzjDwCAFRH8AQAAAOQwHX8AANSX4A8AAAAgh9UW/On4AwCgNoI/AAAAgBy2cKGOPwAA6kfwBwAAAJCjkkTHHwAA9Sf4AwAAAMhRZWVV4V+HDlVft2tX9WcdfwAA1EbwBwAAAJCjFiyouk91/EVEdOqk4w8AgNoJ/gAAAABy1Pz5VffVg7+OHXX8AQBQu6wGfxUVFXH++efHwIEDo2PHjjFo0KC49NJLI0mSbJYFAAAAkBNqC/46dRL8AQBQu6JsvvgVV1wRN954Y9x2220xePDgeOONN2LkyJHRvXv3OP3007NZGgAAAEDWpUZ9ptb4S/3ZqE8AAGqT1eDv1VdfjQMPPDCGDRsWEREDBgyIe+65J/7v//4vm2UBAAAA5ASjPgEAaIisjvrcbrvt4tlnn41PPvkkIiLeeeed+Oc//xlDhw7NZlkAAAAAOUHwBwBAQ2S14+/cc8+N0tLS2HDDDaNdu3ZRUVERl112WRx55JG17l9WVhZlZWXpr0tLS1uqVAAAAIAWV9uoz44dI374ITv1AACQ27La8feXv/wl7rrrrrj77rtjwoQJcdttt8VVV10Vt912W637jxkzJrp3756+9evXr4UrBgAAAGg5qY6/4uKl2zp2tMYfAAC1y2rw94tf/CLOPffcOPzww2PTTTeNo48+Os4666wYM2ZMrfuPHj06Zs+enb5Nnjy5hSsGAAAAaDmp4K96x1+nTkZ9AgBQu6yO+pw/f34UFtbMHtu1axeVlZW17l9SUhIl1YfaAwAAALRhCxZEFBVV3VJ0/AEAUJesBn/7779/XHbZZbH22mvH4MGD46233oprrrkmjjvuuGyWBQAAAJAT5s+PWPYz0J06Cf4AAKhdVoO/66+/Ps4///w49dRTY8aMGdG3b984+eST44ILLshmWQAAAAA5Yf78mmM+I6o6/srLq27V1/4DAICsBn9du3aNsWPHxtixY7NZBgAAAEBOWrBg+Y6/jh2r7ufOjejZs+VrAgAgdxWufBcAAAAAsqG2UZ/Vgz8AAKhO8AcAAACQo+pa4y8iYs6clq8HAIDcJvgDAAAAyFErG/UJAADVCf4AAAAActT8+RHFxTW36fgDAKAugj8AAACAHDV/fkSHDjW36fgDAKAugj8AAACAHGWNPwAAGkLwBwAAAJCjagv+2rePaNdOxx8AAMsT/AEAAADkqNqCv4KCqq4/HX8AACxL8AcAAACQoxYsWH6Nv4iqdf4EfwAALEvwBwAAAJCj5s+PKC5efnunTkZ9AgCwPMEfAAAAQI6aP1/HHwAA9Sf4AwAAAMhRCxcuv8ZfRFXwp+MPAIBlCf4AAAAActDixRHl5bUHfx066PgDAGB5gj8AAACAHLRgQdV9bcFfp04RpaUtWw8AALlP8AcAAACQg1LBX21r/JWUVI0BBQCA6gR/AAAAADlo/vyq+9o6/tq3jygra9l6AADIfYI/AAAAgBwk+AMAoKEEfwAAAAA5aEWjPgV/AADURvAHAAAAkINSHX/Fxcs/JvgDAKA2gj8AAACAHJQK/nT8AQBQX4I/AAAAgByUGvVZ1xp/ixa1bD0AAOQ+wR8AAABADkp1/NUV/On4AwBgWYI/AAAAgBy0ojX+iourOv4qK1u2JgAAcpvgDwAAACAHLVhQtb5fYS1Xb9q3r7ovL2/ZmgAAyG2CPwCg1VhcmcSCku6x04jTsl0KAECzmz+/9jGfEUuDP+M+AQCoTvAHALQaiyqTWFTcKX584JHZLgUAoNkJ/gAAaCjBHwDQaixesobN7BlTs1sIAEALSI36rI1RnwAA1EbwBwC0GouTJCIiZk8T/AEAbZ+OPwAAGkrwBwC0Gjr+AIB8IvgDAKChBH8AQKuR7vibPiXLlQAANL8FC+oO/oqLq+4FfwAAVCf4AwBajcWVqeDvmyxXAgDQ/ObPXxrwLUvHHwAAtRH8AQCtxuKq3E/HHwCQF+bNM+oTAICGEfwBAK1CZZJEZTr4s8YfAND2LVgQ0aFD7Y8J/gAAqI3gDwBoFSqWhH6RJLGgdFY2SwEAaBH1GfVZXt5y9QAAkPsEfwBAq5Ba368wqchyJQAALWP+fB1/AAA0jOAPAGgVFldW3RdUCv4AgPywYIE1/gAAaBjBHwDQKixOdPwBAPll/vy6g7/UCFDBHwAA1Qn+AIBWQccfAJBvVtTx165dRGGh4A8AgJoEfwBAq7C0468yy5UAALSMsrKlnX21KS4W/AEAUJPgDwBoFRZXVgV/Ov6WV1FREeeff34MHDgwOnbsGIMGDYpLL700kiVhKQDQ+lRUVN1Sa/nVpqhI8AcAQE1F2S4AAKA+Fi/JsKzxt7wrrrgibrzxxrjtttti8ODB8cYbb8TIkSOje/fucfrpp2e7PACgEcrLq+6LVnDlprh46X4AABAh+AMAWoHKJInKVPCn4285r776ahx44IExbNiwiIgYMGBA3HPPPfF///d/Wa4MAGisVKC3oo6/9u11/AEAUJNRnwBAzqtYEvoVRESE8ZXL2m677eLZZ5+NTz75JCIi3nnnnfjnP/8ZQ4cOzXJlAEBjCf4AAGgMHX8AQM5Lre9XVJgK/6ju3HPPjdLS0thwww2jXbt2UVFREZdddlkceeSRdT6nrKwsyqpdKSwtLW2JUgGAekq9Ta8o+CsuFvwBAFCTjj8AIOctrqy6LyoQ+9XmL3/5S9x1111x9913x4QJE+K2226Lq666Km677bY6nzNmzJjo3r17+tavX78WrBgAWJn6rPGn4w8AgGUJ/gCAnLc4Wdrxx/J+8YtfxLnnnhuHH354bLrppnH00UfHWWedFWPGjKnzOaNHj47Zs2enb5MnT27BigGAlTHqEwCAxsjq5bMBAwZEQUHBcrdRo0ZlsywAIMekOv7a6fir1fz586OwsOZpXbt27aKysrLO55SUlES3bt1q3ACA3FGfUZ9FRYI/AABqyuoaf6+//npUVFSkv37//fdjzz33jEMPPTSLVQEAuaZ6x195lmvJRfvvv39cdtllsfbaa8fgwYPjrbfeimuuuSaOO+64bJcGADRSfTv+yp0cAQBQTVaDv169etX4+ne/+10MGjQodt555yxVBADkoiW5XxTq+KvV9ddfH+eff36ceuqpMWPGjOjbt2+cfPLJccEFF2S7NACgkerT8WfUJwAAy8pq8FddeXl53HnnnXH22WdHQR0X9crKyqKs2hltaWlpS5UHAGRRamCl2K92Xbt2jbFjx8bYsWOzXQoAkCGpTr6iFVy5ad8+YuHClqkHAIDWIatr/FX38MMPx6xZs+LYY4+tc58xY8ZE9+7d07d+/fq1XIEAQNYkS1r+CiV/AECeqO+oTx1/AABUlzPB35/+9KcYOnRo9O3bt859Ro8eHbNnz07fJk+e3IIVAgDZUrlk1KfcDwDIF0Z9AgDQGDkx6vPLL7+MZ555Jh588MEV7ldSUhIlJSUtVBUAkCuW5H7W+AMA8kZ9R30K/gAAqC4nOv7GjRsXq6++egwbNizbpQAAOSjR8QcA5JlU8FdcXPc+gj8AAJaV9eCvsrIyxo0bFyNGjIiiFX2MDQDIW5VL7q3xBwDki1Sgt7KOv1RACAAAETkQ/D3zzDPx1VdfxXHHHZftUgCAHJSk2v0iwqRPACBflJdXhX6FK7hyo+MPAIBlZb3Fbq+99qpxQQ8AoLrKan/O+ieWAABaSFnZirv9IqrGgAr+AACozvUzACCn+XwQAJCPysurOvpWRMcfAADLEvwBADmtcknwVxARBWZ9AgB5ory8qqNvRazxBwDAsgR/AEBOSzX8Fcr8AIA8Up9Rn0VFVfuZkAAAQIrgDwDIaZVLrmTJ/QCAfFKfUZ+pjsDFi5u/HgAAWgfBHwCQ03T8AQD5qL5r/EVY5w8AgKUEfwBATkuNrrK+HwCQT+oz6lPwBwDAsgR/AEBOq1xy76QFAMgnOv4AAGgM19AAgJy2tOMvu3UAALSksrL6r/En+AMAIEXwBwDktMolyZ+TFgAgn5SXG/UJAEDDuYYGAOS0JQ1/Ov4AgLxSn1GfqWBQ8AcAQIrgDwDIaZVLkr9CyR8AkEfKylbe8Zca9Vle3vz1AADQOgj+AICclu74y2oVAAAtqz7Bn1GfAAAsS/AHAOS01Bp/Gv4AgHxSn1Gfgj8AAJYl+AMAclqq489JCwCQT8rKBH8AADSca2gAQE5b0vCn4w8AyCv16fhLrfEn+AMAIEXwBwDktMolwV+hVf4AgDyi4w8AgMYQ/AEAOS016lPHHwCQT8rLI4qKVrxP6nHBHwAAKYI/ACCnVS6Z9Sn3AwDySX1GfaYeLy9v/noAAGgdBH8AQE5LdfwVSv4AgDxSn1GfBQVV++j4AwAgRfAHAOS09Bp/Zn0CAHmkPqM+IyKKiwV/AAAsJfgDAHLakkmfRn0CAHll0aKVd/xF6PgDAKAmwR8AkNMql9xr+AMA8kl9Rn1G6PgDAKAmwR8AkLOSVLtfOGkBAPJHZWXE4sU6/gAAaDjX0ACAnJVU+7OOPwAgX5SXV93XJ/grKhL8AQCwlOAPAMhZldWSP7kfAJAvUsFfUdHK9y0uXro/AAAI/gCAnJXK/QoiokDLHwCQJxrS8WfUJwAA1Qn+AICcler4K5T5AQB5JBXkCf4AAGgowR8AkLOSpCr5k/sBAPmkIaM+rfEHAEB1gj8AIGdVLrk35RMAyCep4K+4eOX76vgDAKA6wR8AkLOS1KhPPX8AQB5JBXn16fgT/AEAUJ3gDwDIWTr+AIB8lOr4q+8afwsXNm89AAC0HoI/ACBnpTv+BH8AQB5JdfDVN/hLBYUAACD4AwByVhJVyZ/cDwDIJ6kgz6hPAAAaSvAHAOSsSh1/AEAeSgV/xcUr31fwBwBAdYI/ACBnpUZ9Fuj5AwDySCrIq0/HX3Gx4A8AgKUEfwBAzqpccq/jDwDIJ6mOv/qu8Sf4AwAgRfAHAOSspR1/AAD5Q/AHAEBjCf4AgJxVGVXJX4HkDwDIIw0Z9dm+/dKgEAAABH8AQM5KdfwZ9QkA5JPy8oh27apuKyP4AwCgOsEfAJCzluR+UWDYJwCQR8rK6jfmM8KoTwAAahL8AQA5q1LHHwCQh8rL6zfmM6Iq+KuoqLoBAIDgDwDIWalRn3I/ACCflJdHFBfXb99UZ6CuPwAAIgR/AEAOq1wy7FPHHwCQT8rK6t/xlwoIBX8AAEQI/gCAHJbu+BP8AQB5pLy8YWv8RQj+AACoIvgDAHJW5ZL7QsM+AYA80pDgL9UZWF7efPUAANB6ZD34mzJlShx11FGx6qqrRseOHWPTTTeNN954I9tlAQA5QMcfAJCPysrqH/wZ9QkAQHX1nBjfPH744YfYfvvtY9ddd43HH388evXqFZ9++mn06NEjm2UBADkgSZIlK/yFfj8AIK8Y9QkAQGNlNfi74oorol+/fjFu3Lj0toEDB2axIgAgVyTV/lwo+QMA8khZ2dIRnisj+AMAoLqsjvr829/+Fj/+8Y/j0EMPjdVXXz2GDBkSt956a537l5WVRWlpaY0bANA2JdWSP7kfAJBPyssFfwAANE5Wg7/PP/88brzxxlhvvfXiySefjFNOOSVOP/30uO2222rdf8yYMdG9e/f0rV+/fi1cMQDQUiqX3BdERIFF/gCAPNKYUZ+LFjVfPQAAtB5ZDf4qKyvjRz/6UVx++eUxZMiQOOmkk+LEE0+Mm266qdb9R48eHbNnz07fJk+e3MIVAwAtJdXxJ/MDAPJNQ0Z9pvYrL2++egAAaD2yGvz16dMnNt544xrbNtpoo/jqq69q3b+kpCS6detW4wYAtE2pSZ9yPwAg3zRmjT/BHwAAEVkO/rbffvv4z3/+U2PbJ598Ev37989SRQBArkiWtPwJ/gCAfFNeHlFcXL99dfwBAFBdVoO/s846K1577bW4/PLLY+LEiXH33XfHLbfcEqNGjcpmWQBADkh3/En+AIA8o+MPAIDGymrwt9VWW8VDDz0U99xzT2yyySZx6aWXxtixY+PII4/MZlkAQA4w6hMAyFfl5UsDvZXR8QcAQHX1/PxY89lvv/1iv/32y3YZAECOWTLpMwq0/AEAeaasTPAHAEDjZLXjDwCgLjr+AIB8VV5e/1GfhYVV+wr+AACIEPwBADmqMtXxl90yAABaXHl5RHFx/fcX/AEAkJL1UZ8AALVJlvT8FUr+AIA8U1ZW/46/iKqxoII/gNbn5ptvjrlz52a7DCCDunTpEieffHJWaxD8AQA5KdHxBwDkqfLy+q/xFyH4A2it5s6dG3PmzMl2GUAGlefASZngDwDISek1/iR/AECeWbSoYcGfUZ8ArV/Hjh2zXQLQBAsWLIgIwR8AQJ3SwZ+ePwAgzxj1CZBfOnbsGMOGDct2GUATPPDAA9kuIa0w2wUAANQmPepT7gcA5JEk0fEHAEDjCf4AgJy0tOMPACB/pAI8a/wBANAYgj8AICelO/6yWwYAQItKBXgNGfWp4w8AgBTBHwCQk5IlPX9GfQIA+SQV4BUX1/85Ov4AAEgR/AEAOUnHHwCQj8rKqu4b2vGXeh4AAPlN8AcA5KT0Gn+SPwAgjzRmjT+jPgEASBH8AQA5KR386fkDAPKI4A8AgKYQ/AEAOSk96lPuBwDkkcaO+hT8AQAQIfgDAHLU0o4/AID8kQrwiovr/5z27a3xBwBAFcEfAJCT0h1/2S0DAKBF6fgDAKApBH8AQE6qXNLzZ9QnAJBPGrPGX/v2gj8AAKoI/gCAnJTq+HOyAgDkk8YEfzr+AABIcS0NAMhJ6TX+tPwBAHmkMaM+dfwBAJAi+AMAclI6+MtqFQAALUvHHwAATSH4AwByUmrUp4Y/ACCfWOMPAICmEPwBADlJxx8AkI9Soz51/AEA0BiCPwAg5ySpdr8Q/AEA+aW8PKKwMKJdu/o/R8cfAAApgj8AIOck1f5s1CcAkE/Ky6s6+BqiqChi0aLmqQcAgNZF8AcA5JwawV/WqgAAaHnl5RHFxQ17jlGfAACkCP4AgJxTbdJnFGj5AwDySFlZwzv+2rev6virfg4FAEB+EvwBADkndc1K5Fd/U6ZMiaOOOipWXXXV6NixY2y66abxxhtvZLssAKCBysurgryGSAWFxn0CANDAz5ABADS/1KfVNfvVzw8//BDbb7997LrrrvH4449Hr1694tNPP40ePXpkuzQAoIEas8ZfKihszJhQAADaFsEfAJBzdPw1zBVXXBH9+vWLcePGpbcNHDgwixUBAI3V2DX+Us8FACC/GfUJAOScZEnLn+Cvfv72t7/Fj3/84zj00ENj9dVXjyFDhsStt96a7bIAgEZoascfAAD5TfAHAOScdMef5K9ePv/887jxxhtjvfXWiyeffDJOOeWUOP300+O2226r8zllZWVRWlpa4wYAZF9j1vgT/AEAkGLUJwCQcypTa/xlt4xWo7KyMn784x/H5ZdfHhERQ4YMiffffz9uuummGDFiRK3PGTNmTFx88cUtWSYAUA86/gAAaAodfwBAzkl1/BVq+auXPn36xMYbb1xj20YbbRRfffVVnc8ZPXp0zJ49O32bPHlyc5cJANRDY4I/a/wBAJCi4w8AyDnpUZ9ZraL12H777eM///lPjW2ffPJJ9O/fv87nlJSURElJSXOXBgA0kI4/AACaQscfAJBzktSoT8lfvZx11lnx2muvxeWXXx4TJ06Mu+++O2655ZYYNWpUtksDABpIxx8AAE0h+AMAck6ypOdP7lc/W221VTz00ENxzz33xCabbBKXXnppjB07No488shslwYANFBZ2dIOvvrS8QcAQIpRnwBAzkl3/GW3jFZlv/32i/322y/bZQAATaTjDwCAptDxBwDknPQaf5I/ACDPlJVZ4w8AgMYT/AEAOWdpx5/kDwDIL+XlDR/1qeMPAIAUwR8AkHN0/AEA+aoxwZ+OPwAAUqzxBwDknHTwl9UqAABano4/Vubmm2+OuXPnRpcuXeLkk0/OdjkAQDVJaoxVFgn+AICckx71KfkDAPJMebk1/lixuXPnxpw5c7JdBgCQo4z6BAByTrKk50/uBwDkm8Z0/BUWVn1gSvAHAIDgDwDIOemOv+yWAQDQ4hrT8VdQUBUWCv4AABD8AQA5J73Gn+QPAMgzjen4ixD8AQBQJavB30UXXRQFBQU1bhtuuGE2SwIAckA6+NPzBwDkmUWLGt7xF1H1HMEfAACNOJXMrMGDB8czzzyT/rqoMWe3AECbUpka9Sn3AwDyTFlZ44I/HX8AAETkQPBXVFQUvXv3znYZAEAOSXX8mUkOAOSTJDHqEwCApsn69bRPP/00+vbtG+uss04ceeSR8dVXX9W5b1lZWZSWlta4AQBtT5JURX86/gCAfLJ4cdW9UZ8AADRWVoO/n/zkJzF+/Ph44okn4sYbb4xJkybFjjvuGHPmzKl1/zFjxkT37t3Tt379+rVwxQBAS1i6xh8AQP5IBXfFxQ1/ro4/AAAishz8DR06NA499NDYbLPNYu+9945//OMfMWvWrPjLX/5S6/6jR4+O2bNnp2+TJ09u4YoBgJaQpNb4y24ZAAAtKhXc6fgDAKCxsr7GX3WrrLJKrL/++jFx4sRaHy8pKYmSkpIWrgoAaGnpjj+zPgGAPJIK7hqzxp/gDwCAiBxY46+6uXPnxmeffRZ9+vTJdikAQBYZ9QkA5KOmdPwZ9QkAQESWg79zzjknXnzxxfjiiy/i1VdfjYMOOijatWsXRxxxRDbLAgCyLD3qU/IHAOQRHX8AADRVVkd9fv3113HEEUfE999/H7169YoddtghXnvttejVq1c2ywIAskzHHwCQj6zxBwBAU2U1+Lv33nuz+fIAQA5KUu1+0TY6/j7//PNYZ511sl0GANAK6PgDAKCpcmqNPwCApNqf20DuF+uuu27suuuuceedd8bChQuzXQ4AkMPKyqruG9vxl3o+AAD5S/AHAOSUag1/bSL4mzBhQmy22WZx9tlnR+/evePkk0+O//u//8t2WQBADmpKx1/79jr+AAAQ/AEAOaZGx18bmPW5xRZbxHXXXRdTp06NP//5z/HNN9/EDjvsEJtssklcc8018e2332a7RAAgR1jjDwCAphL8AQA5JRX8tf7Ir6aioqI4+OCD4/77748rrrgiJk6cGOecc07069cvjjnmmPjmm2+yXSIAkGU6/gAAaKpGBX/rrLNOfP/998ttnzVrVqyzzjpNLgoAyF+pUZ9toNmvhjfeeCNOPfXU6NOnT1xzzTVxzjnnxGeffRZPP/10TJ06NQ488MBslwgAZFlTgj8dfwAAREQ0YnhExBdffBEVFRXLbS8rK4spU6Y0uSgAIH+1tY6/a665JsaNGxf/+c9/Yt99943bb7899t133ygsrPr81cCBA2P8+PExYMCA7BYKAGRdU0Z96vgDACCigcHf3/72t/Sfn3zyyejevXv664qKinj22WddtAIAmqRySctfYRtJ/m688cY47rjj4thjj40+ffrUus/qq68ef/rTn1q4MgAg1+j4a36LFy+OF154IT777LP46U9/Gl27do2pU6dGt27dokuXLtkuDwCgyRoU/A0fPjwiIgoKCmLEiBE1Hmvfvn0MGDAgrr766owVBwDkn7bW8ff000/H2muvne7wS0mSJCZPnhxrr712FBcXL3duBQDkHx1/zevLL7+MffbZJ7766qsoKyuLPffcM7p27RpXXHFFlJWVxU033ZTtEgEAmqxBa/xVVlZGZWVlrL322jFjxoz015WVlVFWVhb/+c9/Yr/99muuWgGAPJBe46+NRH+DBg2K7777brntM2fOjIEDB2ahIgAgV5WXRxQWRrRr1/Dn6vhbuTPOOCN+/OMfxw8//BAdO3ZMbz/ooIPi2WefzWJlAACZ06g1/iZNmpTpOgAAIqJax1/byP0iSSWZy5g7d2506NChhasBAHJZeXnjxnxG6Pirj5dffjleffXVKC4urrF9wIABMWXKlCxVBQCQWY0K/iIinn322Xj22WfTnX/V/fnPf25yYQBAfmoroz7PPvvsiKgakX7BBRdEp06d0o9VVFTEv//979hiiy2yVB0AkIvKyhof/BUVRSxalNl62prKysqoqKhYbvvXX38dXbt2zUJFAACZ16jg7+KLL45LLrkkfvzjH0efPn2ioK18JB8AyLr0qM9Wfnrx1ltvRURVx997771X45PlxcXFsfnmm8c555yTrfIAgBxUXt649f0idPzVx1577RVjx46NW265JSKqPqA1d+7cuPDCC2PffffNcnUAAJnRqNPJm266KcaPHx9HH310pusBAPJcsqTnr5XnfvH8889HRMTIkSPjuuuui27dumW5IgAg1zVl1GdRUURFRdWtMWsE5oOrr7469t5779h4441j4cKF8dOf/jQ+/fTTWG211eKee+7JdnkAABnRqOCvvLw8tttuu0zXAgCwtOMvu2VkzLhx47JdAgDQSjR1jb+IqnGfgr/arbXWWvHOO+/EvffeG++++27MnTs3jj/++DjyyCOjY8eO2S4PACAjGhX8nXDCCXH33XfH+eefn+l6AIA8l17jrxUnfwcffHCMHz8+unXrFgcffPAK933wwQdbqCoAINc1teMvdYwOHTJXU1tTVFQURx11VLbLAABoNo0K/hYuXBi33HJLPPPMM7HZZptF+2XOSq+55pqMFAcA5J+lHX+tN/nr3r17eg3k7t27Z7kaAKC1aOoaf6ljULvbb799hY8fc8wxLVQJAEDzadTp5LvvvhtbbLFFRES8//77NR4raM0fzwcAsq4tdPxVH+9p1CcAUF+Z6vijdmeccUaNrxctWhTz58+P4uLi6NSpk+APAGgTGhX8Pf/885muAwAgIqoFf1mtInMWLFgQSZJEp06dIiLiyy+/jIceeig23njj2GuvvbJcHQCQS3T8Na8ffvhhuW2ffvppnHLKKfGLX/wiCxUBAGReYbYLAACoLj3qs40kfwceeGB6rNSsWbNi6623jquvvjoOPPDAuPHGG7NcHQCQS5oS/On4a5z11lsvfve73y3XDQgA0Fo16nRy1113XeFIz+eee67RBQEA+S1Z0vPXRnK/mDBhQlx77bUREfHAAw9E796946233oq//vWvccEFF8Qpp5yS5QoBgFyh4y87ioqKYurUqdkuAwAgIxp1Opla3y9l0aJF8fbbb8f7778fI0aMyERdAECeSnf8ZbeMjJk/f3507do1IiKeeuqpOPjgg6OwsDC22Wab+PLLL7NcHQCQS8rKdPw1p7/97W81vk6SJL755pv44x//GNtvv32WqgIAyKxGnU6mPrW+rIsuuijmzp3bpIIAgPyWWuOvsI3M+lx33XXj4YcfjoMOOiiefPLJOOussyIiYsaMGdGtW7csVwcA5JLy8qWdew2l42/lhg8fXuPrgoKC6NWrV+y2225x9dVXZ6coAIAMa+TnyGp31FFHxdZbbx1XXXVVJg8LAOSRyjbW8XfBBRfET3/60zjrrLNi9913j2233TYiqrr/hgwZkuXqAIBcYo2/5lVZWdksxy0rK4uysrL016Wlpc3yOsuaO3euwBJaOU00QHPIaPD3r3/9Kzp06JDJQwIAeSbV8ddGGv7ikEMOiR122CG++eab2HzzzdPbd9999zjooIOyWBkAkGvKyiI6dmzcc3X8Zc+YMWPi4osvbvHXTZIk5syZ0+KvCwDktkYFfwcffHCNr1Mz0d944404//zzM1IYAJCf0sFfVqvIrN69e0fv3r1rbNt6662zVA0AkKvKyyO6d2/cc3X81e7ss8+u977XXHNNo15j9OjRNV6ntLQ0+vXr16hjNURBQUF06dKl2V8HaD5z586NJLXQPUCGNCr4677MWWhhYWFssMEGcckll8Ree+2VkcIAgPyU+o+ettLxN2/evPjd734Xzz77bMyYMWO5EVOff/55lioDAHJNU0Z96vir3VtvvVWv/QqacPJZUlISJSUljX5+Y3Xp0iV+/vOft/jrAplz9dVX69wFMq5Rp5Pjxo3LdB0AABHR9jr+TjjhhHjxxRfj6KOPjj59+jTpohIA0LaVly8N8BpKx1/tnn/++WyXAADQopq0xt+bb74ZH330UUREDB48OIYMGZKRogCA/JWactJW4rHHH388Hnvssdh+++2zXQoAkON0/AEA0FSNOp2cMWNGHH744fHCCy/EKqusEhERs2bNil133TXuvffe6NWrVyZrBADySLrjr410xvXo0SN69uyZ7TIAgFagKR1/7dotPQZ1e+ONN+Ivf/lLfPXVV1G+zA/rwQcfzFJVAACZU9iYJ/3sZz+LOXPmxAcffBAzZ86MmTNnxvvvvx+lpaVx+umnZ7pGACCPtLWOv0svvTQuuOCCmD9/frZLAQByXFM6/tq1q7oJ/up27733xnbbbRcfffRRPPTQQ7Fo0aL44IMP4rnnnovu3btnuzwAgIxo1OnkE088Ec8880xstNFG6W0bb7xx3HDDDbHXXntlrDgAIP8s7fjLahkZc/XVV8dnn30Wa6yxRgwYMCDaL/Mx/gkTJmSpMgAg1zSl4y+i6rmCv7pdfvnlce2118aoUaOia9eucd1118XAgQPj5JNPjj59+mS7PACAjGhU8FdZWbncRauIiPbt20dlZWWTiwIA8lOSJEuDv6xWkjnDhw/PdgkAQCvRlI6/iKrnCv7q9tlnn8WwYcMiIqK4uDjmzZsXBQUFcdZZZ8Vuu+0WF198cZYrBABoukadTu62225xxhlnxD333BN9+/aNiIgpU6bEWWedFbvvvntGCwQA8lNb6fi78MILs10CANBKNDX40/G3Yj169Ig5c+ZERMSaa64Z77//fmy66aYxa9YsY9kBgDajUWv8/fGPf4zS0tIYMGBADBo0KAYNGhQDBw6M0tLSuP766zNdIwCQJ5Jqf24juV9ERMyaNSv+93//N0aPHh0zZ86MiKoRn1OmTMlyZQBArkgSoz6by/vvvx8RETvttFM8/fTTERFx6KGHxhlnnBEnnnhiHHHEET7IDgC0GY36HFm/fv1iwoQJ8cwzz8THH38cEREbbbRR7LHHHhktDgDIL0m15K+tBH/vvvtu7LHHHtG9e/f44osv4sQTT4yePXvGgw8+GF999VXcfvvt2S4RAMgBixdX3Tcl+DPqs3abbbZZbLXVVjF8+PA49NBDIyLivPPOi/bt28err74a//Vf/xW/+c1vslwlAEBmNKjj77nnnouNN944SktLo6CgIPbcc8/42c9+Fj/72c9iq622isGDB8fLL7/cXLUCAG1cjY6/NjLr8+yzz45jjz02Pv300+jQoUN6+7777hsvvfRSFisDAHJJKrDT8Zd5L774YgwePDjGjBkTG220UYwYMSJeeeWVOPfcc+Nvf/tbXH311dGjR49slwkAkBENCv7Gjh0bJ554YnTr1m25x7p37x4nn3xyXHPNNRkrDgDIL6ngr1GzyHPU66+/HieffPJy29dcc82YNm1aFioCAHJRKrBryhp/Ov5qt+OOO8af//zn+Oabb+L666+PL774InbeeedYf/3144orrnBOBgC0KQ26rvbOO+/EPvvsU+fje+21V7z55ptNLgoAyE+VqeSvbTT7RURESUlJlJaWLrf9k08+iV69emWhIgAgF2Wi40/wt2KdO3eOkSNHxosvvhiffPJJHHrooXHDDTfE2muvHQcccEC2ywMAyIgGBX/Tp0+P9is4Ay0qKopvv/22yUUBAPkpWdLz15Y6/g444IC45JJLYtGiRRFRNcL0q6++il/96lfxX//1X1muDgDIFZno+DPqs/7WXXfd+PWvfx2/+c1vomvXrvHYY49luyQAgIxo0HW1NddcM95///06H3/33XejT58+TS4KAMhPyZKOvzayvF9ERFx99dUxd+7c6NWrVyxYsCB23nnnWHfddaNr165x2WWXZbs8ACBH6PhrOS+99FIce+yx0bt37/jFL34RBx98cLzyyivZLgsAICMa9DmyfffdN84///zYZ599okOHDjUeW7BgQVx44YWx3377ZbRAACB/tMFJn9G9e/d4+umn45VXXol33nkn5s6dGz/60Y9ijz32yHZpAEAOydQaf2VlmamnrZk6dWqMHz8+xo8fHxMnToztttsu/vCHP8Rhhx0WnTt3znZ5AAAZ06DTyd/85jfx4IMPxvrrrx+nnXZabLDBBhER8fHHH8cNN9wQFRUVcd555zVLoQBA25fu+Gsj0V9lZWWMHz8+Hnzwwfjiiy+ioKAgBg4cGL17944kSaKgLbU2AgBNkgrsdPxl3tChQ+OZZ56J1VZbLY455pg47rjj0te0AADamgYFf2ussUa8+uqrccopp8To0aMjWXJ1rqCgIPbee++44YYbYo011miWQgGAti/d8dcG8rAkSeKAAw6If/zjH7H55pvHpptuGkmSxEcffRTHHntsPPjgg/Hwww9nu0wAIEdkao0/HX/La9++fTzwwAOx3377Rbt27bJdDgBAs2rw6WT//v3jH//4R/zwww8xceLESJIk1ltvvejRo0dz1AcA5JG2NOpz/Pjx8dJLL8Wzzz4bu+66a43HnnvuuRg+fHjcfvvtccwxx2SpQgAgl2Rijb/27SMWLsxMPW3J3/72t2yXAADQYgob+8QePXrEVlttFVtvvbXQDwDIiPSozzaQ/N1zzz3x61//ernQLyJit912i3PPPTfuuuuuLFQGAOSiTAR/xcU6/gAA8l2jg79M+93vfhcFBQVx5plnZrsUACBLkiU9f20g94t333039tlnnzofHzp0aLzzzjstWBEAkMuM+gQAIBNyIvh7/fXX4+abb47NNtss26UAAFnUljr+Zs6cucK1j9dYY4344YcfWrAiACCXZWrUp+APACC/ZT34mzt3bhx55JFx6623GhkKAHmuLa3xV1FREUUr+Mh+u3btYvHixS1YEQCQyzLV8Zc6DgAA+akJp5OZMWrUqBg2bFjsscce8dvf/jbb5QAAWZTu+GsD0V+SJHHsscdGSUlJrY+X+Tg+AFCNjj8AADIhq8HfvffeGxMmTIjXX3+9XvuXlZXVuEhWWlraXKUBAFmQ7vhr/blfjBgxYqX7HHPMMS1QCQDQGljjDwCATMha8Dd58uQ444wz4umnn44OHTrU6zljxoyJiy++uJkrAwCypS2N+hw3bly2SwAAWpHy8ojCwoh27Rp/DMEfAABZW+PvzTffjBkzZsSPfvSjKCoqiqKionjxxRfjD3/4QxQVFUVFRcVyzxk9enTMnj07fZs8eXIWKgcAmktq1GdhW0j+AAAaoKysaWM+I6zxBwBAFjv+dt9993jvvfdqbBs5cmRsuOGG8atf/Sra1fIRt5KSkjrXyQEAWr/KdM8fAEB+KS8X/AEA0HRZC/66du0am2yySY1tnTt3jlVXXXW57QBAftDxBwDkq/Lypq3vF1EV/FVUVN2aMjIUAIDWK2ujPgEAlrV0jT/JHwCQX8rLI4qLm3aMVMegdf4AAPJX1jr+avPCCy9kuwQAIItSHX9iPwAg32Si4y8VHJaVRXTq1PSaAABofXT8AQA5I93xJ/kDAPJMptb4i9DxBwCQzwR/AEDOWDrqEwAgv2Rqjb8IwR8AQD4T/AEAOSNZMutTxx8AkG8y2fFXXt70egAAaJ0EfwBAztDxBwDkKx1/AABkguAPAMgZSxr+dPwBAHlH8AcAQCY08ZQSACBzlnb8Sf4AgPxSVib4o366dOlS4x4AoDrBHwCQM9Idf9ktAwCgxWWi46+4uOpe8Ne2nXzyydkuAQCoQ0EOjLEy6hMAyBnpjr/snyMBALSo8vKlHXuNlXp+eXnT6wEAoHUS/AEAOSFJkmqjPgEA8ktZWdODv1THoI4/AID8JfgDAHKOjj8AIN8Y9QkAQCYI/gCAnJBU+7PcDwDIN5kc9Sn4AwDIX4I/ACAnVFZL/gR/AEC+yUTHn+APAADBHwCQE6qv71dg1icAkGcy0fFXWFgVHpaXZ6YmAABaH8EfAJATkiXJn8gPAMhH5eUR7do1/Tjt2+v4AwDIZ4I/ACAnpDv+JH9N9rvf/S4KCgrizDPPzHYpAEA9lZVFFBc3/TiCPwCA/Cb4AwByQrIk+pP7Nc3rr78eN998c2y22WbZLgUAaICFCwV/AAA0neAPAMgJ6VGfkr9Gmzt3bhx55JFx6623Ro8ePbJdDgDQAGVlTV/jL6IqPBT8AQDkL8EfAJAT0qM+s1pF6zZq1KgYNmxY7LHHHtkuBQBoIKM+AQDIhKJsFwAAEFGt40/01yj33ntvTJgwIV5//fV67V9WVhZl1a4KlpaWNldpAMBKJEnmOv7at48oL2/6cQAAaJ10/AEAOSHd8Sf3a7DJkyfHGWecEXfddVd06NChXs8ZM2ZMdO/ePX3r169fM1cJANRl0aKq+0wEf0VFOv4AAPKZ4A8AyAlLO/5oqDfffDNmzJgRP/rRj6KoqCiKiorixRdfjD/84Q9RVFQUFRUVyz1n9OjRMXv27PRt8uTJWagcAIiIWLiw6j4Toz6t8QcAkN+M+gQAcoKOv8bbfffd47333quxbeTIkbHhhhvGr371q2jXrt1yzykpKYmSkpKWKhEAWIFUUKfjDwCAphL8AQA5IVkS/cn9Gq5r166xySab1NjWuXPnWHXVVZfbDgDknlRQl4mOv/btBX8AAPnMqE8AICekR31K/gCAPJPJUZ/t20eUlzf9OAAAtE46/gCAnJAe9ZnVKtqOF154IdslAAD1lMlRn+3bLw0SAQDIPzr+AICckO74E/0BAHkm0x1/Rn0CAOQvwR8AkBMql9wb9QkA5JtMd/wJ/gAA8pfgDwDICamOPycnAEC+EfwBAJAprq0BADkhWbLKn44/ACDfGPUJAECmCP4AgJywpOHPCn8AQN5JBXWZCP6KiyPKy5t+HAAAWifBHwCQE1KjPnX8AQD5xqhPAAAyRfAHAOSEpR1/kj8AIL9kctRnUZHgDwAgnwn+AICckO74y24ZAAAtrqysaupBu3ZNP5ZRnwAA+U3wBwDkhHTHn+QPAMgzCxdWBXaZOA8y6hMAIL8J/gCAnKDjDwDIV2VlmRnzGVEV/JWXLz23AgAgvwj+AICckCzp+dPxBwDkm0wHfxERixZl5ngAALQugj8AICekR31mtQoAgJa3cOHSwK6pUscx7hMAID8J/gCAnJAe9Sn5AwDyTHN0/An+AADyk+APAMgJSzv+JH8AQH4pK9PxBwBAZgj+AICckO74y24ZAAAtbuFCHX8AAGSG4A8AyAnpjj/JHwCQZzLZ8ZcKEMvLM3M8AABal6JsFwAAkCRJtVGfAAD5xahPgPy2YMGCeOyxx7JdBtBGCP4AgKxLqv1Zxx8AkG8WLsxc8Fe05EqP4A+gdVmwYEG2SwAyoDhT89ubQPAHAGRd9eDPHHIAIN80x6hPwR9A7uvSpUu2SwAyLBf+Xgv+AICsS5KV7wMA0FYtWGDUJ0A+Ovnkk7NdAtAGZfVD9TfeeGNsttlm0a1bt+jWrVtsu+228fjjj2ezJAAgC6qv71dg1icAkGfKypZ26jVVKvgrL8/M8QAAaF2yGvyttdZa8bvf/S7efPPNeOONN2K33XaLAw88MD744INslgUAtLDKJcmfzA8AyEfNEfzp+AMAyE9ZHfW5//771/j6sssuixtvvDFee+21GDx4cJaqAgBaWrKk58/6fgBAPlq40Bp/AABkRs6s8VdRURH3339/zJs3L7bddttslwMAtKBExx8AkMcy2fFXVLT0mAAA5J+sB3/vvfdebLvttrFw4cLo0qVLPPTQQ7HxxhvXum9ZWVmUVTtzLS0tbakyAYBmVH2NPwCAfFNWlrmOP8EfAEB+y/pErQ022CDefvvt+Pe//x2nnHJKjBgxIj788MNa9x0zZkx07949fevXr18LVwsANIfUGn+FWv4AgDyUyVGfBQVV3YPl5Zk5HgAArUvWg7/i4uJYd911Y8stt4wxY8bE5ptvHtddd12t+44ePTpmz56dvk2ePLmFqwUAmoOOPwAgn5WXZ27UZ0TVsXT8AQDkp6yP+lxWZWVljXGe1ZWUlERJSUkLVwQANDdr/AEA+SyTHX8RVccS/AEA5KesBn+jR4+OoUOHxtprrx1z5syJu+++O1544YV48skns1kWANDCkiU9f3I/ACDfVFZGLFqU2Y4/wR8AQP7KavA3Y8aMOOaYY+Kbb76J7t27x2abbRZPPvlk7LnnntksCwBoYUvX+MtuHQAALS21Fp/gDwCATMhq8PenP/0pmy8PAOSIpWv8Sf4AgPyycGHVvVGfAABkQmG2CwAAsMYfAJCvUgFdpjv+Up2EAADkF8EfAJB1Szv+AADySyr40/EHAEAmCP4AgKyrXNLyZ40/ACDfGPUJAEAmCf4AgKzT8QcA5KvmGvUp+AMAyE+CPwAg66zxBwDkq1THXyaDv6IiwR8AQL4S/AEAWVeZCv70/AEAeaa51vgrL8/c8QAAaD0EfwBA1qVGfVrjDwDIN8016jPVSQgAQH4R/AEAWZce9ZndMgAAWlwqoMtkx19xsVGfAAD5SvAHAGRdsqTnzxp/AEC+aa5Rn4I/AID8JPgDALKuUscfAJCnmmPUZ1GR4A8AIF8J/gCArFu6xp/oDwDIL6lRn5kM/oz6BADIX4I/ACDrrPEHAOSrsrKIdu2qbpnSvn1EeXnmjgcAQOsh+AMAsi7V8afhDwDIN2VlmV3fL8IafwAA+UzwBwBkVZIkS4O/rFYCANDyFi7M7JjPCMEfAEA+E/wBAFmVVPtzoeQPAMgzZWXNE/wZ9QkAkJ8EfwBAViXVkj+5HwCQbxYuNOoTAIDMEfwBAFlVveOvwCJ/AECeaa6Ov4qKqhsAAPlF8AcAZFXlkuTPSQkAkI+aK/iLMO4TACAfucYGAGRVquNPsx8AkI+aY9RnKkg07hMAIP8I/gCArEqWLPIn9wMA8lFZWfOs8Zc6NgAA+UXwBwBklY4/ACCfCf4AAMgkwR8AkFVL1/iT/AEA+ac5Rn2WlFTdL1iQ2eMCAJD7BH8AQFbp+AMA8pngDwCATBL8AQBZtWSJP/1+AEBeWrgworg4s8dMBX/z52f2uAAA5D7BHwCQVTr+AIB81hxr/On4AwDIX4I/ACCrKpe0/DkpAQDyUVmZjj8AADLHNTYAIKt0/AEA+cwafwAAZJLgDwDIqqVr/En+AID8o+MPAIBMEvwBAFlVueRexx8AkI+aI/grKqq66fgDAMg/gj8AIKtSHX9OSgCAfNQcoz4jIjp00PEHAJCPXGMDALIqWbLKn44/ACAflZc3T/BXUqLjDwAgHwn+AICsWrrGHwBA/lm4MPOjPiOqjin4AwDIP4I/ACCrUmv8FWr5AwDyTEVF1c2oTwAAMkXwBwBklY4/ACBflZVV3TdH8KfjDwAgPwn+AICsWpL7WeMPAMg7CxdW3TfHqE8dfwAA+UnwBwBklY4/ACBfpTr+rPEHAECmCP4AgKyqXNLzp+MPAMg3zTnqs6RExx8AQD4S/AEAWZXq+HNSAgDkm+Yc9VlcLPgDAMhHrrEBAFm1dI0/LX8AQH5pzo4/a/wBAOQnwR8AkFXW+AMA8lVzdvyVlFjjDwAgHxVlu4DWYObMmTFnzpxGP79r167Rs2fPDFYEAG1H5ZL7QskfDVRREdGuXbarAIDGa86Ov+JiwR8AQD4S/K3EzJkzY9C668asH35o9DFW6dEjPps4UfgHAMtIUu1+oeOPhpk0KWKLLSIuuSTijDOyXQ0ANE4q+GuOjj+jPgEA8pPgbyXmzJkTs374IS6574lYtXffBj//+2lT44L/t0/MmTNH8AcAy0iq/dkSfzTEP/8ZUVoaceaZET/8EHHhhX6HAGh9UqM+m6Pjz6hPAID8JPirp1V7941ea66d7TIAoE2prJb8yWxoiLfeilhzzYh99424+OKITp0ifvnLbFcFAA2TCuZKSjJ/bMEfAEB+Ksx2AQBA/krlfgURUaBdiwaYMCFi3XUjfvrTiJ13jnjkkWxXBAANN29e1X2HDpk/dklJVUdhZeXK9wUAoO0Q/AEAWZNa4k/kR0MkSVXH37rrVn09cGDEJ59ktyYAaIz58yOKiqpumZbqIkyNEwUAID9kNfgbM2ZMbLXVVtG1a9dYffXVY/jw4fGf//wnmyUBAC0o3fEn+aMBJk2qWt9v/fWrvu7XL+K776rW+gOA1mTevIiOHZvn2Kngz7hPAID8ktXg78UXX4xRo0bFa6+9Fk8//XQsWrQo9tprr5iXmnUBALRpyZKWP7kfDTFhQtV9quNvrbWq7j/9NDv1AEBjtUTwN39+8xwfAIDc1AzDJOrviSeeqPH1+PHjY/XVV48333wzdtpppyxVBQC0lNSSM4WSPxrgrbcievWK6Nmz6utU8PfJJxFbb529ugCgoebNWxrQZZqOPwCA/JTV4G9Zs2fPjoiInqmrOMsoKyuLsrKy9NelpaUtUhcA0DyWrvEn+aP+3nwzYtCgpV936hSx2mrW+QOg9Zk/P6JDh+Y5tuAPACA/ZXXUZ3WVlZVx5plnxvbbbx+bbLJJrfuMGTMmunfvnr7169evhasEADLJGn80VJJUjfpcb72a2/v1i7BUNACtzbx5zR/8GfUJAJBfcib4GzVqVLz//vtx77331rnP6NGjY/bs2enb5MmTW7BCACDTKtMdf1A/33wT8e23ywd/a64p+AOg9WmJ4E/HHwBAfsmJUZ+nnXZaPProo/HSSy/FWqlFWmpRUlISJc01/B4AaHHJkp4/a/xRX2+9VXVfW8ffc89VdQTqIAWgtWjONf5SgaKOPwCA/JLVjr8kSeK0006Lhx56KJ577rkYOHBgNssBAFpYouOPBpowIaJbt4g11qi5fa21qi5sTp2anboAoDGas+OvuLjqXscfAEB+yWrwN2rUqLjzzjvj7rvvjq5du8a0adNi2rRpscBZKQDkBWv80VAffRQxYMDyvzOpoRGffNLiJQFAozVn8KfjDwAgP2U1+Lvxxhtj9uzZscsuu0SfPn3St/vuuy+bZaUlSRJTyttFl1VXz3YpANAmpdb4K5T8UU+TJ0f06rX89r59I9q1E/wB0Lo0Z/BXVFT13uiz1QAA+SWra/wlqfleOervX86ND+d2iG0OPTbbpQBAm5QO/rJbBq3IlCkRW2+9/Paioqrw7z//afmaAKCx5s9vvuAvourYOv4AAPKL62wrsH73qoH4Pznk2MjtiBIAWqfKJe+wGv6ojySpWsOvto6/iIg119TxB0Dr0pwdfxERJSU6/gAA8o3gbwXWX6U4OhVWRpeevWJRUcdslwMAbU6SHvWZ3TragjFjxsRWW20VXbt2jdVXXz2GDx8e/2lj7W8zZ0aUlUWstlrtj6+1lo4/AFqX5u74E/wBAOQfwd8KFBYUxPoliyIiory4c86PJgWA1mbpqE/JX1O9+OKLMWrUqHjttdfi6aefjkWLFsVee+0V8+bNy3ZpGTNlStV9XR1//fpFTJoUsWhRy9UEAI1VURGxcGHzB39GfQIA5JesrvHXGgwqWRz//n5xlHTqHAsqkuhU5MIkAGRK5ZJ7HX9N98QTT9T4evz48bH66qvHm2++GTvttFOWqsqsVPBXV8ffmmtWXUT96quIQYNari4AaIxUJ56OPwAAMknH30oUF0ZM+Pu9ERExu7xyJXsDAA1RmVjjr7nMnj07IiJ69uyZ5UoyZ8qUqt+Vur6lVVetuv/mm5arCQAaK9WUr+MPAIBMEvzVw6v33BIREfMXJ+kLlABA01njr3lUVlbGmWeeGdtvv31ssskmte5TVlYWpaWlNW65bsqUqtCvqI6ZFYI/AFqTlgj+iot1/AEA5BvBXz1899XnUVBZERERizT9AUDGWOOveYwaNSref//9uPfee+vcZ8yYMdG9e/f0rV+/fi1YYeN8/XXdYz4jIrp0qbrAKfgDoDVIBX8dOzbfa+j4AwDIP4K/eiqsXBwREeUVOv4AIBOSsMZfczjttNPi0Ucfjeeffz7WWmutOvcbPXp0zJ49O32bPHlyC1bZOFOmrDj4Kyioenzq1JarCQAaKxXIlZQ032sI/gAA8k8dg5JYVmHl4qiIkiivFPwBQKYJ/pouSZL42c9+Fg899FC88MILMXDgwBXuX1JSEiXNeaWxGXz9dcRKvq3o2VPHHwCtQ0ut8TdzZvMdHwCA3KPjr55SHX+LBH8AkBFJwdLTELlf040aNSruvPPOuPvuu6Nr164xbdq0mDZtWixoQwv7TJkS0avXivfp2VPHHwCtQ0uN+mxDpwIAANSD4K+e2qVGfQr+ACBDCtL/W1Ag+muqG2+8MWbPnh277LJL9OnTJ3277777sl1aRixcWNWxsKJRnxERq66q4w+A1iE1grO5O/6M+gQAyC9GfdbT0o6/qlFaLlACQNMkS95LjfnMjCRp2x9OSnXxrSz4M+oTgNYi1fHX3Gv86fgDAMgvOv7qqSCpTP+wyiuzWgoAtAmCPxpiypSq+5UFf6utVtUZWFbW/DUBQFPMmxdRXBzRrl3zvYbgDwAg/wj+6qkgItq3q7oyaZ0/AGi6ZMlpiNyP+qhv8NezZ9X9tGnNWw8ANNW8ec27vl+E4A8AIB8J/hqgeMlPq7xC8AcATZbu+BP9sXJTpkR06hTRufOK91t11ap74z4ByHXz5zfvmM+IpcFfG58IDgBANYK/BiheMousXMcfADSZUZ80xJQpEb16pfPiOgn+AGgtWqrjLyJi4cLmfR0AAHKH4K8B2hca9QkAmZIa9elkhPqYMmVpqLci3bpFFBUJ/gDIffPmRXTo0LyvkQr+jPsEAMgfrrU1QHG7VMdfRGJOBgA0jVGfNMDXX9cv+CssrNpP8AdArmuJ4C91/Pnzm/d1AADIHYK/BigqiEhdmlxUmdVSAKDVS436lPtRH6lRn/Uh+AOgNZg/P6K4uHlfI3V8HX8AAPlD8NcABQUF6XX+jPsEgKZJwhp/1E9lZVWQt9pq9du/R4+IqVObtyYAaKq5c1tu1KeOPwCA/CH4a6D27aruywV/ANA0Bdb4o36+/z6ivLx+oz4jqvYT/AGQ61py1KeOPwCA/OFaWwO1XzKPbLFRnwDQJEs7/rT8sWLTplXd1zf469nTqE8Act+8eREdOzbvaxj1CQCQfwR/DVS0ZB7Z4kTHHwA0hTX+qK/p06vue/as3/6rrRbx7bcRixc3X00A0FTz5y8dxdlcUh1/Rn0CAOQPwV8DFS35iVnjDwCaJhX8ORlhZVIdfz161G//nj0jkiRixozmqwkAmqolRn2mgkUdfwAA+cO1tgYqqjbqM9H1BwBNsGSNPx1/rMS0aRGdO9f/4mhqJKhxnwDkspYY9ZkK/nT8AQDkD8FfA6U6/pKIsMwfADReuuPPrE9WYvr0+o/5jFga/E2d2jz1AEAmLFjQ/B1/RUURhYU6/gAA8ongr4EKCwqi3ZLrk4slfwDQaOk1/rJcB7lv2rSGBX+rrFJ1kVPHHwC5qqIioqys+df4Kyioeg0dfwAA+UPw1whLx30a9QkAjZfq+MtyGeS8b76pCvPqq127qqBQ8AdArpo3r+q+uTv+Uq+h4w8AIH8I/hohNe5zkeAPABqluGPnqo+gh+CPlWtox19E1bhPwR8AuSoV/DX3Gn8ROv4AAPKN4K8RipZcoVws9wOARinp3CX9Z7kfK9PQNf4iInr0qHoeAOSiVBDXEh1/gj8AgPwi+GuEovQaf5I/AGiMkk6dI6LqRKSgQPRH3RYtivj++6ogryF69NDxB0DuSnX8NfcafxERnTpFzJ3b/K8DAEBuEPw1QvtUx19llgsBgFaqeEnHn8yPlfn224gkaXjHnzX+AMhlLTnqs1OniFmzmv91AADIDYK/Rlg66lPHHwA0RkmnquDP+n6szLRpVfeNCf6mT68KDQEg16SCv5YY9dmli+APACCfCP4aoWjJT60iiah0NQkAGiy1xl+hFf5YidQ6fY0J/srKImbPznxNANBULbnGX+fOgj8AgHwi+GuEwoj0ZUrjPgGg4Uo6LlnjT+7HSqQ6/lZZpWHPSwWFqecDQC5p6Y4/H4QBAMgfgr9GKCgoSHf9GfcJAA1njT/qa9q0iO7dI9q3b9jzVl116fMBINekgr+SkuZ/LR1/AAD5RfDXSO1T6/zp+AOABrPGH/U1bVrDx3xG6PgDILfNn1/V7VfYAldlunSJKC1t/tcBACA3CP4aqaggFfzp+AOAhrLGH/U1fXpEjx4Nf17HjlU3wR8AuWjevJYZ8xlR1fG3cGHV2rcAALR9gr9GSo36XGTUJwA0mI4/6uubbxoX/EVUjfsU/AGQi1oy+OtSddplnT8AgDwh+GukIqM+AaDRSqzxRz1Nm9b44K9HD8EfALmppTv+IqzzBwCQLwR/jdR+yYVKoz4BoOHSHX9ZroPc19g1/iKqgr9vvslsPQCQCak1/lqCjj8AgPzielsjpTv+kojEuE8AaJD0Gn9a/liBhQsjSksbH/z17KnjD4DclI1Rnzr+AADyg+CvkdpVu05ZIfcDgAYptsYf9TB9etV9Y0d99uyp4w+A3DRvXkRJScu8VmrUp44/AID8IPhrpIKCgihacrFykXGfANAgqVGfcj9WJNWt15SOv+++i1i8OHM1AUAmzJ3bch1/nTpV3ev4AwDID4K/Jqg+7hMAqL+loz6zXAg5LdXx15TgL0kivv02czUBQCbMnRvRsWPLvFa7dlVdfzr+AADyQ1aDv5deein233//6Nu3bxQUFMTDDz+czXIarGjJT2+xjj8AaJCSTtb4Y+WmTYsoLIzo3r1xz08Fhtb5AyDXfP99RLduLfd6Xbro+AMAyBdZDf7mzZsXm2++edxwww3ZLKPR2i+5WLm4MsuFAEArkiQRHbpWXenS8ceKTJtWtb5fu3aNe77gD4BcNXNmRNeuLfd6Ov4AAPJHUTZffOjQoTF06NBsltAkqVGf1vgDgPpbHBHtS6oWtWkn+GMFpk6NWHXVxj+/R4+qe8EfALmksjLihx90/AEA0DyyGvw1VFlZWZSVlaW/Li0tzWI11UZ9JoI/AKivssolaV+SGPXJCk2Z0rTgr6goYpVVBH8A5JbS0qrwryWDv06ddPwBAOSLrI76bKgxY8ZE9+7d07d+/fpltZ6iaqM+E+EfANTLwqTq/bMgqchyJeS6r7+OWG21ph2jZ0/BHwC55fvvq+5buuPvhx9a7vUAAMieVhX8jR49OmbPnp2+TZ48Oav1pDr+kogw7RMA6ifV8VeQWCSXFZsypenBX48egj8AcsvMmVX3LRn8WeMPACB/tKpRnyUlJVFSUpLtMtIKCwqiXUFERRKxOIlol+2CAKAVKEsEf6xceXnEt982bdRnRFXH3zffZKYmAMiEbHX8WeMPACA/tKqOv1yUGve5SMsfANRLquOvUPDHCqTCul69mnYcoz4ByDWpjr+uXVvuNXX8AQDkj6x2/M2dOzcmTpyY/nrSpEnx9ttvR8+ePWPttdfOYmX1V1QYUVYZsVjwBwD1snDJW6aOP1ZkypSqe2v8AdDWfP99RHFxRIcOLfeaXbpElJZGVFZGFPoIOABAm5bV07033ngjhgwZEkOGDImIiLPPPjuGDBkSF1xwQTbLapCiwqquhcVyPwCoF2v8UR+ZDP7mzImYO7fpNQFAJsycWTXmc8kAoRbRuXNEkng/BADIB1nt+Ntll10iSVp3YtZ+SXSq4w8A6scaf9THlCkRJSVNH4O2+upV95MnR2y0UdPrAoCm+v77ll3fL6Kq4y+iap2/ln5tAABalgEPTZRa42+xa5cAUC86/qiPKVOq1vdrajdE9eAPAHLBzJktu75fRM3gDwCAtk3w10SpUZ+LWnnnIgC0lHTHX6Xgj7pNmRKx6qpNP85qq1WFh4I/AHJFNjv+Zs9u2dcFAKDlCf6aqGjJT7AyiagU/gHASi3U8Uc9fP11ZoK/oqKq4wj+AMgV33/f8h1/nTtX3ev4AwBo+7K6xl9bUBgRBRGRRNW4z+J2WS4IqNPMmTNjzpw5jX5+165do2fPnhmsCPLP4sokFkdV8Fco+GMFpkyJ2GqrzBxr9dUFfwDkju+/jxg0qGVfU8cfAED+EPw1UUFBQbQvjCivjFicJFEcTVyIBmgWM2f+//buPTrK6t7/+OeZSTJJIBcChItcFUFB7hpEywEVDS2LwrHe0aUuFY9LTnGprfWsc6TW059obdVaqm2PgsejglbRtlpBkCAiiiIXUSHhKvdLuOVCLpPZvz+ezEhMAplknnnm8n6tlTVkZs/z7J09z8yX/Z2992Gd1a+fjh450upj5HbooC2bN5P8A9qgsn5T3LraWtlfmwEaM0bas8depjMSOnWSvv02MscCkt2xY9KcOZLfby+je/XVUq9ebtcKiC+HD0d/qc+0NHsWPDP+AAAAEh+JvwhI8ViqCRjVBhjABGJVWVmZjh45ol/Nf08du3YP+/ml+/booWsnqKysjMQf0AaVfvuzsuLoYXVId7kyiFlHjkhVVZFL/OXnS19+GZljAclu1izp8celzEz7Ov34Y+mNN9yuFRA/6ursBHq0E3+WZS8vyow/AACAxEfiLwJSPfZin7WsWAbEvI5du6vzGXwtHXDLifoZfxVHD0ldSaKjaXv22LeRSvx17mzvGWiMPfAJoHXKy6Vnn5Wuukq66y7p73+XnnxS2rxZ6tfP7doB8eHoUfvzKNp7/En2Pn/M+AMAAEh8HrcrkAhS6/+KzPgDAODUgkt9Vh497HJNEMt277ZvIznjr6LCnkkIoPVeeMFO/l15pf37FVdIubnSU0+5WSsgvpSW2rfRnvEn2fv8MeMPAAAg8ZH4iwB7xh+JPwAATie01OeRUpdrglgWTPx17BiZ4+Xn27c7d0bmeEAyqquzZ/eNGyd16WLf5/NJP/6xveffYb7PAbRI8FpxI/HHjD8AAIDkQOIvAr5L/EnGkPwDYs3R6jrtrfWo36ix8ntSuU4BF4WW+iTxh1PYvVvKy5NSUyNzvM6d7VsSf0DrLVggbd8uXX11w/snT5b8fum551ypFhB33JzxR+IPAAAgOZD4i4CUk/aK8ZNPAGJKaZVf//PNERWVZei2Z/+qynaddKyGDTkBt3w34++QyzVBLNu9O3LLfEp2EjElhcQf0BbPPCMNGyYNGNDw/g4dpMsvl/7wBylAiAWcFjP+AAAA4DQSfxFgWRb7/AExyBijRTsr5DdSuhXQgW3FkqTD1QH5uVYBV1Qy4w8tsHt35Jb5lCSv1571R+IPaJ1jx6QVK6RLL2368fHjpb17pfXro1svIB6Vlkrp6VJaWvTPzR5/AAAAyYHEX4Swzx8Qe74+Uq0d5bVKsaTLs6v01FU/kLeuRkbSoao6t6sHJKVg4q+cxB9OYdeuyM74k0j8AW2xdKm9x9/55zf9+MCBdiJj0aLo1guIR4cPuzPbT2LGHwAAQLIg8RchJ+/zB8B9Vf6APthdIUka3TVT7b1GxhilV9lfca3wm1ACAkD0nKhf6rPyKIk/NC/SS31K9vG+/TayxwSSxaJFUo8eUrduTT+elmYvA7pwYVSrBcSl0lIpJ8edc7dvLx0/7s65AQAAED0k/iKEpT6B2LLqwAlV+I3yfF6Nys8I3e8N+JWTZl+wh6rqZAzXLBBNLPWJ06mslA4elPLzI3vc/Hxm/AGttXChNHLkqcuMHCl99JF9DQNo3uHDdgLODdnZUlWVVFHhzvkBAAAQHST+IoSlPoHYYYzRhsPVkqQx3TKVUn99BnXweWTJnqFbzTULRE3AGJ2os685En9ozubN9m2PHpE9bn6+PZMwwGRvICxbt9o/zS3zGXTBBVJNjbR8eXTqBcSrQ4fcW+qzc2f7dtcud84PAACA6CDxFyEnL/XJDCLAXTvL/TpeG5DPY+nsnLRGj3stS+1S7Gu2vJbrFYiW4DKfklR57LCLNUEsKymxbyOd+Ovc2U5KHDwY2eMCie799yWvVxo+/NTlevWyE+zs8wec2uHDUlaWO+cOzqZn6WsAAIDERuIvQlJOmlDkJ48AuOqrI1WSpAEd0hrN9gtqX78+b3ltgGQ9ECUn6pf5TLOMAnV1LtcGsaq42B4QjfT+Rwx2Aq2zaJE0cKDUrt2py1mWNGIE+/wBp1Na6t6Mv06d7GuVz0IAAIDERuIvQizLYp8/IAb4A0Ybj9ZIkgZ18DVbLjPFkseS6oxCSw8CcFZl/TdjfBbXHJpXUmLP9rOa/t5GqwUTf+zzB7Sc3y8tXnz6/f2CLrhA+uorac8eZ+sFxLPDh91L/KWlSR078lkIAACQ6Ej8RRD7/AHu23y8RtV1RlmpHvVqn9psOcuy1D7Ffgssq2XDJyAaKutn/Pk8fE6iecXFUvfukT9uTo7k8zHLAQjH559Lx4+ffn+/oJEj7aT94sXO1guIV7W1UlmZe4k/yf4iDJ+FAAAAiY3EXwSdvM8fAHd8dbhakj3bzzrNdJGsVPvxilqjAMt9Ao4LJtkzmPGHUygujvz+fpKdjOjRQ9q0KfLHBhJVUZGUmSmdc07LyufkSGedZT8PQGOH67c4dmuPP8ne85bEHwAAQGIj8RdBLPUJuKuqLqAtx+1lPgfmNb/MZ5DPay/RayRVsDkn4LjD1fa+flleviGDph0/Lh086EziT5J69bKXIQTQMkuXSoMHS15vy58zdKj9PACNBRN/kd7HNhz5+dKOHe6dHwAAAM4j8RdBLPUJuGvrsVoFjNTR51V+Rsppy1uWpXb1y31WMFUXcNzhqmDij89JNK2kxL51KvHXp4+d+GOSN3B6tbXSihV2Ii8cw4ZJ27eTWACaEtz/skMH9+qQny/t2sVnIQAAQCIj8RdBvpOW+qwjigairviYvczn2blpLX5Ou/rlPiv9LPcJOO1I/Yy/bA+JdjStuNi+dSrx17u3Pdvi4EFnjg8kktWrpYoKO5EXjiFD7KV1ly1zpFpAXCspsWfQdu3qXh26dJGqqqRDh9yrAwAAAJxF4i+CvB5LKfVbitXUkUAAoskfMNp6vFaS1D+n5Yk/n8eS17KX+zzBcp+AY2oDRsfrZ9ay1CeaU1Jiz4Jo396Z4/fta99+/bUzxwcSSXB/v/79w3tedjb7/AHNKSmRunWTUk6/OIlj8vPtW/b5AwAASFwk/iLM57Uzf9Uk/oCo2lFWq5qAUftUj7pltvx/0g2W+/STjACcEpztl+615CP6QDNKSqQzznDu+N2724Ot7PMHnF5r9vcLYp8/oGlOf861RJcu9i2JPwAAgMTF0FuEkfgD3BFc5rN/TposywrruScv92lY7hNwRHB/vzxfK0aQkTSKi50dEE1JkXr1YsYfcDqt3d8vaOhQ9vkDmuL051xL5ORIPp+0c6e79QAAAIBzSPxFWCjxFyB5AERLwBiVHKuRJJ0dxjKfQRleSx5JdUaqImkPOOJw/Yy/vHQSf2hecbFz+/sF9eolbdjg7DmAeBfc36+1ib8hQ+xb9vkDvlNXJ23b5vzn3OlYlr3cJzP+AAAAEheJvwjzeezEX23ATkYAcN6eCr8q/UY+r6VeWalhP9+yLGXWz/qrYJ8/wBGhxB8z/tCM0lLp6FHnB0T79GHGH3A6rd3fLygnR+rXj33+gJN9+61UU+P+jD+JxB8AAECiI/EXYV6PpZT6VQZZ7hOIjo1H7WU++2WnyRvmMp9BoX3+agMs9wk4gKU+cTolJfZtNBJ/hw5JBw86ex4gni1ZIp13nr08bmsNHSotXiwRVgG2aH3OtUTnzizFCwAAkMhI/DmAff6A6DHGaONRe5nPczqEv8xnUGaKJUuS37BUL+AElvrE6RQX27dOz4To08e+ZdYf0LTycunDD6WCgrYdp6DA3kOMaw2wlZTYyfQuXdyuiV0H9vgDAABIXCT+HEDiD4ienRV+ldcG5PNa6pvV+sSfx7LUrn66bnkt1y4QSZX+QGj/zA7M+EMzVq2yZ0FkZDh7njPOsAdev/rK2fMA8WrxYns5wgsvbNtxhg2T0tOld96JSLWAuFdcbH8GeWMgFOrcWdq3z77WAQAAkHhI/DkglPhj1hDguI1H7GU+++ekKcXTumU+g9qn2m+J5Sz3CURUcJnP7FSPUtt4nSJxffihNHiw8+dJSZF69WIWEtCcd96xr5G2zr5NS5NGjJD+8Y/I1AuIdyUlsbG/n2TP+DNG2r3b7ZoAAADACST+HOCrH9SsDUhGDHACTgkYE9rf79wOvjYfLzPFkkdSnVFodhKAtmOZT5zOkSPShg3SkCHROV/Pnvb5ADRkjJ34GzUqMscbNUr6+GP7GgeSXXDGXyzIz7dvv/3W3XoAAADAGST+HOD1WKpfMVB13lR3KwMksB1ltar0G2WkWOqd1fZrzbIstUtluU8g0o4EE38s84lmrFhhJxyiMeNPkvr2ldavlwKB6JwPiBdr10p797Z9mc+gCy+U6uqkRYsiczwgXtXWStu320tax4Jg4o99/gAAABITiT+HZNRn/mpT0l2uCZC4vqmf7TcgxyevFZnZtaHlPv0s9wlESnDGH/v7oTnLl9v7DXXvHp3zDR9uz0D6/PPonA+IF++8I7VrF7kkfH6+1K8f+/wB27fbSfBYmfGXni517Cht3Oh2TQAAAOAEEn8OaZdi/2n9KemyIpSQAPCd6rqANh2xd6M/t0NaxI6b4bXksaSAkSr9JP6ASDhwwi9J6shSn2jGhx9K550nRStkGjRIat9e+uc/o3M+IF784x/SyJFSagQXLSkokN591056AMmqpMS+jZUZf5L9ufvBB27XAgAAAE4g8eeQ4F5hxuNVz8Ej3a4OkHDWl1arOmCU5/OqV/vIjU5ZlqXs+ll/R2tYAw5oq9Iqv45UB+SxpO7tUtyuDmJQZaU98y5ay3xKktdrJzfefTd65wRi3f790qpVkVvmM+jCC6XSUunTTyN7XCCelJRIPp89uz1WjBghffaZVFbmdk0AAAAQaST+HGJZljLrl/scdOlEl2sDJJaAMfr84AlJ0gX5kZ9Vm5NmvzVW1RlV1zHrD2iLkmP2zNze7VOV7iXsQGOffir5/dKQIdE9b0GBPeB56FB0zwvEqhdekNLSpIsvjuxxBw6UunaV/vKXyB4XiCclJfYyn54YCoWGD7c/f5cvd7smAAAAiLQYCjsTT7v6WUODLpkotgoDIqfkWI2O1QSU7rV0Xl7k99FM8VhqX5+4P1rDulRAWwQTf2fnRG5JXiSW5culrCypb9/onregQDJGWrQouucFYlFdnfTss9Ill0jZ2ZE9ttcrTZokzZtnz/wDko0x0pIl0tlnu12Thnr0sPfhZLlPAACAxEPiz0GZKZZkjDr27KujdfypgUj57IA9229Ep3SlepzZECrHZ1+z5bVG/gCZe6A1ymsD2l1h7+9H4g/NCe7vF+1ZEJ06Sf36sc8fIEnvvCPt3ClNmeLM8X/0Izu5OGeOM8cHYtmGDdLGjdLYsW7XpCHLkoYNkxYvdrsmAAAAiDSyUQ7yWJZS/NWSpJ01XpdrAySGXeW12lXhl8eSRnTOcOw86V6P0r3BWX/s9Qe0xub62X7dMlOUlcbnIBrbsUMqKpIuuMCd8xcUSO+9JwV4m0eSmz1bOvdcacAAZ46fmyuNGyf98Y9cb0g+r71mz2w//3y3a9LY8OHSunXMxgUAAEg0JP4cluq3ZyYVV6eqspb/5QJt4Q8Y/fPbcknS4Dyf2qc6+xaWW7/X37GagOo8qY6eC0hEJcfsL78w2w/NeeopqX17acIEd85fUGDv8ff55+6cH4gFJSX2krc//rGz55k8Wdq2TVq40NnzALHEGHuZ24svllJj8L8TI0bYt0uXulsPAAAARBaJP4el+Ku0Z+OXqjWWlu2tcLs6QFxbvrdSpdV1apdiaVz3do6fr12qJ7TX34n0HHlTSV4ALVVdF9D2slpJUn8Sf2jCkSPSX/5iJxsynJvAfUqDBtn7Gz32mDvnB2LB449LOTnSpZc6e56BA6X+/aVZs5j1h+Sxbp20ebO9f2Ysys+XevZknz8AAIBEQ+LPYZakvz3+oCRpXWm19lbWulshIE7trqjVqvq9/Sb0aq+MlOi8fXVK98prSQFvqi6bdn9UzgkkgpX7T6jOSB18HnVMZ5lPNPbss5LfL/3rv7pXh5QU6fbbpTfftJccBZLNu+9K//M/0s03S2kOf0fDsqQ77rD39XzmGWfPBcSK+fPtxHpwZl0sGj6cxB8AAECiiYnE3+zZs9WnTx+lp6dr1KhRWrVqldtViqgdaz9V7zS/JOn9nRXyB4zLNQLiy97KWr259biMpEEdfDo7xxe1c3s9ljrVJy3G3jpDm6pSonZuIF5tP16jT/bbifqx3drJsiyXa5Q84iWmqqqyl/ksLJQ6dHC3LuPH2zP/ZsyQ6urcrQsQTQcPSrfeai95O2VKdM55/vnSlVdKDzwgffVVdM4JuMUYO/H3gx/YXzSJVZ07s8cfAABAonE98Td//nzde++9mjlzpr744gsNHTpUhYWFOnDggNtVi6hhmTVK81jaU+nXKyXHVM5+f0CLlByr1islx1ThN+qc7tXlPZxf4vP72qd6lFZTIY/Hoy8qfVq8q1wBQwIfaEpFbUB/31EmSRrWMV3ndIheoj7ZxUtM5fdL06ZJhw9LV1/tdm3sWUh33y2tX2/PfAKSQW2tdNttUnW19POf29dBtEybJnXrJk2dKpWVRe+8QLT98pf2vpZXXOF2TQAAAJBsXE/8/e53v9Mdd9yhW2+9VQMHDtRzzz2nzMxMvfDCC25XLaIyPUZXnpmldK+d/Ju76ajWl1apyk8CEPi+gDHaerxG8zcf0xtby1QbkPpmperG/jlKj9ISn9/nqz6ufz79sCTp84NV+vPXR7T64AlV13ENA5J93a4vrdKLxUdV4TfqlO7VZS4k6pNZPMRUtbXSTTdJr7wi/cd/SD16uF0j27nnShMmSP/+79Lvf2/P0gAS1bZt0pgx9jKf998vdewY3fP7fPb1X1JiL3+4enV0zw9Ewx//KP3qV3aie8gQt2sDAACAZOPqghM1NTVavXq1HnzwwdB9Ho9H48eP18qVK12smTP6ZKXp5gG5+uvW4yqtqtO735ZroSWd0S5VuT6PctK8SvVY8lpSSv2t17Lk6Bdw23rwMAfGwinebNlmHjBhViasujjYzrDLN9v+cM8Z5t8rjOLh1iVgpBP+gCr9Roeq/Np/wq/gpFhL0vBO6bqsRzt5XVwu0JL04Yt/0H//xwNaXZWhozUBvb+rQot3VahjulddMlLUPtWjzBSr/jq2ZFmS15I8Tl7HsbKCYhQGyaMxDh/2OVpRqXCvvdZw+gzGSHVGqq4L6ITf6GCVX/sr61Re/2WWrFSPJvfJUqonVl6giS9eYqr77pP++lfpoYekf/kXt2vT0L33Su3b20t+Ll0q/exn9hKIsbw8G9BSxkgbNkhvvCE9+aTUrp2d5B440J36nH229Kc/Sf/939Lo0fas26uvli68UPK4/tVUoPW2bpXmzJF+/Wvpqquk665zu0YAAABIRq4OZRw6dEh1dXXq0qVLg/u7dOmijRs3NipfXV2t6urq0O/Hjh2TJB0/ftyxOpbVrz+ze2uJTlSUh/38w/v3SpI2bdoUOtb5RtpSl6odNSkqq/OomCVugEZSLaM+aX7189Wq3TGjb4617Xh79uyR1PZr+cT2rzWuW3ftCKSopCpV5QGPdpVLu9pWPSAhpFlGA9JrdFaKX/u37NH+ZspF6nosKytzJAYIHtPE0bSvcGMqyZ24atUqe5bfli32T6zJzLQTEm+9Zf80xeu1k4Eej708YvA7KWxlCTcE36aMqf9SRt13P6dy+eXSp5/aP24aOVIqLrb3/HzqqabLeDz2def1fnfdSVxziJ6Tw4HgtRYI2EtXn+pay8iQ5s51vHpt9uWXdnuc+viPx7gqEoLtdTKuAgAAySWcuCquvsP86KOP6uGHH250f8+ePR0/9/+79Sdten5hYWGEagKgLbiWgdjR1utx8ODBEapJ08rKypSTk+PoOdzkZly1fbvjp3BMS5IqQKx74w23a9BygYD9U1vrdk2A8Lz0kts1CI/TIU+ix1XfF/zidzTiKgAAkFxaEle5mvjr1KmTvF6v9u9vOCdg//796tq1a6PyDz74oO69997Q74FAQIcPH1bHjh1lOfSVz+PHj6tnz57auXOnsrOzHTlHLEm29kq0mTYnLtpMmxOV0202xqisrEzdu3eP+LGdEm5MJbkTV0VaMr7+EwV9F9/ov/hG/8WveOy7eIyrIqF79+7auXOnsrKyHImr4vG10Fa0mTYnKtpMmxMVbXZ3vMrVxF9aWppGjhypJUuWaMqUKZLsQaclS5Zo+vTpjcr7fD75fL4G9+Xm5kahplJ2dnbSvECl5GuvRJuTBW1ODrQ5OTjZ5nj7Rnq4MZXkblwVacn4+k8U9F18o//iG/0Xv+Kt7+ItrooEj8ejHj16OH6eeHstRAJtTg60OTnQ5uRAmyOrpXGV60t93nvvvbr55pt1/vnnq6CgQE899ZQqKip06623ul01AACAuEFMBQAAAAAAANcTf9dee60OHjyohx56SPv27dOwYcP03nvvqUuXLm5XDQAAIG4QUwEAAAAAAMD1xJ8kTZ8+vdllqNzm8/k0c+bMRkthJapka69Em5MFbU4OtDk5JGObWyqWYyon8FqIX/RdfKP/4hv9F7/oOwQl42uBNicH2pwcaHNyoM3usowxxu1KAAAAAAAAAAAAAGgbj9sVAAAAAAAAAAAAANB2JP4AAAAAAAAAAACABEDiDwAAAAAAAAAAAEgASZf4mz17tvr06aP09HSNGjVKq1atOmX5119/Xeecc47S09M1ePBgvfvuuw0eN8booYceUrdu3ZSRkaHx48erpKTEySaELZw2/+Uvf9GYMWPUoUMHdejQQePHj29U/pZbbpFlWQ1+JkyY4HQzwhJOm+fOnduoPenp6Q3KJFo/jxs3rlGbLcvSxIkTQ2ViuZ8//PBDTZo0Sd27d5dlWXrrrbdO+5yioiKNGDFCPp9P/fr109y5cxuVCff9IZrCbfObb76pyy+/XJ07d1Z2drZGjx6thQsXNijzy1/+slEfn3POOQ62IjzhtrmoqKjJ1/W+ffsalEukfm7qOrUsS4MGDQqVieV+fvTRR3XBBRcoKytL+fn5mjJlijZt2nTa5yXCZzNaLtKxG6In0vEYosepWAvOcyp+gvOciosQPxivYrzq+xivYrwqKJHGMRivYrwqKJb7ORHGq5Iq8Td//nzde++9mjlzpr744gsNHTpUhYWFOnDgQJPlP/74Y11//fW67bbbtGbNGk2ZMkVTpkzRhg0bQmUef/xx/f73v9dzzz2nTz/9VO3atVNhYaGqqqqi1axTCrfNRUVFuv7667V06VKtXLlSPXv21BVXXKHdu3c3KDdhwgTt3bs39PPqq69GozktEm6bJSk7O7tBe3bs2NHg8UTr5zfffLNBezds2CCv16urr766QblY7eeKigoNHTpUs2fPblH5bdu2aeLEibrkkku0du1a3XPPPbr99tsbBBated1EU7ht/vDDD3X55Zfr3Xff1erVq3XJJZdo0qRJWrNmTYNygwYNatDHH330kRPVb5Vw2xy0adOmBm3Kz88PPZZo/fz00083aOvOnTuVl5fX6FqO1X5etmyZ7r77bn3yySd6//33VVtbqyuuuEIVFRXNPicRPpvRck7EbogOJ+IxRI8TsRaiw4n4CdHhVFyE+MB4FeNVzWG8ivGqRBvHYLyK8aqTxWo/J8R4lUkiBQUF5u677w79XldXZ7p3724effTRJstfc801ZuLEiQ3uGzVqlLnzzjuNMcYEAgHTtWtX85vf/Cb0+NGjR43P5zOvvvqqAy0IX7ht/j6/32+ysrLMiy++GLrv5ptvNpMnT450VSMm3DbPmTPH5OTkNHu8ZOjnJ5980mRlZZny8vLQfbHez0GSzIIFC05Z5uc//7kZNGhQg/uuvfZaU1hYGPq9rX/DaGpJm5sycOBA8/DDD4d+nzlzphk6dGjkKuaglrR56dKlRpI5cuRIs2USvZ8XLFhgLMsy27dvD90XT/184MABI8ksW7as2TKJ8NmMlot07IboiXQ8BvdEKtZC9EUqfoI7IhEXIX4wXsV4VVMYr2K8ypjEH8cwhvEqYxK/nxmviv57dtLM+KupqdHq1as1fvz40H0ej0fjx4/XypUrm3zOypUrG5SXpMLCwlD5bdu2ad++fQ3K5OTkaNSoUc0eM5pa0+bvq6ysVG1trfLy8hrcX1RUpPz8fA0YMEB33XWXSktLI1r31mptm8vLy9W7d2/17NlTkydP1ldffRV6LBn6+fnnn9d1112ndu3aNbg/Vvs5XKe7liPxN4x1gUBAZWVlja7lkpISde/eXWeeeaamTp2qb7/91qUaRs6wYcPUrVs3XX755VqxYkXo/mTo5+eff17jx49X7969G9wfL/187NgxSWr0Oj1ZvH82o+WciN0QHU7EY4htXHvxr7n4Ce6JRFyE+MB4lY3xqqYxXsV4VaKPYzBelRz9zHhV9N+zkybxd+jQIdXV1alLly4N7u/SpUuz+xfs27fvlOWDt+EcM5pa0+bve+CBB9S9e/cGL8gJEybof//3f7VkyRI99thjWrZsmX74wx+qrq4uovVvjda0ecCAAXrhhRf09ttv6//+7/8UCAR00UUXadeuXZISv59XrVqlDRs26Pbbb29wfyz3c7iau5aPHz+uEydORORaiXVPPPGEysvLdc0114TuGzVqlObOnav33ntPzz77rLZt26YxY8aorKzMxZq2Xrdu3fTcc8/pjTfe0BtvvKGePXtq3Lhx+uKLLyRF5j0xlu3Zs0f//Oc/G13L8dLPgUBA99xzjy6++GKdd955zZaL989mtJwTsRuiw4l4DLHtdLEWYtfp4ie4I1JxEeID41XfYbyqIcarGK9K9HEMifEqifGqWO/neB2vSon4EZEwZs2apXnz5qmoqKjB5sHXXXdd6N+DBw/WkCFDdNZZZ6moqEiXXXaZG1Vtk9GjR2v06NGh3y+66CKde+65+tOf/qRHHnnExZpFx/PPP6/BgweroKCgwf2J1s/J7JVXXtHDDz+st99+u8H64T/84Q9D/x4yZIhGjRql3r1767XXXtNtt93mRlXbZMCAARowYEDo94suukhbtmzRk08+qZdeesnFmkXHiy++qNzcXE2ZMqXB/fHSz3fffbc2bNgQM+u5A4iuZI/HALcke/wUq4iLgFNjvCo54iPGqxIf41XJEW8xXuWOpJnx16lTJ3m9Xu3fv7/B/fv371fXrl2bfE7Xrl1PWT54G84xo6k1bQ564oknNGvWLC1atEhDhgw5ZdkzzzxTnTp10ubNm9tc57ZqS5uDUlNTNXz48FB7ErmfKyoqNG/evBa9mcZSP4eruWs5OztbGRkZEXndxKp58+bp9ttv12uvvdZouvn35ebmqn///nHZx80pKCgItSeR+9kYoxdeeEE33XST0tLSTlk2Fvt5+vTp+sc//qGlS5eqR48epywb75/NaDknYjdEhxPxGGLb6WItxJeT4ydEXyTjIsQHxqu+w3jVqTFe1bRY6udwMV7FeJXEeFVQLPZzPI9XJU3iLy0tTSNHjtSSJUtC9wUCAS1ZsqTBt2dONnr06AblJen9998Ple/bt6+6du3aoMzx48f16aefNnvMaGpNmyXp8ccf1yOPPKL33ntP559//mnPs2vXLpWWlqpbt24RqXdbtLbNJ6urq9OXX34Zak+i9rMkvf7666qurtaNN9542vPEUj+H63TXciReN7Ho1Vdf1a233qpXX31VEydOPG358vJybdmyJS77uDlr164NtSdR+1mSli1bps2bN7foP0Wx1M/GGE2fPl0LFizQBx98oL59+572OfH+2YyWcyJ2Q3Q4EY8htnHtJZaT4ydEjxNxEeID41U2xqtOj/GqpsVSP4eL8SrGq6TE7WeJ8SpXP5tNEpk3b57x+Xxm7ty55uuvvzbTpk0zubm5Zt++fcYYY2666Sbzi1/8IlR+xYoVJiUlxTzxxBPmm2++MTNnzjSpqanmyy+/DJWZNWuWyc3NNW+//bZZv369mTx5sunbt685ceJE1NvXlHDbPGvWLJOWlmb++te/mr1794Z+ysrKjDHGlJWVmfvvv9+sXLnSbNu2zSxevNiMGDHCnH322aaqqsqVNn5fuG1++OGHzcKFC82WLVvM6tWrzXXXXWfS09PNV199FSqTaP0c9IMf/MBce+21je6P9X4uKysza9asMWvWrDGSzO9+9zuzZs0as2PHDmOMMb/4xS/MTTfdFCq/detWk5mZaX72s5+Zb775xsyePdt4vV7z3nvvhcqc7m/otnDb/PLLL5uUlBQze/bsBtfy0aNHQ2Xuu+8+U1RUZLZt22ZWrFhhxo8fbzp16mQOHDgQ9fY1Jdw2P/nkk+att94yJSUl5ssvvzQzZswwHo/HLF68OFQm0fo56MYbbzSjRo1q8pix3M933XWXycnJMUVFRQ1ep5WVlaEyifjZjJZzInZDdDgRjyF6nIi1EB1OxE+IDqfiIsQHxqsYrzKG8aqTMV7FeFWsjmMYw3gV41W2WP9sTqrEnzHGPPPMM6ZXr14mLS3NFBQUmE8++ST02NixY83NN9/coPxrr71m+vfvb9LS0sygQYPMO++80+DxQCBg/uu//st06dLF+Hw+c9lll5lNmzZFoyktFk6be/fubSQ1+pk5c6YxxpjKykpzxRVXmM6dO5vU1FTTu3dvc8cdd8TMm1BQOG2+5557QmW7dOlifvSjH5kvvviiwfESrZ+NMWbjxo1Gklm0aFGjY8V6Py9durTJ12mwjTfffLMZO3Zso+cMGzbMpKWlmTPPPNPMmTOn0XFP9Td0W7htHjt27CnLG2PMtddea7p162bS0tLMGWecYa699lqzefPm6DbsFMJt82OPPWbOOussk56ebvLy8sy4cePMBx980Oi4idTPxhhz9OhRk5GRYf785z83ecxY7uem2iqpwfWZqJ/NaLlIx26InkjHY4gep2ItOM+p+AnOcyouQvxgvIrxKsarbIxXzWl03EQax2C8ivGqoFju50QYr7LqGwIAAAAAAAAAAAAgjiXNHn8AAAAAAAAAAABAIiPxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AImbcuHG65557Wly+qKhIlmXp6NGjbTpvnz599NRTT7XpGKcTbtsAAABai5gKAAAgMoirACQjEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AHPPSSy/p/PPPV1ZWlrp27aobbrhBBw4caFRuxYoVGjJkiNLT03XhhRdqw4YNDR7/6KOPNGbMGGVkZKhnz5766U9/qoqKihbVYdGiRUpPT2+0RMOMGTN06aWXSpJKS0t1/fXX64wzzlBmZqYGDx6sV1999ZTHtSxLb731VoP7cnNzNXfu3NDvO3fu1DXXXKPc3Fzl5eVp8uTJ2r59e+jxoqIiFRQUqF27dsrNzdXFF1+sHTt2tKhdAAAgeRBTEVMBAIDIIK4irgKSAYk/AI6pra3VI488onXr1umtt97S9u3bdcsttzQq97Of/Uy//e1v9dlnn6lz586aNGmSamtrJUlbtmzRhAkT9JOf/ETr16/X/Pnz9dFHH2n69OktqsNll12m3NxcvfHGG6H76urqNH/+fE2dOlWSVFVVpZEjR+qdd97Rhg0bNG3aNN10001atWpVm9peWFiorKwsLV++XCtWrFD79u01YcIE1dTUyO/3a8qUKRo7dqzWr1+vlStXatq0abIsq9XnBAAAiYmYipgKAABEBnEVcRWQFAwARMjYsWPNjBkzmn38s88+M5JMWVmZMcaYpUuXGklm3rx5oTKlpaUmIyPDzJ8/3xhjzG233WamTZvW4DjLly83Ho/HnDhxwhhjTO/evc2TTz7Z7HlnzJhhLr300tDvCxcuND6fzxw5cqTZ50ycONHcd999zbZNklmwYEGD5+Tk5Jg5c+YYY4x56aWXzIABA0wgEAg9Xl1dbTIyMszChQtNaWmpkWSKioqarQMAAEhOxFTEVAAAIDKIq4irgGTEjD8Ajlm9erUmTZqkXr16KSsrS2PHjpUkffvttw3KjR49OvTvvLw8DRgwQN98840kad26dZo7d67at28f+iksLFQgENC2bdtaVI+pU6eqqKhIe/bskSS9/PLLmjhxonJzcyXZ36p65JFHNHjwYOXl5al9+/ZauHBho3qGY926ddq8ebOysrJC9c7Ly1NVVZW2bNmivLw83XLLLSosLNSkSZP09NNPa+/eva0+HwAASFzEVMRUAAAgMoiriKuAZEDiD4AjKioqVFhYqOzsbL388sv67LPPtGDBAklSTU1Ni49TXl6uO++8U2vXrg39rFu3TiUlJTrrrLNadIwLLrhAZ511lubNm6cTJ05owYIFoaUTJOk3v/mNnn76aT3wwANaunSp1q5dq8LCwlPW07IsGWMa3Bdc8iFY75EjRzao99q1a1VcXKwbbrhBkjRnzhytXLlSF110kebPn6/+/fvrk08+afHfBgAAJD5iKmIqAAAQGcRVxFVAskhxuwIAEtPGjRtVWlqqWbNmqWfPnpKkzz//vMmyn3zyiXr16iVJOnLkiIqLi3XuuedKkkaMGKGvv/5a/fr1a1N9pk6dqpdfflk9evSQx+PRxIkTQ4+tWLFCkydP1o033ihJCgQCKi4u1sCBA5s9XufOnRt866mkpESVlZWh30eMGKH58+crPz9f2dnZzR5n+PDhGj58uB588EGNHj1ar7zyii688MK2NBUAACQQYipiKgAAEBnEVcRVQLJgxh8AR/Tq1UtpaWl65plntHXrVv3tb3/TI4880mTZX/3qV1qyZIk2bNigW265RZ06ddKUKVMkSQ888IA+/vhjTZ8+XWvXrlVJSYnefvvtFm+YHDR16lR98cUX+vWvf62rrrpKPp8v9NjZZ5+t999/Xx9//LG++eYb3Xnnndq/f/8pj3fppZfqD3/4g9asWaPPP/9c//Zv/6bU1NQG5+vUqZMmT56s5cuXa9u2bSoqKtJPf/pT7dq1S9u2bdODDz6olStXaseOHVq0aJFKSkpCQSQAAIBETEVMBQAAIoW4irgKSBYk/gA4onPnzpo7d65ef/11DRw4ULNmzdITTzzRZNlZs2ZpxowZGjlypPbt26e///3vSktLkyQNGTJEy5YtU3FxscaMGaPhw4froYceUvfu3cOqT79+/VRQUKD169c3WDpBkv7zP/9TI0aMUGFhocaNG6euXbuGgrnm/Pa3v1XPnj01ZswY3XDDDbr//vuVmZkZejwzM1MffvihevXqpSuvvFLnnnuubrvtNlVVVSk7O1uZmZnauHGjfvKTn6h///6aNm2a7r77bt15551htQsAACQ2YipiKgAAEBnEVcRVQLKwzPcX/gUAAAAAAAAAAAAQd5jxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAiDxBwAAAAAAAAAAACQAEn8AAAAAAAAAAABAAvj/bwCaW9OneMsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Different states or classes\n", + "plotGraph(data.label)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1l36i7xgR9Au" + }, + "source": [ + "#### Let's see the relation between different variables" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "iJ55OQF7LHbo", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 355 + }, + "outputId": "fbbe4465-55d7-415a-bc51-2f739534b8ab" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.\n", + " correlation = data.corr()\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " X Y Z EDA HR TEMP id \\\n", + "X 1.000000 0.067204 0.197295 0.093888 0.126070 0.022847 -0.067898 \n", + "Y 0.067204 1.000000 0.019084 -0.096138 -0.068020 -0.084576 -0.080448 \n", + "Z 0.197295 0.019084 1.000000 0.005993 -0.104191 -0.029366 -0.142757 \n", + "EDA 0.093888 -0.096138 0.005993 1.000000 0.142542 0.352888 0.116500 \n", + "HR 0.126070 -0.068020 -0.104191 0.142542 1.000000 0.158172 0.129800 \n", + "TEMP 0.022847 -0.084576 -0.029366 0.352888 0.158172 1.000000 0.345134 \n", + "id -0.067898 -0.080448 -0.142757 0.116500 0.129800 0.345134 1.000000 \n", + "label -0.008351 -0.022143 -0.058655 0.053214 -0.032983 0.135259 -0.232307 \n", + "\n", + " label \n", + "X -0.008351 \n", + "Y -0.022143 \n", + "Z -0.058655 \n", + "EDA 0.053214 \n", + "HR -0.032983 \n", + "TEMP 0.135259 \n", + "id -0.232307 \n", + "label 1.000000 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
XYZEDAHRTEMPidlabel
X1.0000000.0672040.1972950.0938880.1260700.022847-0.067898-0.008351
Y0.0672041.0000000.019084-0.096138-0.068020-0.084576-0.080448-0.022143
Z0.1972950.0190841.0000000.005993-0.104191-0.029366-0.142757-0.058655
EDA0.093888-0.0961380.0059931.0000000.1425420.3528880.1165000.053214
HR0.126070-0.068020-0.1041910.1425421.0000000.1581720.129800-0.032983
TEMP0.022847-0.084576-0.0293660.3528880.1581721.0000000.3451340.135259
id-0.067898-0.080448-0.1427570.1165000.1298000.3451341.000000-0.232307
label-0.008351-0.022143-0.0586550.053214-0.0329830.135259-0.2323071.000000
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "correlation = data.corr()\n", + "correlation\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "5NDoWKpkKA_2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 545 + }, + "outputId": "5ec697ca-a8bc-4782-f25f-7f062d8d5f5d" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAIQCAYAAAD0GdhJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADcVElEQVR4nOzdd3wURf/A8c/eJXeXnpCeEFJoCb33XkUsYMFOERG7PuhPxIaoj+hjww4i1YqFooAgVUBAepVeE0gP6ckludvfHwcXDi6YC7kU+L5fr33B7c3Ozexu9ua+MzurqKqqIoQQQgghrmma6i6AEEIIIYRwPmn0CSGEEEJcB6TRJ4QQQghxHZBGnxBCCCHEdUAafUIIIYQQ1wFp9AkhhBBCXAek0SeEEEIIcR2QRp8QQgghxHVAGn1CCCGEENcBafQJUcvNnj0bRVE4efJkpeV58uRJFEVh9uzZlZanEEKI6iWNPiHsOHbsGGPHjiUmJgaDwYC3tzddu3blo48+oqCgoLqLV2m+++47pkyZUt3FsDFy5Eg8PT3LfF9RFJ544gmnluHzzz+XBq8Q4prjUt0FEKKmWbJkCXfeeSd6vZ7hw4fTrFkzioqK2LBhA//3f//H/v37+fLLL6u7mJXiu+++Y9++fTzzzDM26yMjIykoKMDV1bV6ClbNPv/8cwICAhg5cmR1F0UIISqNNPqEuMiJEye4++67iYyMZPXq1YSGhlrfe/zxxzl69ChLliy56s9RVZXCwkLc3Nwue6+wsBCdTodGU32BeEVRMBgM1fb5QgghKp907wpxkf/973/k5uYyY8YMmwbfBQ0aNODpp5+2vi4pKeGNN96gfv366PV6oqKiePHFFzEajTbbRUVFcdNNN7F8+XLatWuHm5sb06ZNY+3atSiKwg8//MDLL79MeHg47u7uZGdnA/D3339zww034OPjg7u7Oz179uSvv/7613osWrSIwYMHExYWhl6vp379+rzxxhuYTCZrml69erFkyRJOnTqFoigoikJUVBRQ9pi+1atX0717dzw8PPD19eXWW2/lwIEDNmlee+01FEXh6NGjjBw5El9fX3x8fBg1ahT5+fn/WvaKMBqNTJw4kQYNGqDX64mIiOD555+/7DjMmjWLPn36EBQUhF6vp0mTJnzxxRc2aaKioti/fz9//vmndb/06tULKB0/uWHDBp566ikCAwPx9fVl7NixFBUVkZmZyfDhw/Hz88PPz4/nn38eVVVt8n/vvffo0qUL/v7+uLm50bZtW37++efL6nShG/vbb7+lcePGGAwG2rZty7p16yp35wkhrhsS6RPiIr/99hsxMTF06dKlXOkfeugh5syZwx133MGzzz7L33//zeTJkzlw4AALFiywSXvo0CHuuecexo4dy5gxY2jcuLH1vTfeeAOdTsdzzz2H0WhEp9OxevVqBg0aRNu2bZk4cSIajcbaaFm/fj0dOnQos1yzZ8/G09OTcePG4enpyerVq3n11VfJzs7m3XffBeCll14iKyuLhIQEPvzwQ4ArjqVbuXIlgwYNIiYmhtdee42CggI++eQTunbtyo4dO6wNxguGDRtGdHQ0kydPZseOHXz11VcEBQXxzjvvlGvfpqWllSud2WzmlltuYcOGDTz88MPExcWxd+9ePvzwQw4fPszChQutab/44guaNm3KLbfcgouLC7/99huPPfYYZrOZxx9/HIApU6bw5JNP4unpyUsvvQRAcHCwzWc++eSThISEMGnSJDZv3syXX36Jr68vGzdupF69erz11lssXbqUd999l2bNmjF8+HDrth999BG33HIL9913H0VFRfzwww/ceeedLF68mMGDB9t8zp9//sm8efN46qmn0Ov1fP7559xwww1s2bKFZs2alWv/CCGElSqEUFVVVbOyslRAvfXWW8uVfteuXSqgPvTQQzbrn3vuORVQV69ebV0XGRmpAuqyZcts0q5Zs0YF1JiYGDU/P9+63mw2qw0bNlQHDhyoms1m6/r8/Hw1Ojpa7d+/v3XdrFmzVEA9ceKETbpLjR07VnV3d1cLCwut6wYPHqxGRkZelvbEiRMqoM6aNcu6rlWrVmpQUJCanp5uXbd7925Vo9Gow4cPt66bOHGiCqgPPvigTZ5Dhw5V/f39L/usS40YMUIFrrg8/vjj1vRff/21qtFo1PXr19vkM3XqVBVQ//rrryvul4EDB6oxMTE265o2bar27NnzsrQX9vWlx6Vz586qoijqI488Yl1XUlKi1q1b97J8Li1DUVGR2qxZM7VPnz426y/Uddu2bdZ1p06dUg0Ggzp06NDLyiaEEP9GuneFOO9Cl6qXl1e50i9duhSAcePG2ax/9tlnAS4b+xcdHc3AgQPt5jVixAib8X27du3iyJEj3HvvvaSnp5OWlkZaWhp5eXn07duXdevWYTabyyzbxXnl5OSQlpZG9+7dyc/P5+DBg+Wq38USExPZtWsXI0eOpE6dOtb1LVq0oH///tZ9cbFHHnnE5nX37t1JT0+37ucrMRgMrFixwu5yqZ9++om4uDhiY2Ot+yktLY0+ffoAsGbNGmvai/dLVlYWaWlp9OzZk+PHj5OVlfXvO+K80aNHoyiK9XXHjh1RVZXRo0db12m1Wtq1a8fx48dttr24DOfOnSMrK4vu3buzY8eOyz6nc+fOtG3b1vq6Xr163HrrrSxfvtymq14IIcpDuneFOM/b2xuwNJLK49SpU2g0Gho0aGCzPiQkBF9fX06dOmWzPjo6usy8Ln3vyJEjgKUxWJasrCz8/Pzsvrd//35efvllVq9efVkjy5HGzQUX6nJxl/QFcXFxLF++nLy8PDw8PKzr69WrZ5PuQlnPnTtn3ddl0Wq19OvXr1xlO3LkCAcOHCAwMNDu+ykpKdb///XXX0ycOJFNmzZdNr4wKysLHx+fcn3mpXW7sF1ERMRl68+dO2ezbvHixbz55pvs2rXLZszhxY3ICxo2bHjZukaNGpGfn09qaiohISHlKq8QQoA0+oSw8vb2JiwsjH379jm0nb0va3vs3alb1nsXonjvvvsurVq1srtNWePvMjMz6dmzJ97e3rz++uvUr18fg8HAjh07GD9+/BUjhJVJq9XaXa9ecmPD1TKbzTRv3pwPPvjA7vsXGmLHjh2jb9++xMbG8sEHHxAREYFOp2Pp0qV8+OGHDu2Xsupmb/3F9V2/fj233HILPXr04PPPPyc0NBRXV1dmzZrFd999V+7PF0KIipBGnxAXuemmm/jyyy/ZtGkTnTt3vmLayMhIzGYzR44cIS4uzro+OTmZzMxMIiMjK1yO+vXrA5aGaHkjXhesXbuW9PR05s+fT48ePazrT5w4cVna8jZYL9Tl0KFDl7138OBBAgICbKJ8Val+/frs3r2bvn37XrE+v/32G0ajkV9//dUmUndx9+8F5d0vjvrll18wGAwsX74cvV5vXT9r1iy76S9EfC92+PBh3N3dy4xsCiFEWWRMnxAXef755/Hw8OChhx4iOTn5svePHTvGRx99BMCNN94IcNkTLS5EnC69E9MRbdu2pX79+rz33nvk5uZe9n5qamqZ216INl0cYSoqKuLzzz+/LK2Hh0e5untDQ0Np1aoVc+bMITMz07p+3759/PHHH9Z9UR2GDRvGmTNnmD59+mXvFRQUkJeXB9jfL1lZWXYbXB4eHjb1rCxarRZFUWzG4508edLmDuOLbdq0yWasX3x8PIsWLWLAgAFlRhuFEKIsEukT4iL169fnu+++46677iIuLs7miRwbN27kp59+sj6loWXLlowYMYIvv/zS2qW6ZcsW5syZw5AhQ+jdu3eFy6HRaPjqq68YNGgQTZs2ZdSoUYSHh3PmzBnWrFmDt7c3v/32m91tu3Tpgp+fHyNGjOCpp55CURS+/vpru92qbdu2Zd68eYwbN4727dvj6enJzTffbDffd999l0GDBtG5c2dGjx5tnbLFx8eH1157rcJ1vVoPPPAAP/74I4888ghr1qyha9eumEwmDh48yI8//midG3HAgAHodDpuvvlmxo4dS25uLtOnTycoKIjExESbPNu2bcsXX3zBm2++SYMGDQgKCrLeGHI1Bg8ezAcffMANN9zAvffeS0pKCp999hkNGjRgz549l6Vv1qwZAwcOtJmyBWDSpElXXRYhxHWoOm8dFqKmOnz4sDpmzBg1KipK1el0qpeXl9q1a1f1k08+sZnypLi4WJ00aZIaHR2turq6qhEREeqECRNs0qiqZcqWwYMHX/Y5F6Zs+emnn+yWY+fOneptt92m+vv7q3q9Xo2MjFSHDRumrlq1yprG3pQtf/31l9qpUyfVzc1NDQsLU59//nl1+fLlKqCuWbPGmi43N1e99957VV9fXxWwTt9ib8oWVVXVlStXql27dlXd3NxUb29v9eabb1b/+ecfmzQXpmxJTU21WW+vnPaMGDFC9fDwKPN9LpmyRVUt05688847atOmTVW9Xq/6+fmpbdu2VSdNmqRmZWVZ0/36669qixYtVIPBoEZFRanvvPOOOnPmzMvKlZSUpA4ePFj18vJSAeu0KxfqsHXr1nLV2V5dZsyYoTZs2FDV6/VqbGysOmvWLOv29ur5zTffWNO3bt3a5vgJIYQjFFWt5FHVQgghrpqiKDz++ON8+umn1V0UIcQ1Qsb0CSGEEEJcB6TRJ4QQQghxHZBGnxBCCCHEdUAafUIIUQOpqirj+YSoJdatW8fNN99MWFgYiqKUOQ3TxdauXUubNm3Q6/U0aNCA2bNnO72c0ugTQgghhLgKeXl5tGzZks8++6xc6U+cOMHgwYPp3bs3u3bt4plnnuGhhx5i+fLlTi2n3L0rhBBCCFFJFEVhwYIFDBkypMw048ePZ8mSJTaP/bz77rvJzMxk2bJlTiubRPqEEEIIIS5hNBrJzs62WYxGY6XkvWnTpssesTlw4EA2bdpUKfmXRZ7IIYQQQohaaYlrY6flvfWley57+s3EiRMr5QlESUlJBAcH26wLDg4mOzubgoIC3Nzcrvoz7KlRjT5nHryaanDxId6bb67uYlS5527TsHCr6d8TXmOGtNfyyZLrb0TFk4MVvlpV3aWoeg/1hYlzi6u7GFVu0nBXxryVXt3FqHLTX/Tn+akF1V2MKve/R5zTQKluEyZMYNy4cTbr9Hp9NZWmctSoRp8QQgghRHkprorT8tbr9U5r5IWEhJCcnGyzLjk5GW9vb6dF+UDG9AkhhBBCVKnOnTuzapVt98eKFSvo3LmzUz9XIn1CCCGEqJU0Ls6L9DkiNzeXo0ePWl+fOHGCXbt2UadOHerVq8eECRM4c+YMc+fOBeCRRx7h008/5fnnn+fBBx9k9erV/PjjjyxZssSp5ZRInxBCCCHEVdi2bRutW7emdevWAIwbN47WrVvz6quvApCYmMjp06et6aOjo1myZAkrVqygZcuWvP/++3z11VcMHDjQqeWUSJ8QQgghaiXFtWbErnr16sWVpj2297SNXr16sXPnTieW6nLS6BNCCCFErVRTundri5rRRBZCCCGEEE4lkT4hhBBC1ErOnLLlWiSRPiGEEEKI64BE+oQQQghRK8mYPsdIpE8IIYQQ4jogkT4hhBBC1Eoyps8xEukTQgghhLgOSKRPCCGEELWSjOlzjET6hBBCCCGuAxLpE0IIIUStpGgl0ucIafQJIYQQolbSSKPPIdK9K4QQQghxHZBInxBCCCFqJUUjkT5HSKRPCCGEEOI6IJE+IYQQQtRKilZiV464php9dbq1I+bZ0fi0aYYhLIhttz9G8q+rrrxNjw40ee8FPJs0pDA+kaOTvyBh7gKbNJGP3kvMuNHoQwLJ3nOQ/c+8QdbWvc6sisP2b/qWPetmUpCbRp2QWLrc8hJBES3KTH987zK2rfiY3HNn8PaPpMMNz1Ivtqf1/ekT4uxu12HQc7TsMbrSy19RG1d8x7olM8nJSiO0XmNuHf4SEfXt1/vvNT+xY/0ikhOOAhAe3YQbhj1jk15VVVb88ilb1vxEQX4OUY1aM3TUqwSERFVFdcptz4Zv2blmBvk5aQSExdJj6MsER5Z9vI/uWsbmZR+Rk3EGn4BIutz0HFFNSo93fk4aGxe/x+lDf1FUkENYTDt63PYyvoFRVVCb8tvx57dsXTGDvOxUgurG0nfYK4RG2a932tkjbFj8Mcmn95OdcYbed0ygXZ+RNml2rvuOXeu+JzvjDAD+oQ3pcuNjxDTtaSfH6tOhsYYuTTV4ukFyhsrSLWbOpKtlpm8SqdCnlRZfT8jIhhU7TBw5Y0mvUaBvaw0NwzX4eUJhMRxPVFm5w0ROQVXVyDG39HCjeysD7nqFownFfLssj5Rz5itu06utnoEd3fDx1BCfXML3f+RzMrEEAH8fDW8/7md3u6nzc9h+sKjS61ARA9q50CHOBTc9nEwys2B9MWlZZR93gM5NtfRs5YKXm0Jiusqiv4qITyndpmOcllYNtYQHaDDoFF6dWUBhzaiuqALXVBNZ6+FO9p5D7HtqUrnSu0XVpf2v00hf+zcb2t3KiU/m0HzamwT072ZNE3rnIOLencCRNz9jQ4eh5Ow5SMclM9AF1nFWNRx2bM9SNi95hzZ9H2foE7/gH9qY32eOoSA33W765FM7Wf3DczRudztDn5xPVJO+rPjmSTKSDlvT3PfiOpulx+3/BUUhutmAqqrWv9q9+XcWf/sOfYc+xlNv/kxovVhmvPMwuVn26338wBZadR7Mwy/N4rHXvsOnTghfvTOGrIxka5o/F8/grz++YeiDE3li0g/o9G7MeOdhiouMVVWtf3Vk51I2LHqb9gMf565x8/EPa8yvXz5Efo79eiee2MHyb56lSYc7uOvZBcQ078fSWU+Qnmg53qqqsmTm42SnJzD4wc+569n5ePmFsWjqgxQb86uyald0cNtS1v4ymS6DH2f4hAUEhsfy0yejySuj3sVFBfgG1KXHkGfx8A60m8bLN4SeQ55j+AvzeWD8L0Q26sSCqY+TdvaIM6vikKZRCgPbaVi728S0xSUknYMH+mnxMNhPHxGocEd3LTuPmpm6uISD8Wbu7qUlyNfyvqsLhNZR+HOPialLSpi31kSAN9zTW1tldXLEDZ0M9G1n4Jvfc3lrdhZFxfDM3d64XKG47eJ0DOvrwW8bCnhjZhYJKSaeudsLL3fL+K+MbDPPfpRhsyxal0+hUWXfsZrRAurVyoWuzV2Yv76IT+YbKSqG0YN1V6x3y/pabu7iysptJXz0i5HEdDOjB+ttzhVXFzh02szqHSXOr0QV0GgVpy3Xomuq0Ze6fB2HJ04hedHKcqWPfPhuCk4kcOD5d8g9eJxTn39L0i/LiX56pDVN9DOjiJ/xIwlz5pN74Bh7H5uIKb+QiJG3O6kWjtu7fg6x7e+kcbvb8AtuQLchr+GiM3Bo23y76ff9NZe6DbvRssdo/ILq027A0wSExbF/03fWNO5egTbLqQOrCYvpiHediKqq1r9a//tsOvS+k/Y9byM4vAFDR03EVW9g65/2633PY+/Suf89hEXGERQWwx1j3kA1mzm6fzNgafxsWDaXPreOpWnbvoTWa8ywR94mOzOF/duvHDGuSrv+nE3TTnfSpMPt1AlpQO87JuHiauDAll/spt+9/mvqxXajTZ/R1AmuT6dBTxMY3oQ9G74FIDP1JMmndtPzjokE12uOX1AMve54jZLiQg7vXFKVVbuibatn0aLrMJp3vp2A0AYMuGcSrjoD+zbar3doVAt63TaeuHaD0bro7KZp0KIPMc164hcURZ3gaLrf+h90enfOntjlxJo4pkuchu1HzOw6ppKaBYs3myg2QesG9i/fneI0HD2r8td+M2lZsHqXmcQMlQ6NLemNxTB3pYn9p1TSsyEhTWXJFjPhARp8PKqyZuXTt4MbS/4qYPeRYs6kmpj5Wy6+XhpaN7Z/TAH6dzCwfpeRjXuMJKaZ+Ob3PIpKoGtLPQCqCtl5qs3SupGObQeMGIurqmZX1q25C6t2lPDPSTNJGSrz1hTh7a7QNKrsVl/3Fi78fcDEtkMmUs6pzF9XTHEJtI8t7dTbsNfE2l0lnE65cqRUXJvK3eh75ZVXKCkp+5fB6dOn6d+/f6UUqqr4dmpF2upNNutSV2zAr1MrABRXV3zaNCVt1cbSBKpK2uqN+HZqXYUlLZuppIi0s/sJb9DZuk7RaAiv35mU07vsbpN8erdNeoC6DbuVmT4/J43TB/+kcbua09AtKSnizIl/aNi0k3WdRqOhQdPOnD66q1x5FBsLMZlKcPf0ASAjNYGcrDQaNivdN27uXkTUb8HpI+XL09lMJUWkJOwnolEX6zpFo6Fuo84kndxld5ukk7uIaNjFZl292K7W9KYSS2TDxUVvk6fWRUfiie2VW4EKMpUUkXR6P5GNbesdGduFsyd2VspnmM0mDmxbQnFRPmExNePvW6uBUH+F44ml3XMqlu7YiED7kYi6gbbpAY6dVYkILPtyb9CBWVVrXDdfgK8GX08NB06UtsQKjCrHz5YQE25/dJJWA5GhLhw4WVoZFThwooj64a52t6kXoqVeiAsbdteMiH4dLwVvD4UjCSbrusIiiE8xExli/zhqNRAeqHD0om1U4EiCicjgayq+Y0PRKE5brkXlPhPmzJlD+/bt2bdv32XvTZs2jWbNmuHiUruGCOqDAzAmp9msMyan4erjhcagRxfgh8bFBWNK+iVp0tGHBFRlUctUmJ+Jajbh5ulvs97Ny5/8nDS72xTkpuHmaVt+N09/CnLtpz+yYyE6vQdRTWtOoz4/JxOz2YSnj209vHz8ycmyX49LLf3hfbz9gmjQ1NLIy8m0bOfpbZunp3f583S2grxzluPtZXu83b0Cyjze+TlpuF8hvV9wDF5+YWxa8gGF+VmYSorYvmo6uZlJ5GWnOqciDirItdTb3fvSeviTl311xyb1zCGm/Kc1HzzVnBXfT2TIw58RENrgqvKsLO560GoUci8Za5dboOJZRveup8Hyvk36QvB0s5/eRQP922jZd0KtMVGuC3w8LF9R2Xm2UamcPLP1vUt5uitoNQrZebb7IDtPxdvD/hd5t5YGzqaVcOxMzejyvNANfelxzClQ8SrjOHoYLOfKpeMycwtUa37XIunedUy5W2n79u3jiSeeoF27dkycOJHx48eTkJDAgw8+yNatW3nvvfd4+OGHy5WX0WjEaLT9RaXX68tILarboe3zqd/qJlxcr51jtObX6ezevJSxL83BVXft1KsitFpXBo38mNXzXuarlzuiaLRENOxMZGwPVK48aPxaUCc4mhETFmIszOHwjuUsnTueu//zTY1p+DmTRoE7e1q6Cxf/bfqX1M7XsamO+wd5Wl9/8mO20z/T1cXyuYs3VN9dLK0barmtR2kUctbSGhZyFdeMcjf6vL29mTt3Lrfffjtjx45l3rx5nDhxgg4dOrBnzx4iIyPL/aGTJ09m0iTbmy0mTpxI+/KXu1IYk9PQB9tGdfTBARRn5WAuNFKUdg5zSQn6IP9L0vhjTKoZkR+Duy+KRnvZTRsFOem4e9mPRrp5BlwW1SvITb8s+geQeGIbWakn6HvPB5VX6Erg7uWLRqMl95IIXE5WOl4+V47C/rlkJmsXf8WYF2YQWq+xdb2Xr2W73Ow0vP1KB/7nZqcTVi+2EktfcW4efpbjfcnNC5Zonv16W6J6V04fFNGMu59biLEgB7OpGDfPOvw0ZRhBEc0qvxIV4OZpqXd+9qX1SMfD++qi7loXHX5BlutXSL1mJJ7ay/Y1cxl47+tXlW9lyDeCyaxeFqXzdFPILbS/jSWqp8BFDXZL9M82nUaBYT21+HoozF5RUiOifLuOFHH8bKb1tev5aIu3h4asvNJGqZeH5Y5ce3LzVUzmy6N63h6XR/8A2sbq0LkqbNpXfV27/5w0cTq5NJp54WYNTzeFnPzSMnu5KZwt467tvELLuXJpJPDSPK418uxdxzjc0d+pUyeaN2/Onj17MJvNvPzyyw41+AAmTJhAVlaWzTJhwgRHi3LVMjfvwr9PJ5t1AX27cG7zLgDU4mKyduwnoM9F498UBf/encncXDnjiK6W1kVHQFhTzhzbbF2nms2cPbaZoHqt7G4TXK8lZy9KD5BwdKPd9Ie2/UJAeFP8Q2tGo+cCFxcd4dFNrDdhAJjP35RRr0GrMrdbu3gGqxZO5cHnv6RujG2Dpk5gXbx8AmzyLMzPJf7YHuo1LDvPqqR10RFUtynxR0rHoqpmMwlHNhMS1cruNiFRrUg4Yjt2Nf7wRrvp9W5euHnWITP1JCnx+4hu1qcyi19hWhcdIfWacuqQbb1PHdpEWHQlj79TzdZxjtXNZIbEdJWY0NIvNgWIDlGIT7X/RZ6QqhITYvtFGBOqEJ9a2qi40OCr46UwZ0UJBTVjKBvGIkg9Z7YuZ9NMZOaaiY0qjYIZdAoxYS4cL6Mr1mSGU4klxF20jQLERbly7MzlLdtuLQ3sPlJEbjU2jIzFkJ6tWpfkc5abSxqGl960oXeFiCANp5Ls34BhMsOZVJUGF22jAA3CtZxKlps2hIVDjb7vv/+eJk2aYDabOXDgAI8++igDBgzgP//5D4WFZfzstEOv1+Pt7W2zVEb3rtbDHe+WsXi3tDRQ3KPr4t0yFkNEKACN3xxHy1nvWNOf+vIH3KMjiJ38f3g0jiHykXsJvXMQJz6abU1zYsosIkYPI/yBIXjGxtDss9dw8XAjfo79O0SrQ/PuIzi09ScOb1/IuZRjbFg0ieKiAhq1HQrAmh/Hs2VZaaSuWdfhxB/ewJ71s8hMOc72lZ+SdmY/TTvfa5NvUWEuJ/Yup3H7O6q0PuXVfdBItqz9me3rFpJ85hgLZk2i2FhAu56Wes+b+gK/zyut99rfvuKPnz/mzjFvUicgjJzMVHIyUzEW5gGgKArdbhjO6oXT+Gf7ahLjDzNv2gt4+wbRtG3faqmjPa16juSfzT9xYOsCMpKPsfbn1ygpKiCuw20ArPhuPBsXv29N37L7A5w+uIGda2dyLvk4fy/7hJT4/bTodp81zdFdy0g4+jdZ6fEc37eKRVMfJLpZX+o17nbZ51eXdn1GseevH9m3eQHpicf444fXKDYW0Kyzpd5LZj/PuoWl9TaVFJEcf4Dk+AOYTEXkZiaTHH+AcymnrGnWLXyf+CNbyUpPIPXMIdYtfJ/TR7bQpP3NVV6/smw8YKZNQw0tYxQCfOCmThp0LrDzqOWLfGhXLf1al17KNx8w0yBcoUsTDQHe0KulhjB/hS2HLOk1CtzVS0uYv8IvG0rQKJZIoKfBcjNATbNqSwGDu7rRsqEr4YFaHrzZk8wcMzsPlTbMx93rTe+2pYMcV2wppHsrA52b6wnx13LfIA90rgp/7bFt3Qb6aWhYz4X1u2pIq/ciG/aW0KetC00iNYTUUbirj47sfJX9J0sjnmNu0tGlaWkjb/2eEjrEaWnbSEuQr8LQHq7oXGHbodIGsqeb5eagAG/LD4OQOhpC/RXcaukoF0WjcdpyLSp39+7tt9/O8uXLmTx5Mk8++SQA//vf/xgyZAijRo1i6dKlzJ49m86dO/9LTs7j07YZnVd9bX3d5L0XAYifO589oyegDw3E7XwDEKDgZAJbbxlLk/cnEPXkcAoTktg79mXSVmywpkn86Xd0gXVoNPEpy+TMuw+w5aaHKEqxPzdYdajf4kYKc8+xfeXH5Oek4R8ax6BRX1q77/IyE1GU0hM4OLI1fe5+l21/fMTW5R/iExBJ//s/oU5II5t8j+1ZiopKg5aDq7Q+5dWy0yDysjP445dPyMlKIywylgefn2bt3s1Ms6335lU/YCop5puPn7HJp9/Qx+h/+xMA9LxpNEXGAn6ZOZHC/ByiGrXhwee/rFHj/hq2vpGC3Ay2LPuEvOxUAsPjuPnh6dbjnXPuLIpSGukJjW7DgPvfY/PvU9i05EN8A6O4cdSn+IeWHu+87BQ2/Pr2+e7SQBq3u5X2/R+t8rpdSWy7G8nPzeCvxR+fn5w5jjue+MravZtzLtHmQp2blcLcyUOsr7eunMnWlTOJaNiBu/9juU7k56SzdM548rJT0Bu8CAhvzJ1PzCAqrmuV1u1K9p9U8dCb6dNKi6cbJGWofL3KRN7539k+HqCqpcc7PlXl5/Um+rbS0re1hvRs+GGtiZRMy/ve7hAbYdlPj91sezfrrOUlnEyuWV2ByzYXotMpPDDIE3eDwpH4Yj6al03JRUMQA301eF50s8K2A0V4uedzaw83vM93BX80L4ecS7p3u7XQcy7bzD/Ha0Df9iXW7ipB5wK399Rh0FkmZ56xpMim3v4+Ch5upfXefcyEhwEGtHfBy13hbJrKjCVGm679zk1d6N+u9Lg/NsRybZu3pojth6p/XKdwLkVV1XL9hXft2pXZs2fTsGHDy94rKCjghRde4IsvvqCoqOLdIktcG/97omvM4OJDvDf/+gu9P3ebhoVbr78LzJD2Wj5ZUrO+VKvCk4MVvqo5Ux1WmYf6wsS5Na9B4WyThrsy5q2a88O4qkx/0Z/np9bQx5o40f8eKeOW4iqwo6/zeiParNrw74lqmXJH+tavX4+mjHCnm5sbH330EbffXnPmcRNCCCGEEKXK3egrq8F3sR49elxVYYQQQgghyutanU/PWWrXbMpCCCGEEOddq0/OcJZr8/YUIYQQQghhQyJ9QgghhKiVrtWpVZxF9pYQQgghxHVAIn1CCCGEqJVkTJ9jJNInhBBCCHEdkEifEEIIIWolmbLFMRLpE0IIIYS4DkikTwghhBC1kozpc4w0+oQQQghRK8mULY6RvSWEEEIIcR2QSJ8QQgghaiXp3nWMRPqEEEIIIa4DEukTQgghRK0kkT7HSKRPCCGEEOI6IJE+IYQQQtRKEulzjET6hBBCCCGuAxLpE0IIIUStJPP0OUYafUIIIYSoleTZu46RJrIQQgghxHVAIn1CCCGEqJXkRg7HSKRPCCGEEOI6oKiqqlZ3IYQQQgghHHXiwVuclnf0zF+dlnd1qVHdu+/NN1d3Earcc7dpWOLauLqLUeUGFx/i1TlF1V2MKvf6CB3DX0ms7mJUublvhDLmrfTqLkaVm/6iPyNfS67uYlS52a8F8+CklOouRpWbOTGI/3yaW93FqHIfPuFZ3UUQ5VSjGn1CCCGEEOUlY/ocI2P6hBBCCCGuAxLpE0IIIUStJJE+x0ijTwghhBC1kjyRwzGyt4QQQgghrgMS6RNCCCFErSTdu46RSJ8QQgghxHVAIn1CCCGEqJVkTJ9jZG8JIYQQQlwHJNInhBBCiNpJkTF9jpBInxBCCCHEdUAafUIIIYSolRSN4rTFUZ999hlRUVEYDAY6duzIli1brph+ypQpNG7cGDc3NyIiIvjPf/5DYWFhRXdFuUj3rhBCCCFqpZpyI8e8efMYN24cU6dOpWPHjkyZMoWBAwdy6NAhgoKCLkv/3Xff8cILLzBz5ky6dOnC4cOHGTlyJIqi8MEHHzitnDVjbwkhhBBC1FIffPABY8aMYdSoUTRp0oSpU6fi7u7OzJkz7abfuHEjXbt25d577yUqKooBAwZwzz33/Gt08GpJo08IIYQQtZIzu3eNRiPZ2dk2i9FovKwMRUVFbN++nX79+lnXaTQa+vXrx6ZNm+yWu0uXLmzfvt3ayDt+/DhLly7lxhtvdM6OulAup+YuhBBCCFELTZ48GR8fH5tl8uTJl6VLS0vDZDIRHBxssz44OJikpCS7ed977728/vrrdOvWDVdXV+rXr0+vXr148cUXnVKXC6TRJ4QQQohaSdFonLZMmDCBrKwsm2XChAmVUu61a9fy1ltv8fnnn7Njxw7mz5/PkiVLeOONNyol/7LIjRxCCCGEEJfQ6/Xo9fp/TRcQEIBWqyU5OdlmfXJyMiEhIXa3eeWVV3jggQd46KGHAGjevDl5eXk8/PDDvPTSS2icdIOKRPqEEEIIUSvVhClbdDodbdu2ZdWqVdZ1ZrOZVatW0blzZ7vb5OfnX9aw02q1AKiqWoE9UT4S6RNCCCGEuArjxo1jxIgRtGvXjg4dOjBlyhTy8vIYNWoUAMOHDyc8PNw6JvDmm2/mgw8+oHXr1nTs2JGjR4/yyiuvcPPNN1sbf84gjT4hhBBC1EoVmUTZGe666y5SU1N59dVXSUpKolWrVixbtsx6c8fp06dtInsvv/wyiqLw8ssvc+bMGQIDA7n55pv573//69RyXnONvv2bvmXPupkU5KZRJySWLre8RFBEizLTH9+7jG0rPib33Bm8/SPpcMOz1IvtaX1/+oQ4u9t1GPQcLXuMrvTyV0Sdbu2IeXY0Pm2aYQgLYtvtj5H866orb9OjA03eewHPJg0pjE/k6OQvSJi7wCZN5KP3EjNuNPqQQLL3HGT/M2+QtXWvM6visA6NNXRtpsXTDZIzVJZsMXEmrezQeNNIhT6tXfD1hIxslT+2mzhyxpJeo0Df1loa1VXw81QoLIbjiWZWbDeRU1BVNXLMbX086dXOHXeDhiOni5j9axbJGaYy0zeO1HFjNw+iwlzx89Yy5bsMdhy4fAoCR/Otarf0cKN7KwPueoWjCcV8uyyPlHPmK27Tq62egR3d8PHUEJ9cwvd/5HMysQQAfx8Nbz/uZ3e7qfNz2H6wqNLrUBFDe3vQs42b5bjEFzF3cc6/Hpe+7d0Y1NUDH08Np5NK+Ob3bE6cKbG+7+Op4a7+njStr8Og05CYXsLidXlss3NeVJchvTzo0caAu0HD0fhi5i7JIeVf6t2nvRs3dHG3HO+kEr79PYcTZ0vr7e2hYVh/T5rWd8Wg05CUXsLi9flsr0H1vqGDjs5NXTDoFU4mmvhprZG0rCt3/XVt7kqf1q54uSucTTMzf52R0ymWvw13PdzQUUfjCBd8vRTyClT2Hi/h97+LKKwZp7jjasjkzABPPPEETzzxhN331q5da/PaxcWFiRMnMnHixCooWaly762zZ886sxyV4tiepWxe8g5t+j7O0Cd+wT+0Mb/PHENBbrrd9MmndrL6h+do3O52hj45n6gmfVnxzZNkJB22prnvxXU2S4/b/wuKQnSzAVVVrX+l9XAne88h9j01qVzp3aLq0v7XaaSv/ZsN7W7lxCdzaD7tTQL6d7OmCb1zEHHvTuDIm5+xocNQcvYcpOOSGegC6zirGg5rFqXhhvZa1u42MfW3YpLOqQzv54KHwX76iECFO3q4sOOIiS9+K+bAaZV7ersQ5Gv5pejqAmH+Cmt3m/licTE/rCkhwFvh3j4187fR4O4e9O/kwexfs5g0LQ1jkcr/jaiD6xWKq9cpnE4qZu7irErNtyrd0MlA33YGvvk9l7dmZ1FUDM/c7Y3LFXpE2sXpGNbXg982FPDGzCwSUkw8c7cXXu6WY5+RbebZjzJslkXr8ik0quw7VjO+DW/s6k7/ju7MWZzD619lYCxSefYB3yselw5N9dw90IuFa3OZOC2d+ORinrvfDy+P0ujImKHehAS4MOX7TF7+Ip3tB4w8dqcP9UJqxgEf1NWdfh3dmLskhzcv1Pt+3yse7/ZN9dw1wJNf/8xj0rQM4pNLGHe/r/V4Azw01JuQAC0ff5/Fq+fr/egd3jWm3n3auNKjpSs/rTUy5acCjMXwyC1uV6x3qwYuDOmmY/nWIt6fl8/ZdDNjb3HD081Sb28PDd4eGn79y8j/vsvnu5VGYiNduLtPGRdNcc0pd6OvadOmfPfdd84sy1Xbu34Ose3vpHG72/ALbkC3Ia/hojNwaNt8u+n3/TWXug270bLHaPyC6tNuwNMEhMWxf1NpPd29Am2WUwdWExbTEe86EVVVrX+VunwdhydOIXnRynKlj3z4bgpOJHDg+XfIPXicU59/S9Ivy4l+eqQ1TfQzo4if8SMJc+aTe+AYex+biCm/kIiRtzupFo7r0kTD9iNmdh41k5oFv20yUWyCNg3sn9ad4jQcPaPy134zaVmwepeJxAyVjrGW9MZimLOihP2nzKRnQ0KayuK/TYQHaPDxqMqalc/Azh78+mcuOw4aiU8uYdovmfh6aWkTV/YFfM8RI7+syr1iNKMi+Valvh3cWPJXAbuPFHMm1cTM33Lx9dLQurGuzG36dzCwfpeRjXuMJKaZ+Ob3PIpKoGtLy515qgrZearN0rqRjm0HjBiLq6pmVzagkzu/rstj5yEjCcklTF+QjZ+XljaxZd9dOLCzB3/uKGDDrkLOppqYsziHomKVHq3drGkaRLiy8u98TpwpIfWcid/W5ZFfqBIV5loV1fpX/Tu68du6PHYdKiIhxcRXC7Px9dJcud6d3Fl3od5pJuaer3d3m3q7sGpLASfOlpCaaWbx+nzyC1UiQ2tGo69nS1f+2FbEvhMmEtPNfLeyEG8PheYxZZevVytXNu0vZsuBEpLPqfy0xkhRiUrHOMs2SRlmZv9eyP6TJtKzVY6eMbF0k5Gm0VpqSC+pwxRFcdpyLSp3o++///0vY8eO5c477yQjI8OZZaoQU0kRaWf3E96g9E4ZRaMhvH5nUk7vsrtN8undNukB6jbsVmb6/Jw0Th/8k8btak7DpyJ8O7UibbXtLOGpKzbg16kVAIqrKz5tmpK2amNpAlUlbfVGfDu1rsKSlk2rgVB/hWNnS7v0VODYWTN1A+2f1hGBGo4n2nYBHj2jEhFY9h+3QQdmVa1xXR+Bflp8vbTsP1baeCswqhxPKKJBRNmNn+rKt7IE+Grw9dRw4ERpS6zAqHL8bAkx4fa/DLUaiAx14cDJ0oOoAgdOFFE/3H7Dpl6IlnohLmzYXTO6+i4cl3+Ol9ahwKhyLKGY+nXtHxetFqLCXGy2UVXYf7yI+nVL6300vpgOzQx4uCkoCnRspsfVReHgyeo/6QN9NefrfcnxTiimfoT9Y6fVQOSl9Qb+uazeJXRoqsfDoKBgiYq6uigcOln9rXx/bwVvDw2H40u7sAuL4FSymagQ+9c3rQbqBtluowJHEkxEhpQdHjToFQqLwOy8G0ZFDVLuRt9jjz3Gnj17SE9Pp0mTJvz222/OLJfDCvMzUc0m3Dz9bda7efmTn5Nmd5uC3DTcPANs03v6U5BrP/2RHQvR6T2Iatq/cgpdTfTBARiTbetoTE7D1ccLjUGPLsAPjYsLxpT0S9Kkow+x3V/VxV0PWo1CXqHt+rxC8HKzv42nG+Rekj63ULV2fVzKRQMD2mrZe8JcY6I9F/h4Wv50s3JtG7FZeWZ8PSs+xsVZ+VYWHw9LGbLzbMuXk2e2vncpT3cFrUYhO8/2Wy07T8Xbw/6x79bSwNm0Eo5dNPatOpV1XLLzzNb3LuXlrkGrUcrYprQR8PlPWWg18Nn4IKa/HMSIm7z5eF7mv46ZqwrenvaPd/YVjveFetvd5qJ99cX5en8yPpBpLwcy/CYvPp2XRcq56q/3hW7o3HzbczY332zTRX0xDzfLeZ5TYLtNTr6Kd1nbGGBAOx2b9tewC5wDnDk587XIoTh2dHQ0q1ev5tNPP+W2224jLi4OFxfbLHbs2PGv+RiNxsueX2eZALFmdCeU5dD2+dRvdRMurv8+WaOo3TQKDOtlObcXb67+L4HOLQyMusXH+vr9b85VY2mqTsemOu4f5Gl9/cmP2U7/TFcXy+cu3lB9d+90bm5gxM1e1tcffpvptM+6rbcn7gYN78w5R26+mTaxeh6/04e3Zp4jIaVqG72dmusZflNpvad8V/bY06s1tI8H7gYN7849R26+SutYHY/e6c3kWec4k1K1f/NtGrkwrFfp98r0xc4/9/SuMOYmN5LPmVm2pfqjuqJqODx44dSpU8yfPx8/Pz9uvfXWyxp95TF58mQmTbK96WDixIl4tnjV4bwuMLj7omi0l920UZCTjruX/eiUm2fAZVG9gtz0y6J/AIkntpGVeoK+93xQ4TLWFMbkNPTBtnXUBwdQnJWDudBIUdo5zCUl6IP8L0njjzHJfhS0quUbwWRWL7tpw8NAmXfa5haA5yXpPQ0KuZf8Mr7Q4PP1gFl/lNSIKN/Og0aOJZTue1cXyy93H0+NTSTHx0PDqaSKf1FfyKuy862oXUeKOH420/raVVs6ID0rr/SL2cvDckeuPbn5Kibz5VE9b4/Lo38AbWN16FwVNu2rvq7dnYeMHDtTeuJdGLx/6XHx9rDckWtPTr4Zk1m9LBLo7aEhK9ey7wL9tPTr6M6Ln6VxNtWyLj65hEaRrvTt4MacxTmVWa1/tetQEccTSn/QXPh6sZT5knqXcbwv1Nvbw169LXkE+mnp18Gdlz9Pt613PR192rvz9ZKqrff+EyW8l1x6PrucP8893RWyL4r2ebprOJtmv0GaV2A5z70u6bnwuiQPsDT4xt7ihrFYZebSQsxXvvG9RqspU7bUFg7FL6dPn07z5s3x9fVl//79vPHGG9Zbjh259dgZz7PTuugICGvKmWObretUs5mzxzYTVK+V3W2C67Xk7EXpARKObrSb/tC2XwgIb4p/aOxVlbMmyNy8C/8+nWzWBfTtwrnNuwBQi4vJ2rGfgD4XjXdUFPx7dyZz884qLGnZTGZITFeJCS09hRUgJlRDQqr9K1h8qtkmPUD9MIX41NIL4oUGn78XzP6jhIKaMaSLwiKVlAyTdTmTUkJmjokmMaXRAYNeIaaujqPxFf/VnnrO5JR8K8pYBKnnzNblbJqJzFwzsVGlvQIGnUJMmAvHy+iKNZnhVGIJcRdtowBxUa42DasLurU0sPtI0WVda1Xp0uN9NvX8cYkuHb9n0CvUr+vKsQT7x8VkgpNnS2y2URRoEqPjWIKl3npXyxfmpQ8AMJstaataYZFKyjmTdbHWO+aS413XlWPx9n+Nmcxw6mwJcTEX1RuIu6jeuvPZXV5vtVpuaDAWQ1qWal2SMsxk55lpVLe0G17vCpHBGk4m2b++mcyQkGKmUUTpNgrQsK6WU0mlDUW9KzxyqxsmM3y1pJCS6u/IEFWo3I2+G264gfHjx/Ppp58yf/58AgMDK/yher0eb29vm6U8z7f7N827j+DQ1p84vH0h51KOsWHRJIqLCmjUdigAa34cz5ZlpZG6Zl2HE394A3vWzyIz5TjbV35K2pn9NO18r02+RYW5nNi7nMbt77jqMjqD1sMd75axeLe0NEjdo+vi3TIWQ0QoAI3fHEfLWe9Y05/68gfcoyOInfx/eDSOIfKRewm9cxAnPpptTXNiyiwiRg8j/IEheMbG0Oyz13DxcCN+jv07oavDxn/MtG2koVV9DQE+cFMnLToX2HHUclG8rZuWfm1KL4CbD5hpEK7QpYmGAG/o3VJLmL/C3wct6TUK3NXLhXB/hZ/Xm9Aolsigp8EySLqmWb4pj1t7edI6Vk/dYBfG3u5LZo6JHQdKBy6OH1mHfh3dra/1OoV6IS7WaSkCfS3/9/fROJRvdVq1pYDBXd1o2dCV8EAtD97sSWaOmZ2HShs/4+71pnfb0rDuii2FdG9loHNzPSH+Wu4b5IHOVeGvPbat+kA/DQ3rubB+Vw1p7V/kj8353NzDg1aN9dQNcuHhod6cyzGx42BpWZ8f7kvfDqWDWpdvyqNnWze6tjQQGqBl+GAv9K4K63dajmViWglJ6SWMvNmb6HAXAv203NDZnab1dTb5VqcVfxdwU3cPWjXSER6k5aGh3mTmmG3K99wDvvRpf1G9N+fTs40bXc7X+4GbLPXesMvSDZCUZiI5vYThN3kRHWap98DObjSpQfX+c3cx/dvpaBqlJdRfw339DWTnWebVu+DRWw10a17aIF67q5hOTVxpH+tCkJ/CHb306FwU/j5g2eZCg0/nAj+sKsSgU/Bytyy19mZVjcZ5yzWo3H2zJpOJPXv2ULduXWeW56rUb3Ejhbnn2L7yY/Jz0vAPjWPQqC+t3bt5mYkoSumBDI5sTZ+732XbHx+xdfmH+ARE0v/+T6gT0sgm32N7lqKi0qDl4CqtT3n5tG1G51VfW183ee9FAOLnzmfP6AnoQwNxO98ABCg4mcDWW8bS5P0JRD05nMKEJPaOfZm0FRusaRJ/+h1dYB0aTXzKMjnz7gNsuekhilLsz3lYHfadNONugD6ttHi6aUnKUPl6ZYn15g4fD8XmGYbxqSo/ryuhb2sX+rXRkp6t8v2aElIyLWm83SGunuX8ePwW2/GlM5cVczK5Zt3etmR9HnpXhVG3+FgnUX5vbgbFFwW8gupo8XIvPeejw1x5cXRpt/19N3oDsH5HPtMXZJU73+q0bHMhOp3CA4M8cTcoHIkv5qN52TYRi0BfDZ4XDV7fdqAIL/d8bu3hhvf5ruCP5uWQc0n3brcWes5lm23uFq0plv6Vj16nMOpmL9wNGg6fLuL9bzIvOd4ueLmXln3LfiNeHjkM7e1pnZz5/W/OWW9yMJkt4wXv7OfJM/f4YtBpSM4o4asF2ew5UjPGef3+Vz56V4UR5+t95HQxH3yTaXO8Lz3Pt+434uWey5BeHtbJmT/8NtPanW8yw4ffZXFHXw+euscXg04hJaOEGQtz2Hu0ZtR79Y5idC4Kw3rrcdMrnEg0Me23Apt6B/ho8HArjfztOlqCp5vCDR10eHsonEk1M+23AusQlrpBWqLO38n78nDbeahen5PHuZyadY0TlU9RnflkXwe9N78WDyyooOdu07DEtXF1F6PKDS4+xKtzasbFtSq9PkLH8FcSq7sYVW7uG6GMeavm/GCoKtNf9Gfka8nVXYwqN/u1YB6clFLdxahyMycG8Z9Pc6u7GFXuwyc8/z2Rk2S8OdZpedd5eZrT8q4uNWMWSiGEEEIIB13ceyf+newtIYQQQojrgET6hBBCCFE7yZQtDpFInxBCCCHEdUAifUIIIYSola7Vx6U5i+wtIYQQQojrgET6hBBCCFEryWPYHCORPiGEEEKI64BE+oQQQghRO8k8fQ6RRp8QQgghaiXp3nWMNJGFEEIIIa4DEukTQgghRO0kU7Y4RPaWEEIIIcR1QCJ9QgghhKiVFEXG9DlCIn1CCCGEENcBifQJIYQQonaSMX0Okb0lhBBCCHEdkEifEEIIIWolmafPMdLoE0IIIUTtJE/kcIjsLSGEEEKI64BE+oQQQghRO0n3rkMk0ieEEEIIcR2QSJ8QQgghaiVFxvQ5RPaWEEIIIcR1QFFVVa3uQgghhBBCOCpv+stOy9tjzJtOy7u61Kju3YVbTdVdhCo3pL2WV+cUVXcxqtzrI3QscW1c3cWocoOLD/HiDGN1F6PKvTVaz30TzlR3Marct5PDeeaT3OouRpWb8qQnQ584Ut3FqHILPm3II++cq+5iVLmp4/2quwiinGpUo08IIYQQorwUeQybQ6TRJ4QQQojaSZEpWxwhTWQhhBBCiOuARPqEEEIIUTtJ965DZG8JIYQQQlwHJNInhBBCiNpJxvQ5RCJ9QgghhBDXAYn0CSGEEKJWkilbHCN7SwghhBDiOiCRPiGEEELUTorErhwhjT4hhBBC1E4auZHDEdJEFkIIIYS4DkikTwghhBC1kiLduw6RvSWEEEIIcR2QSJ8QQgghaicZ0+cQifQJIYQQQlwHJNInhBBCiNpJxvQ5RPaWEEIIIcR1QCJ9QgghhKidFBnT5whp9AkhhBCidpJn7zpE9pYQQgghxHXgmov0bVzxHeuWzCQnK43Qeo25dfhLRNRvYTft32t+Ysf6RSQnHAUgPLoJNwx7xia9qqqs+OVTtqz5iYL8HKIatWboqFcJCImqiuqUW4fGGro20+LpBskZKku2mDiTppaZvmmkQp/WLvh6Qka2yh/bTRw5Y0mvUaBvay2N6ir4eSoUFsPxRDMrtpvIKaiqGv27Ot3aEfPsaHzaNMMQFsS22x8j+ddVV96mRweavPcCnk0aUhifyNHJX5Awd4FNmshH7yVm3Gj0IYFk7znI/mfeIGvrXmdWxWGd4jR0b+6CpxskZaj8tqmEhCsc72ZRGvq31eLrqZCerbJsq4nDCWbr+00jNXSI0xLur+BuUPhkQRGJGWXnV91u7+dF7/YeeLhpOHzKyMyFmSSnm8pMHxulY3APT6LDdfh5a/ng63S2/1N41flWtUEddXRq6oKbXuFEoomf1hhJy7rycerW3JU+bVzxclc4m2bml3VGTieXHvthvfU0itDi7aFQVAwnEk38ttFIyrmac/zvGVyHfl188HDTcPB4IdPmpZCYWlxm+ib1DQzp50f9egbq+Lgw+cuzbNmTV2b6R+4OYmA3H2b8nMritZlOqEHF3NzNQLeWetz0CsfOlPD9H/mknDNfcZuerfUM6KjH20NDQoqJeSvzOZloew5Hh2m5tYcb0aEumFVISCnh4x9zKS5xZm2cRG7kcMg1tbd2b/6dxd++Q9+hj/HUmz8TWi+WGe88TG5Wut30xw9soVXnwTz80iwee+07fOqE8NU7Y8jKSLam+XPxDP764xuGPjiRJyb9gE7vxox3Hqa4yFhV1fpXzaI03NBey9rdJqb+VkzSOZXh/VzwMNhPHxGocEcPF3YcMfHFb8UcOK1yT28XgnwtYyNcXSDMX2HtbjNfLC7mhzUlBHgr3NunZv1G0Hq4k73nEPuemlSu9G5RdWn/6zTS1/7Nhna3cuKTOTSf9iYB/btZ04TeOYi4dydw5M3P2NBhKDl7DtJxyQx0gXWcVQ2HNY/WcGNHF1btLOGzRcUkZqiMusG1zONdL0jhrt4ubDts5tOFxfxzysz9/VwI9isdC+PqCqeSzCzbWvOv+jf18GRgF09mLczk1c9TMBapvPBgAK5XOD31OoXTicXMXpRZqflWpb5tXOnR0pWf1hj58McCiorhkVvdcNGWvU3rhi4M6a5j2ZYi3vshnzNpZh65xQ1Pt9JjH59i4ruVhbz9TT5TFxWgAI/e6lZjhkoN7efH4J6+TPshhfHvxWMsMvPq4+G4upRdQINew8kzRXw5L+Vf8+/YwoNGUQbSM2vWuT+go57ebfV8tzyfd77OoahY5clhnlc83m1jXbmjjxuL/yrkrdnZJKSYeHKYJ17upfsqOkzLU8O8OHCimLe/zubtudms3WFErTltfOFEDjX6+vbty/z588t8Py0tjZiYmKsuVEWt/302HXrfSfuetxEc3oChoybiqjew9U/7Zb7nsXfp3P8ewiLjCAqL4Y4xb6CazRzdvxmwRPk2LJtLn1vH0rRtX0LrNWbYI2+TnZnC/u1XjihVpS5NNGw/YmbnUTOpWfDbJhPFJmjTwP7h7RSn4egZlb/2m0nLgtW7TCRmqHSMtaQ3FsOcFSXsP2UmPRsS0lQW/20iPECDj0dV1uzKUpev4/DEKSQvWlmu9JEP303BiQQOPP8OuQePc+rzb0n6ZTnRT4+0pol+ZhTxM34kYc58cg8cY+9jEzHlFxIx8nYn1cJx3Zpp2XrIzI4jZlIyVRb9VUJRCbRtZP/boEtTLUcSzKzfayI1S2XlDhNn01U6xZWm33XUzOpdJo6evXIUoSa4oasnC9fksP1AIfFJJXzx4zl8vbS0beJW5ja7Dxv5aUUO2+xE964m36rUo5Urf2wtYt8JE4npZr5dUYiPh0LzmLJbpb1aubJpfzFbDpSQfE7lpzVGikpUOjYp3WbT/hKOnzWTkaOSkGpmyeYi/Lw01PGqGa2+m3r78tPyDLbszePU2SI+mptMHR8tHVuWfTHa8U8+3y1O5+8rRPcA6vhoeejOQD6cnYTJVLNaPX3bGfh9UyG7jxZzJtXErMV5+HpqaNXItcxt+rU38NduI5v2FpGYbua75fkUF0OX5jprmjv7urN6eyHL/zaSmGYmOcPM9oPFlNScgLZjNIrzlmuQQ42+NWvWMGzYMCZOnGj3fZPJxKlTpyqlYI4qKSnizIl/aNi0k3WdRqOhQdPOnD66q1x5FBsLMZlKcPf0ASAjNYGcrDQaNutsTePm7kVE/RacPlK+PJ1Nq4FQf4VjF31Zq8Cxs2bqBto/vBGBGo4n2n65Hz2jEhF4hV/OOjCrKoVFlVLsauHbqRVpqzfZrEtdsQG/Tq0AUFxd8WnTlLRVG0sTqCppqzfi26l1FZa0bFoNhAUoNo2zC8e7XpD941cvSMPRs7ZfaEcSyk5fkwX6afHz1rL/aGmkvcCociy+iIb1dFfYsnryrSz+3go+HhoOx5d+MxcWwalkM1Eh9v/OtRqoG2S7jQocjjcRFWL/B4LOBTrGuZCWZSYzt/obQcH+LtTxcWH3wXzruvxCM0dOFtI4qozQdjkpCjwzPIRFqzKJT6pZF7YAHw0+nhoOnCyNPhYWwYmzJcSE2W/kazVQL0TLgVOl26jAgZPFxIRbtvFyV4gJcyEnT+X/7vfif0/4MO4eT+qHXyF8KK4pDnfvfvHFF0yZMoWhQ4eSl3flX1FVKT8nE7PZhKdPgM16Lx9/crLSypXH0h/ex9sviAZNLY28nEzLdp7etnl6epc/T2dz14NWo5B3SQAjrxC8yghQeLpB7iXpcwtVmy6fi7loYEBbLXtPmDGWPYymxtMHB2BMtj1uxuQ0XH280Bj06AL80Li4YExJvyRNOvoQ23OgurgbLMc7t8D2Czm3QMWrjOPn6cbl6QtVmy6f2sLXy/LllJVrG5bIyjXh61Xx0SrOyreyXDhWOfm2xzEn34y3h/3j6OGmoNUodrZR8b7k2Hdt7sI7Yz3436OexEW58MXCAkw1IOjr621prGTl2B6XzByT9b2KGtrfD5NZrVFj+C7w9rQcn+w824OQk6/i7WH/fPR0txzvK20T4Gv596ZuBjbsNvLJj7nEJ5t45m4vgvyq/zyvEEXjvOUa5PBfza233kq3bt249dZb6dSpE4sWLXK4S9doNGI02o6J0+v1FSlOpVnz63R2b17K2Jfm4KrTV1s5ahqNAsN6WY7L4s21Nf4vaqsurdwYPcTX+vrdOfbH515r2jZyYVjv0uvQl7859w6q7YdKOHTahLeHQp/WOkYOMvDRzwVV3uXXo50Xj9wTZH393y/OOuVzYiL03NTLl2ffOe2U/B3VoYmOewe6W19/9nOuUz7nwjjN9bssXcAA8asLaBzpQpfmOhauK3v4g7g2VKiVFRcXx9atW7nnnnto37498+bNo1+/fuXefvLkyUyaZDv4fuLEibQa/EpFigOAu5cvGo2W3EsicDlZ6Xj5XDlK8+eSmaxd/BVjXphBaL3G1vVevpbtcrPT8PYLtK7PzU4nrF5shctamfKNYDKrlw3i9zBQ5p22uQXgeUl6T8Pl0aMLDT5fD5j1R0mtjvKBJaqnD7Y9F/TBARRn5WAuNFKUdg5zSQn6IP9L0vhjTKoZkd38QsvxtkRlS4+Xp5tCToH97rjcAi6L4noaLo8A1UQ7/inkWHzpYHwXraUePp5aMnNKIxo+nlpOJVb8BM08H0mq7Hwrat+JEk4ll7a4LtTby10h+6Lj5uWu4Uyq/ZZZXoGKyXx5RPfSPMDSdVhYpJKWpXIqqZC3HvagRYwLO45U7c0NW/bmcvhkacPjws0aPl5azmWX1tPXS8uJhIrfTNekvhs+nlqmvx5tXafVKoy8LYCbe/syduLJCuddEbuPFnHibOm+djn/zeztoSE7r7TeXu4KCSn2j3duvuV4W6J6tttciP5lne+yT0yzjQYmpZup411LI1s15Y6jWqLCR9nHx4clS5YwZswYbrzxRj788MNybzthwgSysrJslgkTJlS0KAC4uOgIj25ivQkDwHz+pox6DVqVud3axTNYtXAqDz7/JXVjmtm8VyewLl4+ATZ5FubnEn9sD/Ualp1nVTKZITFdJSa09FAqQEyohoRU+/0z8almm/QA9cMU4lNLvwguNPj8vWD2HyUU1JyblSssc/Mu/Pt0slkX0LcL5zbvAkAtLiZrx34C+pSO4URR8O/dmczNO6uwpGUzmeFsmkqDS453/TANp1PsN+JOp5ipH2Z7YWwQXnb6mqSwSCU53WRdzqSUcC7bRNP6pVEwN71C/QgdR05XfFxW6jmTU/KtKGMxpGWp1iUpw0xWnpmGEaVjr/SuEBms4WSS/b9zkxkSUsw0rFu6jQI0itByMunKITwFrniXqLMUGlWS0oqtS3xSERlZJbRoXBoFczNoaBhl4NDJikel/tyazX8mn2bc26VLemYJi1aeY9JnZyqjKg4xFkFqptm6JKaZyco1ExtZGpcx6CA6zIXjZ+03xE1mOJ1kstlGAWKjXDl+xrJNepaZzBwzwf621/+gOhrSs2tAf35FaDTOWxz02WefERUVhcFgoGPHjmzZsuWK6TMzM3n88ccJDQ1Fr9fTqFEjli5dWtE9US4ORfqUS1rUiqLw9ttv06pVKx566CFWr15drnz0ev357txLXV1fQvdBI/lx2gTqRjejbv3mbFg2l2JjAe16DgVg3tQX8PYLYtBd4wBY+9tX/PHLJ9zz2LvUCQgjJzMVAJ3BHb3BA0VR6HbDcFYvnEZAcCR+QXX54+eP8fYNomnbvldV1sq08R8zQ7tpOZuukpBmpnOcFp0L7Dhq+SO+rZuW7HxYucOyfzcfMPPgDS50aaLhcIKZ5tFawvwVft1keV+jwF29XAjzV/hmVQkapTQyWFBEjRjrA5YpWzwa1LO+do+ui3fLWIoysiiMT6Txm+MwhAeze9R4AE59+QORj91H7OT/I372LwT07kTonYPYestYax4npsyi5cx3yNy+j6yte4h6agQuHm7Ezyn7rvWqtmGfiTt6uJCQpiEhVaVrs/PH+7Dl+N3Rw4XsfJU/tlleb9xvYsxgV7o103Io3kyLGA3hAQoL/yr98nDTga+nYo0KBficH0NWoJJbg+ZmBFj2Vy5D+niRlF5CakYJd/T3JjPHxPZ/Sgs6YbQ/2/4pZMUmy7hjvU4hxL/0chfopyUy1JXcfDPpWaZy51ud1u0qZkA7HamZZjKyVW7spCMrT2Xv8dLj+NgQA3uOm9iwxxKdXLurmHv76YlPMXM62UTPVjp0Lgp//2PZxt9boXVDFw6eNpFboOLrqdCvrY7iEvjnVM0YzrF4TSZ33lCHxNRiktOLuXewPxlZJv7eXTqmfNKT4Wzencvv67IAMOgUQgJL73IN9nclKlxHbr6ZtHMl5OSZycmzbcybTCrnsk2cTakZXRqrthUyqIuBlHNm0jJN3NLdjcxcM7sOl5bvmbs82XWkmLU7LL/KV24tZORgD04lmTiZWEKfdgZ0rrBxb2ld/9hSyM3d3DiTYiI+2USn5jpC6mj5cmHNGaNfG82bN49x48YxdepUOnbsyJQpUxg4cCCHDh0iKCjosvRFRUX079+foKAgfv75Z8LDwzl16hS+vr5OLadDjT61jIl87r77bmJjYxkyZEhllKnCWnYaRF52Bn/88gk5WWmERcby4PPTrN27mWmJKBcNzty86gdMJcV88/EzNvn0G/oY/W9/AoCeN42myFjALzMnUpifQ1SjNjz4/Jc1atzfvpNm3A3Qp5UWTzctSRkqX68ssd7c4eOh2By7+FSVn9eV0Le1C/3aaEnPVvl+TQkpmZY03u4QV8+ynx6/xXZ6gJnLijmZXDMiRD5tm9F51dfW103eexGA+Lnz2TN6AvrQQNwiQq3vF5xMYOstY2ny/gSinhxOYUISe8e+TNqKDdY0iT/9ji6wDo0mPmWZnHn3Abbc9BBFKTVnLNneE2Y8DCX0a+uCl5sl0jtrebH15hxfT8Vmzq3TKSrz1pTQv62WAe0sx/ublZYpPC6Ii9RwR4/SY31PH8v/V+0oYdXOmvHlf8HidbnodQqjh/ribrBMovzOrHSbiWWD/V3wci/9W48Jd+Xlh0uHaDxwky8A67bnMe3nzHLnW51W7ShG56pwV2/LZL3HE01M+9V23F2AjwZPQ+mvsp1HSvBwUxjUUYe3h8KZVDPTfi2wDuUoNkFMmJaerVxx01u6/I+dNfHRz/mXDfeoLgtWnsOgV3j0niA83DQcOFbIG5+fobiktHwhAa54e5aGJutHGnjz6brW1w/ebjn2qzdn88k3pfOw1mR//G1E76pw30B33A0KRxNK+OTHXJvjHeinsRm6sf1gMV7uBdzczWCdnPmTH3NthnKs3mbEVQt39HHHw6CQkGrio3k5pGXWkF/zjqoh3bsffPABY8aMYdSoUQBMnTqVJUuWMHPmTF544YXL0s+cOZOMjAw2btyIq6vlehsVFeX0cipqWS05O/7880+6du2Ki4v9tmJ6ejpLlixh+PDhFSrMwq0168ulKgxpr+XVOTVruoCq8PoIHUtcG/97wmvM4OJDvDjjGugrd9Bbo/XcN6Hqu82q27eTw3nmE+cMyq/JpjzpydAnjlR3Marcgk8b8sg756q7GFVu6ni/avvswiVTnZa30m+U3ZtOL+2pLCoqwt3dnZ9//tkm+DVixAgyMzNZtGjRZXnfeOON1KlTB3d3dxYtWkRgYCD33nsv48ePR6t13tgKhzqte/bsWWaDD8Df37/CDT4hhBBCCIc4ccqWyZMn4+PjY7NMnjz5siKkpaVhMpkIDg62WR8cHExSUpLdYh8/fpyff/4Zk8nE0qVLeeWVV3j//fd58803nbKbLqghDxgSQgghhKg5JkyYwLhx42zW2b8fwXFms5mgoCC+/PJLtFotbdu25cyZM7z77rtlPgCjMkijTwghhBC1UwXusi2vsm86tRUQEIBWqyU52Xa8aHJyMiEhIXa3CQ0NxdXV1aYrNy4ujqSkJIqKitDpnPMkoFo6MY8QQgghRPXT6XS0bduWVatWWdeZzWZWrVpF586d7W7TtWtXjh49itlcegPN4cOHCQ0NdVqDD6TRJ4QQQojaSlGctzhg3LhxTJ8+nTlz5nDgwAEeffRR8vLyrHfzDh8+3GY+4kcffZSMjAyefvppDh8+zJIlS3jrrbd4/PHHK3X3XEq6d4UQQghRO9WQZ+TeddddpKam8uqrr5KUlESrVq1YtmyZ9eaO06dPo7moKzoiIoLly5fzn//8hxYtWhAeHs7TTz/N+PHjnVpOafQJIYQQQlylJ554gieeeMLue2vXrr1sXefOndm8efPliZ1IGn1CCCGEqJ1qyOTMtUXNiIsKIYQQQginkkifEEIIIWonJ07Zci2SvSWEEEIIcR2QSJ8QQgghaiVVxvQ5RCJ9QgghhBDXAYn0CSGEEKJ2qiHz9NUWsreEEEIIIa4DEukTQgghRO0kkT6HSKNPCCGEELWS3MjhGGkiCyGEEEJcByTSJ4QQQojaSbp3HSJ7SwghhBDiOiCRPiGEEELUTjKmzyES6RNCCCGEuA5IpE8IIYQQtZNGYleOkL0lhBBCCHEdUFRVVau7EEIIIYQQjsrbON9peXt0uc1peVeXGtW9+8mS66/9+eRgheGvJFZ3Marc3DdCeXGGsbqLUeXeGq1niWvj6i5GlRtcfIjZa6u7FFVvZC84cOxMdRejysXVD2faH9Vdiqo3dgBM/tFU3cWochOGaavvw2XKFofI3hJCCCGEuA7UqEifEEIIIUR5qRLpc4jsLSGEEEKI64BE+oQQQghRO8nkzA6RSJ8QQgghxHVAIn1CCCGEqJVkTJ9jZG8JIYQQQlwHJNInhBBCiNpJxvQ5RBp9QgghhKidpHvXIbK3hBBCCCGuAxLpE0IIIUStpEr3rkMk0ieEEEIIcR2QSJ8QQgghaicZ0+cQ2VtCCCGEENcBifQJIYQQolZSkTF9jqjUSF9mZiaffvppZWYphBBCCCEqQaU0+latWsW9995LaGgoEydOrIwshRBCCCGuSFU0TluuRRWuVXx8PK+//jrR0dEMGDAARVFYsGABSUlJlVk+IYQQQgj7FI3zlmuQQ7UqLi7mp59+YuDAgTRu3Jhdu3bx7rvvotFoeOmll7jhhhtwdXV1VlmFEEIIIUQFOXQjR3h4OLGxsdx///388MMP+Pn5AXDPPfc4pXBCCCGEEGWRyZkd41Cjr6SkBEVRUBQFrVbrrDJdlT0bvmXnmhnk56QREBZLj6EvExzZosz0R3ctY/Oyj8jJOINPQCRdbnqOqCY9re/n56SxcfF7nD70F0UFOYTFtKPHbS/jGxhVBbVx3G19POnVzh13g4Yjp4uY/WsWyRmmMtM3jtRxYzcPosJc8fPWMuW7DHYcMF51vlWlU5yG7s1d8HSDpAyV3zaVkJCmlpm+WZSG/m21+HoqpGerLNtq4nCC2fp+00gNHeK0hPsruBsUPllQRGJG2flVhzrd2hHz7Gh82jTDEBbEttsfI/nXVVfepkcHmrz3Ap5NGlIYn8jRyV+QMHeBTZrIR+8lZtxo9CGBZO85yP5n3iBr615nVsVh29d8y98rZpCblUpQ3VgG3P0KYdH2/75Tzx5h/a8fk3R6P1npZ+h75wQ69BtZZt6bln3J2gXv067PcPrf9ZKTalAxS39byIJf5pF5LoOo6PqMefRJGjWOs5t201/r+HnedyQmnsFUYiI0PJxbh95J774DrGk++uAd1qxcbrNd67btmfjGO06th6N2rfuWbatmkJedSmB4LL3veIXQKPvHOy3xCBuXfExK/H6yM87Q67YJtOk90ibNlj+mcWT3H2QkH8fF1UBYdGu63/ocdYJjqqA25demgULHxgqeBkjJhD92mknMKDt9bF3o0UyDjwdk5MDaPWaOXTTSanB7hRbRth17xxNV5q03I64vDnXvnj17locffpjvv/+ekJAQbr/9dhYsWIBSQ1raR3YuZcOit2k/8HHuGjcf/7DG/PrlQ+TnpNtNn3hiB8u/eZYmHe7grmcXENO8H0tnPUF64mEAVFVlyczHyU5PYPCDn3PXs/Px8gtj0dQHKTbmV2XVymVwdw/6d/Jg9q9ZTJqWhrFI5f9G1MH1Ck17vU7hdFIxcxdnVWq+VaF5tIYbO7qwamcJny0qJjFDZdQNrngY7KevF6RwV28Xth028+nCYv45Zeb+fi4E+5Wev66ucCrJzLKtJVVUC8dpPdzJ3nOIfU9NKld6t6i6tP91Gulr/2ZDu1s58ckcmk97k4D+3axpQu8cRNy7Ezjy5mds6DCUnD0H6bhkBrrAOs6qhsP+2bqUVT9Pptvgx3nwpQUE141l3sejycu2//ddXFSAb0Bdeg19Fg/vwCvmffbkHnau+4Gguo2dUfSrsuHPNcyc/gV33zucDz6ZRlRMfSa9Mp7MzHN203t6eXPn3ffxzvufMuXz6fTtdwOffPg/dm7fapOuTdsOzPrmZ+vy7PMvV0V1yu3Q9qX8uWAynQY9zv3PLyAwPJb5n48u83peUlSAT0Bdut1S9vGOP7qFVt3v455nf+SOx2dhNpXwy2eja9T1PC5CoW9LhQ37VWauMJOcqXJXDw3uevvpw/3h1k4adp9QmfmHmSNnVW7vqiHA2zbdsUSVj381WZdFm6+NBp/cyOEYh2plMBi47777WL16NXv37iUuLo6nnnqKkpIS/vvf/7JixQpMpuqL/uz6czZNO91Jkw63UyekAb3vmISLq4EDW36xm373+q+pF9uNNn1GUye4Pp0GPU1geBP2bPgWgMzUkySf2k3POyYSXK85fkEx9LrjNUqKCzm8c0lVVq1cBnb24Nc/c9lx0Eh8cgnTfsnE10tLm7gyWkHAniNGflmVy3Y70b2rybcqdGumZeshMzuOmEnJVFn0VwlFJdC2kf0odJemWo4kmFm/10RqlsrKHSbOpqt0iitNv+uomdW7TBw9W3MviKnL13F44hSSF60sV/rIh++m4EQCB55/h9yDxzn1+bck/bKc6KdHWtNEPzOK+Bk/kjBnPrkHjrH3sYmY8guJGHm7k2rhuC0rZ9Gy2zBadL2dgLAG3HDfJFx0BvZstP/3HRbVgj53jKdJ+8G4uOrKzLeoMI9fZ/wfgx54E4O7j7OKX2GLFvzEgBtupO+AQUTUi+LRJ/6DXq9n1R+/203fvEUrOnXpTkS9SEJDw7l5yO1ERcfwz37bqK2Lqyt+depYF08vr6qoTrltXzOLZp2H0azT7fiHNqDfXZbjvW+T/eMdEtmCnkPGE9t2MFoX+8f79sdm0LTTbQSENiSwbiwD73+bnHNnSY7f78yqOKRDI4Xdx1X2nlRJz4Zl21VKSqBFtP3gSruGCseT4O9DKuk5sG6fSlImtG1om95khrzC0qWwuAoqI2qcCjdl69evz5tvvsmpU6dYvHgxRqORm266ieDg4MosX7mZSopISdhPRKMu1nWKRkPdRp1JOrnL7jZJJ3cR0bCLzbp6sV2t6U0lRQC4uJT+xFI0GrQuOhJPbK/cClylQD8tvl5a9h8rbbwVGFWOJxTRIKLsL7zqyvdqaTUQFqDYNM5U4NhZM/WC7F8c6wVpOHrWtqv2SELZ6a8Vvp1akbZ6k8261BUb8OvUCgDF1RWfNk1JW7WxNIGqkrZ6I76dWldhSctmKiki6fR+ouNs/76jYrtw5vjOq8p7+fev06B5T5u8a4ri4mKOHT1Mi1Ztres0Gg0tW7Xl0MF//nV7VVXZvWsHZxISaNrMtlt0395djLjnNh4bM5ypn35IdnbZ0f6qZiopIjl+P5GNbY93ZOMuJJ68uuN9MWNhDkCNaexrNBDiByeSba9TJ1NUwv3tX6fC/RVOXpL+RNLl6esFwlO3aHj4Bg0D2yi4Vd/lu3IpivOWa9BVd9BpNBpuvPFGbrzxRlJTU/n6668ro1wOK8g7h2o24eblb7Pe3SuAzJQTdrfJz0nD3U76/Jw0APyCY/DyC2PTkg/odeckXHVu7PpzDrmZSeRlpzqnIhXk42lpv2fl2kaosvLM+HpWPEztrHyvlrsBtBqF3ALbi11ugUqgj/1yebpxefpCFS/3a/OP+wJ9cADG5DSbdcbkNFx9vNAY9Lj6+aBxccGYkn5JmnQ8GteMsU75uZa/70v/Xj28/UlPOl7hfP/ZuoTk0/8w8sWfr7aITpGTnYXZbMb3/E1zF/j4+pEQf7rM7fLychn9wDCKi4vRaDSMffwZWrVpZ32/Tdv2dO7SjaDgUJISz/LNnBm88eoLvP3+pzVivPaF67m796XXZ38ykit+vC+mms2s/eUtwmLaEBDWqFLyvFruOtBoFPIv6XjJKwT/MgKxngbL+5em97yoI+Z4Ehw6YyYrD3w9oFdzDcO6K8xdbUatWUOWhZNVqNF35MgRFi1axMmTJ1EUhZiYGIYMGUJ0dDTjxo371+2NRiNGo+1ZrdfrgZr100OrdWXQyI9ZPe9lvnq5I4pGS0TDzkTG9kClev9SOrcwMOqW0l+n739jf3yPEMK+7IxEVsz7L/c8MxMX1zIGTNVSbm7ufPjpdAoKCtizewczp39OcEgozVu0AqB7zz7WtFHRMURFx/DI6PvZt3c3LVu1qaZSV61VP00iPfEIdz3zXXUXxekOxJd+X6VmQWqWmUcHa6kXCKdSqrFgleBaHXvnLA43+iZPnsyrr76K2WwmKCgIVVVJTU1l/PjxvPXWWzz33HPlymPSJNtB6BMnTsS/fcWf5uHm4Yei0VJwySBfSzQvwO42lqjeldMHRTTj7ucWYizIwWwqxs2zDj9NGUZQRLMKl7Uy7Dxo5FhCafTG1cUSrfLx1NhE5Xw8NJxKqvhNCRfyqux8r1Z+IZjMKp5uClzUAPd0U8gpsN8gzy3gfPpSngaFnPxr+6euMTkNfbDt34A+OIDirBzMhUaK0s5hLilBH+R/SRp/jEm2EcLq4u5p+fu+9O81LzsdTx/7f9//Jun0fvJz0pn539us61SzidNHtrJ97bc8/9leNJrqjXp5efug0WjIPGf7oy4r8xx+dcq+yUaj0RAaFg5ATP0GJJw+zS8/fmdt9F0qJDQMb28fks6eqRGNvgvX8/zsS6/P6Xh4V+x4X2zVj69zfN9a7nr6G7z8Qq46v8qSXwRms3rZTRseBsgttL9NbiGX3bx2pfQAmXmQX6ji56lwKqV2X//k2buOcaiJvGbNGl5++WVeeukl0tLSSExMJCkpidTUVF544QVeeOEF1q1b96/5TJgwgaysLJtlwoQJFa4EgNZFR1DdpsQfKR27pJrNJBzZTEhUK7vbhES1IuGI7Vin+MMb7abXu3nh5lmHzNSTpMTvI7pZn8vSVKXCIpWUDJN1OZNSQmaOiSYxpVcLg14hpq6Oo/FFFf6c1HMmp+R7tUxmOJum0iC09BRWgPphGk6XcRE7nWKmfpjtBaJBeNnprxWZm3fh36eTzbqAvl04t3kXAGpxMVk79hPQp3NpAkXBv3dnMjdX3vipq6F10RFSryknD9j+fZ86uInwmIqNO4yM7cRDr/7G6JcXWpeQyGY07XAzo19eWO0NPgBXV1fqN2jEnt07rOvMZjN7du2gcWyTcuejqmaKi8seuZ+WlkpOTvYVG5JVSeuiIziiKacP2x7v04c3ERpV8XGmqqqy6sfXObpnBXc+OQefgIjKKG6lMZsh6RxEBdtepyKDFM6k279OnUlXibwkfVRw2ekBvNzATW8Z3iKuLw5F+qZOncpDDz3Ea6+9ZrO+Tp06vP766yQlJfHFF1/Qo0ePK+aj1+vPd+de6upOwFY9R7Ly+xcIimhGcL0W7P5zDiVFBcR1sPySX/HdeDy8g+hy07MAtOz+AAs+G87OtTOJiuvF4Z1LSInfT+87X7fmeXTXMgyefnj5hZGeeJj1C/5LdLO+1GvczW4ZqtPyTXnc2suT5IwSUs+ZuL2vF5k5JnYcKP3JN35kHbYfKGTl35YpCvQ6heA6pV9ugb4u1AsxkVdgJj3LXO58q8OGfSbu6OFCQpqGhFSVrs206Fxgx2HLHeR39HAhO1/lj22W1xv3mxgz2JVuzbQcijfTIkZDeIDCwr9KI5ZuOvD1VKzj/AJ8LP/mFKjkFlRxBcug9XDHo0E962v36Lp4t4ylKCOLwvhEGr85DkN4MLtHjQfg1Jc/EPnYfcRO/j/iZ/9CQO9OhN45iK23jLXmcWLKLFrOfIfM7fvI2rqHqKdG4OLhRvyc+VVev7J06DeKxbPHExLVjLCoFmxdNYfiogJadLH8ff8263m8fIPpNdTy920qKSIt8Zj1/7mZySTHH8BV706doEj0Bk8Cw23Hcun07rh5+F62vjrdOvROPvrgbRo0bEzDRrH8tugXCo2F9O1/AwBT3puMv38AD4waA8DP876jQcNGhISGUVxczPZtf7N29QoeefwZAAoKCpj33Rw6d+2Br18dkhLPMmfmNEJDw2ndtn11VfMybXuPYtk34wmu14yQyBbsWDuHYmMBTTtZjvfvc5/H0zeY7reUHu/0pNLjnZOVTEqC5Xj7BUYCsPrHSRzcvphbxnyOzuBhHZutM3jhqqve2Qgu2HJY5aYOCkkZcDZDpX0jBVcX2HPC8v14UweFnAL4c6/l9bYjKvf1VujQSOFookqTegqhfvD7Nsv7ri7QrYnCoQSVvELw9YTeLTScy4UT18BTU6V71zEONfq2bNlyxRs1HnjgAYYPH37Vhaqohq1vpCA3gy3LPjk/mWccNz883dpdm3PurM2cgqHRbRhw/3ts/n0Km5Z8iG9gFDeO+hT/0NILfl52Cht+fft8t0IgjdvdSvv+j1Z53cpjyfo89K4Ko27xsU6i/N7cDIov6oUNqqPFy730jyQ6zJUXR5d26913o2Vyp/U78pm+IKvc+VaHvSfMeBhK6NfWBS83SExXmbW82Nqt4eup2AxSPp2iMm9NCf3bahnQTkt6tso3K0tIPleaKC5Swx09Sh8leE8fy/9X7Shh1c7qn4wawKdtMzqvKv07bPLeiwDEz53PntET0IcG4hYRan2/4GQCW28ZS5P3JxD15HAKE5LYO/Zl0lZssKZJ/Ol3dIF1aDTxKcvkzLsPsOWmhyhKsT8nWnVo0v5G8nMzWP/rx+RlpxJUN45hT31l7e7LzkhEuegLICczhZlvDrG+/nvFTP5eMZN6jTpw37PVc8NZRXTr2Zus7Ey+/3oW586dIzqmPhNffwdfP0tULjU1BUVTWm9jYQHTPv+I9LRUdDo94RER/Oe5F+nWszdg6fo9eeI4a1b+QV5eLn51/GnVph33PTAK1ytMbVPVGre1HO+NSz4mP8dyPb/tsdLjnXPO9njnZqXwzTtDrK+3r5rJ9lUzqdugA8Oethzv3Ru+B+Cnjx+w+ayB9022Niar24F4S/du92YKHgaFlEz4cZ3ZenOHt7uCetGF7Uw6/LrZTI9mGno2VziXC7/8ZSYt2/K+qkKQr0LzKAWDK+QUWu7uXbdPxVRzZ6YSTqKoavnv3XF3d+fw4cPUrVvX7vsJCQk0bNiQgoKKhUQ+WXL9hZqfHKww/JXE6i5GlZv7Rigvzih7bsBr1Vuj9SxxrXkTADvb4OJDzF5b3aWoeiN7wYFjZ6q7GFUurn440/6o7lJUvbEDYPKPNePHYVWaMKz6hkKk/rPFaXkHNungtLyri0Nx0cLCQnS6sn8Jurq6UlRUfeO8hBBCCCGEfQ7fvfvVV1/h6elp972cnJyrLpAQQgghRHmoFX/GxHXJoUZfvXr1mD59+r+mEUIIIYQQNYtDjb6TJ086qRhCCCGEEI5Rr9HHpTmLQ3HRG2+8kays0uczvv3222RmZlpfp6en06RJ+eeOEkIIIYSoKFXROG25FjlUq2XLltk8Pu2tt94iIyPD+rqkpIRDhw5VXumEEEIIIUSlqNCzdy9wYLYXIYQQQohKJY9hc8y1Gb8UQgghhBA2HIr0KYpi80SLC+uEEEIIIaratTr2zlkcavSpqsrIkSOtz80tLCzkkUcewcPDA8BmvJ8QQgghhKg5HGr0jRgxwub1/ffff1ma6nz2rhBCCCGuHzJli2McavTNmjXLWeUQQgghhBBOdFV37wohhBBCVBe5e9cx0ugTQgghRK0kN3I4RvaWEEIIIcRV+uyzz4iKisJgMNCxY0e2bNlSru1++OEHFEVhyJAhzi0g0ugTQgghRC2lojhtccS8efMYN24cEydOZMeOHbRs2ZKBAweSkpJyxe1OnjzJc889R/fu3a9mN5SbNPqEEEIIIa7CBx98wJgxYxg1ahRNmjRh6tSpuLu7M3PmzDK3MZlM3HfffUyaNImYmJgqKac0+oQQQghRK6mKxmmL0WgkOzvbZrE3H3FRURHbt2+nX79+1nUajYZ+/fqxadOmMsv++uuvExQUxOjRo52yb+yRRp8QQgghxCUmT56Mj4+PzTJ58uTL0qWlpWEymQgODrZZHxwcTFJSkt28N2zYwIwZM5g+fbpTyl4WuXtXCCGEELWSM6dsmTBhAuPGjbNZd+GJZFcjJyeHBx54gOnTpxMQEHDV+TlCGn1CCCGEEJfQ6/XlauQFBASg1WpJTk62WZ+cnExISMhl6Y8dO8bJkye5+eabrevMZjMALi4uHDp0iPr1619l6e2T7l0hhBBC1ErOHNNXXjqdjrZt27Jq1SrrOrPZzKpVq+jcufNl6WNjY9m7dy+7du2yLrfccgu9e/dm165dREREVMq+sUcifUIIIYSolWrKEznGjRvHiBEjaNeuHR06dGDKlCnk5eUxatQoAIYPH054eDiTJ0/GYDDQrFkzm+19fX0BLltf2aTRJ4QQQghxFe666y5SU1N59dVXSUpKolWrVixbtsx6c8fp06fRaKq/c1VRVVWt7kIIIYQQQjjq2PHjTsu7fhXNnVeValSk76tV/57mWvNQXxjzVnp1F6PKTX/Rn/smnKnuYlS5byeHM3ttdZei6o3sBUtcG1d3Marc4OJDfLfh+vtdfW83hZmrq7sUVe/BPvD0RznVXYwq99HTXtVdBFFONarRJ4QQQghRXqpaM8b01RbV38EshBBCCCGcTiJ9QgghhKiVVIldOUT2lhBCCCHEdUAifUIIIYSolWrKPH21hTT6hBBCCFErSaPPMdK9K4QQQghxHZBInxBCCCFqJYn0OUYifUIIIYQQ1wGJ9AkhhBCiVpJIn2Mk0ieEEEIIcR2QSJ8QQgghaiV5DJtjJNInhBBCCHEdkEifEEIIIWolGdPnGIn0CSGEEEJcByTSJ4QQQohaSSJ9jpFGnxBCCCFqJWn0OUa6d4UQQgghrgMS6RNCCCFErSRTtjhGIn1CCCGEENeBSm/0/fzzz5WdpRBCCCHEZcwoTluuRQ5375aUlHDw4EF0Oh2NGjWyrl+0aBGvvvoqBw8e5I477qjUQjpix5/fsnXFDPKyUwmqG0vfYa8QGtXCbtq0s0fYsPhjkk/vJzvjDL3vmEC7PiNt0uxc9x271n1PdsYZAPxDG9LlxseIadrT2VWpkFt6uNG9lQF3vcLRhGK+XZZHyjnzFbfp1VbPwI5u+HhqiE8u4fs/8jmZWAKAv4+Gtx/3s7vd1Pk5bD9YVOl1qIjb+3nRu70HHm4aDp8yMnNhJsnppjLTx0bpGNzDk+hwHX7eWj74Op3t/xRedb5VZfuab/l7xQxysyzn+YC7XyEs2v55nnr2COt//Zik0/vJSj9D3zsn0KHfyDLz3rTsS9YueJ92fYbT/66XnFQDx9Xp1o6YZ0fj06YZhrAgtt3+GMm/rrryNj060OS9F/Bs0pDC+ESOTv6ChLkLbNJEPnovMeNGow8JJHvPQfY/8wZZW/c6syoO27L6WzYum0FuVhohEbEMuvdlwmPsH++UM0dYu/Bjzp7aT1b6WQbePYFO/Udcli77XDIrf36Po3vXUVxUSJ2getz64FuERTV3dnXKbcday3l+4Xre765XCCvjep569ggbfrOc59kZZ+hzxwTa9x1pk2bnn9+xc/33ZKVbrucB56/n9ZvVzOv5oE46OjdzxU2vcOKsiZ/WFJKaqV5xm24tXOnTVoe3u8KZNDO/rC3kdHLpd8CwPnoaR7jg7alQVKRyItHEr38V/ev3hLg2OBTp27dvHw0aNKBly5bExcVx2223kZycTM+ePXnwwQcZNGgQx44dc1ZZ/9XBbUtZ+8tkugx+nOETFhAYHstPn4wmLyfdbvriogJ8A+rSY8izeHgH2k3j5RtCzyHPMfyF+Tww/hciG3ViwdTHSTt7xJlVqZAbOhno287AN7/n8tbsLIqK4Zm7vXHRlr1Nuzgdw/p68NuGAt6YmUVCioln7vbCy93yKycj28yzH2XYLIvW5VNoVNl3rGY0+G7q4cnALp7MWpjJq5+nYCxSeeHBAFyv8JNGr1M4nVjM7EWZlZpvVfhn61JW/TyZboMf58GXFhBcN5Z5H48mL/vK53mvoWWf5xecPbmHnet+IKhuY2cU/apoPdzJ3nOIfU9NKld6t6i6tP91Gulr/2ZDu1s58ckcmk97k4D+3axpQu8cRNy7Ezjy5mds6DCUnD0H6bhkBrrAOs6qhsP2bVnKH/PepuctjzN24nyCIxrzzYcPXeF4F+IbGEG/25/F08f+8S7Iy2Lm5HvQal2475npPPbGEgYMG4/B3ceZVXHIgW1LWf3LZLoOfpyRLy4gqG4sP17hPC85f573vNL13M9yPR8xYT4jXviFyMadmD/1cVJr4PW8b1sdPVrp+HG1kQ/n5VNUrPLIEPcrXs9bN3RhaHc9y/828u73+ZxNNfHoEHc83UqjVvEpZr5bUcjkuXl8sbAAFIXHhrqh1NLAloritOVa5FCjb/z48TRo0IBFixZx9913s3DhQnr16sXNN99MQkICb7/9NnXr1nVWWf/VttWzaNF1GM07305AaAMG3DMJV52BfRt/sZs+NKoFvW4bT1y7wWhddHbTNGjRh5hmPfELiqJOcDTdb/0POr07Z0/scmJNKqZvBzeW/FXA7iPFnEk1MfO3XHy9NLRubL9uAP07GFi/y8jGPUYS00x883seRSXQtaUeAFWF7DzVZmndSMe2A0aMxVVVsyu7oasnC9fksP1AIfFJJXzx4zl8vbS0beJW5ja7Dxv5aUUO2+xE964m36qwZeUsWnYbRouutxMQ1oAb7puEi87AnjLO87CoFvS5YzxN2g/GxbXsc6GoMI9fZ/wfgx54s0Z9+V+QunwdhydOIXnRynKlj3z4bgpOJHDg+XfIPXicU59/S9Ivy4l+eqQ1TfQzo4if8SMJc+aTe+AYex+biCm/kIiRtzupFo7b/Mds2vS4k9bdbicwrAE3PWC5ru3cYP94h0c3Z8Cw52nWcTBaF1e7af76/St86oRy64OTCY9pgV9gXeo360adoHrOrIpDtq6aRcuuw2jRxXI9H3j+er53U9nX8963W87zK13P6zfrSZ3z1/MeNfh63rO1K39sMbLveAln08x880chPh4KzeuX/auzVxsdG/cX8/c/JSRnmPlxtZGiEpVOTUvPg037ijl21kRGjkpCqpmlm4z4eWmo431tNnKELYcafVu3buW9997jpptu4vPPPwfgxRdf5LnnnsPNrXq/CE0lRSSd3k9k4y7WdYpGQ2RsF86e2Fkpn2E2mziwbQnFRfmExbSulDwrS4CvBl9PDQdOlLbECowqx8+WEBNu/yKh1UBkqAsHTpZG7FTgwIki6ofb/7KoF6KlXogLG3YbK7X8FRXop8XPW8v+o6XlKTCqHIsvomG9shs41ZXv1bpwnkfH2Z7nUbFdOHP86s7z5d+/ToPmPW3yrs18O7UibfUmm3WpKzbg16kVAIqrKz5tmpK2amNpAlUlbfVGfDvVjL9vU0kRZ0/tJ+aS4x3TpDMJx3ZVON9Du1YTGtWMnz5/mnef6cK014ay/c8fK6HElcN6PY+t/PP8ArPZxD9bLdfz8Bp2Pff3VvDx0HD4dOlQksIiOJVkIjrEfqhPq4GIINttVODwaRNRIfa/6nUu0LGJK2lZZjJzrtxtXFOpquK05VrkUEdVWloaYWFhAPj4+ODh4UGnTp2cUjBHFeSeQzWbcPf2t1nv7uVPRvLxq8o79cwhvn3vbkqKjej07gx5+DMCQhtcVZ6VzcfD8kednWc7LiMnz2x971Ke7gpajUJ2nu0fe3aeSoi//RO+W0sDZ9NKOHampBJKffV8vSwXwKxc23F2WbkmfL0qfp+Ss/K9WvkXznMv2/Pcw9uf9KSKn+f/bF1C8ul/GPnitXMjlj44AGNyms06Y3Iarj5eaAx6XP180Li4YExJvyRNOh6NY6qyqGXKz7Ecbw/vS493AGmJJyqc77nUeLat+Z7OA0bSbfBYzp7cy7Lv/4vWxZVWXYdebbGv2oXz/NJ6u3v7k14J1/Ov3y29ng8dW/Ou514elutvTr7ttTknX7W+dykPN8v1PCfffNk2QXVsG4rdWrhyS1c9ep1CcoaJzxfkY6qlQ/qu1W5YZ3Go0acoCjk5ORgMBlRVRVEUCgoKyM7Otknn7e19xXyMRiNGo22kSK/XA3pHilNl6gRHM2LCQoyFORzesZylc8dz93++qdYLRcemOu4f5Gl9/cmP2VdIXTlcXSyfu3hDgdM/qyxdWrkxeoiv9fW7c+yP7xHll52RyIp5/+WeZ2bi4loz/wZF5VJVlbCopvS9fRwAoZFNSDlzhO1rf6gRjT5nqhMczagXF2IsyOHQzuUsmTOee8dV7/W8bWMX7upjsL6e9qtzr7HbDhZz6HQJ3u4aerfVMWqQG1N+yqek+u9RE07mUKNPVVWbO3ZVVaV169Y2rxVFwWS68pkzefJkJk2yHYw9ceJE6nZ/zZHi2HDz9EPRaMm/ZJBvfk46Ht4BFc4XQOuiwy8oEoCQes1IPLWX7WvmMvDe168q36ux60gRx89mWl+7ai2/drw9NGTlle5/Lw/LHbn25OarmMwq3pf8cvT2uDz6B9A2VofOVWHTvurr2t3xTyHH4lOsr13O19vHU0tmTulPVR9PLacSKz7oMDPH5JR8r5b7hfP8kpuT8rLT8fSp2HmedHo/+TnpzPzvbdZ1qtnE6SNb2b72W57/bC8azRVGj9dQxuQ09MG2+0QfHEBxVg7mQiNFaecwl5SgD/K/JI0/xiTbCGF1cfeyHO9Lb17Iy06r8PEG8PIJJDDMtpETEFqfA9v/qHCelenCeX5pvfOzK/l6HtmMxJN72bZ6LjfcV33X833HSziVlGd9feG65uWukH1RtM/LXeFMqv2QXF6B5Xru5a4BzDbb5FzSA1RYBIVFKqmZJk4mFTD5EU9a1Hdhx+Ga0YPjiGu1G9ZZHGr0rVmzplI+dMKECYwbN85mnV6v5+sNFc9T66IjpF5TTh3aRMNW/QBQzWZOHdpEm573X01xL6eaMZVU752rxiJILbL9Q87MNRMb5Up8iqXBYtApxIS58OcO+zcrmMxwKrGEuChXdh22NGQUIC7KldXbL9+mW0sDu48UkZtffWM/CotUCi+ZMuVctomm9fXWxpibXqF+hI6Vf+fZy6JcUs+ZnJLv1bpwnp88sIlGF5/nBzfRtnfFzvPI2E489OpvNusWz5mAf0gMnQeOqZUNPoDMzbsIHNTDZl1A3y6c27wLALW4mKwd+wno07l06hdFwb93Z059/k0Vl9Y+rYuOsMimHD+widg2pcf7+IHNdOhzX4XzjWjYmvQk2+7h9OST+PiHXVV5K8vF1/OLz/OThzbRtlflXs/VmnA9LwZj1sXXVZWsPDONIrScSbNc5/U6iAzRsmGv/R+dJrPlztxGEVr2Hrc03hSgUYSW9Xuu8ENVsaS70l3B4trhUKPv4qje1dDr9ee7cytXuz6jWDp3PCGRzQiNbMG2NXMoNhbQrLMlgrFk9vN4+QbTY8izgGWwcFqiZYoZk6mI3MxkkuMPoNO7W38Jrlv4PtFNe+BdJ5SiwjwObF3M6SNbuPOJGZVe/qu1aksBg7u6kXLORFqmmVt7uJOZY2bnodIL2rh7vdl5qIg15xt1K7YU8uDNnpxMNHHibAn9OhjQuSr8tcc2mhfop6FhPRc+npdTpXUqj2V/5TKkjxdJ6SWkZpRwR39vMnNMbP+ntItkwmh/tv1TyIpNlgabXqcQ4l96+gf6aYkMdSU330x6lqnc+VaHDv1GsXj2eEKimhEW1YKtq+ZQXFRAiy6W8/y3WZbzvNdQO+d5Sel57qp3p05QJHqDJ4HhjWw+Q6d3x83D97L11Unr4Y5Hg9K7S92j6+LdMpaijCwK4xNp/OY4DOHB7B41HoBTX/5A5GP3ETv5/4if/QsBvTsReucgtt4y1prHiSmzaDnzHTK37yNr6x6inhqBi4cb8XPmV3n9ytJpwEgWzniBsKhmhEe3YPNKy3WtVVfL8V7w1Xi8/ILod3vp8U49e+F4F5N9Lpmk05brWp1gy3WtU/+RzJx8D+uXTKVpu0GcObGHHX/+yE0jqi/adan2fUexZM54Quo1IzSqBdtWW+rd/Pz1fPH563lPO9dzcxnX8z8Xvk/MRdfzf85fz4c9WfOu53/uLGZABz2pmWbSs1Vu7KwjK09l77HSaNzjt7mx52iJtVG3dkcR9w0wcDrFxOkkMz1bu6JzVfj7H8v7/t4KrRu5cvB0CXkFKj6eCv3a6SkugX9O1s6+XRnT5xiHGn2+vr4o5ZjM59+6d50ltt2N5Odm8Nfij89P5hnHHU98Ze0OyDmXiKIpHYSfm5XC3MlDrK+3rpzJ1pUziWjYgbv/8zVg6R5eOmc8edkp6A1eBIQ35s4nZhAV17VK61YeyzYXotMpPDDIE3eDwpH4Yj6al20zTiPQV4One+kx3HagCC/3fG7t4Yb3+a7gj+blkHNJ9263FnrOZZv553gNmaflIovX5aLXKYwe6ou7wTKJ8juz0im+qKci2N/lfLeHRUy4Ky8/XDqX1wM3+QKwbnse037OLHe+1aFJe8t5vv7X0vN82FOl53l2RiKKUlrXnMwUZr45xPr67xUz+XvFTOo16sB9z35d1cWvMJ+2zei8qrS8Td57EYD4ufPZM3oC+tBA3CJCre8XnExg6y1jafL+BKKeHE5hQhJ7x75M2orSLoXEn35HF1iHRhOfskzOvPsAW256iKKUmjNWtFmHG8nPyWDtwk/IzU4lJCKO+/4z3dq9m5Vx1ua6nJOZwrRJpePyNi2fyablM4ls3J6Rz1v2X3h0c+56/BNW/fIBf/76OX6BdRl49wRadLq5ait3BXHnr+cbLrqeD3uy7PM8NyuF2W8Nsb7esnImW85fz+8dZ6l3Xk46i2eXXs8Dwxsz7MkZRNfA6/mq7UXoXOGuvgbc9ArHz5qYutB23J2/jwaPi+bg23mkBE83Izd20uPtrpCQZmbqwnzrDSHFJqgfrqVXa8uEzzn5KsfOmJjyYx65BbXz7l3hGEVV1XIf6T///NP6f1VVufHGG/nqq68IDw+3SdezZ8VmN//qypPrX5Me6gtj3qo5XzBVZfqL/tw34Ux1F6PKfTs5nNlrq7sUVW9kL1jiWvMmfHa2wcWH+G7D9fdlem83hZmrq7sUVe/BPvD0RzWvN8TZPnraq9o+e8vBLKfl3SG25s1XerUcivRd2pjTarV06tSJmJiaMb2BEEIIIYSwr5ofKCWEEEIIUTG1dHrBaiONPiGEEELUSjJli2Ou+tEC5bmxQwghhBBCVC+HIn233XabzevCwkIeeeQRPDw8bNbPn19zpjsQQgghxLVJpmxxjEONPh8f2ztZ7r+/kic9FkIIIYQQTuFQo2/WrFnOKocQQgghhENkTJ9jrnpMnxBCCCGEqPnk7l0hhBBC1Eoyps8xEukTQgghhLgOSKRPCCGEELWS+fp7yuFVkUafEEIIIWol6d51jHTvCiGEEEJcByTSJ4QQQohaSaZscYxE+oQQQgghrgMS6RNCCCFEraTKjRwOkUifEEIIIcR1QCJ9QgghhKiVzHL3rkMk0ieEEEIIcR2QSJ8QQgghaiW5e9cx0ugTQgghRK0kN3I4Rrp3hRBCCCGuAxLpE0IIIUStJI9hc4xE+oQQQgghrgOKqkqPuBBCCCFqn2W7ipyW9w2tdE7Lu7rUqO7diXOLq7sIVW7ScFdGvpZc3cWocrNfC+aZT3KruxhVbsqTnhw4dqa6i1Hl4uqH892G6+/35b3dFJa4Nq7uYlS5wcWH2H80sbqLUeWaNghl1prqLkXVG9W7uksgyqtGNfqEEEIIIcpLpmxxjIzpE0IIIYS4DkikTwghhBC1ktyV4Bhp9AkhhBCiVpJn7zpGuneFEEIIIa4D0ugTQgghRK2kqs5bHPXZZ58RFRWFwWCgY8eObNmypcy006dPp3v37vj5+eHn50e/fv2umL6ySKNPCCGEEOIqzJs3j3HjxjFx4kR27NhBy5YtGThwICkpKXbTr127lnvuuYc1a9awadMmIiIiGDBgAGfOOHdKL2n0CSGEEKJWUlXFaYsjPvjgA8aMGcOoUaNo0qQJU6dOxd3dnZkzZ9pN/+233/LYY4/RqlUrYmNj+eqrrzCbzaxataoydkuZpNEnhBBCCHEJo9FIdna2zWI0Gi9LV1RUxPbt2+nXr591nUajoV+/fmzatKlcn5Wfn09xcTF16tSptPLb43Cjz2g0kpeX54yyCCGEEEKUm1l13jJ58mR8fHxslsmTJ19WhrS0NEwmE8HBwTbrg4ODSUpKKlc9xo8fT1hYmE3D0RnK3ehLTU1l0KBBeHp64u3tTadOnTh69KgzyyaEEEIIUS0mTJhAVlaWzTJhwoRK/5y3336bH374gQULFmAwGCo9/4uVe56+8ePHs2vXLl5//XUMBgPTpk1jzJgxrFlzHT5oUAghhBDVzpmTM+v1evR6/b+mCwgIQKvVkpycbLM+OTmZkJCQK2773nvv8fbbb7Ny5UpatGhxVeUtj3I3+lasWMHs2bMZOHAgADfddBNxcXEYjcZy7RQhhBBCiMqk1oDJmXU6HW3btmXVqlUMGTIEwHpTxhNPPFHmdv/73//473//y/Lly2nXrl2VlLXc3btnz56lZcuW1tcNGzZEr9eTmJjolIIJIYQQQtQG48aNY/r06cyZM4cDBw7w6KOPkpeXx6hRowAYPny4TdfwO++8wyuvvMLMmTOJiooiKSmJpKQkcnNznVpOhx7DptVqL3utyoPvhBBCCFENzDWkCXLXXXeRmprKq6++SlJSEq1atWLZsmXWmztOnz6NRlMaZ/viiy8oKirijjvusMln4sSJvPbaa04rZ7kbfaqq0qhRIxSlNJSam5tL69atbSqSkZFRuSUUQgghhKjhnnjiiTK7c9euXWvz+uTJk84vkB3lbvTNmjXLmeUQQgghhHCIdDY6ptyNvhEjRjizHEIIIYQQwokcGtMnhBBCCPH/7d13eJNV+8Dxb9Ks7l1ayihllb2nyN6IggoqQ0FUHIiKiuL7KoID/L0ogoqiMgUVEEEQEQQERNl7lLIKdO890jTJ749IamgLbWmb1t6f68p1Nc9znifnJCfNnfuc86SqkExf6ZQ46AsODi5RuStXrpS5MkIIIYQQomKUOOi7evUq9evXZ8yYMfj5+VVknYQQQgghbstktv91+qqTEgd9a9asYenSpXz00UcMGTKExx9/nKFDh9qs3K0KOjdV0r2FEhdHiEs288shE1FJxed/m9dX0LetAx4ukJwOvx0zcjHKUl6pgH7tlDQOVOLpArkGuBJjZscxIxk5ldWi0hnZx5le7R1x0im5GJHHyp8ziEs23vKYfp0cGXKXM+4uSq7H5rNqazrhUfnW/e4uSh4a4EKLhhp0GiUxSfn8vDeLI6GFf3jaXoZ00dC1hQpHrYLwGCPrfteTmHbrvH+PVmr6tlfj6qQgOtHE+r16rseZrPtH99HSpK4Dbs4K8gwQHmNk81964lPsP57wy+aNbFi/htSUZIIaNOTJZ56nSdNmRZbd/+defljzLTExURjzjQQEBnLfyFH06TfQWmbBRx/w+45tNse169CJme98UKHtKK1Du1bz169LyExLxL9uCEPG/JfA4KKvYh8fdZHdGxcSfe0saUnRDHp4Bl0HFJ6bnJ4Sx44f5nHp9F4Mebl4+dXjvsffp3ZQq4puTol49ehI8MuTcG/fEl1tP4488Cxxm3be+pienWk+73VcmjcmNyKGS3M+J3LlBpsy9Z8ZQ/C0SWj9fUk/dZ6zL75D2uHTFdmUUtv68wY2rv/+737eiCeenkrjYvr5gT/3sn7tqoJ+XjuQe+9/iN59C/r5Jx/N4fedtv28bftOvPXO/yq0HaV1dPdqDm5fQlZ6An51Qhjw0JvUblB0P0+IvsgfmxcSe+0s6clR9Bs1g079JhR77v2/fsmejR/Sse+j9B/9nwpqQeWR4d3SKXHENmrUKLZu3cqlS5fo0KEDL730EnXr1uX111/n4sWLFVnHEmsRpGBQRyW7TxpZ/HM+sSkwvr8DzsX8lF1dXwUP3u3A8Usmvvg5n/MRJh7u7YCfh2W/WgUBXgr2nDLyxZZ81uw24uMGj/RxKPqEdjb0LicGdHFixc8ZzP46GX2emZfHe6C+RWjfuYWWhwe5snF3JjMXJxERZ+CVcZ64Ohd8e3pypBv+Pio+/i6V/36exNFQPc+Ocqeef9WYEtqvvZqebdSs+13P/LU55Bng6fscUd3iZWrXWMWIuzX8eiiPed9nE5Vo4ul7HXFxLGh3RLyRb3fkMndVNl/8lIMCeOY+RxR2/mK5b8/vLP3qcx4e8ygffbKYoOCGzHrzNVJTU4os7+LqxqiHx/LBh5/y8aKv6Nd/MJ/M/z+OHz1sU659h84sW/WD9fby9P9WRnNK7MyhX9i+Zi697n2OyTN/pFbdpqya/wRZ6UlFljfk5eLhW5f+D7yMi7tvkWVystJYOucRHBxUjH3xK559ZwsDR7+Gzsm9IptSKg7OTqSfCuPM1FklKu8YVIdOmxaTtPsg+zreR/gnK2i1+F18BvSwlgkYNYRm/5vBxXc/Y1/nkWScOk+XLUvQ+HpVVDNKbd/eXSz7ahGjx0xg3sKvCGrQkNlvvnqLfu7KAw+NZ+68Rcz/bAl9Bwzh0/lzOX70kE25dh06s+Sb9dbbtOlvVUZzSiz0yC/s+mEOPe55jolvbMCvTghrPplUbD/Pz8vBw6cOvUe+jLNb0f38hpirpzjxx/f4BjatiKqLaqDUabrAwED+85//cPHiRb799lsOHjxISEgIKSlFvxErU/dmSo5eNHHispmENPj5gBGDEdo1KrqZXZspuRRt5s+zJhLTYNcJEzHJZjo3tZTXG2DlDiNnr5lJSofIRDNbDpkI9FHi7lyZLSuZgV2d2LQ3i+NheiLj8vlqQzqerg60Dyn+Z/IGdXNmz7Ec9p3IJTrByIqfM8gzmOnZztFaplFdNTsOZhMelU9CipHNe7PIzjUTVFtdGc26rZ5t1Ww/nMeZcCMxSSZW/5aLu7OCVsHFB6W926rZf9bAodB84lLMrPtdT16+mS7NC47ZfzafK9EmkjPMRCaY2HIgD09XJV6u9o36ftqwjoGDh9Jv4BDq1gvimSkvodVq2bl9a5HlW7VuS9fud1O3Xn0CAgIZPuIBghoEc+6sbVZHpVbj6eVlvbm4ulZGc0rswPbltO85inY9HsC3diPuGT8LtUbH8X3riywf2KAVA0dPp2WXYTioiu6rf279GnevAO57fA6Bwa3x9K1Dw5Y98PKrV5FNKZWEbXu5MPNj4n7aUaLy9Z96mJzwSEKnf0Dm+StcW7Sa2PXbaPDCBGuZBi9OJGLJWiJX/Ehm6GVOPzsTY3YudSc8UEGtKL3NG9YxYPAw+g2w9PPJU6ah1enYtf2XIsu3bN2Ort3vpk69+vgHBHLPfQ9Sv0FDQs/Z9nO1Wo2nl7f1VtX6+aEdy2hz12had38An9qNGDxmFmq1jlN/Fd3PA4Ja0/eB12jeaRgOKk2x583LzWLT0lcZMu7dKvWl5k6ZzRV3+zcq09hsbm4uq1atYtasWRw8eJBRo0bh5ORU3nUrFQclBHgruBJT8EqZsQzH1vUt+kO6jq9teYDL0Wbq+hb/tOg0YDKbyc0rl2qXG19PBzxcHTh3paBiOXozlyMNNKxT9D8CBwcIqq2yOcZshrNX8mhYp+BD8lKEgc4tdTg7KlAooEtLLWqVgvNX7f8keLspcHdWciGiYAg7Nw+uxZkI8i/6dXRQQh0/22PMwIUII0H+RacHNSro0kxFYpqJ1Ez7/TcwGAxcvnSB1m07WLcplUratO1A2Plztz3ebDZz8sQxoiIjadHSdrjozOkTPPbI/Tz75KN88el80tPTyr3+ZWXMzyP62lmCm3W3blMolQQ370bk5RNlPm/YiV0EBLVk3aIX+N+L3Vn89kiO7llbDjW2H4+ubUnctd9mW8Jv+/Ds2hYAhVqNe/sWJO78q6CA2Uzirr/w6NquEmtaPEs/DyvUz1uXop+fOnGU6MgImrdsY7PvzOkTTBgzgilPjWfxZx+RUcX6eez1swTd1M+DmnUn6srxOzr39u9n07BlL5tzi5qnVONzBw8eZMmSJaxdu5bg4GAef/xx1q9fj6enZ0XVr8SctOCgVJB501y7zBwzPm5FB30uOst+m/K54OJYZHFUShjQ3oEz4Wb0hvKodflxd7EEOGmZJpvt6Vkm676buTopcVAqijwmwKcgUFy0Lo1nHnTns9f8yDeayTOYWbgmlfjbzBWsDK5Oltc2I9v2dczINuHmXPTr7uyowEGpKOIYM7U8bZ+ru1qpuLe7Fq1GQVyKic835mC0fboqVUZ6GiaTCY+b3nPuHp5ERlwv9risrEwmjR+NwWBAqVQy+bkXadu+4Ae+23foRLfuPfCrFUBsTDSrVizhnbdeZ+6Hnxb6+UV7yM5IwWwy4uzmbbPd2c2HxJjwMp83JSGCI79/R7eBE+gxbDLRV0/z63fv4aBS0/aukXdabbvQ1vJBH5dos00fl4ja3RWlTova0x2lSoU+PummMkk4Ny3ZVRoqmrWfe9gON3t4eBJ1m37+5KMPWvv5U8++RNt2Bf28XYfOdOnek1r+AcTGRLF6xde8M/M15sz7rGr088xi+rmrN0mxZb8yxrnDW4i7fo7HZvxwp1WscqrKz7BVFyUO+lq0aEF8fDxjxoxhz549tGnT5vYHFUOv16PX2y4C0Gq1lDHxWCmUChjVy/JP4eeD9g92urXS8djwgmGJ+atTK+yx7u/jgpNOyQcrUsjMNtE+RMtzo9x5f2kKkfH5tz9BOerQRMXoPgXD1V9urtgVNUfD8gm7bsTNWUHfdhomDNGx4Icc8u3fBUrF0dGJ+Z9+RU5ODqdOHmPpV4uo5R9Aq9ZtAbi7V19r2aAGwQQ1CObpSeM4c/okbdq2t1OtK57ZbKZ2UAv6PTANgID6zYmPusjR3d9X26CvJnN0dOLDT74m9+9+vuzrz6jlH0DL1pYMZo9e/axl6wcFUz+oIc8+MYazp0/YZBX/TdKTY9ix9j0efmEpKnXxU31EzVDioC80NBRnZ2dWrlzJN998U2y5kvz27pw5c5g1y3ZS8syZMyG47CuJsvVgNJkLZelcHBVk5hZ9jCWrp8AyuPd3eR2FsoVKBYzu5YCHs4Llv+VXiSzf8TA9l6MKKnJj0YK7i9Imc+fmbFmRW5SMbBNGk7lQJtDNWUlapiWq8fV0oH8XJ974LJHoBMu2iLh8mtRX06+zIyt+zijPZt3WmfB8rsUVRFwqB0s2z9VJQfo/MneuTkqiEoqOzLJyzBhNZmuWsOAY23OAZag4N89MYpqZa7G5vP+UM62DVRy7WLnBrrWObu4olUpSb5pDm5aagqdX8ZPwlUolAbUDAQhu2IjI69dZv/Zba9B3M/+A2ri5uRMbHVUlgj4nV08USodCk9mz0hNxcfcp83ld3X3xrd3IZptPQENCj24v8zntTR+XiLaW7XOireWDIS0DU66evMQUTPn5aP28byrjjT7WNkNoL9Z+nmr7eZKamoKH5+36eR0AGjRsTGTENX5c96016LvZjX4eExNVJYI+J5di+nlGEs5uZevnsdfPkp2RxLL377duM5uMRFw6zNHdq3n109MolfbPcpaVWS7ZUip2+e3dGTNmMG3aNJttWq2W99eU/ZxGE8QkmQkOUHA+wvLBrQAa+Cs4FFb0eFxkgplgfwUHQgu2BQcoiEgoKH8j4PNyVbB8ez45VeQqJbl5ZnJvGl5NzTDSvIHGGuTptAoa1lHz+5HsIs9hNMLV6HyaN9Bw7LylYQoFNA/WsPOQ5Rit2vKGunlSq8mEXVax6g2gt7kUi5m0LBON6zoQlWh53bRqqF9LyZ+ni47OjSaIjDfRuI4Dp69YnkMF0KSuA3+cunVEr4BbrgquaGq1moaNmnDq5DG6dresxjSZTJw6cYyhw0eU+DxmswmDofi2JiYmkJGRfstAsjI5qDTUrt+CK6H7CWnfHwCzycSV0AN07ju2zOet27gdSbG2w8NJcVdx9659R/W1p9QDJ/Ad0tNmm0+/7qQcOAGA2WAg7dhZfPp2K7j0i0KBd59uXFu0qpJrWzRLP2/KqRPH6NLtbuBGPz/K0HtKnoE1m80YDMXPPU5MjLf0c0/vYstUJgeVBv96Lbh6fj9N2hb082vn99O+97gynbN+SFcmvbnZZtuWlTPw9g+m68Anq3XAJ0rPLr+9q9Vq/x7OvdmdpdD+CjUx8i4HohLNRCWZ6dZMiUYFxy9ZgoGRdzmQkW1mx3HL/QOhJiYOcqB7cyUXIk20bKCktreCzQcsgYBSAQ/1diDAS8HqXfkoFZZMIEBOHnad21WU7QeyGd7TmdhkI4kpRu7v60xKhtEa0AFMf9SDo+f17DxkSWdu25/FkyPdCY82cCXKwMCuTmjVCv44bkmPxiTmE5uUz4Thbny/PYPMbDMdQrS0aKjh429T7dHMQvaeMDCwo4aEVBPJ6WaGdtWQlmXm9JWCbNyzI3ScumJk399B3e4TBsb01xIRb+J6nJFebTVoVAoOnrMc4+2moF1jFeevG8nMMePhoqB/Bw2GfDh3zb5ju/eNHMWCj+bSqHFTGjcJYfNP68nV59JvwGAAPp43B29vH8ZPfBKAH9Z8S6PGTfAPqI3BYODokYPs3vUbTz/3IgA5OTms+XYF3e7qiYenF7Ex0axYupiAgEDadehkr2YW0nXgBDYueZ3aQS0JbNCaAztWYNDn0PYuSwZjw9ev4erpR/8HXgYsk+IToi///beB9JQ4Yq+HotE64VWrvuWcAyawdM4j/LHlC1p0HEJU+CmO7VnLPY/Ntk8ji+Dg7IRzo4LVxE4N6uDWJoS85DRyI2Jo+u40dIG1ODnxNQCuffk99Z8dS8icV4lYvh6fPl0JGDWEw/dOtp4j/ONltFn6AalHz5B2+BRBUx9D5exIxIofK719xRk+chSffDTn737ejM0//YA+N5e+A4YAsODD9/H29mHchKcAWL92NQ0bN8Xfvzb5BgNHjxxgz67tPPXcSwDk5GSz9tsVdL2rJ55/9/OVSxfjX8X6eef+E/l5+WsE1G9JQFBrjuxaQV5eDq27W/r55mXTcfWoRe+RBf08McbSz03GPDJS44iLsPRzT7/6aHUu+AY2sXkMtcYJR2ePQturo3/rKtuKUuKg79ChQ3To0KHYya56vZ6ffvqJ0aNHl1vlSuvsVTPOWhN92zrg4gixyWa+2Wkk6+/hXXdn21RwRIKZH/4w0q+tA/3aKUlKh+93G4lPtex3c4KQupahz2eH217yYdm2fK7GVa3e9suf2Wg1CiYOd8VJp+TC9Tw+XJWK4R8jkX5eKlydCoLrQ2f1uDpnMLKPi/XizB+uSiE9yxLRGk2W+YKj+rvw4iMe6DRK4pLz+XpDOqcu2n/1LsDOYwY0agUP9dHiqFVwJcbI4k228+583JW46Aqi9OMX83F2VDCkiwY3ZwVRCSYWb8qxLuwxGCG4tgO92qpx1FoWfVyONrLgh+xCi38qW49efUhLT+W7b5aRkpJCg+CGzJz9gXXYKyEhHsU/Lpquz81h8aIFJCUmoNFoCaxbl5deeYMevfoAliGxq+FX+H3HdrKyMvH08qZt+46MHT8Rtbr4S0BUtpadh5KdkczujZ+QmZ6Af91mjH3pK+vwblpyNIp/pJ8zUuNZPKsgK7R/21L2b1tK/aadmDDdMkUlsEErHnruE3au/4g9mxbh6VuHQQ/PoHXX4ZXbuFtw79CSbjsLptQ0n/cGABErf+TUpBloA3xxrBtg3Z9zNZLD906m+YczCHr+UXIjYzk9+b8k/rbPWiZm3VY0vl40mTnVcnHmk6EcuucJ8uKLvhacPfTo2Zf0tFS+W7WM1JRkGgQ34s3Z/2ft54kJcSj/8Xrrc3P4atH8gn5epx4vvPIfevS0zFdVKh24dvUKv+/cRvaNft6uE4+Mf7xK9fNmHS39/I/NC/++OHMzHnr+a+vwbnpyDApFwfs7IzWeZe+NsN4/9NtSDv22lLqNOzP25eKnYomaSWE2lyxOdnBwICYmxvoTbG5ubpw4ccL6m7xxcXHUrl0bo7HsWZCZK6vAZLlKNutRNRPejrN3NSrd8rdr8eInmfauRqX7+HkXQi9H2bsala5Zw0C+3Ve1viRVhjE9FGxR17wL4Q4zhHH2Uoy9q1HpWjQKYNnv9q5F5ZvYx36PvXx3xZ17Qu+KO7e9lDjTd3NsWFSsWML4UQghhBDijknYUTrleo0Uhb1/n0oIIYQQQhSpavx4qhBCCCFEKUmmr3RKFfSdO3eO2NhYwDKUe/78eTIzLfOyEhOrxvWdhBBCCCFEYaUK+vr162czb++ee+4BLMO6ZrNZhneFEEIIUWnkZ9hKp8RBX3h42X/fUgghhBBC2FeJg74VK1bwyiuv4OTkVJH1EUIIIYQoEZnTVzolXr07a9Ys6/w9IYQQQghRvZT5On1CCCGEEPZkqmI/h1rVlWohhyzUEEIIIURVIfmo0ilV0NekSZPbBn7Jycl3VCEhhBBCCFH+ShX0zZo1C3d394qqixBCCCFEiUmmr3RKFfQ9/PDD+Pn5VVRdhBBCCCFEBSlx0Cfz+YQQQghRlcjFmUunxJdskdW7QgghhBDVV4kzfSZZFy2EEEKIKqRiE1L/vhHOEmf6hBBCCCFE9VWqhRxCCCGEEFWFzDwrHQn6hBBCCFEtycyz0pHhXSGEEEKIGkAyfUIIIYSolmR4t3Qk0yeEEEIIUQNIpk8IIYQQ1ZJcnLl0JNMnhBBCCFEDKMzyUxtCCCGEqIY+3FhxIczLI/59F2euUsO7T76fZO8qVLqv3vDm8Vnx9q5GpVs604+RUy7auxqVbsOnjVm83d61qHyTB8LSXfauReV7vC+cvRRj72pUuhaNAtiibmrvalS6YYYwegzfY+9qVLp9m3vZuwqihKpU0CeEEEIIUVLmCp3UJ5k+IYQQQogqQRZylI4s5BBCCCGEqAEk0yeEEEKIakmWopaOZPqEEEIIIWoAyfQJIYQQoloyyaS+UpFMnxBCCCFEDSCZPiGEEEJUSzKnr3Qk0yeEEEIIUQNIpk8IIYQQ1ZJk+kpHgj4hhBBCVEsmifpKRYZ3hRBCCCFqAMn0CSGEEKJaMpvsXYPqRTJ9QgghhBA1gGT6hBBCCFEtmWVOX6lIpk8IIYQQogaQTJ8QQgghqiWTzOkrFcn0CSGEEELUAJLpE0IIIUS1JHP6SkeCPiGEEEJUSyaJ+UpFhneFEEIIIWqAf22m796ejtzdVoeTVsGlSAOrf80iPuXWMz57d9AyqIsj7i5KIuLy+W57Nldj8gHwdlcy9znPIo/74scMjp7PK/c2lMWI3s70bK/DSafkUoSBlVsyiE823vKYvp0cGdzdydLu2HxWb80gPDrfut/NWcnoAS60aKhGp1ESm5TPz39kczRUX9HNKbFHhnnRv7s7zo5Kzl/JZfGaeGISDMWWb95Qx4j+njSsp8PLXcWcL6M5dCqr2PJPP+zHoB7uLPkhgZ93p1ZAC0rnxN7VHNm5hKz0BHwDQ+jz4JsEBLUusmxizEX+2rKQ+IizpCdH0fv+GbTvM8GmzKHti7l4cjvJcVdQqXXUbtCOu+97Ba9awZXQmpI7tns1B3+ztNuvTgj9H3qT2sW0OyH6Ivs2LyT2uqXdfR+cQad+E2zKHN/zLcf/+I60pCgAfAIa033oszRs2auim1IqW3/ewMb135OakkxQg0Y88fRUGjdtVmTZA3/uZf3aVcTERGHMNxJQO5B773+I3n0HWst88tEcft+5zea4tu078dY7/6vQdpSGV4+OBL88Cff2LdHV9uPIA88St2nnrY/p2Znm817HpXljciNiuDTncyJXbrApU/+ZMQRPm4TW35f0U+c5++I7pB0+XZFNKbNJY4MYPtAfV2cVp0PTmbfoIpExOcWWH/dgXXp196F+oBP6PBOnz6fz+fIrREQVHPPqc43p2MYTHy8N2blGzoSm8/mKK1yPLP68VZlZUn2l8q/M9A3uqqNfRx2rtmby/vI08gzw4sNuqByKP6ZjMw2j+zmzeV8O7yxNIzLeyIsPu+LqpAAgOd3EywuSbW4/7c0mV2/mzOWqEfANucuJ/l0cWbklg3e/TkafZ+blcR63bHenFloeGujCpj1ZzFqcTERcPtPGeVjbDfDESDf8fRxY+F0ab32exNFQPc886EY9/6rxnWFkf0+G9fJg8ffxvDYvAn2eibeeC0StUhR7jE6r5GpUHl+uib/t+bu0dqZJkI6k1Pzblq0MYUd/Yc+GOXQd8hzjpm/ANzCEHxdNIjsjqcjy+Xk5uPvUoce9L+Ps5ltkmYhLh2h791geeXktDz63DJMxn/WfTcKgz67IppRK6JFf2LV+DncNe44Jb2zAr04IaxdOIiu9+HZ7+NSh14ji2+3q6U+vEa/w2Iwfeez19dRv2pUfv3iOhOiLFdmUUtm3dxfLvlrE6DETmLfwK4IaNGT2m6+SmppSZHkXV1ceeGg8c+ctYv5nS+g7YAifzp/L8aOHbMq169CZJd+st96mTX+rMppTYg7OTqSfCuPM1FklKu8YVIdOmxaTtPsg+zreR/gnK2i1+F18BvSwlgkYNYRm/5vBxXc/Y1/nkWScOk+XLUvQ+HpVVDPKbOwDdXnwnkDmLbrIU68cJyfXyEezW6FRF/9/rV1LD37cEs3kV4/z0punUDkomD+7NTptwUd92KVM3l8QxthnD/PyzNMoFDB/dmuU/8pooHJ99tlnBAUFodPp6NKlC4cOHbpl+XXr1hESEoJOp6NVq1b88ssvFV7Hf+XL3K+zI1v+zOHkRQNRCUaWbs7Ew1VJu6aaYo8Z0FnHHyf0/HVKT0yikVVbs8jLh7vaaAEwmyE9y2xza9dEw5FQPfriE0qVakAXRzbvzeJEWB6R8Ua+3piOh6uS9iHaYo8Z1NWJvcdy2Hcil+hEIyt/ziDPYObudo7WMo3qqth5KIfw6HwSUk38/Ec22blm6gdUjaDvnj4erNuWzKHTWVyLzmPByji83B3o0sa52GOOncvm25+TOHiL7B6Al7sDT4zyZf7yWIzGqvGN8ujvy2jZbTQtuz6Ad0Aj+j80C5VGx5n964ss71+/Nb1GvEZIh2E4qIp+Dzzw7BJadL0fn4DG+NYJYdC4uWSkRBMXcbYim1Iqh3cuo81do2nd/QF8Ahox6JFZqDU6ThfT7oCg1vR54DWadyq+3Y1a96Vhy154+QXhVasBPe97CY3WiejwExXYktLZvGEdAwYPo9+AIdStF8TkKdPQ6nTs2l70B0TL1u3o2v1u6tSrj39AIPfc9yD1GzQk9JxtNkutVuPp5W29ubi6VkZzSixh214uzPyYuJ92lKh8/aceJic8ktDpH5B5/grXFq0mdv02GrwwwVqmwYsTiViylsgVP5IZepnTz87EmJ1L3QkPVFArym7UvYGsXHuNfQeTuHw1i3fnn8fbS8vdXX2KPeblt0+zdWcc4dezuXQ1i/c/DsPfT0fTRgWv7aZtMZw8m0ZsvJ4LlzP5atVVavnq8PfTVUazyp3ZXHG30lizZg3Tpk1j5syZHDt2jDZt2jBo0CDi44tOLPz111888sgjTJo0iePHjzNixAhGjBjBmTNnyuFZKV6JP7UXLlxY4pNOnTq1TJUpDz4eSjxclISGF0RiOXozV6LzCQ5Ucfhc4aycgxLqB6jYur8gvW0GQsPzaBioBnILHVPP34F6/iq+3XbroKGy+Hoo8XB14NyVm9odaaBhXTWHzhYeinVQQv3aKrbsK2iDGTh3JY+GddTWbZci8uncQsupC3qyc810aqFFrVIQdtX+0W4tbxVe7ipOni/ISGXnmrh4NZemQTr2Hc0s87kVCnjxUX9+2plKRGzVyOYa8/OIizhL5wGTrdsUSiX1m3Yn5urxcnscfW4GADon93I7550w5ucRe/0sXQfZtjsopDtRV8qn3SaTkfNHf8WQl01gcLtyOeedMhgMXL4Uxv2jx1i3KZVKWrftQNj5c7c93mw2c/rkMaIjIxg/cbLNvjOnTzBhzAhcXFxp1aYdY8ZPwtWtarzeZeHRtS2Ju/bbbEv4bR/NP3wDAIVajXv7Flz+YHFBAbOZxF1/4dG1arzeN9SupcPHS8vhEwXZ3KxsI+cupNMyxI2dfySU6DzOzpZhnvSMov9X67RKhvb3Jzo2h/jEqjNdpzr66KOPePLJJ5k4cSIAX3zxBVu2bGHp0qW8/vrrhcovWLCAwYMH8+qrrwLwzjvv8Ntvv/Hpp5/yxRdfVFg9Sxz0zZ8/3+Z+QkIC2dnZeHh4AJCamoqTkxN+fn52DfrcnS3Jy/Qs2/l7GVkm676buTgpcFAqSM+yDe3Ts8z4exedSu/RRkd0Yj6Xo6rGkJ+bS9HtTr9Fu12dlH+3u/AxAT4FXePzdWk886Abn7zmS77RTJ7BzKdr0ohPufVcwcrg4WapZ1qGbV1SM4zWfWU1coAnRpO5SszhuyEnKwWzyYiTm7fNdidXb5LjrpTLY5hNJnavf5/awe3xqd2kXM55p7IzLe12vrndbt4k3WG7E6LC+OZ/D5Nv0KPROjFy8mf4BDS6o3OWl4z0NEwmEx4etsOPHh6eREVcL/a4rKxMnnz0QQwGA0qlkqeefYm27Tpa97fr0Jku3XtSyz+A2JgoVq/4mndmvsaceZ/h4HCL+SBVmLaWD/q4RJtt+rhE1O6uKHVa1J7uKFUq9PFJN5VJwrlp1Zq76uVpyUynpNoGaympedZ9t6NQwNQnG3HqXBrh122naYwcWptnJgTj5OjAtchsXnzzFPn5VWMko7RMFTinT6/Xo9fbBsNarRat1nb0LC8vj6NHjzJjxgzrNqVSSf/+/dm/3/aLyA379+9n2rRpNtsGDRrExo0by6fyxSjxp2J4eLj172+//ZZFixaxZMkSmjZtCkBYWBhPPvkkkydPLu4UVsU9kWXRpYWGcUNcrPc/WZtepvOUhlpledyf99lv4mvXVloevacgZf/xt2kV9lgj+zrjpFPyv5UpZGabaRei4ZlRbsxZlkJUfOUGfj07uvL0I37W++99Hl0hjxNcV8s9vT14+YPiP1j/rXaum0VSzEUeevFbe1elUnjVasDENzaiz8kg7Pg2tqx4jTHTVlWZwK8sHB2d+PCTr8nNyeHUyWMs+/ozavkH0LK1JaPVo1c/a9n6QcHUD2rIs0+M4ezpE7Ru28Fe1a6xBvTy49XnCr5gTZ995wtLpj3dmOB6zjz7WuFM+PbdcRw+noK3l4ZHRtbhndea88z04+QZqmfgV1HmzJnDrFm2c0pnzpzJ22+/bbMtMTERo9FIrVq1bLbXqlWL8+fPF3nu2NjYIsvHxsbeecVvoUypkDfffJMffvjBGvABNG3alPnz5/Pggw8yduzYWx5f3BOJ5vlS1+XExTyuRKda76sdLJk5N2claVkFAYmrs2VFblEys80YTWbcnG2zem7OhbN/AB1CNGjUCvafsV86/ERYHlciC1L/qr9fSTdnJWmZBZk7N2cl14tpd0a26e9222YC/3kOX08H+nd24r+LkohOsDyfEXH5NKmnoW8nJ77ZklGezbqtQ6czuXC1YLj9xmINd1cHUtILXm8PVwfCI8v++jRv6Ii7iwNfzW5g3ebgoGDC/T4M7+PB5JlXy3zuO+Ho7IlC6UD2TYsXsjOScHYrfq5PSe1cO5srZ3bz0AurcPX0v+PzlRcnF0u7b160kZ1+5+12UGnw9KsPgH/9lsRcPc2RXSsZPHb2HZ23PLi6uaNUKklNTbbZnpqagodn8YsPlEolAbXrANCgYWMiI67x47pvrUHfzfwDauPm5k5MTFS1Dfr0cYloa9n2BW0tHwxpGZhy9eQlpmDKz0fr531TGW/0sbYZwsq271AS5y4csd7XqC3/kz091CSlFEwt8fTQcOnK7aesvDS5Ed07eTFlxkkSkgpPTcnKNpKVnUNkTA5nw9LZ+t1d9Ozmw469JRs2rkoq8uLMM2bMKJSNK2uCqqoo00KOmJgY8vMLBxJGo5G4uLjbHj9jxgzS0tJsbv9Mi5aGPg8SUkzWW3SikdRMEyFBBXPSdBoFwbVVXClmKNZogmsx+TT7xzEKoFmQmstRhedC9Gij4+TFPDKz7fetKDfPTHyK0XqLTjCSmmGkefBN7a6j5nJE0fM5jCa4Fp1Ps+CC4QIF0CxYw+VIyzGav0938/vKZDKjLH4RWYXJ1ZuJTTRYbxGxeSSn5dO6qZO1jKNOSeMgHWFXC8/FLKk9h9N5ac51ps0tuCWl5vPTjhRmfRZVHk0pEweVhlp1W3D9QsGQgdlk4vqF/QQElX1ektlsZufa2Vw69Rujnl+Bu0/d8qhuuXFQafCv14JrYbbtvhq2v9zn35nNJoz5VWMOp1qtpmGjppw6ccy6zWQycerEUZqGNC/xecxmMwZD8W1KTIwnIyMdT0/vYstUdakHTuDdt6vNNp9+3Uk5cAIAs8FA2rGz+PTtVlBAocC7TzdSD5TffNiyyMkxEhWTa72FX88mMVlPxzYFlwlzcnSgeRM3zpy/9WjWS5Mb0bObDy/85xQxcbf/H6jAMhSsVlfPdZ1mU8XdtFotbm5uNreigj4fHx8cHBwKxT9xcXH4+xf95dnf379U5ctLmV7lfv36MXnyZI4dK/hHdPToUZ555hn69+9/2+NL+kSW1c5DOQy7y5E2jdUE+jrw+HAXUjNMHA8r+Kc3bYwbfToUrFb67VAud7fV0a2VFn9vB8YOcUajVvDnKdtska+nksb1VPxxoupNev3tYA733O1M2yYaAv0ceGKkG6kZJo6dL6jrK+M96NupYGXutgPZ9GrvSPc2OgJ8HBh/jytatYJ9JyxD17GJRuKS8nn0Hlca1Fbh6+nAoG6ONG+osTmvPf38eyqjBnvRqZUz9WpreGF8LZLTjBw8WbBAZdbzgQzpWTBJXadREBSoISjQEvDW8lYTFKjBx9OSMs3IMnE9Js/mZjSaSUk3Eh1v3wUsHfpM5PRfazl7cANJsZfZsfZtDPocWnS9H4CtK6fzx6YPreWN+XnER4YSHxmKMT+PjLQ44iNDSUm4Zi2za+0szh/ZxNDHPkSjcyYrPYGs9AQMeWUPnMtbp34TOblvLaf3byAx5jLbvrO0u1U3S7t/Xj6dPRtt2x0XEUpcRCgmYx6ZqXHERYSSEl/Q7j0bPyTi4mHSkiJJiApjz8YPuX7xEM07D6/09hVn+MhR7Nj2M7/v+JXI69dY/Nl89Lm59B0wBIAFH77PquVfWsuvX7uaE8ePEBsTTeT1a/z04xr27NpOzz4DAMjJyWbFks8JO3+W+LgYTp04ytzZ/8U/IJB2HTrZpY1FcXB2wq1NCG5tQgBwalAHtzYh6OoGAND03Wm0WfaBtfy1L7/HqUFdQua8inPTYOo/PYaAUUMIX7DcWib842XUnTSawPEjcAkJpuVnb6NydiRixY+V2raSWLcpisceqsddnb0Jru/Mf6eFkJSs548DBVnJj99tzf3Dalvvv/xMIwb2rsWseaFk5+Tj5aHGy0ONRmP5qK9dS8e4B+vStKELtXy1tAxx453Xm6PXm9h/JLlQHUTJaDQaOnTowM6dBdeRNJlM7Ny5k27duhV5TLdu3WzKA/z222/Fli8vZRreXbp0KY899hgdO3ZErbakggwGA4MHD+arr74q1wqWxa8HctFoFIwf4oKTTsHFCAML1qST/4/pZ74eSlz+cS26I6F5uDplc19PR9z+HgpesCaDjJuGd3u01pKSbrJZJVtVbP0zG61awWPDXXHSKbl43cBHq1Jt2u3n5YCrU0Gsf/isHlenTEb0drZenHn+6lTrsLbRBPO/TePBfs5MfcQDnUZBfHI+SzZmcPpS1ciGbNiRgk6r4JlH/HB2VBJ6OZd3FkVh+MfEZH8fNW4uBRPUG9bX8e4Ldaz3H3/Ach23XQfS+WTV7bPV9tS0w1CyM5P5a8tCsjMS8A1sxv3Pfm0d5sxIiUGhKHiNM9PiWfXBCOv9ozuXcnTnUuo06szoF74B4OS+7wBYt3C8zWMNGjvHGkzaW7OOlnbv+3nh3xdnbsbo5wvanZ5cuN3L3x9hvX9ox1IO7VhK3cadGTPN0u6sjCR+Xv4aWenxaHWu+AY2ZfTzS2jQ7K5Kbdut9OjZl/S0VL5btYzUlGQaBDfizdn/Zx3eTUyIQ6ko+F+mz83hq0XzSUpMQKPRElinHi+88h969OwLgFLpwLWrV/h95zayszLx9PKmbbtOPDL+cdTqki0SqAzuHVrSbec31vvN51lW4Uas/JFTk2agDfDF8e8AECDnaiSH751M8w9nEPT8o+RGxnJ68n9J/G2ftUzMuq1ofL1oMnOq5eLMJ0M5dM8T5MUXfa1He1q9PgKdzoHpU5rg4qzi9Lk0Xp552mbeXaC/Ix5uBaM7I4cGAvDpnLY253rv4/Ns3RmH3mCiTQt3Rt9bB1cXFcmpeZw8m8bT04+Tmlb1PtNKwlRFfnt32rRp1rioc+fOfPzxx2RlZVlX8z766KMEBgYyZ84cAF544QV69erFhx9+yLBhw/j+++85cuQIX3755a0e5o4pzHcwIH7x4kVCQ0MBCAkJoUmTO1vp9+T7Ve+NV9G+esObx2fd/gLB/zZLZ/oxckrVuQBuZdnwaWMWb7d3LSrf5IGwdJe9a1H5Hu8LZy/F2Lsala5FowC2qJvevuC/zDBDGD2G77F3NSrdvs32+wWbVz6vuAvIz3vG6faF/uHTTz/lf//7H7GxsbRt25aFCxfSpUsXAHr37k1QUBDLly+3ll+3bh3//e9/uXr1Ko0bN+b//u//GDp0aHk2oZASZ/qmTZvGO++8g7Ozc6GJjQC7d++2/v3RRx+VS+WEEEIIIYpTkQs5SmvKlClMmTKlyH3/jJFuGDVqFKNGjargWtkqcdB3/PhxDAaD9e/iKBR2mN0vhBBCCCFuqcRB3++//17k30IIIYQQ9lCRF2f+N6qea7SFEEIIIUSp3NnvVAkhhBBC2EkVmtJXLUjQJ4QQQohqySzDu6Uiw7tCCCGEEDWAZPqEEEIIUS1VlYszVxeS6RNCCCGEqAEk0yeEEEKIaknm9JWOZPqEEEIIIWoAyfQJIYQQolqSTF/pSKZPCCGEEKIGkEyfEEIIIaolSfSVjmT6hBBCCCFqAMn0CSGEEKJakjl9pSNBnxBCCCGqJbNcnLlUZHhXCCGEEKIGkEyfEEIIIaolkwzvlopk+oQQQgghagDJ9AkhhBCiWpI5faUjmT4hhBBCiBpAMn1CCCGEqJbkki2lI5k+IYQQQogaQGGWAXEhhBBCVEOPz4qvsHMvnelXYee2lyo1vDv9ixx7V6HS/d/Tjrz0aaa9q1Hp5k9x4ekPUuxdjUr3xWuezFlrtHc1Kt2M0Q68sCDD3tWodAtecGXZ7/auReWb2Ad6DN9j72pUun2be7FF3dTe1ah0wwxhdntsk+StSkWGd4UQQgghaoAqlekTQgghhCgpWchROpLpE0IIIYSoASTTJ4QQQohqSdailo5k+oQQQgghagDJ9AkhhBCiWjLJnL5SkUyfEEIIIUQNIJk+IYQQQlRLsnq3dCToE0IIIUS1JAs5SkeGd4UQQgghagDJ9AkhhBCiWjKbTPauQrUimT4hhBBCiBpAMn1CCCGEqJbkki2lU+Kgb+HChSU+6dSpU8tUGSGEEEIIUTFKHPTNnz+/ROUUCoUEfUIIIYSocLJ6t3RKHPSFh4dXZD2EEEIIIUQFuqM5fXl5eYSHh9OwYUNUKpkeKIQQQojKIxdnLp0yrd7Nzs5m0qRJODk50aJFC65fvw7A888/z9y5c8u1gkIIIYQQRTGbzBV2+zcqU9A3Y8YMTp48ye7du9HpdNbt/fv3Z82aNeVWOSGEEEIIUT7KNCa7ceNG1qxZQ9euXVEoFNbtLVq04PLly+VWOSGEEEKI4pjMcnHm0ihT0JeQkICfn1+h7VlZWTZBoD0N7KiiczMVjlq4Gmtiwx8GEtNuna7t1sKBXm1VuDoqiEky89OfeUTEFxzTpZkDbRs7EOijRKdR8NbSHHLzKrolpTO4s4ZuLVTotAquxhhZt1t/23bf1UpN33ZqXJ0URCea+HGvnuvxljeSkxYGd9HQtK4KD1cFWTlmTl/JZ+vBvCrV9uE9dPRoo8VRq+ByVD7fbc8mPuXW/wx6tdMysIsWN2clkfFG1uzI5mqM0aZMg9oO3NfTkQYBKkxmiIzPZ+HaTAz5Fdma22vfSEGXpgpcdBCfCtuPm4hJLr58SB3o2VKJuzMkZ8DuUyYuxxbsH9ZJQesGton/KzFm1vxRNf+hDumqoVtLNY5aBeHRRtb9nktC6q37eY/Wavp20ODmpCAq0cT63blcjyto3+i+WprWVeHmoiAvz0x4jJFNf+bdth9VhqO7V3Nw+xKy0hPwqxPCgIfepHaD1kWWTYi+yB+bFxJ77SzpyVH0GzWDTv0mFHvu/b9+yZ6NH9Kx76P0H/2fCmrBnZk0NojhA/1xdVZxOjSdeYsuEhmTU2z5cQ/WpVd3H+oHOqHPM3H6fDqfL79CRFTBMa8+15iObTzx8dKQnWvkTGg6n6+4wvXI4s9bGbx6dCT45Um4t2+JrrYfRx54lrhNO299TM/ONJ/3Oi7NG5MbEcOlOZ8TuXKDTZn6z4wheNoktP6+pJ86z9kX3yHt8OmKbIqogso0vNuxY0e2bNlivX8j0Pv666/p1q1b+dTsDvRuq+KuVip+/COPT37Uk2eAScM0qByKP6ZNQweGd1ez40g+C9briUkyMWmYFueC0WvUKgi7bmLXMTt/4hejb3s1PduoWbdbz8frctAb4Ol7HW/Z7raNVIzooWHb4Tw+XJNNdJKJyfc64uJoeU3dnJW4OSvZ9Kee//s2m2936Ampr+LhvrriT1rJBnbR0qeDlm+3ZfPBNxnkGcw8P9rllu3uEKLmwb6O/PxnLu8vTycy3sjzo11wdSr40tKgtgNTR7sSGm5g7jfpzF2Zzu5jeux9hYBmdRX0a6Ng31kzS38zEZdq5qGeSpy0RZcP9Ib7uio5GW5m6XYTF6PNPHCXEh8323KXY8ws3GS03n46YP9gpyj9Omjo2VbD2l165q/JJs9g5ukRTrd8vds1VjHybi3bDur533fZRCcYeWaEk7WfA0TEm/j2t1zmrMzi8405oFDw7EhH7P09NvTIL+z6YQ497nmOiW9swK9OCGs+mURWelKR5fPzcvDwqUPvkS/j7OZ7y3PHXD3FiT++xzewaUVUvVyMfaAuD94TyLxFF3nqlePk5Br5aHYrNOriX5h2LT34cUs0k189zktvnkLloGD+7NbotAUfeWGXMnl/QRhjnz3MyzNPo1DA/NmtUdr5d6ocnJ1IPxXGmamzSlTeMagOnTYtJmn3QfZ1vI/wT1bQavG7+AzoYS0TMGoIzf43g4vvfsa+ziPJOHWeLluWoPH1qqhmVBqZ01c6Zere77//Pm+88QbPPPMM+fn5LFiwgIEDB7Js2TLee++98q5jqfVopWLnsXzOXTURm2xmze95uDkpaBFU/KfC3a1VHAw1ciTMSHyKmR/3GjDkQ6eQgmTovtNGdp/It2bBqppebdRsP5LHmXAjMUkmvt2Ri5uzglbBxSd0e7dVs/+sgUOh+cSlmFn3u568fDNdmlmOiU02sXxrLmevGklKN3Mpysgv+/W0aOCAsmokdenXUcfW/bmcvGQgKsHIsp+z8HBR0raJuthj+nfS8edJPftP51meq23ZGAzQvZXGWmZUPyd2Hc1l20E9MYkm4pJNHD1vIN9Y7GkrRecmCk5eMXP6qpmkdPj1qJn8fGjdoOgXpGNjBVdi4WCYmaQM2HvGTGwqdGhsW95ogqzcgluuoRIaUwa92qnZfkjPmSv5RCeaWLU9F3dnBa0a3qKft9fw11kDB8/lE5dsYu0uSz/v2qKgj+w/Y+BytJHkDDORCSZ+2a/H01WJl5t9O/qhHctoc9doWnd/AJ/ajRg8ZhZqtY5Tf60vsnxAUGv6PvAazTsNw0GlKbIMQF5uFpuWvsqQce+ic3KvqOrfsVH3BrJy7TX2HUzi8tUs3p1/Hm8vLXd39Sn2mJffPs3WnXGEX8/m0tUs3v84DH8/HU0buVrLbNoWw8mzacTG67lwOZOvVl2llq8Ofz/7fqFN2LaXCzM/Ju6nHSUqX/+ph8kJjyR0+gdknr/CtUWriV2/jQYvTLCWafDiRCKWrCVyxY9khl7m9LMzMWbnUnfCAxXUClFVlSno69GjBydOnCA/P59WrVqxfft2/Pz82L9/Px06dCjvOpaKl6sCN2cFFyMLPplz8yzf4uv7F91cByUE+iq49I9jzMDFSCP1a1WPnyf2dlPg5qzkQoRtu6/FmQi6Rbvr+NkeY223f/EBsk6rIDcPqsIXIR93Je4uSkKvFmRfc/MgPDqf4NpFBwEOSqjn70DotYJjzEDoVQPBgZZjXJ0UBNdWkZFl5tVxrvzfFHemPeJCw8BbpJMqgVIJ/p4QHmf75F+NNxPoXXRwEuit4OpN5cNjC5ev5wtT71Xy1GAlg9orcCw+XrAbbzcF7s5KLly/qZ/HGmlQTJ91UEJdP9tjzMCF68Zi3xsaFXRpriYxzURqhv06ujE/j9jrZwlq1t26TaFUEtSsO1FXjt/Rubd/P5uGLXvZnLuqqV1Lh4+XlsMnUqzbsrKNnLuQTssQt1scacvZ2dI30jOK/iaj0yoZ2t+f6Ngc4hP1d1bpSubRtS2Ju/bbbEv4bR+eXdsCoFCrcW/fgsSdfxUUMJtJ3PUXHl3bVWJNK4Zk+kqnzBfXa9iwIV999VV51qVc3Biey8yxfcEycsy4OhZ9jLMOHJQKMm6aypGZY8bPo3oEfdZ2Z9u2OzPbZDNk+U/Ojoq/233Tc5VdfLuddTCwo4b9Z6tGGsjNxdK29Czb7GtGthk356Lb4OJkaXdRx/h7Wz4cfP5u/z09dKz/PYfIOCNdW2p48WFX3lmabrd5Xk4aUCoVZN/0uZSVC96uRR/jorPsv7m8yz8SGldiISzKRFoWeDhD71ZKRt+tYOUuk92Hs//J1dnyemdkF+6zN/bdzNrPswu/3n5etoFij9Zq7r1Li1ajIC7ZyKIN2RjtmNjPzkzBbDLi7OZts93Z1Zuk2CtlPu+5w1uIu36Ox2b8cKdVrFBenpZvHimptv9vUlLzrPtuR6GAqU824tS5NMKvZ9vsGzm0Ns9MCMbJ0YFrkdm8+OYp8vOrUIcvAW0tH/RxiTbb9HGJqN1dUeq0qD3dUapU6OOTbiqThHPT4MqsqqgCyhz0GY1GNmzYQGhoKADNmzfnvvvuK9FFmvV6PXq97aeWVlvMhKTbaNfYgft7FgzRLPulCq0uqEDtm6gY3bvgOfvq54qffKxVw5P3OBKXYuLXQ/Z5njs31zBmkJP1/mc/ZFbI49yYx/XHCcsQMEDErhya1lfRvZWGjXtzb3F09RMaUfBBl5AGCWkmnhnmQD1fuBZvv3p1aKrioX/MH128qWL7+ZHzBsKu5+PmpKRPBw0Thzjy8bpsuw/pl6f05Bh2rH2Ph19Yikpdtv+7FWVALz9efa6J9f702Xe+0GDa040JrufMs68Vzoxu3x3H4eMpeHtpeGRkHd55rTnPTD9OnqF6BX41mfwMW+mUKeg7e/Ys9957L7GxsTRtapkA/MEHH+Dr68vmzZtp2bLlLY+fM2cOs2bZTlKdOXMm+L9W6rqcu2q0WYF3YzK3i6PCJhvg6qggOqnozpGVC0ZT4UzgzeeoSs6G5zMvruCTSOVgiVJcnBSk/6POLk5KohOL/sTKyjH/3W7bDInrTecAS8A3+V5H9AYzS3/JxWSn7MfJS3mERxcMy974juHmrCQ9q6Cdrk4KIuOLbndmtqXdlkyg7TE3sn9pmZb2xyTaNjQ2yYSXm/2yv9l5YDKZCy3acNZBZjFxaGYuNguSblceIDULsnPNeLoouBZvv/fAmSv5XIvNst6/0c9v7qOuTgqiEorulNZ+7qQETDbHZNyU7c3Ng9w8MwmpRq7G5jDnaRdaN1Rx7IJ9Fm85uXiiUDoUWrSRlZGEs1vxc9puJfb6WbIzklj2/v3WbWaTkYhLhzm6ezWvfnoapdI+0xj2HUri3IUj1vsateW95umhJiml4Iump4eGS1du/4XvpcmN6N7JiykzTpKQVPiLala2kazsHCJjcjgbls7W7+6iZzcfduxNKIfWVA59XCLaWrZ9QVvLB0NaBqZcPXmJKZjy89H6ed9Uxht9rG2GsDoy2evDqJoq06fXE088QYsWLYiMjOTYsWMcO3aMiIgIWrduzVNPPXXb42fMmEFaWprNbcaMGWWpCnoDJKWbrbe4FDPpWWYa/2PulVZtmdNzLbbozmE0QVSCmUb/OEYBNAp04Fpc1exQegMkppmtt9hkE+lZJprUsW13/VpKrt6i3ZHxJprUtW134zoOXIstCIa0anj6PkeMJvh6S65dsx76PEhINVlvMYkm0jJNhNQv+P6i00CD2iquRBf9QW00wfVYo80xCiAkSM2VKMsxSWkmUjNM1PK2fYv4eSlJSrdfnzCZIDYFgmrZBur1/RREFfOlJirJTP2bygfVKr48gKsjOGohM9e+X3qK6udpWbZ9VquB+v4OhMcW3TGNJsuc3pv7eZO6DsW+N24UUsAtVwVXNAeVBv96Lbh6vmDOltlk4tr5/QQGl20+Vv2Qrkx6czOP/2ej9eZfvyUtOg/n8f9stFvAB5CTYyQqJtd6C7+eTWKyno5tPK1lnBwdaN7EjTPn0295rpcmN6JnNx9e+M8pYuJun5lXYMnwq9XVY0rPDakHTuDdt6vNNp9+3Uk5cAIAs8FA2rGz+PT9x5U1FAq8+3Qj9cCdzQsV1U+ZMn0nTpzgyJEjeHoWvBE9PT1577336NSp022P12q1xQznls/Qzb7T+fTtoCIxzURyhpmBndSkZ5s5e7XgQ+HJezScDTfy11nLtj9O5TO6j5rIBBMR8SZ6tFahUcORsILAwcXRkh3w+Xs1n7+XEr3BTGqmmZwqMPd3z0kDAzpqSEi1tHtIFw3pWZbr6t3wzH06Tl8xsu+0ZY7M7hMGxvTXEhFv4lqckV5tNGhUCg6GWo65EfBpVLBqey46jQLd31NpMnPMVWK+184juQzpriM+xURiqpF773YkNdPEiQsF84BefMiFExcN7D5meaF2HM5lwjBnrsUauRqTT9+OOjRq+Ot0QTZg+6FchvdwJCreSEScka6tNPh7OfDlxqxCdahMhy6YuaezgthkiE4206mJArUKToVbXox7Olvmp+45bbl/5KKZsX0UdG6i4FKMmeb1FAR4wtYjlv1qFfRoriAs0kxWLni4QJ/WSlIyITy22GrYzZ7jBgZ21pKQaiIp3czQbhrSssycvlzQz5+735FTl/L549Tf/fxYHmMH6rgeb+R6rIle7dRo1AoOnrPs93ZT0K6JmvPX88nKMePuoqB/Ry2GfMtogj117j+Rn5e/RkD9lgQEtebIrhXk5eXQurslU7d52XRcPWrRe+TLgGXxR2KM5SL5JmMeGalxxEWEotE64elXH63OBd/AJjaPodY44ejsUWh7VbBuUxSPPVSPiOgcYuJyeWJcEEnJev44UJCl+vjd1uzdn8iPW6IBePmZRvTvWYsZ750hOycfLw/LFKDMbCN5eSZq19LR925fDh9PITXdgK+3lnEP1kWvN7H/yC0ueFkJHJydcG5Uz3rfqUEd3NqEkJecRm5EDE3fnYYusBYnJ1pGxq59+T31nx1LyJxXiVi+Hp8+XQkYNYTD9062niP842W0WfoBqUfPkHb4FEFTH0Pl7EjEih8rvX3l7d+64KKilCnoa9KkCXFxcbRo0cJme3x8PI0aNSqXit2J3Sfy0ajggV4adBrLxZmXbMmzyVB5uytw/sew5snLRssihU6qvy9SbGbJFj2Z/4hDu7VQMaBjwfzBZ0dYAtc1v+dxNMz+k352HTOgUSkY3cdykeLwGCOLN+fYtNvHXYmzY0F248SlfFwcFQzurMHN2TJEtnhzjnUhTB0/B4L+XhX530edbR5v9oosUuy4svGG7Qf1aNUKxg5ywkmn4FJkPp+szbRpt6+n0uaabEfPG3B1ymF4D5314syfrM20Gc7fdUSP2gEe7OuEs05BZIKRBWsySEy1b/Y3NMIyvHt3SwXOOgXxqbB2r8m6uMPNSWEzzyUqCTYdMNGzpZJerRSkZML6P00k/p0oMZvBz0NBqyAFOjVk5FpW9+49Y7brIobi7Dyah0YND/XT4ahVcCXayBcbs296fytt3t/HL+bj4qhnaFctbk4KIhNNfLEx2/p6G4zQMNCB3u0sF3zOyDZzOcrIx2uzCi0Kq2zNOg4lOyOZPzYv/PvizM146PmvrcO76ckxKBQF2amM1HiWvTfCev/Qb0s59NtS6jbuzNiXv6ns6t+x1esj0OkcmD6lCS7OKk6fS+Plmadt5t0F+jvi4Vbwv3nk0EAAPp3T1uZc7318nq0749AbTLRp4c7oe+vg6qIiOTWPk2fTeHr6cVLT7LtIzb1DS7rtLHidms97A4CIlT9yatIMtAG+ONYNsO7PuRrJ4Xsn0/zDGQQ9/yi5kbGcnvxfEn/bZy0Ts24rGl8vmsycark488lQDt3zBHk3Le4Q/34KcwlnQaanF6TS9+3bx/Tp03n77bfp2tWSVj5w4ACzZ89m7ty5DB06tEyVmf6Ffa+Ebg//97QjL31aMYsRqrL5U1x4+oOU2xf8l/niNU/mrLX/F4TKNmO0Ay8syLB3NSrdghdcWfa7vWtR+Sb2gR7D99i7GpVu3+ZebFFX3QtdV5RhhjD7PfYTZyrs3Fu+vvX6hOqoxJk+Dw8Pm59YM5vNjB492rrtRuw4fPhwjMaa96EmhBBCCFGVlTjo+/33Gvh1VQghhBBVlszpK50SB329evWqyHoIIYQQQogKVOaLMwNkZ2dz/fp18vJsr3/UunXrO6qUEEIIIcTtSKavdMoU9CUkJDBx4kS2bt1a5H6Z0yeEEEKIimYyV8FLDFRhZboK5YsvvkhqaioHDx7E0dGRX3/9lRUrVtC4cWM2bdpU3nUUQgghhBB3qEyZvl27dvHTTz/RsWNHlEol9evXZ8CAAbi5uTFnzhyGDRtW3vUUQgghhLAhw7ulU6ZMX1ZWFn5+foDllzgSEiy/U9iqVSuOHTtWfrUTQgghhBDlokxBX9OmTQkLs1yMsU2bNixevJioqCi++OILAgICbnO0EEIIIcSdM5tMFXarKMnJyYwdOxY3Nzc8PDyYNGkSmZnF/0hDcnIyzz//PE2bNsXR0ZF69eoxdepU0tLSSv3YZRrefeGFF4iJiQFg5syZDB48mFWrVqHRaFixYkVZTimEEEII8a83duxYYmJi+O233zAYDEycOJGnnnqKb7/9tsjy0dHRREdHM2/ePJo3b861a9d4+umniY6O5ocffijVY5cp6Bs3bpz17w4dOnDt2jXOnz9PvXr18PHxKcsphRBCCCFKpbrN6QsNDeXXX3/l8OHDdOzYEYBPPvmEoUOHMm/ePGrXrl3omJYtW7J+/Xrr/YYNG/Lee+8xbtw48vPzUalKHsqVuOS0adNKfNKPPvqoxGWFEEIIIaoavV6PXq+32abVatFqtWU+5/79+/Hw8LAGfAD9+/dHqVRy8OBBRo4cWaLzpKWl4ebmVqqAD0oR9B0/frxE5f75+7xCCCGEEBXFXIHX6ZszZw6zZs2y2TZz5kzefvvtMp8zNjbWuhD2BpVKhZeXF7GxsSU6R2JiIu+88w5PPfVUqR9ffntXCCGEENWSqQKHd2fMmFFolLO4LN/rr7/OBx98cMvzhYaG3nGd0tPTGTZsGM2bNy9T8HlHP8MmhBBCCPFvVJqh3JdffpkJEybcskxwcDD+/v7Ex8fbbM/Pzyc5ORl/f/9bHp+RkcHgwYNxdXVlw4YNqNXqEtXtnyToE0IIIUS1VJGXVikNX19ffH19b1uuW7dupKamcvToUTp06ABYfvDCZDLRpUuXYo9LT09n0KBBaLVaNm3ahE6nK1M9y3SdPiGEEEIIUTrNmjVj8ODBPPnkkxw6dIg///yTKVOm8PDDD1tX7kZFRRESEsKhQ4cAS8A3cOBAsrKyWLJkCenp6cTGxhIbG4vRaCzV40umTwghhBDVUnW7ZAvA6tWrmTJlCv369UOpVPLAAw+wcOFC636DwUBYWBjZ2dkAHDt2jIMHDwLQqFEjm3OFh4cTFBRU4seWoE8IIYQQopJ4eXkVeyFmgKCgIMzmgmC2d+/eNvfvhAR9QgghhKiWKvKSLf9GMqdPCCGEEKIGkEyfEEIIIaql6jinz54k6BNCCCFEtVRVLtlSXcjwrhBCCCFETWCu4XJzc80zZ8405+bm2rsqlUraLe2uCaTd0u6aoKa2W5Sewmwup3XA1VR6ejru7u6kpaXh5uZm7+pUGmm3tLsmkHZLu2uCmtpuUXoyvCuEEEIIUQNI0CeEEEIIUQNI0CeEEEIIUQPU+KBPq9Uyc+ZMtFqtvatSqaTd0u6aQNot7a4Jamq7RenV+IUcQgghhBA1QY3P9AkhhBBC1AQS9AkhhBBC1AAS9AkhhBBC1AAS9AkhhKiWevfuzYsvvljs/qCgID7++ONKq8+duF1b/mn37t0oFApSU1Pv6DGr0/MjykeNC/qMRiPdu3fn/vvvt9melpZG3bp1+c9//mOnmlUss9lM//79GTRoUKF9ixYtwsPDg8jISDvUrOLd+AdZ3K1Pnz72rmKpTZgwoci2DB48GLD8M7+xzdHRkaCgIEaPHs2uXbuKPF9OTg5eXl74+Pig1+srsyl3ZMKECYwYMaLQ9n9+KN78+vv6+jJ06FBOnz5d+RW+jVv1U4VCwdtvv83Vq1eL3X/gwAEAli9fjkKhoFmzZoUeY926dSgUCoKCgqzbbpRXKBQolUrq1KnDxIkTiY+Pr6yml8mPP/7IO++8Y+9qCFFt1Ligz8HBgeXLl/Prr7+yevVq6/bnn38eLy8vZs6cacfaVRyFQsGyZcs4ePAgixcvtm4PDw9n+vTpfPLJJ9SpU8eONaw43bt3JyYmptBt8eLFKBQKnn32WXtXsUwGDx5cqE3fffeddf/s2bOJiYkhLCyMlStX4uHhQf/+/XnvvfcKnWv9+vW0aNGCkJAQNm7cWImtqDxhYWHExMSwbds29Ho9w4YNIy8vz97VsvHP1/Ljjz/Gzc3NZtsrr7xiLbtjx45Cr3+HDh2s+52dnYmPj2f//v02j7FkyRLq1atX6LFvPFZkZCRfffUVW7duZfz48RXX2HLg5eWFq6urvashRLVR44I+gCZNmjB37lyef/55YmJi+Omnn/j+++9ZuXIlGo3G3tWrMHXr1mXBggW88sorhIeHYzabmTRpEgMHDqzy/9zvhEajwd/f3+aWkpLCK6+8whtvvMGoUaPsXcUy0Wq1hdrl6elp3e/q6oq/vz/16tWjZ8+efPnll7z55pu89dZbhIWF2ZxryZIljBs3jnHjxrFkyZLKbkql8PPzw9/fn/bt2/Piiy8SERHB+fPn7V0tG/98Ld3d3VEoFDbbXFxcrGW9vb0Lvf5qtdq6X6VSMWbMGJYuXWrdFhkZye7duxkzZkyhx77xWLVr12bIkCFMnTqVHTt2kJOTU7GNvgP/HBKNj49n+PDhODo60qBBA5sv9dXNN998Q8eOHa3v4TFjxhSZdf3zzz9p3bo1Op2Orl27cubMGZv9+/bt4+6778bR0ZG6desydepUsrKyKqsZogqqkUEfWDJ7bdq0Yfz48Tz11FO89dZbtGnTxt7VqnCPPfYY/fr14/HHH+fTTz/lzJkzNpm/miA1NZX77ruP3r1717ihoRdeeAGz2cxPP/1k3Xb58mX279/P6NGjGT16NH/88QfXrl2zYy0rVlpaGt9//z3Av/pLHsDjjz/O2rVryc7OBizDuIMHD6ZWrVq3PdbR0RGTyUR+fn5FV7NcTJgwgYiICH7//Xd++OEHFi1aVOWHp4tjMBh45513OHnyJBs3buTq1atMmDChULlXX32VDz/8kMOHD+Pr68vw4cMxGAyA5X09ePBgHnjgAU6dOsWaNWvYt28fU6ZMqeTWiKpEZe8K2ItCoeDzzz+nWbNmtGrVitdff93eVao0X375JS1atGDv3r2sX78eX19fe1ep0phMJsaMGYNKpWL16tUoFAp7V6nMfv75Z5vMD8Abb7zBG2+8UewxXl5e+Pn5cfXqVeu2pUuXMmTIEGuWcNCgQSxbtoy33367Iqpd7op6HoxGY6FyN6Yv3Mh03HvvvYSEhFR8BStI9+7dUSptv7dnZmba3G/Xrh3BwcH88MMPjB8/nuXLl/PRRx9x5cqVW5774sWLfPHFF9ZsU1V34cIFtm7dyqFDh+jUqRNgyV4XNaexOnj88cetfwcHB7Nw4UI6depEZmamTV+fOXMmAwYMAGDFihXUqVOHDRs2MHr0aObMmcPYsWOtmdDGjRuzcOFCevXqxeeff45Op6vUNomqocYGfWD5sHNyciI8PJzIyEibic3/Zn5+fkyePJmNGzcWOQn+3+yNN95g//79HDp0qFp8mN1Knz59+Pzzz222eXl53fY4s9lsDXaNRiMrVqxgwYIF1v3jxo3jlVde4a233ioUVFRFRT0PBw8eZNy4cTbb/vjjD5ycnDhw4ADvv/8+X3zxRWVWs9ytWbOmREHN448/zrJly6hXrx5ZWVkMHTqUTz/9tFC5tLQ0XFxcMJlM5Obm0qNHD77++uuKqHq5Cw0NRaVS2cxpDAkJwcPDw36VugNHjx7l7bff5uTJk6SkpGAymQC4fv06zZs3t5br1q2b9W8vLy+aNm1KaGgoACdPnuTUqVM2w9xmsxmTyUR4eHi1DYjFnamxQd9ff/3F/Pnz2b59O++++y6TJk1ix44d1TrzUxoqlQqVqma9/N9//z3z5s1jy5YtNG7c2N7VuWPOzs40atSoVMckJSWRkJBAgwYNANi2bRtRUVE89NBDNuWMRiM7d+60ZhGqsqKeh6JWojdo0AAPDw+aNm1KfHw8Dz30EHv37q2sapa7unXrluj1Hzt2LNOnT+ftt99m/Pjxxb7vXV1dOXbsGEqlkoCAABwdHcu7yqIEsrKyGDRoEIMGDWL16tX4+vpy/fp1Bg0aVKqFR5mZmUyePJmpU6cW2lfUQh5RM1T9r/EVIDs7mwkTJvDMM8/Qp08flixZwqFDh6r9N39RvBMnTjBp0iTmzp1b5GVraooFCxagVCqtGd4lS5bw8MMPc+LECZvbww8//K9d0AHw3HPPcebMGTZs2GDvqlQ4Ly8v7r33Xvbs2WMzbHgzpVJJo0aNCA4OrnYBX0hICPn5+Rw9etS6LSws7I6vY2cP58+fJykpiblz53L33XcTEhJS7NzEG5foAUhJSeHChQvWDF779u05d+4cjRo1KnT7t89lFcWrWamev82YMQOz2czcuXMByzXN5s2bxyuvvMKQIUNqzDBvTZGYmMiIESPo3bs348aNIzY21ma/g4NDtZzXqNfrC7VFpVLh4+MDQEZGBrGxsRgMBsLDw1m1ahVff/01c+bMoVGjRiQkJLB582Y2bdpEy5Ytbc7z6KOPMnLkSJKTk0s0ZFzdODk58eSTTzJz5kxGjBhRLTP8SUlJhV5/Dw+PIudqLV++nEWLFuHt7V1Z1atUTZs2ZfDgwUyePJnPP/8clUrFiy++WO2CV7Bk4TQaDZ988glPP/00Z86cKXbB2ezZs/H29qZWrVr85z//wcfHx/qF7rXXXqNr165MmTKFJ554AmdnZ86dO8dvv/1W5PC+qBlqXKZvz549fPbZZyxbtgwnJyfr9smTJ9O9e3cmTZqE2Wy2Yw1FeduyZQvXrl3jl19+ISAgoNDtxsTv6ubXX38t1JYePXpY97/11lsEBATQqFEjxo8fT1paGjt37uS1114DYOXKlTg7O9OvX79C5+7Xrx+Ojo6sWrWq0tpT2aZMmUJoaCjr1q2zd1XKpH///oVe/+Kusejo6PivDfhuWLZsGbVr16ZXr17cf//9PPXUU/j5+dm7WqXm6+vL8uXLWbduHc2bN2fu3LnMmzevyLJz587lhRdeoEOHDsTGxrJ582ZrFq9169bs2bOHCxcucPfdd9OuXTveeustateuXZnNEVWMwiwRjhBCCCHEv16Ny/QJIYQQQtREEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQAEvQJIYQQQtQA/w9YqxQY0cKv5gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.figure(figsize=(8, 6))\n", + "\n", + "sns.heatmap(correlation, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n", + "plt.title(\"Correlation Heatmap\")\n", + "\n", + "plt.savefig('correlation_heatmap.jpg', format='jpg')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eonw9kbCJ_CR" + }, + "source": [ + "- EDA is related to TEMP by 0.35\n", + "- TEMP is related to label by 0.14\n", + "- Also, TEMP is related to id by 0.35" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o2MJ60lyKlIq" + }, + "source": [ + "### Normalize the dataset using MinMaxScaler() to remove the effect of outliers" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "mPfES1-kSFSu", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2099771e-f344-49a4-ac81-abe5dba5b693" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(11509051, 7)\n", + "(11509051, 1)\n" + ] + } + ], + "source": [ + "x = data.drop(columns=['label', 'datetime'], axis=1)\n", + "y = data[['label']]\n", + "\n", + "print(x.shape)\n", + "print(y.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "rVURfqTCLIPs", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 423 + }, + "outputId": "3104a195-fbb2-4f03-f5a0-4320bf550263" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0 1 2 3 4 5 6\n", + "0 0.450980 0.262745 0.521569 0.113285 0.374758 0.5664 0.000000\n", + "1 0.423529 0.231373 0.490196 0.113285 0.374758 0.5664 0.000000\n", + "2 0.380392 0.196078 0.443137 0.113285 0.374758 0.5664 0.000000\n", + "3 0.317647 0.247059 0.352941 0.113285 0.374758 0.5664 0.000000\n", + "4 0.239216 0.278431 0.294118 0.113285 0.374758 0.5664 0.000000\n", + "... ... ... ... ... ... ... ...\n", + "11509046 0.439216 0.282353 0.596078 0.056660 0.289174 0.7744 0.632911\n", + "11509047 0.470588 0.305882 0.607843 0.056660 0.289174 0.7744 0.632911\n", + "11509048 0.392157 0.360784 0.611765 0.056660 0.289174 0.7744 0.632911\n", + "11509049 0.388235 0.388235 0.619608 0.056660 0.289174 0.7744 0.632911\n", + "11509050 0.415686 0.407843 0.615686 0.056468 0.288865 0.7728 0.632911\n", + "\n", + "[11509051 rows x 7 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456
00.4509800.2627450.5215690.1132850.3747580.56640.000000
10.4235290.2313730.4901960.1132850.3747580.56640.000000
20.3803920.1960780.4431370.1132850.3747580.56640.000000
30.3176470.2470590.3529410.1132850.3747580.56640.000000
40.2392160.2784310.2941180.1132850.3747580.56640.000000
........................
115090460.4392160.2823530.5960780.0566600.2891740.77440.632911
115090470.4705880.3058820.6078430.0566600.2891740.77440.632911
115090480.3921570.3607840.6117650.0566600.2891740.77440.632911
115090490.3882350.3882350.6196080.0566600.2891740.77440.632911
115090500.4156860.4078430.6156860.0564680.2888650.77280.632911
\n", + "

11509051 rows × 7 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ] + }, + "metadata": {} + } + ], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "MinMaxScaler = MinMaxScaler()\n", + "x = MinMaxScaler.fit_transform(x)\n", + "x = pd.DataFrame(x)\n", + "display(x)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0wvsYcKGMpYG" + }, + "source": [ + "## Model Building and Training starts" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "C1mUEABKLZvn", + "outputId": "51905885-c444-4049-e9e6-77cf1191211c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training set: (5524344, 7) (5524344, 1)\n", + "Validation set: (1381086, 7) (1381086, 1)\n", + "Testing set: (4603621, 7) (4603621, 1)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.4, random_state=2024)\n", + "xtrain, xval, ytrain, yval = train_test_split(xtrain, ytrain, test_size=0.2, random_state=2024)\n", + "\n", + "print('Training set:', xtrain.shape, ytrain.shape)\n", + "print('Validation set:', xval.shape, yval.shape)\n", + "print('Testing set:', xtest.shape, ytest.shape)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sptFi_glMhuo" + }, + "source": [ + "### Apply PCA to reduce the number of features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "jY66XkRFL5zb", + "outputId": "61eb0dfb-8cd7-4cb1-918a-81b483ab9db1" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "array([0.41083897, 0.17528541, 0.11528192, 0.10439432, 0.08631051,\n", + " 0.06104842, 0.04684044])" + ] + }, + "metadata": {} + } + ], + "source": [ + "from sklearn.decomposition import PCA\n", + "\n", + "pca = PCA(n_components=7).fit(xtrain)\n", + "evr = pca.explained_variance_ratio_\n", + "display(evr)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 480 + }, + "id": "gGiT8HSONFpo", + "outputId": "63adab9f-6462-4800-c4f2-8df3454c223b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHPCAYAAAC7lGWmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrzElEQVR4nO3deVxUVf8H8M/MwLCvsiOCCy6IgCIQLmmGoSYumbnmUlmZlUq5UCqaJS2PppWPlrmbj5qpuYULLrmgJIi7KIriwq6syjZzf3/wc3QCdAYHZmA+79drXnHPPffc70zFfDn3LCJBEAQQERER6RGxtgMgIiIiqmtMgIiIiEjvMAEiIiIivcMEiIiIiPQOEyAiIiLSO0yAiIiISO8wASIiIiK9wwSIiIiI9A4TICIiItI7TICIiIhI7zABIiKdcujQIYhEoipfpqamcHd3x4ABA7B+/XqUl5c/s73s7Gz8+OOPCAsLQ7NmzWBpaQkjIyM4OTmhe/fu+Pzzz3H+/HmV47tx4wbEYrEipvXr1z/P2yUiLRFxLzAi0iWHDh3CSy+9pFLdgIAAbN++HU5OTpXOyeVyzJs3D99++y0KCgqe2VbPnj2xcOFCeHl5PbXeF198gcjISMVxaGgooqOjVYqXiHQHEyAi0ilPJkDjx4/HBx98oDhXWFiIU6dOYf78+bhx4wYAIDAwECdOnIBIJFLUe/jwIYYMGYIdO3YAAKRSKYYMGYKePXvCw8MDpqamyMjIwKlTp7B161YkJiYCACZOnIiFCxc+NT5PT08kJyfD3NwchYWFkEgkuHXrFpydnTX3IRBR7ROIiHTIwYMHBQACACEyMrLKOvfu3RNatGihqLd9+3al86NHj1acCwoKElJSUp56zx07dgjNmzcXJk6c+NR6x44dU7S7bNkyQSKRCACE7777To13SES6gGOAiKjesbGxQUREhOL4yUdQW7duxerVqwEAPj4+iImJgYeHx1Pb69u3L06dOoUePXo8td6aNWsAAHZ2dhg9ejRefvllAMDatWtr8jaISIuYABFRvRQYGKj4+ebNm4qf582bp/h55cqVMDMzU6k9a2tr9OvXr9rzJSUl2LRpEwDgjTfegKGhId58800AwNmzZxWP0YiofmACRET1kqGhoeJnmUwGADh37hxOnToFAOjatSs6dOigsfvt2LED9+/fBwCMHDkSADBw4EBFgvWod4iI6gcmQERUL507d07xs4uLCwDg8OHDirJXX31Vo/d7lOA0b94cwcHBAAAzMzMMGDAAALB+/XpFIkZEuo8JEBHVO+Xl5Zg/f77iuHv37gCAM2fOKMr8/f01dr+srCzFOKMRI0YonXvUG5SRkYE9e/Zo7J5EVLuYABFRvVFUVITDhw+jZ8+eOHHiBADA3d0db7zxBgAgJydHUdfBwUFj9/3f//6HsrIyAI8Tnkd69uypWIeIj8GI6g8mQESks+bMmaO0ErS5uTm6d++OQ4cOAahIcrZt2wYjIyMAUFrwUNXBz6p4lNgEBgbC09NT6ZxEIsHQoUMBANu3b0d+fr7G7ktEtYcJEBHVO02bNsWUKVNw7tw5+Pn5KcotLCwUPxcVFWnkXhcuXEB8fDyAyr0/jzwqf/jwIX7//XeN3JeIapeBtgMgIqrOkytBi0QiGBsbw87ODlZWVlXWb9SokeLnjIwMjcTwqPfHwMBA0dPzb/7+/mjTpg0uXbqENWvW4O2339bIvYmo9jABIiKd5eDgAG9vb5Xr+/r6Kn5OSEhAz549n+v+crkcv/32G4CKgdeqjCs6cuQIbty48czFF4lIu/gIjIgajG7duil+3rVr13O3FxMTgzt37qh1jSAIXBmaqB5gDxARNRjt2rVDx44dcerUKRw5cgQJCQnPtRjio8dfRkZGWLFiBcTip//N+O233+L06dNYu3YtZs6cWeP7ElHtYwJERA3KZ599htdeew0AMHbsWBw/flylGWG5ubk4cuQIwsLCAFTsPL9161YAFVPdhw8f/sw20tPTcfr0aVy9ehWxsbGKBROJSPfwERgRNSgDBw7EqFGjAFTs0fXyyy8r7RVWlb/++gsBAQGIiYlRlP3xxx+KmWSvv/66SvceNGgQRCIRAK4JRKTr2ANERA3OkiVLcP/+fezYsQMnT55Eq1at8MYbbyA0NBQeHh4wMTFBRkYGEhISsHXrVsU09yc9SmAMDQ2fuknqk9zc3BAQEIC4uDhs3LgRixYtglQq1eh7IyLNYAJERA2Oqakptm3bhq+++grfffcdCgoKsHbt2qcOTn711VcVU+5v3bqlWGyxR48esLGxUfner7/+OuLi4hQJ2KBBg57rvRBR7eAjMCJqkMRiMWbOnInr16/jhx9+QN++feHh4QFzc3NIpVI4OjqiW7du+Pzzz3Hx4kXs3LkTLVu2BACsW7cOcrkcANROYJ6sz8dgRLpLJAiCoO0giIiIiOoSe4CIiIhI7zABIiIiIr3DBIiIiIj0DhMgIiIi0jtMgIiIiEjvMAEiIiIivcOFEKsgl8tx9+5dWFhYKJa1JyIiIt0mCAIKCgrg4uLyzM2LmQBV4e7du3Bzc9N2GERERFQDt27dQuPGjZ9ahwlQFSwsLABUfICWlpZajoaIiIhUkZ+fDzc3N8X3+NMwAarCo8delpaWTICIiIjqGVWGr3AQNBEREekdJkBERESkd5gAERERkd5hAkRERER6hwkQERER6R0mQERERKR3mAARERGR3mECRERERHqHCRARERHpHa4ETURERHVCJhcQl3IPmQXFcLAwRmBTW0jE2tl0XKs9QH///TfCwsLg4uICkUiEbdu2PfOaQ4cOoUOHDjAyMkKLFi2watWqSnUWL14MDw8PGBsbIygoCHFxcZoPnoiIiFQWfT4NXb45gGHLTmDihkQMW3YCXb45gOjzaVqJR6sJUFFREXx9fbF48WKV6qekpODVV1/FSy+9hMTEREyaNAnvvPMO9uzZo6izceNGhIeHIzIyEgkJCfD19UVoaCgyMzNr620QERHRU0SfT8P4dQlIyytWKk/PK8b4dQlaSYJEgiAIdX7XKohEImzduhUDBgyots60adOwa9cunD9/XlE2dOhQ5ObmIjo6GgAQFBSEgIAA/PTTTwAAuVwONzc3fPTRR5g+fbpKseTn58PKygp5eXncDJWIiOg5yOQCunxzoFLy84gIgJOVMY5O6/Hcj8PU+f6uV4OgY2NjERISolQWGhqK2NhYAEBpaSni4+OV6ojFYoSEhCjqVKWkpAT5+flKLyIiInp+cSn3qk1+AEAAkJZXjLiUe3UXFOpZApSeng5HR0elMkdHR+Tn5+Phw4fIzs6GTCarsk56enq17UZFRcHKykrxcnNzq5X4iYiI9EVWQQlWHkvBtD/OqlQ/s6D6JKk2cBYYgIiICISHhyuO8/PzmQQRERGpqbCkHHsvpGNb4l0cS86GTK76KBsHC+NajKyyepUAOTk5ISMjQ6ksIyMDlpaWMDExgUQigUQiqbKOk5NTte0aGRnByMioVmImIiJqyMpkcvx9JQvbEu9i38V0FJfJK9UxEItQXk0y9GgMUGBT21qOVFm9egQWHByMmJgYpbJ9+/YhODgYACCVSuHv769URy6XIyYmRlGHiIiINOeNn2Px9upT2HHmrlLy09jGBBNeao59k1/ET8PbQ4SKZOdJj44jw7zqfD0grfYAFRYWIjk5WXGckpKCxMRE2NraokmTJoiIiMCdO3ewZs0aAMD777+Pn376CVOnTsVbb72FAwcOYNOmTdi1a5eijfDwcIwePRodO3ZEYGAgFi5ciKKiIowdO7bO3x8REVFDkprzAE0amSqVdfW0x+nUXACAjakhXvVxxgA/V/i720AkqkhqPB0tsGRkB8zZcVFpQLSTlTEiw7zQy9u5zt7DI1pNgE6dOoWXXnpJcfxoHM7o0aOxatUqpKWlITU1VXG+adOm2LVrFyZPnoxFixahcePG+PXXXxEaGqqoM2TIEGRlZWHWrFlIT0+Hn58foqOjKw2MJiIiomdLzyvG9jN3sO30XVxMy8fBT7ujqZ2Z4vwAPxekZBdhgJ8LunraQ2pQ9cOlXt7O6OnlpDMrQevMOkC6hOsAERGRPst7WIbo82nYdvouTqTk4MlMYXJIS0wM8dRecE+hzvd3vRoETURERLWjpFyGg5czse30XRxIykRpeeXBzL6NreBhZ1rF1fUPEyAiIiLC5I2J2H2u8pp5Ho1M0d/PFf39XNDM3lwLkdUOJkBERER6RBAEXEzLR0tHCxhKHo/XCW3rpEiA7Myl6OvjggHtXeHb2EoxmLkhYQJERESkB27de4DtZ+5i2+k7uJpZiJVjAvBSawfF+Z5ejhjs3xh9fV3QuXkjGEjq1Uo5amMCRERE1EDdKyrFrnNp+PP0HZy6eV/p3LbEO0oJkKnUAN8N9q3rELWGCRAREVED8rBUhn2XMvDn6Ts4fCWryhWYO7rboHMLOy1EpzuYABERETUg3++/gl/+vl6p3NPBHAPau6KfrwvcbBvGTK7nwQSIiIioHhIEAWdu56GJrSlszaSK8jAfF0UC5GRpjH5+Lujv5wIvZ8sGOZi5ppgAERER1SPXswrxZ+Jd/Jl4BzdyHmDGq23wTtdmivPerpb4oHtzdPG0Q1DTRlpbaVnXMQEiIiLScZkFxdhxJg1/Jt7B2dt5Suf+TLyrlACJRCJM7dW6rkOsd5gAERER6aDCknLsOZ+ObYl3cCw5G/8eyywSAcHNGmGAnysEQeDjLTUxASIiItJBfybewedbz1cqb+tiiQF+rgjzdYGTlbEWImsYmAARERFpkVwuID71PmxMpWjh8HiriVfbOWP29gsokwlwszVBf19XDGjvghYOFlqMtuFgAkRERKQFVzIKsO30HfyZeBd3ch9iWGATRL3WTnHe2lSKyLC2aONsgQ5NbPiIS8OYABEREdWRtLyH2J54F9sS7+JSWr7Sud3n0jCnX1tIDR5vQTHyBfe6DlFvMAEiIiJ6DjK5gLiUe8gsKIaDhTECm9oqTT3PLy7D7rNp2JZ4BydT7kH412BmiViELi3sMKC9Sx1Hrt+YABEREdVQ9Pk0zNlxEWl5xYoyZytjRIZ5oZe3MwDgwp18TN9yrtK1fm7WGODngld9XGBvYVRnMVMFrW/1unjxYnh4eMDY2BhBQUGIi4urtm5ZWRm++OILNG/eHMbGxvD19UV0dLRSndmzZ0MkEim9WrfmeghERKRZ0efTMH5dglLyAwBpecUYvy4B0efTAABBTW3h/P+ztZramWFSiCcOftod2yZ0xpjOTZn8aIlWe4A2btyI8PBwLF26FEFBQVi4cCFCQ0ORlJQEBweHSvVnzJiBdevWYdmyZWjdujX27NmDgQMH4vjx42jfvr2iXtu2bbF//37FsYEBO7qIiEhzZHIBc3ZcROVtRh+bs+Mieno5QSIWYW5/b9hbGMGnsRUHM+sIrfYALViwAOPGjcPYsWPh5eWFpUuXwtTUFCtWrKiy/tq1a/HZZ5+hT58+aNasGcaPH48+ffpg/vz5SvUMDAzg5OSkeNnZ6feOt0REpFlxKfcq9fw8SUBFT1Bcyj0AQIiXI3zdrJn86BCtJUClpaWIj49HSEjI42DEYoSEhCA2NrbKa0pKSmBsrLzok4mJCY4ePapUdvXqVbi4uKBZs2YYMWIEUlNTnxpLSUkJ8vPzlV5ERERVOXc7D99EX1apbmZB9UkSaZfWEqDs7GzIZDI4OjoqlTs6OiI9Pb3Ka0JDQ7FgwQJcvXoVcrkc+/btw5YtW5CWlqaoExQUhFWrViE6OhpLlixBSkoKunbtioKCgmpjiYqKgpWVleLl5uammTdJREQNxsNSGUb8egJhPx1F4q1cla5xsOBKzbpK64Og1bFo0SJ4enqidevWkEql+PDDDzF27FiIxY/fRu/evTF48GD4+PggNDQUu3fvRm5uLjZt2lRtuxEREcjLy1O8bt26VRdvh4iI6hETqQRy+ePjp22yLkLFbLDApra1HhfVjNYSIDs7O0gkEmRkZCiVZ2RkwMnJqcpr7O3tsW3bNhQVFeHmzZu4fPkyzM3N0axZsyrrA4C1tTVatmyJ5OTkausYGRnB0tJS6UVERPrrYakMf8TfhvCvRXve69YMHo1M8dVAbywc4gcRKpKdJz06jgzzUloPiHSL1hIgqVQKf39/xMTEKMrkcjliYmIQHBz81GuNjY3h6uqK8vJy/PHHH+jfv3+1dQsLC3Ht2jU4OztrLHYiImqY7heVYtH+q+j8zQF88vsZHErKUjrfraU9Yj7pjhFB7ujn54olIztU2pDUycoYS0Z2UKwDRLpJq/PDw8PDMXr0aHTs2BGBgYFYuHAhioqKMHbsWADAqFGj4OrqiqioKADAyZMncefOHfj5+eHOnTuYPXs25HI5pk6dqmjz008/RVhYGNzd3XH37l1ERkZCIpFg2LBhWnmPRESk+27ff4Bfj6Rg4z+38LBMpihfcvgaXmr9eFkWkUgEyROdOr28ndHTy+mpK0GTbtJqAjRkyBBkZWVh1qxZSE9Ph5+fH6KjoxUDo1NTU5XG9xQXF2PGjBm4fv06zM3N0adPH6xduxbW1taKOrdv38awYcOQk5MDe3t7dOnSBSdOnIC9vX1dvz0iItJxl9Ly8fPha9hxNg0y+ePHXRKxCH19nPHei82f2YZELEJw80a1GSbVApHw7wechPz8fFhZWSEvL4/jgYiIGqDL6fn4+q/LlR5xGRuKMTSgCd7u0hRutqZaio5qSp3vby6RTEREeqdcJiglP9amhhgd7IHRnTxgaybVYmRUV5gAERFRg1ZcJsPd3IdoZm+uKPN2tUJXTztczyrCuK5N8UaAG0yl/ErUJ/y3TUREDVLewzL8dvImVh67ASsTQ+yd9CLETwxOnv+GL2xMpTCU1Ksl8UhDmAAREVGDkp5XjBXHUrD+ZCoKS8oBAFkFJYi5nImeXo93H+AqzfqNCRARETUIyZkF+OXv69h6+g7KZI/n94hEQG9vJ7jZmmgxOtI1TICIiKheS0i9jyWHrmHfReWdBaQGYrzu3xjjujZDUzszLUVHuqpGCZBMJsO2bdtw6dIlAEDbtm3Rr18/SCQSjQZHRET0LOtibyolPxbGBnjzBXeM6ezBx1xULbUToOTkZLz66qu4ffs2WrVqBaBiN3U3Nzfs2rULzZs/e9EoIiKimigtr9iNVGrweODyu92aYcvpO3CyNMbbXZpiWFATmBvxAQc9ndoLIfbp0weCIOC3336DrW3FLrc5OTkYOXIkxGIxdu3aVSuB1iUuhEhEpFsKS8qxIS4Vy4+m4KMenhge1ETp/OErWQhu1kgpMSL9o873t9oJkJmZGU6cOIF27doplZ85cwadO3dGYWGh+hHrGCZARES6IaugBKuOp2Bt7E3kF1fM6GpqZ4b94d243xZVUqsrQRsZGaGgoKBSeWFhIaRSrp5JRETP70Z2EX45ch2b428rHns90tzeHPkPy2DDFZvpOaidAPXt2xfvvvsuli9fjsDAQAAVu7S///776Nevn8YDJCIi/XH2di6WHr6Gv86n48nnE4YSEQb4ueK9bs3QwsFCewFSg6F2AvTDDz9g9OjRCA4OhqGhIQCgvLwc/fr1w6JFizQeIBER6Yd7RaUYtOS40ho+5kYGGB7UBG91bgonK87oIs1ROwGytrbGn3/+iatXr+Ly5csAgDZt2qBFixYaD46IiPSHrZkUA/xc8Xv8bdiZG+GtLh4YEeQOKxNDbYdGDVCN5wl6enrC09NTk7EQEZEeeFBajt9P3caWhNvY8G4wTKSP15B7v3tztG9ig9c6uMLYkGvLUe1RKQEKDw/H3LlzYWZmhvDw8KfWXbBggUYCIyKihuVeUSnWxN7A6uM3cP9BGQBgc/wtvBnsoajT3N4czZ/YtZ2otqiUAJ0+fRplZWWKn4mIiFR1694DLD+ago3/3MLDMpnSuUvplWcVE9UFtdcB0gdcB4iI6PldvJuPn/++hp1n0yCTP/6qkYhFCPNxxnvdmqONM3/Hkuao8/2t9pKZb731VpXrABUVFeGtt95StzksXrwYHh4eMDY2RlBQEOLi4qqtW1ZWhi+++ALNmzeHsbExfH19ER0d/VxtEhGR5m38JxV9fjiCPxPvKpIfE0MJxnTywOEp3bFwaHsmP6RVaidAq1evxsOHDyuVP3z4EGvWrFGrrY0bNyI8PByRkZFISEiAr68vQkNDkZmZWWX9GTNm4Oeff8aPP/6Iixcv4v3338fAgQOVHsup2yYREWneS60dIJVUfMXYmkkxOaQljk/vgdn92qKxjamWoyNS4xFYfn4+BEGAjY0Nrl69Cnt7e8U5mUyGHTt2YPr06bh7967KNw8KCkJAQAB++uknAIBcLoebmxs++ugjTJ8+vVJ9FxcXfP7555gwYYKibNCgQTAxMcG6detq1GZ175WPwIiInq24TIY/Em5DLheUBjMDwML9V2BrJsVgfzelmV5EtaVWtsKwtraGSCSCSCRCy5YtK50XiUSYM2eOykGWlpYiPj4eERERijKxWIyQkBDExsZWeU1JSQmMjZUXwjIxMcHRo0dr3OajdktKShTH+fn5Kr8PIqKGSCYXEJdyD5kFxXCwMEZgU1ulvbfyHpRh3cmbWHksBdmFpbA2NcQg/8YwlT7+WpkUUvm7gkhXqJwAHTx4EIIgoEePHvjjjz8UO8EDgFQqhbu7O1xcXFS+cXZ2NmQyGRwdHZXKHR0dFQss/ltoaCgWLFiAF198Ec2bN0dMTAy2bNkCmUxW4zYBICoqSq3kjYioIYs+n4Y5Oy4iLa9YUeZsZYzIMC/4ullj+ZEU/C8uFUWlj2d05T4ow8HLWXjVx1kbIROpTeUEqFu3bgCAlJQUuLm5QSxWe/jQc1u0aBHGjRuH1q1bQyQSoXnz5hg7dixWrFjxXO1GREQorW+Un58PNze35w2XiKjeiT6fhvHrEvDvsRFpecV4f10CJGJA9sTepGIR0NvbGe91awafxtZ1GSrRc1F7JWh3d3cAwIMHD5CamorS0lKl8z4+Piq1Y2dnB4lEgoyMDKXyjIwMODk5VXmNvb09tm3bhuLiYuTk5MDFxQXTp09Hs2bNatwmULHDvZGRkUpxExE1VDK5gDk7LlZKfpTrVPxTaiDGYP/GGNe1GTzszOokPiJNUrsbJysrC3379oWFhQXatm2L9u3bK71UJZVK4e/vj5iYGEWZXC5HTEwMgoODn3qtsbExXF1dUV5ejj/++AP9+/d/7jaJiPRdXMo9pcde1Rng54Jj03rgq4HtmPxQvaV2AjRp0iTk5ubi5MmTMDExQXR0NFavXg1PT09s375drbbCw8OxbNkyrF69GpcuXcL48eNRVFSEsWPHAgBGjRqlNKD55MmT2LJlC65fv44jR46gV69ekMvlmDp1qsptEhFR1TILnp38ABVT3O0t2GtO9Zvaj8AOHDiAP//8Ex07doRYLIa7uzt69uwJS0tLREVF4dVXX1W5rSFDhiArKwuzZs1Ceno6/Pz8EB0drRjEnJqaqjTWqLi4GDNmzMD169dhbm6OPn36YO3atbC2tla5TSIiqlpJmfzZlQA4WBg/uxKRjlN7KwxLS0ucPXsWHh4ecHd3x/r169G5c2ekpKSgbdu2ePDgQW3FWme4DhAR6ZPScjmWHLqGHw9cQflTciARACcrYxyd1kNpSjyRrqiVdYAeadWqFZKSkuDh4QFfX1/8/PPP8PDwwNKlS+HszOmPRET1ybnbeZiy+QwuP2NT0kfpTmSYF5MfahDUToAmTpyItLQ0AEBkZCR69eqF3377DVKpFKtWrdJ0fEREVAuKy2T4IeYqfv77umKvLolYhPe7NUMrRwtE/XVZaUC00/+vA9TLm3/oUsPw3LvBP3jwAJcvX0aTJk1gZ2enqbi0io/AiKghi795D1M3n8W1rCJFWRtnS3z3ug+8Xa0APHslaCJdVKuPwP7N1NQUHTp0QHFxMf7zn//g008/fd4miYioluy9kI731sXj0Z++UokYH7/cAu91aw5DyeNJJxKxCMHNG2kpSqLap9Y0+KysLOzcuRN79+5VbD9RVlaGRYsWwcPDA19//XWtBElERJrR1dMeTWwrdmP3dbPGzo+74MMenkrJD5E+ULkH6OjRo+jbty/y8/MhEonQsWNHrFy5EgMGDICBgQFmz56N0aNH12asRESkJrlcgPiJR1cmUgm+GeSD83fyMLZzUz7WIr2l8hig7t27w8XFBZ999hlWr16N+fPnw9PTE1999RVef/312o6zTnEMEBE1BAcvZ2LuzotYMSaAKzaTXlDn+1vlBKhRo0Y4cuQIvLy88PDhQ5ibm2PLli2KbSgaEiZARFSf5T4oxRc7LmLL6TsAgKCmtvjfuBeUeoKIGqJaGQR9//59xSwvExMTmJqawtvb+/kiJSIijfrrXBpm/nkB2YUlijKpgRiFpeWwNDbUYmREukWtWWAXL15Eeno6AEAQBCQlJaGoqEipjqq7wRMRkeZkFZQgcvt57D6XriizMDbAzL5eGOzfGCIRe3+InqTyIzCxWAyRSISqqj8qF4lEitlh9RkfgRFRfSEIAv5MvIvZOy4g90GZojykjSO+GugNR0vu20X6o1YegaWkpDx3YEREpFmz/ryAtSduKo5tzaSY3a8twnyc2etD9BQqJ0Du7u61GQcREdVAL28nRQIU5uuC2WFeaGRupOWoiHTfc68ETUREdefRcINHOreww4SXmsOnsTVC2zppMTKi+oUJEBFRPSCXC1gTewNHk3OwbJS/UhI0JbS1FiMjqp+YABER6bhrWYWYtvksTt28DwDY8M8tDAtsouWoiOo3JkBERDqqXCbHsiMp+H7/FZSWyxXlN3KKnnIVEamiRrvflZeXY//+/fj5559RUFAAALh79y4KCwvVbmvx4sXw8PCAsbExgoKCEBcX99T6CxcuRKtWrWBiYgI3NzdMnjwZxcXFivOzZ8+GSCRSerVuze5hIqpfLqfnY+B/j+Ob6MuK5Me9kSk2vPsCInq30XJ0RPWf2j1AN2/eRK9evZCamoqSkhL07NkTFhYW+Oabb1BSUoKlS5eq3NbGjRsRHh6OpUuXIigoCAsXLkRoaCiSkpLg4OBQqf769esxffp0rFixAp06dcKVK1cwZswYiEQiLFiwQFGvbdu22L9//+M3acCOLiKqH0rL5fjvoWQsPpiMMlnFumsiEfB256b45JVWMJFKtBwhUcOgdmYwceJEdOzYEWfOnEGjRo0U5QMHDsS4cePUamvBggUYN24cxo4dCwBYunQpdu3ahRUrVmD69OmV6h8/fhydO3fG8OHDAQAeHh4YNmwYTp48qfymDAzg5MTZEERUvzwoLcdr/z2Oy+kFirIWDub49nUfdGhio8XIiBoetR+BHTlyBDNmzIBUKlUq9/DwwJ07d1Rup7S0FPHx8QgJCXkcjFiMkJAQxMbGVnlNp06dEB8fr3hMdv36dezevRt9+vRRqnf16lW4uLigWbNmGDFiBFJTU58aS0lJCfLz85VeRER1zVRqgHauVgAAiViED19qgV0fd2HyQ1QL1O4BksvlVW53cfv2bVhYWKjcTnZ2NmQyGRwdHZXKHR0dcfny5SqvGT58OLKzs9GlSxcIgoDy8nK8//77+OyzzxR1goKCsGrVKrRq1QppaWmYM2cOunbtivPnz1cbX1RUFObMmaNy7EREtWXGq17IKizBp6+0gvf/J0NEpHlq9wC98sorWLhwoeJYJBKhsLAQkZGRlXpiNO3QoUOYN28e/vvf/yIhIQFbtmzBrl27MHfuXEWd3r17Y/DgwfDx8UFoaCh2796N3NxcbNq0qdp2IyIikJeXp3jdunWrVt8HEVFRSTlmb7+A308p/76xMjXEqrGBTH6IapnaPUDz589HaGgovLy8UFxcjOHDh+Pq1auws7PD//73P5XbsbOzg0QiQUZGhlJ5RkZGteN3Zs6ciTfffBPvvPMOAKBdu3YoKirCu+++i88//xxiceV8ztraGi1btkRycnK1sRgZGcHIiEvHE1HdOJacjWl/nMXt+w9hYWyAF1vac9NSojqmdg9Q48aNcebMGXz++eeYPHky2rdvj6+//hqnT5+ucuZWdaRSKfz9/RETE6Mok8vliImJQXBwcJXXPHjwoFKSI5FUzIioblP7wsJCXLt2Dc7OzirHRkRUG/KLyzD9j7MY8etJ3L7/EABQJpPj7O08LUdGpH9qND/cwMAAI0aMwIgRI57r5uHh4Rg9ejQ6duyIwMBALFy4EEVFRYpZYaNGjYKrqyuioqIAAGFhYViwYAHat2+PoKAgJCcnY+bMmQgLC1MkQp9++inCwsLg7u6Ou3fvIjIyEhKJBMOGDXuuWImInkfMpQx8vvU80vMfr1sW1NQW3wzygYedmRYjI9JPaidAUVFRcHR0xFtvvaVUvmLFCmRlZWHatGkqtzVkyBBkZWVh1qxZSE9Ph5+fH6KjoxUDo1NTU5V6fGbMmAGRSIQZM2bgzp07sLe3R1hYGL766itFndu3b2PYsGHIycmBvb09unTpghMnTsDe3l7dt0pE9NzuF5Xii50XsfX041myZlIJpvdpgxGBTSAWi55yNRHVFpFQ3bOjanh4eGD9+vXo1KmTUvnJkycxdOhQpKSkaDRAbcjPz4eVlRXy8vJgaWmp7XCIqJ5KSL2Pd9ecQnZhqaLsxZb2mDfQG41tTLUYGVHDpM73t9o9QOnp6VWOp7G3t0daWpq6zRERNVhNGz1+tGVpbICZfb3wun9jpZ3ciUg71B4E7ebmhmPHjlUqP3bsGFxcXDQSFBFRQ2BjJsXc/t7o6eWI/eHdMLijG5MfIh2hdg/QuHHjMGnSJJSVlaFHjx4AgJiYGEydOhWffPKJxgMkIqoP7uY+xNd/XcaMvm3gYPF4Snvvds7o5e3ExIdIx6idAE2ZMgU5OTn44IMPUFpa8Vzb2NgY06ZNQ0REhMYDJCLSZYIg4H9xtzBv9yUUlpSjtFyOpW/6K9Vh8kOke9QeBP1IYWEhLl26BBMTE3h6ejaohQQ5CJqIVJGa8wDT/jiL2Os5ijIHCyPs/LiLUi8QEdWNWh0E/Yi5uTkCAgJqejkRUb0lkwtYffwGvtuThIdlj/dGfKNjY3z+qhesTAy1GB0RqULtBKioqAhff/01YmJikJmZCblcrnT++vXrGguOiEjXJGcWYtofZxF/876izNXaBFGvtcOLLbneGFF9oXYC9M477+Dw4cN488034ezszGfbRKQ31sbewNxdl1Ba/vgPv1HB7pjaqzXMjWrcoU5EWqD2/7F//fUXdu3ahc6dO9dGPEREOsvaVKpIfjwameKbQT4IatZIy1ERUU2onQDZ2NjA1ta2NmIhItJpfX2csftcGtxsTTE5pCVMpBJth0RENaT2Qohz587FrFmz8ODBg9qIh4hIJ5y5lYtvoy8rlYlEIiwe3gGf9WnD5IeonlO7B2j+/Pm4du0aHB0d4eHhAUND5dkOCQkJGguOiKiuFZfJ8P2+K1h25DrkAuDT2Aq9vB9v/8PNS4kaBrUToAEDBtRCGERE2vfPjXuYuvksUrKLFGUb/7mllAARUcNQ44UQGzIuhEikX4pKyvFt9GWsOXETj34jSiViTAzxxLsvNoOhRO3RAkSkBXWyECIRUX0jkwuIS7mHzIJiOFgYI7CpLWKv5WD6lrO4ff+hol77Jtb47nUftHCw0GK0RFSb1E6AZDIZvv/+e2zatAmpqamK/cAeuXfvnsaCIyLSlOjzaZiz4yLS8ooVZSaGEqWVnI0NxZgS2hpjOnlAwrE+RA2a2v26c+bMwYIFCzBkyBDk5eUhPDwcr732GsRiMWbPnl0LIRIRPZ/o82kYvy5BKfkBoJT8vNDMFnsmvYi3uzRl8kOkB9ROgH777TcsW7YMn3zyCQwMDDBs2DD8+uuvmDVrFk6cOFEbMRIR1ZhMLmDOjot42mBHKxNDrH0rCO6NzOosLiLSLrUToPT0dLRr1w5AxYaoeXl5AIC+ffti165dagewePFieHh4wNjYGEFBQYiLi3tq/YULF6JVq1YwMTGBm5sbJk+ejOJi5b/q1G2TiBquuJR7lXp+/i3vYRlOPbG3FxE1fGonQI0bN0ZaWhoAoHnz5ti7dy8A4J9//oGRkZFabW3cuBHh4eGIjIxEQkICfH19ERoaiszMzCrrr1+/HtOnT0dkZCQuXbqE5cuXY+PGjfjss89q3CYRNWyZBU9PftStR0QNg9oJ0MCBAxETEwMA+OijjzBz5kx4enpi1KhReOutt9Rqa8GCBRg3bhzGjh0LLy8vLF26FKamplixYkWV9Y8fP47OnTtj+PDh8PDwwCuvvIJhw4Yp9fCo2yYRNVwyuYCDl1X748fBwriWoyEiXaL2LLCvv/5a8fOQIUPQpEkTxMbGwtPTE2FhYSq3U1paivj4eERERCjKxGIxQkJCEBsbW+U1nTp1wrp16xAXF4fAwEBcv34du3fvxptvvlnjNgGgpKQEJSUliuP8/HyV3wcR6aa8B2X4eMNpHL6S9dR6IgBOVhVT4olIfzz3OkDBwcEIDg5W+7rs7GzIZDI4OjoqlTs6OuLy5ctVXjN8+HBkZ2ejS5cuEAQB5eXleP/99xWPwGrSJgBERUVhzpw5ar8HItJNl9Ly8d7aeKTeq9izUCwC5EJFsvPkYOhHc70iw7w484tIz6iUAG3fvh29e/eGoaEhtm/f/tS6/fr100hgVTl06BDmzZuH//73vwgKCkJycjImTpyIuXPnYubMmTVuNyIiAuHh4Yrj/Px8uLm5aSJkIqpjfybewfQ/zimmuNuaSfHT8PbIf1hWaR0gJytjRIZ5casLIj2kUgI0YMAApKenw8HB4al7gYlEIshksmrPP8nOzg4SiQQZGRlK5RkZGXBycqrympkzZ+LNN9/EO++8AwBo164dioqK8O677+Lzzz+vUZsAYGRkpPYAbiLSPd9EX8aSQ9cUxz6NrbBkpD9crU0AAD29nCqtBM2eHyL9pNIgaLlcDgcHB8XP1b1UTX4AQCqVwt/fXzGg+lHbMTEx1T5Se/DgAcRi5ZAlEgkAQBCEGrVJRA2Hm42p4ufB/o2x6b1gRfIDABKxCMHNG6G/nyuCmzdi8kOkx9QaA1RWVoZevXph6dKl8PT0fO6bh4eHY/To0ejYsSMCAwOxcOFCFBUVYezYsQCAUaNGwdXVFVFRUQCAsLAwLFiwAO3bt1c8Aps5cybCwsIUidCz2iSihmt4UBNcSstHKycLjAhqApGICQ4RVU2tBMjQ0BBnz57V2M2HDBmCrKwszJo1C+np6fDz80N0dLRiEHNqaqpSj8+MGTMgEokwY8YM3LlzB/b29ggLC8NXX32lcptE1HCcu52Hdo2tlMrmDvDWUjREVJ+IBEF42grxlUyePBlGRkZK0+Ebmvz8fFhZWSEvLw+WlpbaDoeI/qWkXIY5Oy5i/clULB3pj17e1Y/xIyL9oc73t9rT4MvLy7FixQrs378f/v7+MDNT3jtnwYIF6jZJRKSy9LxijP8tHqdTcwEAn/5+Bv7uNrC34EQGIlKd2gnQ+fPn0aFDBwDAlStXlM7xeTsR1aa4lHv44LcEZBdWLFxqZCDG7H5tmfwQkdrUToAOHjxYG3EQEVVLEASsPn4DX+66hHJ5xVN7V2sT/PymP7xdrZ5xNRFRZc+9EjQRUW0qLpPhsy3nsOX0HUVZ5xaN8OOwDrA1k2oxMiKqz2qUAJ06dQqbNm1CamoqSktLlc5t2bJFI4EREd2+/wDvrY3HhbuP9+d778VmmBLaCgYStfdyJiJSUPs3yIYNG9CpUydcunQJW7duRVlZGS5cuIADBw7Ayopd0USkOYIA3Ml9CAAwlUrw0/D2iOjThskPET03tX+LzJs3D99//z127NgBqVSKRYsW4fLly3jjjTfQpEmT2oiRiPSUm60pfhzWHs3szbD1g87o6+Oi7ZCIqIFQex0gMzMzXLhwAR4eHmjUqBEOHTqEdu3a4dKlS+jRowfS0tJqK9Y6w3WAiLSjqKQcIhFgKlV+Ol8mk8OQvT5E9AzqfH+r/RvFxsYGBQUFAABXV1ecP38eAJCbm4sHDx7UIFwiIiAluwgDFh/DlM1n8e+/y5j8EJGmqT0I+sUXX8S+ffvQrl07DB48GBMnTsSBAwewb98+vPzyy7URIxE1cPsvZmDyxkQUlJTjamYhOjSxwdtdmmo7LCJqwFROgM6fPw9vb2/89NNPKC4uBgB8/vnnMDQ0xPHjxzFo0CDMmDGj1gIlooZHLhewMOYqfoi5qijzdDBHj9YOWoyKiPSBymOAxGIxAgIC8M4772Do0KGwsLCo7di0hmOAiGpf3sMyTN6YiAOXMxVlfdo54bvXfWFmxCXKiEh9tTIG6PDhw2jbti0++eQTODs7Y/To0Thy5MhzB0tE+icpvQD9fzqqSH7EIiCid2ssHt6ByQ8R1QmVE6CuXbtixYoVSEtLw48//ogbN26gW7duaNmyJb755hukp6fXZpxE1EDsPHsXA/97DDdyKiZN2JgaYs1bQXivW3PuJ0hEdUbtqRVmZmYYO3YsDh8+jCtXrmDw4MFYvHgxmjRpgn79+tVGjETUQAiCgG2n7+BBqQwA0NbFEts/7IIunnZajoyI9I3a6wD9W1FREX777TdEREQgNzcXMplMU7FpDccAEdWevIdlGLD4GNo3sca8ge1gbCjRdkhE1ECo8/1d44ftf//9N1asWIE//vgDYrEYb7zxBt5+++2aNkdEDVRJuQxGBo+THCsTQ2wZ3wnWpoZ85EVEWqPWI7C7d+9i3rx5aNmyJbp3747k5GT88MMPuHv3LpYtW4YXXnihRkEsXrwYHh4eMDY2RlBQEOLi4qqt2717d4hEokqvV199VVFnzJgxlc736tWrRrERUc1tjr+Nl+cfRnpesVK5jZmUyQ8RaZXKPUC9e/fG/v37YWdnh1GjRuGtt95Cq1atnjuAjRs3Ijw8HEuXLkVQUBAWLlyI0NBQJCUlwcGh8logW7ZsUdqBPicnB76+vhg8eLBSvV69emHlypWKYyMjo+eOlYhUU1oux5e7LmJN7E0AwPjf4rHh3ReUeoKIiLRJ5QTI0NAQmzdvRt++fSGRaO6X2IIFCzBu3DiMHTsWALB06VLs2rULK1aswPTp0yvVt7W1VTresGEDTE1NKyVARkZGcHJy0licRKSazPxifPBbAk7dvK8o83LmWDoi0i0qJ0Dbt2/X+M1LS0sRHx+PiIgIRZlYLEZISAhiY2NVamP58uUYOnQozMzMlMoPHToEBwcH2NjYoEePHvjyyy/RqFGjKtsoKSlBSUmJ4jg/P78G74aI4m/ew/h1CcgsqPj/SSoR48sB3ngjwE3LkRERKdPqDoPZ2dmQyWRwdHRUKnd0dFRpXaG4uDicP38e77zzjlJ5r169sGbNGsTExOCbb77B4cOH0bt372pnqEVFRcHKykrxcnPjL2sidQiCgLWxNzD0lxOK5MfZyhi/vx/M5IeIdFK9XnJ1+fLlaNeuHQIDA5XKhw4dqvi5Xbt28PHxQfPmzXHo0KEqN2yNiIhAeHi44jg/P59JEJGKistkmLHtPDbH31aUvdDMFj8N7wA7c469IyLdpNUeIDs7O0gkEmRkZCiVZ2RkPHP8TlFRETZs2KDS1PtmzZrBzs4OycnJVZ43MjKCpaWl0ouIVHP0arZS8vNOl6ZY93YQkx8i0mlaTYCkUin8/f0RExOjKJPL5YiJiUFwcPBTr/39999RUlKCkSNHPvM+t2/fRk5ODpydnZ87ZiJSFuLliLGdPWBsKMaioX6Y0dcLBhKt/mohInomlR6BqTMAWt3tMMLDwzF69Gh07NgRgYGBWLhwIYqKihSzwkaNGgVXV1dERUUpXbd8+XIMGDCg0sDmwsJCzJkzB4MGDYKTkxOuXbuGqVOnokWLFggNDVUrNiKqTBCESmv4fNanDUYEuaOFg7mWoiIiUo9KCdCAAQOUjkUiEZ7cQePJX4bqboUxZMgQZGVlYdasWUhPT4efnx+io6MVA6NTU1MhFiv/NZmUlISjR49i7969ldqTSCQ4e/YsVq9ejdzcXLi4uOCVV17B3LlzuRYQ0XN6UFqOaX+cQ0gbB/T3c1WUG0rETH6IqF5Rey+w/fv3Y9q0aZg3b57iMVVsbCxmzJiBefPmoWfPnrUSaF3iXmBEld3ILsJ7a+ORlFEAY0Mx/hjfCW1drLQdFhGRQq3uBTZp0iQsXboUXbp0UZSFhobC1NQU7777Li5duqR+xESk0w5ezsTEDaeRX1wOADAQi5FZUIK2Wo6LiKim1E6Arl27Bmtr60rlVlZWuHHjhgZCIiJdIZcL+OlgMr7ffwWP+oqb25vh5zc78pEXEdVrak/VCAgIQHh4uNLU9YyMDEyZMqXSejxEVH/lF5fh3bXxWLDvcfIT2tYR2yZ0ZvJDRPWe2j1AK1aswMCBA9GkSRPFYoG3bt2Cp6cntm3bpun4iEgLrmYU4L218bieXQQAEImAT19phfHdmkMs5i7uRFT/qZ0AtWjRAmfPnsW+fftw+fJlAECbNm0QEhJSaWosEdU/MrmAcWtO4UbOAwCAlYkhfhjWHt1a2ms5MiIizVF7FtiTiouLYWRk1OASH84CI333z417GPbLCXg6WuDnkf5o0shU2yERET2TOt/fao8BksvlmDt3LlxdXWFubo6UlBQAwMyZM7F8+fKaRUxEOiXAwxYrxgRgy/hOTH6IqEFSOwH68ssvsWrVKnz77beQSqWKcm9vb/z6668aDY6Iat/5O3mYse0c5HLlzuAXW9rDRCrRUlRERLVL7QRozZo1+OWXXzBixAhIJI9/Ofr6+irGBBFR/bD19G0MWnIc606k4ocDV7UdDhFRnVE7Abpz5w5atGhRqVwul6OsrEwjQRFR7SqTyTF7+wVM3ngGJeVyAMDhK1kok8m1HBkRUd1QOwHy8vLCkSNHKpVv3rwZ7du310hQRFR7sgpKMOLXk1h1/IaibGiAGza8+wIMuYs7EekJtafBz5o1C6NHj8adO3cgl8uxZcsWJCUlYc2aNdi5c2dtxEhEGpKQeh/j18UjI78EACCViDGnf1sMC2yi5ciIiOqW2n/u9e/fHzt27MD+/fthZmaGWbNm4dKlS9ixY0eD2AiVqKFafzIVQ38+oUh+nCyNseG9F5j8EJFeeq51gBoqrgNEDc3Gf1Ix7Y9ziuPAprZYPLwD7C2MtBgVEZFm1epu8I+UlpYiMzMTcrnyoMkmTfjXJJGuCfN1wYqjN5CUUYCxnT3wWZ82HO9DRHpN7QTo6tWreOutt3D8+HGlckEQIBKJIJPJNBYcEWmGqdQAP7/pjzO3c9Hfz1Xb4RARaZ3aCdCYMWNgYGCAnTt3wtnZucFtg0FU38jkAuJS7iGzoBgOFsYI8LDB+rhUvNTKAW62j1dx9rAzg4edmRYjJSLSHWonQImJiYiPj0fr1q1rIx4iUkP0+TTM2XERaXnFijJjQzGKy+Twcr6FP8Z34mrORERVqNE6QNnZ2RoNYvHixfDw8ICxsTGCgoIQFxdXbd3u3btDJBJVer366quKOoIgYNasWXB2doaJiQlCQkJw9SpXuaWGJfp8GsavS1BKfgCguKxiXN7FtHwcuJypjdCIiHSe2gnQN998g6lTp+LQoUPIyclBfn6+0ktdGzduRHh4OCIjI5GQkABfX1+EhoYiM7PqX9xbtmxBWlqa4nX+/HlIJBIMHjxYUefbb7/FDz/8gKVLl+LkyZMwMzNDaGgoiouLq2yTqL6RyQXM2XERT5vCaWNqiF7eTnUWExFRfaL2NHixuCJn+vfYn5oOgg4KCkJAQAB++uknABVbari5ueGjjz7C9OnTn3n9woULMWvWLKSlpcHMzAyCIMDFxQWffPIJPv30UwBAXl4eHB0dsWrVKgwdOvSZbXIaPOm62Gs5GLbsxDPr/W/cCwhu3qgOIiIi0r5anQZ/8ODBGgf2b6WlpYiPj0dERISiTCwWIyQkBLGxsSq1sXz5cgwdOhRmZhWDO1NSUpCeno6QkBBFHSsrKwQFBSE2NrbKBKikpAQlJSWK45r0ZBHVpcwC1XozVa1HRKRv1E6AunXrprGbZ2dnQyaTwdHRUanc0dFRpZ3l4+LicP78eSxfvlxRlp6ermjj320+OvdvUVFRmDNnjrrhE2lNIzOpSvUcLIxrORIiovpJpQTo7Nmz8Pb2hlgsxtmzZ59a18fHRyOBqWL58uVo164dAgMDn6udiIgIhIeHK47z8/Ph5ub2vOER1Zrg5nYwk0pQVFr1I2cRACcrYwQ2ta3bwIiI6gmVEiA/Pz+kp6fDwcEBfn5+EIlEqGrokLpjgOzs7CCRSJCRkaFUnpGRASenpw/eLCoqwoYNG/DFF18olT+6LiMjA87Ozkpt+vn5VdmWkZERjIy4JQDVHxKxCN+97osP1idUOvdodF5kmBckYq7TRURUFZVmgaWkpMDe3l7x8/Xr15GSklLpdf36dbVuLpVK4e/vj5iYGEWZXC5HTEwMgoODn3rt77//jpKSEowcOVKpvGnTpnByclJqMz8/HydPnnxmm0S6rLCkXOm4j48zlo7sAGcr5cdcTlbGWDKyA3p5O4OIiKqmUg+Qu7t7lT9rQnh4OEaPHo2OHTsiMDAQCxcuRFFREcaOHQsAGDVqFFxdXREVFaV03fLlyzFgwAA0aqQ8w0UkEmHSpEn48ssv4enpiaZNm2LmzJlwcXHBgAEDNBo7UV2JPp+G6VvOYcWYAHRoYqMo7+XtjJ5eTkorQQc2tWXPDxHRM9R4M9SLFy8iNTUVpaWlSuX9+vVTq50hQ4YgKysLs2bNQnp6Ovz8/BAdHa0YxJyamqqYev9IUlISjh49ir1791bZ5tSpU1FUVIR3330Xubm56NKlC6Kjo2FszAGhVP8sP5qCL3ddhCAA76w+he0fdkZjm8dbXEjEIk51JyJSk9rrAF2/fh0DBw7EuXPnlMYCPVoXqCFshsp1gEgXyOQCvtx1ESuP3VCUvdbeFV8P8oHUgDu5ExH9mzrf32r/Fp04cSKaNm2KzMxMmJqa4sKFC/j777/RsWNHHDp0qKYxE9ETistk+OC3eKXk5+MeLTD/DV8mP0REGqD2I7DY2FgcOHAAdnZ2EIvFEIvF6NKlC6KiovDxxx/j9OnTtREnkd7IKSzBO2tO4XRqLoCKR1xRA9vhjQAuzUBEpClq/ykpk8lgYWEBoGIa+927dwFUDI5OSkrSbHREeiYluwivLTmuSH7MpBKsGBPA5IeISMPU7gHy9vbGmTNn0LRpUwQFBeHbb7+FVCrFL7/8gmbNmtVGjER64WGpDEN/iUVGfsW2LI6WRlgxJgBtXay0HBkRUcOjdg/QjBkzIJfLAQBffPEFUlJS0LVrV+zevRs//PCDxgMk0hcmUgmm9WoNAGjlaIGtH3Rm8kNEVEvUngVWlXv37sHGxqbSDvH1FWeBkTb9mXgHL7V2gKWxobZDISKqV2p1FlhVbG1tG0zyQ1RXZHIBf1/JqlTe38+VyQ8RUS1TaQzQa6+9pnKDW7ZsqXEwRPqiuEyGiRtOY8+FDPxnsC9e92+s7ZCIiPSKSgmQlRXHIRBpyr+nuc/Ydg7dWtrD3oIb8hIR1RWVEqCVK1fWdhxEeiEluwhjVsbhZs4DABXT3P870p/JDxFRHavxXmCZmZmKdX9atWoFBwcHjQVF1BDF37yPd1b/g/sPygBwmjsRkTapPQg6Pz8fb775JlxdXdGtWzd069YNrq6uGDlyJPLy8mojRqJ6769zaRi+7IQi+eE0dyIi7VI7ARo3bhxOnjyJnTt3Ijc3F7m5udi5cydOnTqF9957rzZiJKrXlh9NwQfrE1BSXrF+VucWjfD7+GC4WJtoOTIiIv2l9jpAZmZm2LNnD7p06aJUfuTIEfTq1QtFRUUaDVAbuA4Qacr9olKELDiMnKJSAMBrHVzx9WvczZ2IqDbU6jpAjRo1qnJWmJWVFWxsbNRtjqhBszGTYvmYABgbivHxy56YP5i7uRMR6YIabYURHh6O9PR0RVl6ejqmTJmCmTNnajQ4oobAz80aBz7pjvCeLblgKBGRjlD7EVj79u2RnJyMkpISNGnSBACQmpoKIyMjeHp6KtVNSEjQXKR1iI/AqKZSsouw7sRNfN6nDcRiJjtERHVJne9vtafBDxgwoKZxVWnx4sX47rvvkJ6eDl9fX/z4448IDAystn5ubi4+//xzbNmyBffu3YO7uzsWLlyIPn36AABmz56NOXPmKF3TqlUrXL58WaNxE/1b/M17eGf1Kdx/UAYRgBl9vbQdEhERVUPtBCgyMlJjN9+4cSPCw8OxdOlSBAUFYeHChQgNDUVSUlKV6wqVlpaiZ8+ecHBwwObNm+Hq6oqbN2/C2tpaqV7btm2xf/9+xbGBQY2XOyJSyV/n0jBpY6JipteRq9koKimHmRH/2yMi0kVqjwE6ePBgted+/vlntdpasGABxo0bh7Fjx8LLywtLly6FqakpVqxYUWX9FStW4N69e9i2bRs6d+4MDw8PdOvWDb6+vkr1DAwM4OTkpHjZ2dmpFReROqqb5s7kh4hId6mdAPXq1QtTpkxBWVmZoiw7OxthYWGYPn26yu2UlpYiPj4eISEhj4MRixESEoLY2Ngqr9m+fTuCg4MxYcIEODo6wtvbG/PmzYNMJlOqd/XqVbi4uKBZs2YYMWIEUlNT1XyXRM8mkwuYvf0C5u68iEcj6V7r4IqVYwK5mzsRkY6rUQ/Q1q1bERAQgIsXL2LXrl3w9vZGfn4+EhMTVW4nOzsbMpkMjo6OSuWOjo5KM8yedP36dWzevBkymQy7d+/GzJkzMX/+fHz55ZeKOkFBQVi1ahWio6OxZMkSpKSkoGvXrigoKKg2lpKSEuTn5yu9iJ7mYakMH/wWj1XHbyjKOM2diKj+ULuPvlOnTkhMTMT777+PDh06QC6XY+7cuZg6dWqtT/GVy+VwcHDAL7/8AolEAn9/f9y5cwffffedYmxS7969FfV9fHwQFBQEd3d3bNq0CW+//XaV7UZFRVUaOE1UnXtFpXh79T+K3dwNxCLMG9gObwS4aTcwIiJSWY3+VL1y5QpOnTqFxo0bw8DAAElJSXjw4IFabdjZ2UEikSAjI0OpPCMjA05OTlVe4+zsjJYtW0IikSjK2rRpg/T0dJSWllZ5jbW1NVq2bInk5ORqY4mIiEBeXp7idevWLbXeC+kXqYEYJWUV433MjQywYkwAkx8ionpG7QTo66+/RnBwMHr27Inz588jLi4Op0+fho+PT7Vjd6oilUrh7++PmJgYRZlcLkdMTAyCg4OrvKZz585ITk6GXC5XlF25cgXOzs6QSqVVXlNYWIhr167B2dm52liMjIxgaWmp9CKqjrmRAVaODUCHJtbY9F4wXmxpr+2QiIhIXYKanJychN27dyuVlZaWCp9++qkglUrVamvDhg2CkZGRsGrVKuHixYvCu+++K1hbWwvp6emCIAjCm2++KUyfPl1RPzU1VbCwsBA+/PBDISkpSdi5c6fg4OAgfPnll4o6n3zyiXDo0CEhJSVFOHbsmBASEiLY2dkJmZmZKseVl5cnABDy8vLUej/UcJWUySqVyeVyLURCRETVUef7W+0xQOfOnas0rdzQ0BDfffcd+vbtq1ZbQ4YMQVZWFmbNmoX09HT4+fkhOjpaMTA6NTUVYvHjTio3Nzfs2bMHkydPho+PD1xdXTFx4kRMmzZNUef27dsYNmwYcnJyYG9vjy5duuDEiROwt+df6VQzvx65jq2n72DDuy/A4onZXdzWgoio/lJ7KwygYjXmzZs349q1a5gyZQpsbW2RkJAAR0dHuLq61kacdYpbYRBQMc197s6LipleXT3tsHJMAAwknOVFRKSLanUrjLNnzyIkJARWVla4ceMGxo0bB1tbW2zZsgWpqalYs2ZNjQMn0hUPS2WYuOE09l58PEi/QxMbSLi/FxFRg6D2n7KTJ0/GmDFjcPXqVRgbGyvK+/Tpg7///lujwRFpQ05hCYYtO6FIfgzEInz7ug8mczd3IqIGQ+0eoFOnTuGXX36pVO7q6lrtAoZE9cX1rEKMXfUPbuZULOtgbmSA/47owJleREQNjNoJkJGRUZUrJV+5coUDjalee3I3dwBwtDTCyjGB8HLhODAiooZG7Udg/fr1wxdffKHYC0wkEiE1NRXTpk3DoEGDNB4gUV24cDcPw5adVCQ/rZ0ssPWDzkx+iIgaKLUToPnz56OwsBAODg54+PAhunXrhhYtWsDCwgJfffVVbcRIVOvaOFkipI0DgIrd3De9HwwXaxMtR0VERLWlRtPgAeDYsWM4c+YMCgsL0aFDB6Vd3es7ToPXT8VlMiw/moJxXZtxQ1MionpIne/vGidADRkToIbvYakMt+8/gKejhbZDISIiDVHn+5t/5pLeeTTNfegvJ3Azp0jb4RARkRYwASK9cj2rEK8tOY7EW7nIKSrFR/87DXaCEhHpH7WnwRPVV/+e5u5kaYxvBvlwcUMiIj3EBIj0wl/n0jBxYyJKy+UAKqa5rxwbAGcrzvQiItJHNXoEdu3aNcyYMQPDhg1DZmYmAOCvv/7ChQsXNBoc0fMSBAG/HrmOD9YnKJKfLi3ssOn9YCY/RER6TO0E6PDhw2jXrh1OnjyJLVu2oLCwEABw5swZREZGajxAopqSyQXM2XERX+66hEfDfAZ1aIwVYwJgaWyo3eCIiEir1E6Apk+fji+//BL79u2DVCpVlPfo0QMnTpzQaHBEz+Pk9RysOn5DcTwpxBP/GezDNX6IiEj9BOjcuXMYOHBgpXIHBwdkZ2drJCgiTejUwg6fvtISBmIRvnvdB5NCuJs7ERFVUHsQtLW1NdLS0tC0aVOl8tOnT8PV1VVjgRFpwoSXWqCnlxNaOXHBQyIiekztHqChQ4di2rRpSE9Ph0gkglwux7Fjx/Dpp59i1KhRtREjkUrib97Dn4l3lMpEIhGTHyIiqkTtBGjevHlo3bo13NzcUFhYCC8vL7z44ovo1KkTZsyYoXYAixcvhoeHB4yNjREUFIS4uLin1s/NzcWECRPg7OwMIyMjtGzZErt3736uNqn+230uDcOWncQnm87gWDIfxRIR0dOpnQBJpVIsW7YM165dw86dO7Fu3TpcvnwZa9euhUQiUautjRs3Ijw8HJGRkUhISICvry9CQ0MVU+v/rbS0FD179sSNGzewefNmJCUlYdmyZUqP3tRtk+q3R9PcJ/z/NPdyuYC1sTe1HRYREek4tTdDPXr0KLp06aKRmwcFBSEgIAA//fQTAEAul8PNzQ0fffQRpk+fXqn+0qVL8d133+Hy5cswNKx6GrO6bVaFm6HWDzK5gLk7LyrN9BrUoTGiXmvHmV5ERHqoVjdD7dGjB5o2bYrPPvsMFy9erHGQpaWliI+PR0hIyONgxGKEhIQgNja2ymu2b9+O4OBgTJgwAY6OjvD29sa8efMgk8lq3CYAlJSUID8/X+lFuu1hqQzvr4tXSn4mvsxp7kREpBq1vynu3r2LTz75BIcPH4a3tzf8/Pzw3Xff4fbt22q1k52dDZlMBkdHR6VyR0dHpKenV3nN9evXsXnzZshkMuzevRszZ87E/Pnz8eWXX9a4TQCIioqClZWV4uXm5qbWe6G6lV1YgqHLTmDfxQwAgIFYhG9f98HknpzmTkREqlE7AbKzs8OHH36IY8eO4dq1axg8eDBWr14NDw8P9OjRozZiVJDL5XBwcMAvv/wCf39/DBkyBJ9//jmWLl36XO1GREQgLy9P8bp165aGIiZNu55ViNf+exxnbuUCAMyNDLBybADe6MiklYiIVPdcm6E2bdoU06dPh6+vL2bOnInDhw+rfK2dnR0kEgkyMjKUyjMyMuDk5FTlNc7OzjA0NFQabN2mTRukp6ejtLS0Rm0CgJGREYyMjFSOnbQnv7gcmQXFACp2c185NgBtnDlOi4iI1FPjwRLHjh3DBx98AGdnZwwfPhze3t7YtWuXytdLpVL4+/sjJiZGUSaXyxETE4Pg4OAqr+ncuTOSk5Mhl8sVZVeuXIGzszOkUmmN2iTdJJMLiL2Wgz8T7yD2Wg5k8oqx+n5u1vhhaHu0dbHE1gmdmPwQEVGNqN0DFBERgQ0bNuDu3bvo2bMnFi1ahP79+8PU1FTtm4eHh2P06NHo2LEjAgMDsXDhQhQVFWHs2LEAgFGjRsHV1RVRUVEAgPHjx+Onn37CxIkT8dFHH+Hq1auYN28ePv74Y5XbJN0XfT4Nc3ZcRFpesaLM2coYkWFe6OXtjFfaOuHlNo6QiDneh4iIakbtBOjvv//GlClT8MYbb8DOzu65bj5kyBBkZWVh1qxZSE9Ph5+fH6KjoxWDmFNTUyEWP+6kcnNzw549ezB58mT4+PjA1dUVEydOxLRp01Ruk3Rb9Pk0jF+XgH+vzZCeV4zx6xKwZGQH9PJ2ZvJDRETPRe11gPQB1wHSDplcQJdvDij1/DxJBMDJyhhHp/VgAkRERJWo8/2tUg/Q9u3b0bt3bxgaGmL79u1PrduvXz/VIyV6QlzKvWqTHwAQAKTlFSMu5R6Cmzequ8CIiKjBUSkBGjBgANLT0+Hg4IABAwZUW08kEikWJSRS16PZXZqqR0REVB2VEqAnZ109+TORJjlYGGu0HhERUXXUnga/Zs0alJSUVCovLS3FmjVrNBIU6adWThaQPGVojwgVs8ECm9rWWUxERNQwqZ0AjR07Fnl5eZXKCwoKONWcakwQBERsOQtZNUPyH+VFkWFeHABNRETPTe0ESBCEKvdbun37NqysrDQSFOmf1cdvYM+FihW8TaUS2Fsor8ztZGWsmAJPRET0vFReB6h9+/YQiUQQiUR4+eWXYWDw+FKZTIaUlBT06tWrVoKkhi+oWSM0szPD9ewi/DisPbq3ckBcyj1kFhTDwaLisRd7foiISFNUToAezf5KTExEaGgozM3NFeekUik8PDwwaNAgjQdI+qGNsyW2f9QFBy5n4uU2FYtWcqo7ERHVFrUXQly9ejWGDBkCY+OGOxOHCyESERHVP+p8f6s9Bmj06NENOvmhunPyeg5Ky7msAhER1T21EyCZTIb//Oc/CAwMhJOTE2xtbZVeRKpIvJWLkctP4o2fY3H7/gNth0NERHpG7QRozpw5WLBgAYYMGYK8vDyEh4fjtddeg1gsxuzZs2shRGpoch+UYsJvCSiTCUi8lYtN/9zSdkhERKRn1E6AfvvtNyxbtgyffPIJDAwMMGzYMPz666+YNWsWTpw4URsxUgMiCAI+/f0s7uQ+BAB0dLfBRy97ajkqIiLSN2onQOnp6WjXrh0AwNzcXLEoYt++fbFr1y7NRkcNzvKjKdh/qWK9HxtTQ/w4vD0MJWr/Z0hERPRc1P7mady4MdLS0gAAzZs3x969ewEA//zzD4yMjJ52Kem5hNT7+Pqvy4rjBUP84GxlosWIiIhIX6mdAA0cOBAxMTEAgI8++ggzZ86Ep6cnRo0ahbfeekvjAVLDkPugFB+tP41yecWqC+O7N8dLrRy0HBUREekrtdcB+rfY2FjExsbC09MTYWFhmopLq7gOkGYJgoBxa05h/6VMAECAhw3+N+4FGPDRFxERaVCtrgP0b8HBwQgPD3+u5Gfx4sXw8PCAsbExgoKCEBcXV23dVatWKbbkePT697pEY8aMqVSH23Roz5aEO4rkx9ZMih+GtWfyQ0REWqXSVhjbt29XucF+/fqpFcDGjRsRHh6OpUuXIigoCAsXLkRoaCiSkpLg4FD1IxJLS0skJSUpjqvanLVXr15YuXKl4pjjk7QnzNcFl9LysfxYCha84ctxP0REpHUqJUCP9gF7FpFIBJlMplYACxYswLhx4zB27FgAwNKlS7Fr1y6sWLEC06dPr/Y+Tk5OT23XyMjomXWobkgNxJjR1wtDA5ughYP5sy8gIiKqZSo9h5DL5Sq91E1+SktLER8fj5CQkMcBicUICQlBbGxstdcVFhbC3d0dbm5u6N+/Py5cuFCpzqFDh+Dg4IBWrVph/PjxyMnJUSs20jwmP0REpCu0OhAjOzsbMpkMjo6OSuWOjo5IT0+v8ppWrVphxYoV+PPPP7Fu3TrI5XJ06tQJt2/fVtTp1asX1qxZg5iYGHzzzTc4fPgwevfuXW2CVlJSgvz8fKUXPZ9N/9zCxbv8HImISDep9AjsSV988cVTz8+aNavGwagiODgYwcHBiuNOnTqhTZs2+PnnnzF37lwAwNChQxXn27VrBx8fHzRv3hyHDh3Cyy+/XKnNqKgozJkzp1bj1ienbtxDxNZzkIhFmNOvLYYFNtF2SERERErUToC2bt2qdFxWVoaUlBQYGBigefPmaiVAdnZ2kEgkyMjIUCrPyMhQefyOoaEh2rdvj+Tk5GrrNGvWDHZ2dkhOTq4yAYqIiEB4eLjiOD8/H25ubiq+C3rSvaJSfLj+NGRyATK5gDv3H2o7JCIiokrUToBOnz5dqSw/Px9jxozBwIED1WpLKpXC398fMTExioHWcrkcMTEx+PDDD1VqQyaT4dy5c+jTp0+1dW7fvo2cnBw4OztXed7IyIizxDRALhcQvikR6fnFAICgpraYFMJ9voiISPdoZAyQpaUl5syZg5kzZ6p9bXh4OJYtW4bVq1fj0qVLGD9+PIqKihSzwkaNGoWIiAhF/S+++AJ79+7F9evXkZCQgJEjR+LmzZt45513AFQMkJ4yZQpOnDiBGzduICYmBv3790eLFi0QGhqqibdL1Vj69zUcSsoCADTiej9ERKTD1O4Bqk5eXp5iY1R1DBkyBFlZWZg1axbS09Ph5+eH6OhoxcDo1NRUiMWPv0Tv37+PcePGIT09HTY2NvD398fx48fh5eUFAJBIJDh79ixWr16N3NxcuLi44JVXXsHcuXPZy1OL4lLuYf7eKwAAkQhYNLQ9HC2Nn3EVERGRdqi9FcYPP/ygdCwIAtLS0rB27Vp069YN69ev12iA2sCtMNSTU1iCPj8cQUZ+CQDg45c9Ed6zpZajIiIifaPO97faPUDff/+90rFYLIa9vT1Gjx6t9KiK9INcLmDypjOK5Ce4WSNMfJnjfoiISLepnQClpKTURhxUT525nYvjydkAADtzIywa5geJuPLWJERERLqEI1TpubRvYoON7wWjsY0JFg31g4MFx/0QEZHuU7sHqLi4GD/++CMOHjyIzMxMyOVypfMJCQkaC47qB393Gxz4pDukBsyniYioflA7AXr77bexd+9evP766wgMDKxyJ3bSP0x+iIioPlE7Adq5cyd2796Nzp0710Y8VA8sPpiMMpkcH/Xw5HgfIiKql9ROgFxdXWFhYVEbsVA9EHstB/P3JkEuAPE372PV2EAmQUREVO+o/dxi/vz5mDZtGm7evFkb8ZAOyyoowccbTkP+/ytHdXS3ZfJDRET1kto9QB07dkRxcTGaNWsGU1NTGBoaKp2/d++exoIj3SGTC5i8MRFZBRXr/XRpYYcPe7TQclREREQ1o3YCNGzYMNy5cwfz5s2Do6MjB0HricUHk3H0/9f7sbcwwvdDuN4PERHVX2onQMePH0dsbCx8fX1rIx7SQcevZWPh/op9vsQiYNFQP9hbcF81IiKqv9QeA9S6dWs8fPiwNmIhHZRVUIKJGxIV434mhbREp+Z22g2KiIjoOamdAH399df45JNPcOjQIeTk5CA/P1/pRQ2HTC5g0sbTinE/XT3tMOEljvshIqL6T+1HYL169QIAvPzyy0rlgiBAJBJBJpNpJjLSuntFpcgpLAUAOHDcDxERNSBqJ0AHDx6sjThIB9lbGGHrB53xxc4L6O/nCjtzjvshIqKGQSQIgqDtIHRNfn4+rKyskJeXB0tLS22HQ0RERCpQ5/tb7R6gv//++6nnX3zxRXWbJB0ikwsok8lhbCjRdihERES1Ru0EqHv37pXKnlwLiGOA6rcfYq5i78UMLB7eHs3szbUdDhERUa1QexbY/fv3lV6ZmZmIjo5GQEAA9u7dWxsxUh05ejUbPxy4iktp+Riw+BjyHpRpOyQiIqJaoXYPkJWVVaWynj17QiqVIjw8HPHx8RoJjOpWZn4xJm08jUcjwt7v3hxWpoZPv4iIiKieUrsHqDqOjo5ISkrSVHNUh8plcny84TSy/3/Ke7eW9nj/xeZajoqIiKj2qN0DdPbsWaVjQRCQlpaGr7/+Gn5+fpqKi+rQDzFXceJ6xSa2TpbG+H6IH8Rc74eIiBowtRMgPz8/iEQi/Hv2/AsvvIAVK1ZoLDCqG39fycKPB5MBABKxCD8Obw9bM6mWoyIiIqpdaidAKSkpSsdisRj29vYwNjbWWFBUNzLyizF5Y6Ji3M+nr7RCgIetdoMiIiKqA2onQO7u7rURB9WxcpkcH//vNHKKKsb9vNTKHu+92EzLUREREdUNlQdBHzhwAF5eXlVueJqXl4e2bdviyJEjGg2Oao9IJEJQs0YQiQBnK2PMf4PjfoiISH+o3AO0cOFCjBs3rsqlpa2srPDee+9hwYIF6Nq1q0YDpNohEYsQ3rMlAjxsYCqVcNwPERHpFZV7gM6cOaPYCb4qr7zyCtcAqoe6etrD353jfoiISL+onABlZGTA0LD6hfEMDAyQlZWlkaCodpTL5LiUVvkRJhERkb5ROQFydXXF+fPnqz1/9uxZODs7ayQoqh0L9l1Bv5+OYvnRlErLGBAREekTlROgPn36YObMmSguLq507uHDh4iMjETfvn01GhxpzqGkTPz30DWUyQRE7b6E5MxCbYdERESkNSJBxa6AjIwMdOjQARKJBB9++CFatWoFALh8+TIWL14MmUyGhIQEODo61mrAdSE/Px9WVlbIy8urctB3fZOW9xB9Fh3B/f/f3PTzPm0wjlPeiYiogVHn+1vlWWCOjo44fvw4xo8fj4iICMUjFJFIhNDQUCxevLhBJD8NTblMjo/Wn1YkPyFtHPBO16ZajoqIiEi71FoI0d3dHbt378b9+/eRnJwMQRDg6ekJGxub2oqPntP8fVdw6uZ9AICrtQn+M9gXIhHX+yEiIv2m9krQAGBjY4OAgABNx0IadvByJpYcugYAMPj/fb6sTbneDxERkcqDoKl+uZv7EOGbEhXH03u3Rocm7KkjIiICmAA1WFM2n1GM++np5Yi3u3DcDxER0SNMgBqoiN5t4N7ItGLcz+sc90NERPSkGo0BIt3n7WqFnR91QUZ+MaxMq1/Bm4iISB8xAWrALIwNYWHM5IeIiOjf+AisgSiTybHqWArKZHJth0JERKTzmAA1EN9GX8bsHRcx9JcTuJv7UNvhEBER6TQmQA3AvosZWHYkBQBw9nYusgpKtBwRERGRbmMCVM/dvv8An/5+RnH8WZ828HWz1l5ARERE9QAToHqstFyOD9efRt7DivV+erV1wphOHtoNioiIqB5gAlSPfRN9GYm3cgEAbrYm+OZ1H673Q0REpAImQPXU3gvpWH60YtyPVCLG4uEdYGXCKe9ERESqYAJUD926pzzu5/NX28CnsbX2AiIiIqpnmADVQ/89dA35xeUAgD7tnDAq2F3LEREREdUvXAm6HprTry2MDcU4cDkTXw/iuB8iIiJ1iQRBELQdhK7Jz8+HlZUV8vLyYGlpqe1wqlVQXMatLoiIiP6fOt/ffARWjzH5ISIiqhkmQPVASbkMkzacRlJ6gbZDISIiahCYANUDUbsvY1viXfRffBS7zqZpOxwiIqJ6jwmQjvvrXBpWHb8BAJALgHsjU+0GRERE1AAwAdJhqTkPMHXzWcXxrL5e8Ha10mJEREREDQMTIB1VUi7DhPUJKCipWO+nr48zRgQ10XJUREREDQMTIB01b9clnLuTBwBoameGqNfacb0fIiIiDWECpIN2n0vD6tibAACpgRg/DW/PKe9EREQaxARIx9zMKcK0J8b9RIZ5oa0Lx/0QERFpEhMgHRN/8z4elMkAAP18XTA8kON+iIiINI17gemY1zo0hputKb7fdwXzOO6HiIioVjAB0kEBHrZYP+4FbYdBRETUYPERmA4ok8m1HQIREZFeYQKkZcVlMgxachw/xlyFXC5oOxwiIiK9wEdgWvblros4ezsPZ2/nIaOgGF8OaKftkIiIiBo89gBp0Y4zd7HuRCoAwMhAjBFB7lqOiIiISD8wAdKSlOwiTP/j8Xo/X/RvizbOllqMiIiISH/wEVgdkskFxKXcw53cB/ghJhlFpRXr/Qxs74o3OrppOToiIiL9wQSojkSfT8OcHReRllesVO5oaYQvB3hzvR8iIqI6xEdgdSD6fBrGr0uolPwAQEZ+CY5czdJCVERERPqLCVAtk8kFzNlxEdVNcBcBmLPjImScAk9ERFRnmADVsriUe1X2/DwiAEjLK0Zcyr26C4qIiEjPMQGqZZkF1Sc/NalHREREz48JUC1zsDDWaD0iIiJ6fkyAallgU1s4WxmjujleIgDOVsYIbGpbl2ERERHpNSZAtUwiFiEyzAsAKiVBj44jw7wgEXMaPBERUV1hAlQHenk7Y8nIDnCyUn7M5WRljCUjO6CXt7OWIiMiItJPXAixjvTydkZPLyfEpdxDZkExHCwqHnux54eIiKjuMQGqQxKxCMHNG2k7DCIiIr3HR2BERESkd5gAERERkd5hAkRERER6hwkQERER6R0mQERERKR3mAARERGR3mECRERERHqHCRARERHpHSZAREREpHe4EnQVBEEAAOTn52s5EiIiIlLVo+/tR9/jT8MEqAoFBQUAADc3Ny1HQkREROoqKCiAlZXVU+uIBFXSJD0jl8tx9+5dWFhYQCTS7Gal+fn5cHNzw61bt2BpaanRthsaflaq42elOn5WquNnpTp+Vqqrzc9KEAQUFBTAxcUFYvHTR/mwB6gKYrEYjRs3rtV7WFpa8n8SFfGzUh0/K9Xxs1IdPyvV8bNSXW19Vs/q+XmEg6CJiIhI7zABIiIiIr3DBKiOGRkZITIyEkZGRtoORefxs1IdPyvV8bNSHT8r1fGzUp2ufFYcBE1ERER6hz1AREREpHeYABEREZHeYQJEREREeocJEBEREekdJkB1aPHixfDw8ICxsTGCgoIQFxen7ZB00t9//42wsDC4uLhAJBJh27Zt2g5JZ0VFRSEgIAAWFhZwcHDAgAEDkJSUpO2wdNKSJUvg4+OjWHwtODgYf/31l7bD0nlff/01RCIRJk2apO1QdNLs2bMhEomUXq1bt9Z2WDrrzp07GDlyJBo1agQTExO0a9cOp06d0kosTIDqyMaNGxEeHo7IyEgkJCTA19cXoaGhyMzM1HZoOqeoqAi+vr5YvHixtkPReYcPH8aECRNw4sQJ7Nu3D2VlZXjllVdQVFSk7dB0TuPGjfH1118jPj4ep06dQo8ePdC/f39cuHBB26HprH/++Qc///wzfHx8tB2KTmvbti3S0tIUr6NHj2o7JJ10//59dO7cGYaGhvjrr79w8eJFzJ8/HzY2NtoJSKA6ERgYKEyYMEFxLJPJBBcXFyEqKkqLUek+AMLWrVu1HUa9kZmZKQAQDh8+rO1Q6gUbGxvh119/1XYYOqmgoEDw9PQU9u3bJ3Tr1k2YOHGitkPSSZGRkYKvr6+2w6gXpk2bJnTp0kXbYSiwB6gOlJaWIj4+HiEhIYoysViMkJAQxMbGajEyamjy8vIAALa2tlqORLfJZDJs2LABRUVFCA4O1nY4OmnChAl49dVXlX5vUdWuXr0KFxcXNGvWDCNGjEBqaqq2Q9JJ27dvR8eOHTF48GA4ODigffv2WLZsmdbiYQJUB7KzsyGTyeDo6KhU7ujoiPT0dC1FRQ2NXC7HpEmT0LlzZ3h7e2s7HJ107tw5mJubw8jICO+//z62bt0KLy8vbYelczZs2ICEhARERUVpOxSdFxQUhFWrViE6OhpLlixBSkoKunbtioKCAm2HpnOuX7+OJUuWwNPTE3v27MH48ePx8ccfY/Xq1VqJh7vBEzUQEyZMwPnz5zn+4ClatWqFxMRE5OXlYfPmzRg9ejQOHz7MJOgJt27dwsSJE7Fv3z4YGxtrOxyd17t3b8XPPj4+CAoKgru7OzZt2oS3335bi5HpHrlcjo4dO2LevHkAgPbt2+P8+fNYunQpRo8eXefxsAeoDtjZ2UEikSAjI0OpPCMjA05OTlqKihqSDz/8EDt37sTBgwfRuHFjbYejs6RSKVq0aAF/f39ERUXB19cXixYt0nZYOiU+Ph6ZmZno0KEDDAwMYGBggMOHD+OHH36AgYEBZDKZtkPUadbW1mjZsiWSk5O1HYrOcXZ2rvTHRps2bbT2yJAJUB2QSqXw9/dHTEyMokwulyMmJobjD+i5CIKADz/8EFu3bsWBAwfQtGlTbYdUr8jlcpSUlGg7DJ3y8ssv49y5c0hMTFS8OnbsiBEjRiAxMRESiUTbIeq0wsJCXLt2Dc7OztoORed07ty50jIdV65cgbu7u1bi4SOwOhIeHo7Ro0ejY8eOCAwMxMKFC1FUVISxY8dqOzSdU1hYqPTXU0pKChITE2Fra4smTZpoMTLdM2HCBKxfvx5//vknLCwsFGPKrKysYGJiouXodEtERAR69+6NJk2aoKCgAOvXr8ehQ4ewZ88ebYemUywsLCqNITMzM0OjRo04tqwKn376KcLCwuDu7o67d+8iMjISEokEw4YN03ZoOmfy5Mno1KkT5s2bhzfeeANxcXH45Zdf8Msvv2gnIG1PQ9MnP/74o9CkSRNBKpUKgYGBwokTJ7Qdkk46ePCgAKDSa/To0doOTedU9TkBEFauXKnt0HTOW2+9Jbi7uwtSqVSwt7cXXn75ZWHv3r3aDqte4DT46g0ZMkRwdnYWpFKp4OrqKgwZMkRITk7Wdlg6a8eOHYK3t7dgZGQktG7dWvjll1+0FotIEARBO6kXERERkXZwDBARERHpHSZAREREpHeYABEREZHeYQJEREREeocJEBEREekdJkBERESkd5gAERERkd5hAkRERER6hwkQEZGOEolE2LZtm7bDIGqQmAARERGR3mECREQ11r17d3z88ceYOnUqbG1t4eTkhNmzZ6t0bW5uLt577z04OjrC2NgY3t7e2Llzp+L8H3/8gbZt28LIyAgeHh6YP3++0vUeHh748ssvMWrUKJibm8Pd3R3bt29HVlYW+vfvD3Nzc/j4+ODUqVOKa1atWgVra2ts27YNnp6eMDY2RmhoKG7duqXU9pIlS9C8eXNIpVK0atUKa9euVTovEonw66+/YuDAgTA1NYWnpye2b9+uVOf8+fPo3bs3zM3N4ejoiDfffBPZ2dkqf3YeHh4AgIEDB0IkEimOiUhDtLYLGRHVe926dRMsLS2F2bNnC1euXBFWr14tiESiZ24yKpPJhBdeeEFo27atsHfvXuHatWvCjh07hN27dwuCIAinTp0SxGKx8MUXXwhJSUnCypUrBRMTE6VNXt3d3QVbW1th6dKlwpUrV4Tx48cLlpaWQq9evYRNmzYJSUlJwoABA4Q2bdoIcrlcEARBWLlypWBoaCh07NhROH78uHDq1CkhMDBQ6NSpk6LdLVu2CIaGhsLixYuFpKQkYf78+YJEIhEOHDigqANAaNy4sbB+/Xrh6tWrwscffyyYm5sLOTk5giAIwv379wV7e3shIiJCuHTpkpCQkCD07NlTeOmll1T+7DIzMxUb26alpQmZmZnP9y+LiJQwASKiGuvWrZvQpUsXpbKAgABh2rRpT71uz549glgsFpKSkqo8P3z4cKFnz55KZVOmTBG8vLwUx+7u7sLIkSMVx2lpaQIAYebMmYqy2NhYAYCQlpYmCEJFAgRAOHHihKLOpUuXBADCyZMnBUEQhE6dOgnjxo1TuvfgwYOFPn36KI4BCDNmzFAcFxYWCgCEv/76SxAEQZg7d67wyiuvKLVx69YtAYDiPavy2QEQtm7dWuVnRETPh4/AiOi5+Pj4KB07OzsjMzPzqdckJiaicePGaNmyZZXnL126hM6dOyuVde7cGVevXoVMJqvy3o6OjgCAdu3aVSp7Mh4DAwMEBAQojlu3bg1ra2tcunTpqfd+dL6qe5uZmcHS0lJxnzNnzuDgwYMwNzdXvFq3bg0AuHbtWpVtAKp9dkSkGQbaDoCI6jdDQ0OlY5FIBLlc/tRrTExMNH5vkUhUbdmz4nneez+616P7FBYWIiwsDN98802l65ydnVVqg4hqF3uAiKjO+fj44Pbt27hy5UqV59u0aYNjx44plR07dgwtW7aERCJ5rnuXl5crDYxOSkpCbm4u2rRp89R7e3l5qXyPDh064MKFC/Dw8ECLFi2UXmZmZiq3Y2hoqNTjRUSawwSIiOpct27d8OKLL2LQoEHYt28fUlJS8NdffyE6OhoA8MknnyAmJgZz587FlStXsHr1avz000/49NNPn/vehoaG+Oijj3Dy5EnEx8djzJgxeOGFFxAYGAgAmDJlClatWoUlS5bg6tWrWLBgAbZs2aLWvSdMmIB79+5h2LBh+Oeff3Dt2jXs2bMHY8eOVSuh8fDwQExMDNLT03H//n213ysRVY8JEBFpxR9//IGAgAAMGzYMXl5emDp1qiI56NChAzZt2oQNGzbA29sbs2bNwhdffIExY8Y8931NTU0xbdo0DB8+HJ07d4a5uTk2btyoOD9gwAAsWrQI//nPf9C2bVv8/PPPWLlyJbp3767yPVxcXHDs2DHIZDK88soraNeuHSZNmgRra2uIxar/2p0/fz727dsHNzc3tG/fXp23SUTPIBIEQdB2EEREdWHVqlWYNGkScnNztR0KEWkZe4CIiIhI7zABIiKN++2335SmgD/5atu2rbbDIyLiIzAi0ryCggJkZGRUec7Q0BDu7u51HBERkTImQERERKR3+AiMiIiI9A4TICIiItI7TICIiIhI7zABIiIiIr3DBIiIiIj0DhMgIiIi0jtMgIiIiEjvMAEiIiIivfN/FHqJ5rDw6pEAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.plot(np.cumsum(evr), linewidth=2, marker = 'o', linestyle = '--')\n", + "plt.title(\"PCA\", fontsize=20)\n", + "plt.xlabel('n_component')\n", + "plt.ylabel('Cumulative explained Variance Ratio')\n", + "plt.yticks(np.arange(0.55, 1.05, 0.05))\n", + "\n", + "plt.savefig('pca.jpg', format='jpg')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u21QS0WcNlpL" + }, + "source": [ + "- 6 components provide approx. 100% of the result" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1T2RHu1PNbeU", + "outputId": "0236f801-7b13-4180-ee98-284816d0aff9" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[ 0.20662357, 0.03957378, 0.26137022, 0.07777805, -0.00520136,\n", + " -0.05038762],\n", + " [-0.40256874, -0.04450596, 0.12335307, 0.04296442, 0.03014613,\n", + " 0.02444331],\n", + " [ 0.35648076, 0.02927073, -0.05001771, 0.12468249, 0.03579944,\n", + " 0.1061942 ],\n", + " ...,\n", + " [ 0.27360019, 0.04442699, -0.15421041, 0.14739276, 0.01952663,\n", + " -0.0626613 ],\n", + " [ 0.02760466, 0.32687232, 0.18562174, -0.14322314, -0.0313888 ,\n", + " 0.23769624],\n", + " [ 0.03982792, 0.25363381, -0.12803318, -0.15221655, 0.02079204,\n", + " -0.10159769]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ], + "source": [ + "from sklearn.decomposition import IncrementalPCA\n", + "\n", + "xtrain_pca = IncrementalPCA(n_components=6).fit_transform(xtrain)\n", + "xtrain = xtrain_pca\n", + "xtrain\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 243 + }, + "id": "O48pxKJMOha1", + "outputId": "0359324d-bc19-4ec3-a9d4-0b5c9eae114c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "array([[ 0.03725995, 0.24557733, -0.14486128, -0.17996846, 0.01765415,\n", + " -0.04736283],\n", + " [-0.02640327, -0.06815174, 0.09587904, 0.04034339, -0.10154376,\n", + " 0.04106192],\n", + " [-0.23251374, -0.22836852, -0.08610155, -0.11387205, -0.13794161,\n", + " -0.0556697 ],\n", + " ...,\n", + " [-0.41486531, 0.37609157, -0.2076805 , 0.21036329, -0.09154764,\n", + " -0.06552583],\n", + " [ 0.3393325 , -0.00791066, -0.06423961, 0.10792587, -0.0600478 ,\n", + " 0.0118944 ],\n", + " [-0.41494762, -0.06012658, 0.03333663, -0.07749771, -0.09404067,\n", + " 0.01479668]])" + ] + }, + "metadata": {} + } + ], + "source": [ + "xval_pca = IncrementalPCA(n_components=6).fit_transform(xval)\n", + "xval = xval_pca\n", + "display(xval)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 243 + }, + "id": "uBGw0HdzPNuC", + "outputId": "80b6185f-b666-420b-dc1e-c596abe304f2" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "array([[-0.37875988, 0.13512781, -0.21579015, -0.07995875, 0.09648242,\n", + " -0.04425769],\n", + " [ 0.33435288, 0.00961626, -0.13953026, -0.14572376, -0.07327946,\n", + " -0.09535383],\n", + " [ 0.21589593, 0.10191504, -0.09348247, 0.00344624, -0.09840958,\n", + " -0.09152121],\n", + " ...,\n", + " [ 0.02257991, 0.16646184, -0.1033964 , 0.20250725, -0.1211586 ,\n", + " -0.07835133],\n", + " [-0.43396603, -0.09555399, 0.02051489, -0.0459391 , -0.15970835,\n", + " -0.04526824],\n", + " [ 0.1933503 , 0.12258457, 0.23505327, 0.05560513, 0.02809148,\n", + " -0.05503015]])" + ] + }, + "metadata": {} + } + ], + "source": [ + "xtest_pca = IncrementalPCA(n_components=6).fit_transform(xtest)\n", + "xtest = xtest_pca\n", + "display(xtest)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3tzj3NPMPSVu", + "outputId": "961a3ae5-85b7-48f1-a8a9-3e9354f871f7" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(5524344, 6)\n", + "(1381086, 6)\n", + "(4603621, 6)\n" + ] + } + ], + "source": [ + "print(xtrain.shape)\n", + "print(xval.shape)\n", + "print(xtest.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K2iEQn2MWqPN", + "outputId": "111a6771-c5a1-4f0e-f7b6-b9d25a3e0bba" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(5524344,)\n", + "(1381086,)\n", + "(4603621,)\n" + ] + } + ], + "source": [ + "ytrain = ytrain.values.reshape(-1)\n", + "yval = yval.values.reshape(-1)\n", + "ytest = ytest.values.reshape(-1)\n", + "\n", + "print(ytrain.shape)\n", + "print(yval.shape)\n", + "print(ytest.shape)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5HUbeIxliRAB" + }, + "source": [ + "### Start building the models" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "nClB0bu8itra" + }, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression, ElasticNet, SGDRegressor\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor\n", + "from xgboost.sklearn import XGBRegressor\n", + "\n", + "from xgboost import XGBClassifier\n", + "from lightgbm import LGBMClassifier\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Qx8Q0U4bI6_G" + }, + "source": [ + "#### Create a DataFrame to store the accuracies of the different models" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "4RlEriw-JBWD" + }, + "outputs": [], + "source": [ + "from sklearn.metrics import mean_squared_error, r2_score\n", + "from sklearn.metrics import confusion_matrix, accuracy_score\n", + "\n", + "results = pd.DataFrame(columns=['Model', 'MSE_train', 'R2_train', 'MSE_val', 'R2_val', 'MSE_test', 'R2_test'])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "28K6YAsX00hu" + }, + "source": [ + "#### Regressor Models" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gfdOM9yqIy_D" + }, + "source": [ + "##### Linear Regression Model" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "FAxJn_XvIxt3", + "outputId": "4ef776fd-aaae-40d6-e7ef-16c821d77963" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LinearRegression()" + ], + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "source": [ + "lr = LinearRegression()\n", + "lr.fit(xtrain, ytrain)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "eg-2z4m2Js8G" + }, + "outputs": [], + "source": [ + "ypred_train = lr.predict(xtrain)\n", + "ypred_val = lr.predict(xval)\n", + "ypred_test = lr.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['Linear Regression', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GrL5PqEfLBZk" + }, + "source": [ + "##### Elastic Net Regressor Model" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "O2K0ruCEK_ez", + "outputId": "573b66c6-fe5c-4ccb-a970-e10fce76909a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "ElasticNet()" + ], + "text/html": [ + "
ElasticNet()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ], + "source": [ + "elastic = ElasticNet()\n", + "elastic.fit(xtrain, ytrain)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "UpEEjn7ALSLL" + }, + "outputs": [], + "source": [ + "ypred_train = elastic.predict(xtrain)\n", + "ypred_val = elastic.predict(xval)\n", + "ypred_test = elastic.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['Elastic Net Regression', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "h5zLE7HmLfuK" + }, + "source": [ + "##### SGD Regressor Model" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "6rVwj4TILeGV", + "outputId": "adb92cdb-74dc-4279-f984-f9935a8e8f12" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SGDRegressor()" + ], + "text/html": [ + "
SGDRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "sgd = SGDRegressor()\n", + "sgd.fit(xtrain, ytrain)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "id": "ZUnFr3bnLrZi" + }, + "outputs": [], + "source": [ + "ypred_train = sgd.predict(xtrain)\n", + "ypred_val = sgd.predict(xval)\n", + "ypred_test = sgd.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['SGD Regression', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5Kv0_Er5L56n" + }, + "source": [ + "##### Decision Tree Regression Model" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "diwRyh1kL4mh", + "outputId": "a9d51672-ca17-414c-d07e-503055ab5574" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DecisionTreeRegressor()" + ], + "text/html": [ + "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ], + "source": [ + "dtr = DecisionTreeRegressor()\n", + "dtr.fit(xtrain, ytrain)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "v-aqvc99MFug" + }, + "outputs": [], + "source": [ + "ypred_train = dtr.predict(xtrain)\n", + "ypred_val = dtr.predict(xval)\n", + "ypred_test = dtr.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['Decision Tree Regression', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j5CuDEOENLM7" + }, + "source": [ + "##### XG Boost Regression Model" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "KKfc_I6CNKKC", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "outputId": "6c501240-adb6-4288-926b-3bda0d45ccd1" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ], + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
+              "             colsample_bylevel=None, colsample_bynode=None,\n",
+              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
+              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
+              "             gamma=None, grow_policy=None, importance_type=None,\n",
+              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
+              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
+              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
+              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
+              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
+              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "xgb = XGBRegressor()\n", + "xgb.fit(xtrain, ytrain)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "id": "DkpUZiggNUlK" + }, + "outputs": [], + "source": [ + "ypred_train = xgb.predict(xtrain)\n", + "ypred_val = xgb.predict(xval)\n", + "ypred_test = xgb.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['XG Boost Regression', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aPcZEeM51DQI" + }, + "source": [ + "#### Classifier Models" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EsXD7pSEYInc" + }, + "source": [ + "##### LGBM Multi Class Classifier Model" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "id": "_LKqF92SYLdZ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 196 + }, + "outputId": "aef1716d-161c-4df2-d5c1-b03ac1728723" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.400556 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 1530\n", + "[LightGBM] [Info] Number of data points in the train set: 5524344, number of used features: 6\n", + "[LightGBM] [Info] Start training from score -1.671585\n", + "[LightGBM] [Info] Start training from score -2.660909\n", + "[LightGBM] [Info] Start training from score -0.298182\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LGBMClassifier(objective='multiclass')" + ], + "text/html": [ + "
LGBMClassifier(objective='multiclass')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 63 + } + ], + "source": [ + "LGBM = LGBMClassifier(objective='multiclass')\n", + "LGBM.fit(xtrain, ytrain)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "370EMaXHYiha" + }, + "outputs": [], + "source": [ + "ypred_train = LGBM.predict(xtrain)\n", + "ypred_val = LGBM.predict(xval)\n", + "ypred_test = LGBM.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "accuracy = accuracy_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['LGBM Classifier', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "tpr1Ot_jYuoi", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 420 + }, + "outputId": "040c1a96-79b9-4513-9d6c-165a4f2f9562" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is: 83.073%\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAGCCAYAAAAfalNpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSi0lEQVR4nO3dd1gUVxfA4d8ighWsFBXBir33TizYRRNFo4JdYxeN0VhjCRq7sVcssXeNJYoFCxZU7KAoigUQRUBQEdn9/uBzzQZQOjqcN888j3vnzsydCRzunrlzR6XRaDQIIYRQBL30boAQQoiUI0FdCCEURIK6EEIoiAR1IYRQEAnqQgihIBLUhRBCQSSoCyGEgkhQF0IIBZGgLoQQCiJBXQghFESCuhBCEdzc3GjTpg0FChRApVKxZ8+eRO9Do9Ewe/ZsSpYsiaGhIQULFmT69Okp39hUpJ/eDRBCiJQQERFBxYoV6dWrFx06dEjSPoYNG8Y///zD7NmzKV++PMHBwQQHB6dwS1OXSib0EkIojUqlYvfu3djZ2WnLIiMjGTduHJs3byYkJIRy5coxc+ZMGjVqBMCdO3eoUKECN2/exNraOn0angIk/SKEyBAGDx6Mu7s7W7Zs4fr163Ts2JHmzZtz7949APbv30/RokU5cOAARYoUwcrKij59+nxzPXUJ6kIIxfPz82Pt2rVs376d+vXrU6xYMUaNGkW9evVYu3YtAA8ePODRo0ds376d9evX4+LiwuXLl/nhhx/SufWJIzl1IYTi3bhxg+joaEqWLKlTHhkZSd68eQFQq9VERkayfv16bb3Vq1dTtWpVvL29v5mUjAR1IYTihYeHkylTJi5fvkymTJl01uXIkQMAc3Nz9PX1dQJ/6dKlgZievgR1IYT4SlSuXJno6GieP39O/fr146xTt25dPnz4wP379ylWrBgAd+/eBcDS0jLN2ppcMvpFCKEI4eHh+Pj4ADFBfO7cudjY2JAnTx4KFy5Mt27dOHv2LHPmzKFy5coEBQXh6upKhQoVaNWqFWq1murVq5MjRw7mz5+PWq1m0KBBGBkZ8c8//6Tz2SWCRgghFODEiRMaINbi6Oio0Wg0mvfv32smTpyosbKy0mTOnFljbm6uad++veb69evafTx9+lTToUMHTY4cOTSmpqaaHj16aF6+fJlOZ5Q00lMXQggFkSGNQgihIBLUhRBCQSSoCyGEgihySGM187iHLInE83z5IL2boBjFcxVI7yYogtfzS8naPupF0n+mM+crmqxjpwVFBnUhhIiXOjq9W5CqJKgLITIWjTq9W5CqJKgLITIWtbKDutwoFUIIBZGeuhAiQ9FI+kUIIRRE4ekXCepCiIxFeupCCKEgMqRRCCEUROE9dRn9IoQQCiI9dSFExiI3SoUQQjlkSKMQQiiJ9NSFEEJBpKcuhBAKovAhjTL6RQghFESCuhAiY9Gok74kwtKlS6lQoQJGRkYYGRlRu3ZtDh069Nlttm/fTqlSpciSJQvly5fn4MGDiT49CepCiIxFrU76kgiFChVixowZXL58GQ8PD7777jvatWvHrVu34qx/7tw5unTpQu/evbl69Sp2dnbY2dlx8+bNRB1XpdFoNIna4hsgr7NLOfI6u5Qjr7NLGcl9nV3kzaNJ3tawXNNkHTtPnjzMmjWL3r17x1pnb29PREQEBw4c0JbVqlWLSpUqsWzZsgQfQ3rqQoiMJRk99cjISMLCwnSWyMjILx4yOjqaLVu2EBERQe3ateOs4+7uTpMmTXTKbG1tcXd3T9TpSVAXQmQoGk10khdnZ2eMjY11Fmdn53iPdePGDXLkyIGhoSEDBgxg9+7dlClTJs66AQEBmJqa6pSZmpoSEBCQqPOTIY1CCJFAY8eOxcnJSafM0NAw3vrW1tZ4enoSGhrKjh07cHR05NSpU/EG9pQgQV0IkbEk4+EjQ0PDzwbx/zIwMKB48eIAVK1alUuXLrFgwQKWL18eq66ZmRmBgYE6ZYGBgZiZmSWqjZJ+EUJkLGk0+iXuQ6vjzcHXrl0bV1dXnbKjR4/Gm4OPj/TUhRAZSxpNEzB27FhatGhB4cKFef36NZs2beLkyZMcOXIEAAcHBwoWLKjNyQ8bNoyGDRsyZ84cWrVqxZYtW/Dw8GDFihWJOq4EdSFExpJG0wQ8f/4cBwcH/P39MTY2pkKFChw5coSmTWOGRfr5+aGn9ylZUqdOHTZt2sT48eP59ddfKVGiBHv27KFcuXKJOq6MUxefJePUU46MU08ZyR2n/u7i9iRvm6VGx2QdOy1ITl0IIRRE0i9CiIxF5lMXQggFkfnUhRBCQaSnLoQQCiJBXQghlEOjkTcfCSGE+EZIT10IkbFI+kUIIRRERr8IIYSCSE9dCCEURHrqQgihIArvqcvoFyGEUBDpqQshMhZJvwghhIIoPP0iQV0IkbFIUBdCCAVRePpFbpQmgOPgrnj4n8ZpyhCd8vJVy7J0+3xO3/+Hk3cPs2L3nxhmMQCgau1KePifjnMpU7GUzn66DejMzjObOPfQlYNXdtFrWHftOpuWDVi8ZS5Hb+7n5N3DrNm/lFqNauhsr6enx4DRvdl7YStnHhxjj/sWeo9wTKWrkTz9+zlw5fJRgl94EfzCizNu+2hua6Ndv2TxTLzvnOV1qA/+T6+za+carK2L6exj3twpXDh/iIjXD/C49E+cx2nWtCFnT+/n1Utv/J9eZ9vWFVhaFtKuX71qHh/eP421XPM8njonngI69/ievSc34XH/BB73T7Dl4Grqf1dHp06lauVx2bmEK75ueNw/wYa9yzHMYqhdv2T9HI5f2c81vzO43TjEzMW/YWKaT7u+oIU5Xs8vxVoqVv30SjV9/UwMHNmHfy7u5prfGfac+It6NvG/HLnvEEe8nl9i7FSnFLwayZCOL55OC9JT/4IyFUvRoXtb7t7y0SkvX7Usf26azdo/NzJr3Hyio6MpUaY4anXM2wGvedzEtkI7nW0G/NKH6vWqcvual7Zs1NRh1GpUnQVTFuNz5wFGuXNinMtIu75yrYpccPNgsfMKXoeF06ZzS+atm0GPVv3xvnkPiPmj84OjHZOG/s4Db1/KVCzFxPljCQ8LZ+vqnal1aZLk6VN/xo1z5p6PLyqVCofuHdm1cw3Vathy+/Zdrly5zubNu/B7/JQ8uXMxceJIDv29meIla6H+1y+Vi8sWatSoQvnypWMdw8rKgl071zB/wUq6Ow7G2Cgnc2ZPZvu2VdSo2RyAEU4T+XXc79pt9PX1ueJxlJ07D6T+RUiiwGfPmTN1EY8ePEalUmFn34rF62fToXE3fLwfUKlaeVZuWciKBS5M+3U20R+isS5bQue6XTjrwfIFawkKfIGpuQmjJw9jwZqZdGnVW+dYPb4fiI/3p1cZhgSHaP89bOxPtP2hBROcpvPA5xH1bGqxyOUPurTqzZ2bd3X2U65SGewd2uN1S7dcpB4J6p+RNVtWpi6eyPRRf9B7uG7P1+m3IWxZvYN1i/7Slj26/1j77w9RH3gZFKz9nEk/Ew1t67F1zacga1XCkh8c7bC3cdBu++yxv85x5k78U+fzEucVNLStR/2mdbVBvUK1cpw6fIazru4A+D8JwLZ9Y8pWLgN8XUH9wN9HdT5PmDiT/v26U7NGFW7fvsuq1f+6no+eMHHSH1y9fAwrKwsePHgExARkgPz588YZ1KtUqUCmTJmYMHEmH1/BO3fecnbtXIO+vj4fPnwgLOw1YWGvtdu0bWtL7tzGuKzbmuLnnFJO/HNa5/N856V07vE9FauWw8f7AWOmjGDDyq2s/HOdto7v/Uc626xbvln772dPAlixcB2L181CXz8THz58mr0w5FUoL56/jLMd7Tq2ZNn8tbi5ngNgi8tO6jSoQc+B3Rg9cKK2XrbsWZm9dAoTRv7OTyN6Jf3EU5qkXzKuX5xHcNbVnYunL+uU586bi/JVy/LqRQir9y3hyPW9LN/1JxVrlI93Xw1t62Gc24j9Ww5qyxo0rcvTR8+o16QOey9sZd/FbYyf/QtGuXLGux+VSkX2HNkICwnTll33uEn1+lUpXNQCgBJlilGxRgXOHT+f1FNPE3p6enTq1Jbs2bNx/sLlWOuzZctKDwd7Hjx4xOPHzxK83ytXrqNWq+nhaI+enh5GRjnp2vV7XF1P8+HDhzi36dWzC66up/Hze5rk80lLenp6tLRrSrZsWfH0uEGefLmpVK08wS+C2fz3as7cOsyGPcupUrNivPswzmVEm++bc/XSdZ2ADjFpmrO3jvDX/pXY2DbQWWdgkJnId5E6Ze/eRVK1hu6xJs4YzcmjZ3F3u5jMs01hkn5JPS9evGDNmjW4u7sTEBAAgJmZGXXq1KFHjx7kz58/3drWrF1jSpUviUOLfrHWFbSMeSt835E9WTBlCXdv3aNVx+Ys3TYfextHHvs+ibVNuy6tOH/yIs/9g/61H3PMCpnSpI0Nk4ZOJ5OeHk6/DWHmyqn81HF4nO3q/lMXsmbLytF9n3K/Ln9uJHuObOw4vRF1tBq9THosmbGSw7uOxrmP9FauXCnOuO0jSxZDwsMj+KFjH+7cuaddP6C/IzOcx5EjR3a8vH1o3rILUVFRCd7/w4ePadHyRzZvWsbSJTPR19fH3d2D1m27x1nf3NyU5rY2dHMYnOxzS20lSxdj88E1GBoa8CbiLYN7/Mz9u77anPfgn/vyx+SF3LnpTbtOrXDZsYQ2DTrzyPfTt8iREwbTtVcnsmXPiqfHdQZ0/ZTrjoh4w4yJ87hy8RpqtYZmrb9j8bpZDHL8mRNH3AA4c+I8PQZ0xcP9Kn4Pn1C7QXWatrQhU6ZPfcSWdk0pU74UP9h+hfd2pKeeOi5dukTJkiVZuHAhxsbGNGjQgAYNGmBsbMzChQspVaoUHh4eX9xPZGQkYWFhOos6mf/TTAuYMHLqUMYPmsr7yPex1uvpxVy2XRv3sX/rQbxv3mPupD95dP8xbbu0ilXfxDw/tRrVYO/mv3XKVXp6GGYxZNLQ6XheuM5ld0+mjJxJ9XpVsSxmEWs/tu2b0HdkD8b2n8irlyHa8qZtv6N5h6aMHziFrs16M3nY73Qb0JlWHZsn6zqkFm/v+1St3ow6dVuzfMV61qyeT+nSJbTrN23eRbUatth814F79x6wedMyDA0NP7NHXaam+Vm2bBYbNm6nVp2W2HzXgffv37Nty4o46zt070hISBh79x5O9rmlNl+fR7T/riv2zXuyxWUnM/6cTLGSRbQ/k1vX72bXlv3cuXmXGRPn4Xv/Ed//2FZnH6sXb6BD42706jiI6Gg1MxZN1q4LCQ7FZdkmrl+5xU3P28ydtoh9Ow7Re1A3bZ3p4+fwyNePg+e2c+PpOSY4j2bXlv3a3L1ZAVN+nT6SUQMnxPn7k+6kp546hgwZQseOHVm2bBkqlUpnnUajYcCAAQwZMgR3d/fP7sfZ2ZnffvtNp8w8uwUFclomuW2lKliTN38eNv6zSlumr69P5VoV6dSzA9/X6wqA792HOtv53nuIWUGTWPtr07kloa/COHXkjE75i8CXfIj6gN+DT72oh/di9mlW0FQnR9+sXWMmzPmFX/pOjJUOGjrhJ9Yt+ot/9roCcN/rAeaFTOk5tBt/b//6AlVUVBT37z8E4MrVG1SrWokhg/swcNAvANp8t4+PL+cvXOHF89vY2TVn69a9Cdr/wJ96EBoaxpix07VlDj2G8sjXg5o1qnDh4hWd+j0cO/PXXzsT9W0gvURFfcDv/98Eb133olzlMjj068yKhTF5dJ+7vjr17999iHkhM52ykOBQQoJDefjAj/t3H3Lq2t9UqlYeT48bcR7z+pVb1GlYU/v51csQBjv+jIGhAblyG/M8IIiREwbz+FFMiqxsxVLky5+XXcc2aLfR19enWu3KdO3dkQqF6urcvE1z30hwTqp0C+rXrl3DxcUlVkCHmLzxiBEjqFy58hf3M3bsWJycdIdKNSrZIlltu3TaA/tGDjplE+eP5ZGPH+sW/cXTR8947h8UqzdtWdSCsycuxNpfG/uW/L39MNH/yVteu3QD/cz6FLQswNP//0J8zIv7PwnU1rO1a8yEuWMZ99Nk7c3Qf8uSNYt21M1H0dFqVKpv45aJnp4ehoYGca5TqVSoVCoMDRLeU8+WNSua//ziRkdHa4/1bw0b1KZEiSKscdnMt0hPpcLAwICnfs8I9H9OkWK6nRmrYoU5/f8bmnFurxfz+2dgkDneOqXKliQo8EWs8veR73keEIS+fiaatf6Ow3uPAXDe7RJtGnTWqfv7gok88HnIqj/Xp29AzwDSLaibmZlx8eJFSpUqFef6ixcvYmpq+sX9GBoaxvpqrpfMYPYm4i33vXV7PO/evCPkVai2fMPSzfQf1Yt7t+7jfeserTs1x7K4JaP7TtDZrnq9qhSyLMCeTbGHyl108+DOdW8mzhvL3IkLUemp+OV3J86fuqjtvdu2b8JvC8Yxe8ICbl65Td78eWLa8y6SiNcRAJw+eo5ew7oT8DSQB96+WJcvQdf+9uz7T7rnazB92hgOHz6B3+On5MyZgy6d7WjYsDYtW/1IkSKF6dSxLUePniLoxUsKFSzA6NGDePv2HYcOu2r3UayYFTlyZMfU1ISsWbNQsWJZAG7fvktUVBQHD7kybFhfxo8bzpate8mZIzvTpo7h4cPHXPW8qdOenj27cOHCFW7d8k7T65AUTuMG4eZ6Dv+nAWTPkY3WHZpTo25V+tjHPD+xevFGhozuh/etu9y5dRe7Tq0pWtySYb1jvgFVqFKW8pXKcPniNcJCwrCwKsSwMQN45PuYq//vpdvZtyLqfRS3b8Rcj2atbPj+xzZMGPHpW0+FKmUxNTfhzs27mJrlZ/DP/dDT02PVovVATF7+ntd9nba/ffOWkODQWOXpQqP5cp1vWLoF9VGjRtGvXz8uX75M48aNtQE8MDAQV1dXVq5cyezZs9OreV+0eeV2DAwNGPHbYIxzG3H3lg+DOo/Q9rg/atelFdcu3uCRj1+sfWg0GkY4/MLo6cNZsXsRb9+85dzxC8z/bZG2TodubdHPrM+YGSMZM2Oktnz/1kP8NjxmnPWscfMY8EsfxsxwInfe3LwIfMGuDXtZOdcldU4+GfLnz8faNQswNzchNPQ1N27coWWrHznmehpzc1Pq1a3B0CF9yJ3bmMDAF5w+c576DdsRFPRpeN2KZbNo2PDTQzeX//8AUrESNXn06AknTp6lm8MgRo0cyKiRA3nz5i3nL1ymVZuuvHv3TrudkVFOOrRvqR0i+bXLky83MxdNJr9pPl6HheN9x4c+9kM4dypmdMn6FZsxNDRgzFQnjHMZ4X37Hr06Debxw5gRPe/evqNpKxuGjO5H1mxZCQp8wekT7iydu4ao959STz859aZAIXOio6N5cO8hTn1/5ciBTzfmDQ0NGTZmABaWBXkT8ZZTrmf5ZdBEXoeFp+0FSSqFf1NQaTTp92dr69atzJs3j8uXL2u/HmfKlImqVavi5OREp06dkrTfaub1U7KZGZrnywdfriQSpHiuAundBEXwen4pWdu//WvClyvFI2vXqck6dlpI1yGN9vb22NvbExUVxYsXMTm7fPnykTlz/Pk9IYRIFoUPafwqnijNnDkz5ubm6d0MIURGoPD0y7cxPEIIIUSCfBU9dSGESDMy+kUIIRRE4ekXCepCiIxFgroQQiiIjH4RQgjl0KiVnVOX0S9CCKEgEtSFEBlLGk296+zsTPXq1cmZMycmJibY2dnh7f35OYY+TnL47yVLliyJOq4EdSFExqJRJ31JhFOnTjFo0CDOnz/P0aNHiYqKolmzZkRERHx2OyMjI/z9/bXLo0ePPlv/vySnLoTIWNIop374sO67DFxcXDAxMeHy5cs0aNAgnq1ipps2MzOLd/2XSE9dCJGxJCP9Eteb1iIjI798TCA0NBSAPHnyfLZeeHg4lpaWWFhY0K5dO27dupWo05OgLoQQCeTs7IyxsbHO4uzs/MXt1Go1w4cPp27dupQrVy7eetbW1qxZs4a9e/eyceNG1Go1derU4cmT2O89jk+6Tr2bWmTq3ZQjU++mHJl6N2Ukd+rdNwsGJHnbTAMWxOqZx/Winv/66aefOHToEGfOnKFQoUIJPl5UVBSlS5emS5cuTJ2asGl/JacuhMhYktGPTUgA/6/Bgwdz4MAB3NzcEhXQIWYG28qVK+Pj45PgbST9IoTIWNJoSKNGo2Hw4MHs3r2b48ePU6RIkUQ3NTo6mhs3biRqanLpqQshMpY0Gv0yaNAgNm3axN69e8mZMycBAQEAGBsbkzVrVgAcHBwoWLCgNi8/ZcoUatWqRfHixQkJCWHWrFk8evSIPn36JPi4EtSFEBlLGs39snTpUgAaNWqkU7527Vp69OgBgJ+fH3p6nxImr169om/fvgQEBJA7d26qVq3KuXPnKFOmTIKPK0FdCCFSQULGoJw8eVLn87x585g3b16yjitBXQiRsSh8Qi8J6kKIDEUj86kLIYSCSE9dCCEURF6SIYQQCqLwnro8fCSEEAoiPXUhRMYiN0qFEEJBFJ5+kaAuhMhY5EapEEIoiPTUhRBCOZT+8JGMfhFCCAWRnroQImOR9IsQQiiIBHUhhFAQGf0ihBAKIj11IYRQDo3Cg7qMfhFCCAWRnroQImNReE9dgroQImNR+MNHEtSFEBmL9NSFEEJBJKgLIYRyaDTKDuoy+kUIIRREeupCiIxF0i9CCKEgEtS/PdeDfdO7CYqRLbNhejdBMZ6Ev0jvJgiU/0SpIoO6EELES4K6EEIoiLKfPZLRL0IIoSTSUxdCZCiSUxdCCCWRoC6EEAqi8Jy6BHUhRIYi6RchhFAShffUZfSLEEIoiPTUhRAZiqRfhBBCSST9IoQQyqFRJ31JDGdnZ6pXr07OnDkxMTHBzs4Ob2/vL263fft2SpUqRZYsWShfvjwHDx5M1HElqAshMhZ1MpZEOHXqFIMGDeL8+fMcPXqUqKgomjVrRkRERLzbnDt3ji5dutC7d2+uXr2KnZ0ddnZ23Lx5M8HHVWkU+BoQA8NC6d0Exciib5DeTVAMtfJ+1dJF+JvkzcL6okXDJG+b79CpJG8bFBSEiYkJp06dokGDBnHWsbe3JyIiggMHDmjLatWqRaVKlVi2bFmCjiM9dSGESKDIyEjCwsJ0lsjIyARtGxoaCkCePHnirePu7k6TJk10ymxtbXF3d09wG5Md1KOjo/H09OTVq1fJ3ZUQQqS+ZKRfnJ2dMTY21lmcnZ2/fEi1muHDh1O3bl3KlSsXb72AgABMTU11ykxNTQkICEjw6SU6qA8fPpzVq1cDMQG9YcOGVKlSBQsLC06ePJnY3QkhRJpKzo3SsWPHEhoaqrOMHTv2i8ccNGgQN2/eZMuWLal+fokO6jt27KBixYoA7N+/H19fX7y8vBgxYgTjxo1L8QYKIURKSk5QNzQ0xMjISGcxNPz828EGDx7MgQMHOHHiBIUKff5+n5mZGYGBgTplgYGBmJmZJfj8Eh3UX7x4oT3AwYMH6dixIyVLlqRXr17cuHEjsbsTQog0lVZDGjUaDYMHD2b37t0cP36cIkWKfHGb2rVr4+rqqlN29OhRateuneDjJjqom5qacvv2baKjozl8+DBNmzYF4M2bN2TKlCmxuxNCiLSlUSV9SYRBgwaxceNGNm3aRM6cOQkICCAgIIC3b99q6zg4OOikb4YNG8bhw4eZM2cOXl5eTJ48GQ8PDwYPHpzg4yY6qPfs2ZNOnTpRrlw5VCqV9k7thQsXKFWqVGJ3J4QQirR06VJCQ0Np1KgR5ubm2mXr1q3aOn5+fvj7+2s/16lTh02bNrFixQoqVqzIjh072LNnz2dvrv5Xksap79ixg8ePH9OxY0dtjmjdunXkypWLdu3aJXZ3KU7GqaccGaeecmScespI7jj1gAaNkrytmdvJZB07LSR67pf169djb28f6+ZAly5d0uTOrhBCJIdGnbg0yrcm0T31TJky4e/vj4mJiU75y5cvMTExITo6OkUbmBTSU0850lNPOdJTTxnJ7ak/q2OT5G0LnDuRrGOnhUT31DUaDSpV7L90T548wdjYOEUaJYQQqUWTyBue35oEB/XKlSujUqlQqVQ0btwYff1Pm0ZHR+Pr60vz5s1TpZFCCJFSEjs08VuT4KBuZ2cHgKenJ7a2tuTIkUO7zsDAACsrK77//vsUb6AQQoiES3BQnzRpEgBWVlbY29uTJUuWVGuUEEKkFqXfKE10Tt3R0TE12iGEEGlC6ferExTU8+TJw927d8mXLx+5c+eO80bpR8HBwSnWOCGESGnSUwfmzZtHzpw5tf/+XFAXQoivmdKDurz5SHyWjFNPOTJOPWUkd5y6b8WmSd62yLWjyTp2Wkh0Tj0sLCzOcpVKhaGhIQYGEgSEECK9JDqo58qV67Ppl0KFCtGjRw8mTZqEnp68LU8I8XVRevol0UHdxcWFcePG0aNHD2rUqAHAxYsXWbduHePHjycoKIjZs2djaGjIr7/+muINFkKI5JAnSv9j3bp1zJkzh06dOmnL2rRpQ/ny5Vm+fDmurq4ULlyY6dOnS1AXQnx1lP5EaaLzI+fOnaNy5cqxyitXrqx943W9evXw8/NLfuuEECKFqTWqJC/fgkQHdQsLC+2Lp/9t9erVWFhYADEzNubOnTv5rRNCiBSm0aiSvHwLEp1+mT17Nh07duTQoUNUr14dAA8PD7y8vNixYwcAly5dwt7ePmVbKoQQ4ouSNE7d19eXFStW4O3tDYC1tTX9+/fHysoqpduXJDJOPeXIOPWUI+PUU0Zyx6l7lWyZ5G1L3T2YrGOnBXn4SHyWBPWUI0E9ZSQ3qN8pkfSgXvre1x/UE5R+uX79OuXKlUNPT4/r169/tm6FChVSpGFCCJEaZJw6UKlSJQICAjAxMaFSpUqoVCri6uCrVKqv4nV2QggRn29lFEtSJSio+/r6kj9/fu2/hRBCfJ0SFNQtLS3j/LcQQnxrvpWhiUmV6HHqx48fZ/DgwbRu3Zo2bdowdOhQ3NzcUqNtX50CBcxwWbsQ/2c3CA3x4crlY1Sp8ukegl27Fvz991/4P7vB+8gnVKxQJtY+DA0NWbBgGv7PbhD80putW1ZgYpIvzuPlyZOLB/cv8T7yCcbGRjrHOXhwE0+fXONF0B3cTu2ladOGKX/CKaBO3eps3b4Sbx93wiIe0Kq17gx5Y38dhseVo/g/v8mjJ1fZe2AD1apVjLUfW1sbjp/cReCL2zx6cpVNW5bprC9UqADbd64mIOgW9x9eZOr0MWTKlEmnTif7dpw9/zcBQbe4e/88i5fOJE+eXNr1jj3sOfzPVh49uaptS9WqX889orp1a7Btxyru3T9P+BtfWrf5dC319fWZMvUXLlw8RGDQLe7dP8+KlXMwMzfR2cetO6cJf+OrsziNHKBTp0OHVpw7/zfPX9zmttcZhg3vp7Pe1Cw/a9bO5+q144SF32fmHxPibG/79i25cvUYL4K9uHDxEM1sG6XMhUgmjSbpy7cgUUF9wIABNGnShM2bN/Py5UuCgoL466+/sLGxYciQIanVxq9CrlzGnDyxm6ioKNq07U7FSjaM/mUKISGh2jrZs2fj3NlL/Dru93j3M3v2JFq1bEqXH/vTuMkPmJubsm3ryjjrrlg+mxs378Qqr1e/Jq6up2nbzoFatVty6tQ5du9aS6WKZZN/oikse/Zs3Lxxh5EjJsW53sfHl1EjJ1O7Rgtsm3bC79ETdu9bT958ebR12rZrzopVc9i4YQd1a7WiWZOObN+2T7teT0+P7btWk9kgM00b/8CAfj/Ttev3jJswQlunZq2qLF85mw3rtlGzmi0O3QZTtVoFFi5y1tap36AWO7bvp3XLH2ny3fc8feLP7n3rMTc3TYUrk3jZsmfl5o07OI2YGHtdtqxUqlSOmTMWUa9OG37sPIASJYuybXvsn62pU+ZStEh17bJs6TrtuqbNGrJ67TxWr/qLGtVsGTF8AoOH9KL/AAdtHUMDA168COaPmYu4cSP2zydAzZpVWLtuAevWbaNu7VYcOHCULVuXU6ZMyRS4Esmj9CdKEzykcffu3XTu3Jnly5fj6OionalRrVbj4uLCTz/9xPbt22nbtm2qNjghUmNI4/RpY6lduxrfNf7yy7UtLQtx7+55qldvxrXrt7XlRkY5efb0Gg4OQ9i1+28ArK2LceP6KerVb8vFi1e0dfv1607HH9oy/fd5/HNkG/lNyhAaGve0xwCeV13Zvn0/03+fn/STjENKDmkMi3hAF/v+/H0g/jmpc+bMwdOA67Rp1Y1TJ8+RKVMmbt5x4/dpC9iwfluc2zRt1pBtO1ZRsnhtgp6/AKBX7x/5beovFLWsRlRUFEOG9aFPn65ULG+j3a7/AAeGO/WndMm6ce5XT08Pv6dX+XnkZDZv2p2MM4+RkkMaw9/40tm+Hwf2x38tq1StgNvpvZQqWZcnT54BMT31xYvWsGTx2ji3WbN2PpkzZ6Z7t0HasgEDHBnu1I9ScVynQ4c3c/36bX4ZPVWnfN36P8mWPSsdv++jLTt+chc3rt9m2NDxiTrX/0rukMarhdsledvKfnuTdey0kOCe+tq1a3FycqJHjx46U+/q6enRq1cvhg8fHuf0AUrRunVTLl+5zuZNy3jy2JOLFw7Tq9ePidpHlSrlMTAwwPX4aW2Zt/d9Hj16Qq1aVbRlpUuVYNyvw+nVexhq9ZcDgUqlIkeOHAS/CklUe742mTNnpkevzoSEhGl7gJUqlaVgQXPUGjWnz+3n7v3z7Ny9htL/6vHVqFGZW7e8tQEdwPWYG8bGOSldpgQAFy9cpWAhc20KIL9JPtrZteCfIyfjbU+2bFnJnDkzr4JD463zNTMyyolarY7VGRg56icePb7CWfcDDBveTydNZWhowLt3kTr13757R6FCBShcuGCCj12jZmVOHD+rU+Z6zI0aNarEs0XakfTL/125coX27dvHu75Dhw5cvnw5RRr1NSpSpDD9+3XHx8eX1q27snzFBubNnUL3bj8keB9mpiZERkbG+iV7/vwFZqYxuU8DAwM2bFjM2LHTefz4WYL26+Q0gBw5srNjx/6En9BXpHnz73gWeIOg4DsMGtwLuzYOBL98BYBVkcJATO591szFdPq+DyEhYRw8tIncuY0BMDHNrxPQIeaaApiaxozaunD+Mn16jWDtuoW8DPHmvu9FwsJex5sWApgy9RcC/AM5ceJMip9zajM0NGDqtF/Yvm0fr1+Ha8uXLnGhh8MQWrb4kTWrNzHq54FMmz5Gu/7YsdO0bWdLo0Z1UKlUFC9ehKFDY3rbZmYmsY4TH9N4/p98/P8hUk+Cg/qLFy8oVCj+tEahQoV4+fJlijTqo8ePH9OrV6/P1omMjCQsLExnSY2HZPX09Lh69SYTJs7E89otVq/+i9VrNtG3b/cUPc60aWPw8rrHps27ElS/s70d48eN4MeuAwgKStnrn1bc3NypV7s1Tb/7gWNH3XDZ8Cf58ucF0L5oZfYfi9m39zCenjf5qf9oNBoNdu0T/mSgdanizJw1kZkz/qRBvXa0b+dIYctCzF84Lc76I0YO4PsfWvNjl5+IjHyf/JNMQ/r6+qzfuBiVSsXwYbo3MRf9uZrTpy9w66YXq1dt4tex0xnwk6P2jWVr12xm+bL1bN+5mlehdzl+cpe2s6CUJ2KVnlNPcFB///49mTNnjne9vr4+79+n7A9/cHAw69at+2wdZ2dnjI2NdRZ19OsUbQeAv/9z7ty5p1Pm5XUPC4uEfyUNCHyOoaGhzkgWABOTfAQEPgfAplFdvv++NW8iHvIm4iFHDm+JOf6z60ycMFJnu04d27Js2Sx+7DqA48e/vd7kR2/evOXBg0dcuuTJ4IFjiP4QjYNjzHz9AQEx18XLy0db//379zx8+JhCFgUAeB4YRP7/jCD6OKIoMDAIiEk5nHe/zML5K7l10wvXY6dxGj4RB8dOmJrp9h6HDOvDCKcB2LV15NZNr9Q56VSir6/Pho2LKGxRkLatu+v00uPiccmTzJkzY2n5qcM2ccJMTPOXpXSpehQrUgMPj2sAPPRN+HTagfH8P/n4/yM9ySyN/zJhwgSyZcsW57o3b94k+uD79u377PoHDx58cR9jx47FyclJpyxvvtKJbsuXuLt7ULJkUZ2yEiWK4uf3JMH7uHLlBu/fv+c7m3rs3hMzh0TJkkWxtCzE+fMxN0ntO/cja5Ys2m2qVqvIqpVzsfmuAw8ePNKW23dqx4oVc+jWfSCHDh1Pzql9dfT0VBj+v+foefUm795FUqJEUc67ewAxgauwZSEe+z0F4OLFq4waPYh8+fPy4v/fVmy+q0do6Gu87sT8MciaNSsfPnzQOY76/08/q/j0yzpsRD9G/TyIDu0cuXr1RuqeaAr7GNCLFbOiZYsfCQ4O+eI25SuUITo6mqAg3VSJWq3G/1kgAB07tuX8+cu8eBGc4LZcvHCVRjZ1dW7I2nxXT2cwQHr5VnrcSZXgoN6gQQPtrIyfq5MYdnZ28U458NHn3ocKMeO+DQ0NE7VNUixYuBK3U3v4ZfRgduw8QPVqlejTuysDB/6irZM7dy4KWxTAvIAZACVLFgMgIDCIwMAgwsJes9ZlC3/8MZHgVyGEhb1m/rypuLt7aH/Y/x24Ae3QPi8vH20uvrO9HatXz8Np5CQuXryqzVO+ffuOsLCU/5aSHNmzZ6NosU8PrFlZWVC+QmleBYcSHPyKUaMHcejvYwQEPCdv3jz07d8d8wJm7N4d80fv9etw1qzexK/jh/H06TP8/J5qx03v+X8d12On8fLyYeWqOUwYPwNT0/xMmOTEyhUbtN8eDx1y5c9Fv9O7T1dcj7lhambCzD8m4HHJU/ttYLhTf8aNH07vniN45PcEE9OYnmZE+BsiIhLfaUlp/72WlpafrmVAwHM2blpCpUpl+eH7Puhl0tO2/1VwKFFRUdSoUZlq1Svh5nae8Nfh1KhZhZkzx7Nl8x5CQmJ+tvLmzY1d+xacdjuPYRZDunfvSPsOLWlu21mnLeUrxHScsufIRr58eShfoTRR76O036iWLF7L4X+2MGRoH44cPs4PHdtQpUp5hg5O/7ehKSOJFL90naWxYMGCLFmyhHbt4h5i5OnpSdWqVRM9n0xqzdLYsmVjpk0dS/HiVjx8+Jj5C1ayZs0m7fru3TuyetW8WNtNnTqXqdPmAjF/hP74YwL2newwNDTg6NFTDBn6a7xfSxs0qM2xo9t1hjQe/Wc7DRvWjlV3/fpt9OnrFKs8OZI7pLFe/ZocPLw5VvlfG3cwfOh4Vq9dQLXqFcmbNzfBwSFcuXydWTMXc+XKp4nj9PX1mTzlZzp3aU+WLIZ4eFxjzOipeP0rHWZhUYB5C6ZRr35N3kS8YdOmXUya8IfOz07/AQ706v0jllYWhIaG4XbKnYnjZ+LvH9MjvXHbTScN8ZHz9AU4/74gWdcBkp+Trl+/JoeObIlVvnHDDn6fPp/bXnGn4FrYdub06QtUrFSWefOnUrJkMQwNDXj08DGbN+/mz4WrtX/88ubNzbYdqyhb1hqVSsXFC1f47bc5eFzy1NlnXMMKHz16QtnS9bWf27dvyYRJI7G0LMh9n4eMHz/js6ONEiq5QxrPmX95WHJ86vjvTNax00K6BvW2bdtSqVIlpkyZEuf6a9euUblyZdTqxL1UUKbeTTky9W7KUcqNxvQmQf3zEv3mo5T0888/ExEREe/64sWLc+LEiTRskRBC6b6VG55Jla5BvX79+p9dnz17dho2/DrnNBFCfJsS973/25OuQV0IIdKaBmX31BM9S6MQQnzL1JqkL4nh5uZGmzZtKFCgACqVij179ny2/smTJ1GpVLGWgICARB03SUH99OnTdOvWjdq1a/P0acxY4Q0bNnDmzLf7AIwQImNQo0rykhgRERFUrFiRxYsXJ2o7b29v/P39tYuJScKnZ4AkpF927txJ9+7d6dq1K1evXiUyMmbyn9DQUH7//XcOHvz6X8wqhBCprUWLFrRo0SLR25mYmJArV64kHzfRPfVp06axbNkyVq5cqTNtQN26dblyJf2fFhNCiM/RoEryEtdcUx87timlUqVKmJub07RpU86ePfvlDf4j0UHd29s7zidHjY2NCQkJSXQDhBAiLamTscQ115Szs3McR0k8c3Nzli1bxs6dO9m5cycWFhY0atQo0Z3lRKdfzMzM8PHxwcrKSqf8zJkzFC1aNO6NhBDiK5Gc0S9xzTX132lKksra2hpra2vt5zp16nD//n3mzZvHhg0bEryfRAf1vn37MmzYMNasWYNKpeLZs2e4u7szatQoJkyI+12FQgjxtUjOOPW45ppKTTVq1Ej0AJREB/UxY8agVqtp3Lgxb968oUGDBhgaGjJq1CjFv6dUCPHt+5YePvL09MTc3DxR2yQ6qKtUKsaNG8fPP/+Mj48P4eHhlClThhw5ciR2V0IIoVjh4eH4+Hx6D4Cvry+enp7kyZOHwoULM3bsWJ4+fcr69esBmD9/PkWKFKFs2bK8e/eOVatWcfz4cf75559EHTfJT5QaGBhQpkyZpG4uhBDpIq2eKPXw8MDG5tOLzj/m4h0dHXFxccHf3x8/v08vHnn//j0jR47k6dOnZMuWjQoVKnDs2DGdfSREomdptLGx+ex85cePp/8LG2SWxpQjszSmHJmlMWUkd5bG/WZdkrxtm4DY00h/bRLdU69UqZLO56ioKDw9Pbl58yaOjo4p1S4hhEgViX0y9FuT6KA+b17sl0AATJ48mfDwz78PUQgh0pvSvy+l2IRe3bp1Y82aNSm1OyGESBXJefjoW5BiQd3d3Z0s/3phshBCiLSX6PRLhw4ddD5rNBr8/f3x8PCQh4+EEF89dSq8mP5rkuigbmxsrPNZT08Pa2trpkyZQrNmzVKsYUIIkRqUnlNPVFCPjo6mZ8+elC9fnty5c6dWm4QQItV8K7nxpEpUTj1Tpkw0a9ZMZmMUQnyz1KqkL9+CRN8oLVeuHA8ePEiNtgghRKpLqzcfpZckvSRj1KhRHDhwAH9//1gTxgshhEg/Cc6pT5kyhZEjR9KyZUsA2rZtqzNdgEajQaVSER0dnfKtFEKIFCI3Sv/vt99+Y8CAAZw4cSI12yOEEKnqW8mNJ1WCg/rHeb8aNmyYao0RQojUpvTRL4ka0vi52RmFEOJbIOmXfylZsuQXA3twcHCyGiSEEKlJ0i//8ttvv8V6olQIIcTXI1FBvXPnzpiYmKRWW4QQItVJTv3/JJ8uhFACCer/l8i33gkhxFdJo/D+aYKDulqt9L9vQoiMQOmRLNFT7wohxLdM6UE9xd58JIQQIv1JT10IkaEo/e6gBHUhRIYiDx8JIYSCKD2nLkFdCJGhSFAXQggFUXpOXUa/CCGEgkhPXQiRociNUiGEUBDJqQshhIIoPacuQV0IkaGoFR7WFRnUDTJlTu8mKEZkdFR6N0Exwp+cSu8mCJSffpHRL0IIoSCK7KkLIUR8lJ18kaAuhMhglJ5+kaAuhMhQlD5OXXLqQogMRY0myUtiuLm50aZNGwoUKIBKpWLPnj1f3ObkyZNUqVIFQ0NDihcvjouLS6LPT4K6ECJD0SRjSYyIiAgqVqzI4sWLE1Tf19eXVq1aYWNjg6enJ8OHD6dPnz4cOXIkUceV9IsQQqSCFi1a0KJFiwTXX7ZsGUWKFGHOnDkAlC5dmjNnzjBv3jxsbW0TvB/pqQshMhR1MpbIyEjCwsJ0lsjIyBRpl7u7O02aNNEps7W1xd3dPVH7kaAuhMhQkpNTd3Z2xtjYWGdxdnZOkXYFBARgamqqU2ZqakpYWBhv375N8H4k/SKEyFCSM0597NixODk56ZQZGhomr0EpTIK6ECJDSc44dUNDw1QL4mZmZgQGBuqUBQYGYmRkRNasWRO8HwnqQogM5Wud0Kt27docPHhQp+zo0aPUrl07UfuRnLoQQqSC8PBwPD098fT0BGKGLHp6euLn5wfEpHIcHBy09QcMGMCDBw8YPXo0Xl5eLFmyhG3btjFixIhEHVd66kKIDCWt+ukeHh7Y2NhoP3/MxTs6OuLi4oK/v782wAMUKVKEv//+mxEjRrBgwQIKFSrEqlWrEjWcEUCl0Wi+zu8iyZAjW5H0boJiRKk/pHcTFEOm3k0ZmfMVTdb2w6w6J3nbBQ+3JOvYaUF66kKIDEXzlebUU4oEdSFEhqL0WRrlRqkQQiiI9NSFEBnK1zqkMaVIUBdCZCjKDukS1IUQGYz01IUQQkGUfqNUgroQIkNR+pBGGf0ihBAKIj11IUSGIukXIYRQEKWnXySoCyEyFOmpCyGEgqiVN4ehDgnqQogMRdkhXUa/CCGEokhPXQiRocgTpUIIoSAy+kUIIRRERr8IIYSCSPpFCCEUROnpFxn9IoQQCiI9dSFEhiI5dSGEUBCNPFEqhBDKITdKhRBCQST9IoQQCiKjX4QQQnwzpKcuhMhQJKcuhBAKIqNfhBBCQZR+o1Ry6vGoW7cG23as4t7984S/8aV1m6badfr6+kyZ+gsXLh4iMOgW9+6fZ8XKOZiZm2jrFC5ckMVLZ3DzthtBL+9w/eZJxo0fTubMmXWOU7ZcKf45uo0XwV543T3L8BH9dda3bWeL25m9PHl2jcCgW5w7/zedu7SP1V5r62Js3b6Sp/4x9U6d3kOhQgVS+KqkDG/vc0S+exxrWTB/GgCLFzlz5/YZQl7d48ljT3ZsX411yWJx7itPnlzc97lI5LvHGBsbactXrpwb5zGuXjmW4Hakpy27D9De4SdqNu1AzaYd6NpvBKfdLwEQGvaa3+cuoXXnPlS1aUeTDg78Pm8pr8MjtNt73XvAz5Nm0Lh9d6ratKPNj/3YsG1PrONcvHKdjj0HU7lRG1p06sWev4/GqhMY9IJffvuDui06UdWmHe27/8TNO3d16tx/6Mfg0ZOp1ex7qje2w773UPwDnmvX9xg8mnJ1W+gsv/3xZwpdrcTRJOO/b4H01OORLXtWbt64w4b129i8ZbnuumxZqVSpHDNnLOLGjTvkymXEH7MnsW37ShrUawdASeti6OnpMXTIOB7cf0iZstYsWuRMtmzZGPfr7wDkzJmDffvXc+L4WYYNHUfZstYsWfYHoaFhrF2zGYBXwSHM+mMxd73v8/59FC1afMey5X8QFPQS12NuABQpUph/jm1n/bptTJ82j9dh4ZQuU5LIyMg0vGIJV7duazJlyqT9XLasNYcObmbnrgMAXLl6g81b9vD48VNy587FhPFOHPj7L6yt66BW6/azli+bzc2bdyhUyFynfOTISYwf76z9rK+fiUsX/2Hnrr8T3I70ZJY/HyMG9MTSoiAajYa9h44xZMwUdqxdhAYNz18EM2pwH4paFcY/8DlTZi0i6MVL5k0fD8Bt73vkyZ2LGRN/xswkP5437/DbzIVk0tPjxx/aAvDkWQCDfp5IJ7tWzJg0mgsenkyaOZ/8+fJQt2ZVIOYPSPcBI6lRpSLL5kwldy5jHj1+ilHOHNq2+j15hsNPo+jQ2pZBfbqRPVs27vv6YWBooHNOP7RtzuA+3bWfs2QxTO3LGCel59RVGgUmmHJkK5Ki+wt/40tn+34c2B+7F/NRlaoVcDu9l1Il6/LkybM46wwb3o8+fbtSvmxDAPr07crESaMoVqQGUVFRAPw2ZTRt2jSjSuUm8R7rzLn9HDl8gqlT5gLgsm4hUVEf6NvHKamnGK8o9YcU3+d/zZ41iZYtm1CmbP0415crV4rLHkcpXaYeDx480pb369udHzq24fff53Pk8FZMTMsSGhoW5z7atrFl69YVWJeqg5/f0yS1I7nCn5xK1vZ1mndk5KA+fN/GNta6I8dPM2bKH1w6tgd9/UxxbA3T5izmwcPHrPlzBgBzl6zG7dwl9mxcpq0zaqIzr8MjWD435tvKvKVruHr9NuuXzo63XaMmOqOvr8+MiT/HW6fH4NGUKl6UMcMHJOhcPydzvqLJ2r6JRezrl1DHHh9J1rHTgqRfUoiRUU7UanW8QQXA2Dgnr16FaD/XqFGFs2cvagM6gOsxN0paFyNXLqM49gCNGtWhRIminDlzEQCVSoVtcxt8fHzZs3cdvg8vceLUbp100dcsc+bMdOnSAZd1W+Ncny1bVhwd7PH1fcTjx5/+WJYqVYJffx1G797DY/Xe49Kjhz3Hj5+JN6B/qR3pKTo6moPHTvL23TsqlSsVZ53X4RHkyJ4t3oD+sY6x0ace9rWbXtSqVkmnTt2aVbl2847284kz5ylbqgRO46fToFVnfugxiB37DmnXq9Vq3M5dwsqiIP1GjKNBq8506TscV7dzsY7/99ET1Gtpj123Acxbupa3794l9BKkKI1Gk+TlW5DuQf3t27ecOXOG27dvx1r37t071q9f/9ntIyMjCQsL01nS+uIbGhowddovbN+2j9evw+OsU7SoJf0HOLBm9WZtmalpfoKev9Cp9/z/n01N82vLjIxyEvD8Jq9C77Jj1xpGjZzMieNnAMhvkpecOXPgNHIAR4+eom1bB/bvO8KmzcuoV69mSp9qimvb1pZcuYzYsGG7Tnn/fg68fOHFq+C72No2omWrrto/fgYGBmxYv4ixv07XCfTxMTc3xdbWhjVrN8dbJ752pKe7932p3qQ9VWzaMnXWIhb8PoFiRSxj1XsVEspyl8380LZFvPu6euM2R1zddOq8CH5F3jy5derlzZ2L8Ig3vPt/6u7JswC27vmbwoUKsnzeNOzbt8J53jL2Hoz51hr8KoQ3b9+yeuM26tWsxop502ncoA7Df53GpavXtftt1bQRMyaOZs2fM+jTvRMHjrgy5rdZybo+SaVGk+TlW5CuOfW7d+/SrFkz/Pz8UKlU1KtXjy1btmBuHpMfDQ0NpWfPnjg4OMS7D2dnZ3777Tedssz6xhhkzh3PFilLX1+f9RsXo1KpGD5sQpx1zAuYsnuvC7t3H8Jl7ZZEH+P163Dq1GpF9hzZaNSoLs4zxvPQ14/Tpy+gpxfzd/nvA0dZvGgNADeu36Fmrar07vMjZ85cSPrJpYGePTpz5MgJ/P0Ddco3b9mNq6sbZuamjBjen782LqGRTQciIyOZNnUMXl4+bN68O0HH6NbtB0JCwti3L/6vzvG1Iz0VKVyInS6LeR0ewT8nzjBu+hxcFv2hE9jDIyIY+PMkihUpzMDe3eLcz70HDxk65jd+6tVVmytPKLVaQ9lSJRg+oAcApUsW596DR2zbc5B2LZuiVscEOpv6tXHoHHMDv1TJYnjeuM22PQepXrkCAB3btdTus2SxIuTPl4feQ8fi9+QZhdP4hv63csMzqdK1p/7LL79Qrlw5nj9/jre3Nzlz5qRu3br4+fkleB9jx44lNDRUZ8msnyv1Gv0v+vr6bNi4iMIWBWnbunucvXQzcxMOHtrMhfNXGDJorM66wMAg8pvk0ykz+f/nwMAgbZlGo+HBg0fcuH6HPxeuYs+eQ4wcNRCAly9eERUVhZeXj85+vL18KGTxdY5++ahw4YJ891091sbxhy4s7DU+9x9y5swFOnfpj7V1cdq1aw7EpKC+/74VEeG+RIT7cvhQzPbPnl5jwoTY9xV6ONqzadMunTRXQtuRnjJnzkzhQgUoW6oEI37qiXXxomzcvle7PiLiDf2dJpA9W1YW/D6BzPqx+2j3fR/Re+hYfmjbgv49uuisy5cnNy+DX+mUvXwVQo7s2chiGHMTM3/ePBSzKqxTp6iVBf7///nMncsI/UyZPlsnLuXLxKSRHj/1/9JlSHFqjSbJy7cgXXvq586d49ixY+TLl498+fKxf/9+Bg4cSP369Tlx4gTZs2f/4j4MDQ0xNNS9i65SqVKryVofA3qxYla0bPEjwcEhseqYFzDl4KHNeF69wYD+P8dKC128eIWJk0ahr6/Phw8xNyRtGtfjrvd9QkLiz83r6akw/P/IgqioKC5fvk6JEro3j0qUKMLjePLHXwsHh048f/6Cg4dcP1tPpVKhUn06585d+pMlSxbt+mrVKrJyxRy+a/y9zo1UgAYNalG8eBHWusQfsBPajvSmVmt4/z7mD1N4RAT9R4wns0Fm/pw5SXtt/s3nwSN6DR1DuxZNGNa/R6z1FcuV4rS7h06Z+6WrVCxXWvu5coUyPPR7olPnkd9TzM1ihu9mzpyZsqVL4vufOg8fP6WAmQnx8bp3H4B8efN85oxTx7cRmpMuXXvqb9++Rf9fvQuVSsXSpUtp06YNDRs25O7du5/ZOnVlz56N8hVKU75CzA+4paUF5SuUplChAujr67Nx0xIqVylPr14j0Mukh4lpPkxM82nHoZsXMOXQ4c08efyUX3/9nXz582jrfLRt6z6ioqJYsnQmpUuX4PvvWzFwYE/+/HO1ts7IUT9h8109rKwssLYuxpChfejSpT1btuzR1lkwfwXf/9CKHj07a3P3LVo2ZuWKjWlzsZJApVLh4NCJjRt3EB0drS0vUqQwP/88iMqVy2NhUYBataqyedMy3r59x+HDxwF48OARt297a5eHD2O+2Xl5+RAU9FLnOD16dObChSvcvu2dqHakt3lL1+LheYOn/oHcve/LvKVruXT1Oq2a2RAeEUG/4eN48+4dU8YMJyLiDS9eBvPiZbD2HO49eEivIb9Qp0YVHDu3164P/teN+k52rXjyzJ85i1fz4NFjtuw6wJHjbjjYf3oOoru9HddvebFi3Rb8njzj739OsGPfIbp0aK2t0/PH7zns6saOfYfwe/KMTTv2cersBTq3bwXEDHlctnYTt7zu8dQ/kBOnz/Pr1NlUq1QO6+IpO1Lta7R48WKsrKzIkiULNWvW5OLFi/HWdXFx0XZiPi7/7sAkRLr21EuVKoWHhwelS5fWKV+0aBEAbdu2TY9mAVClSnkOHfnUu5v5R0y+fOOGHfw+fT6tW8eMLjl/4aDOdi1sO3P69AW++64exYsXoXjxItzzOa9T5+OQy7Cw17Rt48C8eVM4fXY/L18GM8N5oXaMOsT8cZk3fwoFC5rz9u077t69T59eI9i589N46/37/mHY0PGMHPUTs2ZP4t69B3T9cSDu/+mFfU0aN66PZeFCrPvPaJN37yKpV7cGQwb3JnduYwKfv+DMmQs0amQXK2B/iZFRTtrbtWTkqEmJbkd6Cw4J4depswl6GUzO7NkpWbwIy+dOo06NKly8cp3r//8j1dK+t852R3a4UNDclH9OnCE4JJQDR45z4Mhx7foCZib8s3MdAIUKmLF41hT+WLicjdv3YJo/H7/9Mlwn716+tDXznSewYJkLy1w2UdDcjF+G9ae17XfaOk0a1mXiz4NZtWEbzvOWYVW4EPOmj6dKxXJATG/+vMdVNmzbw9t37zAzyU/TRvXo36Nzql2/z0nLG55bt27FycmJZcuWUbNmTebPn4+trS3e3t6YmMT9TcbIyAhv70+dkMRmHtJ1nLqzszOnT5/m4MGDca4fOHAgy5YtS9CQtX9L6XHqGVlajFPPKJI7Tl3ESO449doFbZK8rfvTE4mqX7NmTapXr67tqKrVaiwsLBgyZAhjxoyJVd/FxYXhw4cTEhKS5Dama/pl7Nix8QZ0gCVLliQ6oAshxOckZ5x6XEOo43ty+/3791y+fJkmTT49SKinp0eTJk1wd3ePt33h4eFYWlpiYWFBu3btuHXrVqLOL93HqQshRFpKzjh1Z2dnjI2NdRZnZ+c4j/PixQuio6MxNTXVKTc1NSUgICDObaytrVmzZg179+5l48aNqNVq6tSpw5MnT+KsHxeZ+0UIkaEkZ5z62LFjcXLSHTb739F3yVG7dm1q166t/VynTh1Kly7N8uXLmTp1aoL2IUFdCCESKK4h1PHJly8fmTJlIjBQ94G2wMBAzMzMErSPzJkzU7lyZXx8fL5c+f8k/SKEyFDSau4XAwMDqlatiqvrp+cf1Go1rq6uOr3xz4mOjubGjRvap+wTQnrqQogMJS2HNDo5OeHo6Ei1atWoUaMG8+fPJyIigp49ewLg4OBAwYIFtXn5KVOmUKtWLYoXL05ISAizZs3i0aNH9OnTJ8HHlKAuhMhQ0nIUt729PUFBQUycOJGAgAAqVarE4cOHtTdP/fz8tPM3Abx69Yq+ffsSEBBA7ty5qVq1KufOnaNMmTIJPqbMpy4+S8appxwZp54ykjtOvaJZnSRvey0g9pTCXxvpqQshMhSZpVEIIcQ3Q3rqQogM5VuZQjepJKgLITIUpadfJKgLITIU6akLIYSCSE9dCCEUROk9dRn9IoQQCiI9dSFEhiLpFyGEUBClp18kqAshMhTpqQshhIJoNMp+RaYEdSFEhpKWU++mBxn9IoQQCiI9dSFEhqLA2cZ1SFAXQmQoSk+/SFAXQmQo0lMXQggFkXHqQgihIEofpy6jX4QQQkGkpy6EyFAkpy6EEAoio1+EEEJBpKcuhBAKIqNfhBBCQZTeU5fRL0IIoSDSUxdCZChyo1QIIRRE6ekXCepCiAxFbpQKIYSCyDQBQgghvhnSUxdCZCiSfhFCCAWRG6VCCKEgSs+pS1AXQmQo0lMXQggFUXpQl9EvQgihINJTF0JkKMrup4NKo/TvIl+pyMhInJ2dGTt2LIaGhundnG+WXMeUI9dSGSSop5OwsDCMjY0JDQ3FyMgovZvzzZLrmHLkWiqD5NSFEEJBJKgLIYSCSFAXQggFkaCeTgwNDZk0aZLckEomuY4pR66lMsiNUiGEUBDpqQshhIJIUBdCCAWRoC6EEAoiQV0IIRREgno6WLx4MVZWVmTJkoWaNWty8eLF9G7SN8fNzY02bdpQoEABVCoVe/bsSe8mfbOcnZ2pXr06OXPmxMTEBDs7O7y9vdO7WSKJJKinsa1bt+Lk5MSkSZO4cuUKFStWxNbWlufPn6d3074pERERVKxYkcWLF6d3U755p06dYtCgQZw/f56jR48SFRVFs2bNiIiISO+miSSQIY1prGbNmlSvXp1FixYBoFarsbCwYMiQIYwZMyadW/dtUqlU7N69Gzs7u/RuiiIEBQVhYmLCqVOnaNCgQXo3RySS9NTT0Pv377l8+TJNmjTRlunp6dGkSRPc3d3TsWVCfBIaGgpAnjx50rklIikkqKehFy9eEB0djampqU65qakpAQEB6dQqIT5Rq9UMHz6cunXrUq5cufRujkgCeUmGEEJr0KBB3Lx5kzNnzqR3U0QSSVBPQ/ny5SNTpkwEBgbqlAcGBmJmZpZOrRIixuDBgzlw4ABubm4UKlQovZsjkkjSL2nIwMCAqlWr4urqqi1Tq9W4urpSu3btdGyZyMg0Gg2DBw9m9+7dHD9+nCJFiqR3k0QySE89jTk5OeHo6Ei1atWoUaMG8+fPJyIigp49e6Z3074p4eHh+Pj4aD/7+vri6elJnjx5KFy4cDq27NszaNAgNm3axN69e8mZM6f2/o6xsTFZs2ZN59aJxJIhjelg0aJFzJo1i4CAACpVqsTChQupWbNmejfrm3Ly5ElsbGxilTs6OuLi4pL2DfqGqVSqOMvXrl1Ljx490rYxItkkqAshhIJITl0IIRREgroQQiiIBHUhhFAQCepCCKEgEtSFEEJBJKgLIYSCSFAXQggFkaAuUkWPHj105jdv1KgRw4cPT/N2nDx5EpVKRUhISLrsa/LkyVSqVCnZxxYioSSoZyA9evRApVKhUqkwMDCgePHiTJkyhQ8fPqT6sXft2sXUqVMTVDclA3FCWFlZaa9L1qxZsbKyolOnThw/flynXp06dfD398fY2DjB+x41apTOXD///WMnREqToJ7BNG/eHH9/f+7du8fIkSOZPHkys2bNirPu+/fvU+y4efLkIWfOnCm2v5Q2ZcoU/P398fb2Zv369eTKlYsmTZowffp0bR0DAwPMzMzifaw+Ljly5CBv3ryp0WQh4iRBPYMxNDTEzMwMS0tLfvrpJ5o0acK+ffuAT73I6dOnU6BAAaytrQF4/PgxnTp1IleuXOTJk4d27drx8OFD7T6jo6NxcnIiV65c5M2bl9GjR/Pf2Sf+m36JjIzkl19+wcLCAkNDQ4oXL87q1at5+PChdk6X3Llzo1KptPOPqNVqnJ2dKVKkCFmzZqVixYrs2LFD5zgHDx6kZMmSZM2aFRsbG512fk7OnDkxMzOjcOHCNGjQgBUrVjBhwgQmTpyofQlzXN8gVq5ciYWFBdmyZaN9+/bMnTuXXLlyadf/O/0yefJk1q1bx969e7XfDE6ePMn79+8ZPHgw5ubmZMmSBUtLS5ydnRPUbiH+S4J6Bpc1a1adHrmrqyve3t4cPXqUAwcOEBUVha2tLTlz5uT06dOcPXuWHDly0Lx5c+12c+bMwcXFhTVr1nDmzBmCg4PZvXv3Z4/r4ODA5s2bWbhwIXfu3GH58uXkyJEDCwsLdu7cCYC3tzf+/v4sWLAAiHnr/fr161m2bBm3bt1ixIgRdOvWjVOnTgExf3w6dOhAmzZt8PT0pE+fPsl67+uwYcPQaDTs3bs3zvVnz55lwIABDBs2DE9PT5o2barTs/+vUaNG0alTJ+23JX9/f+rUqcPChQvZt28f27Ztw9vbm7/++gsrK6skt1tkbDL1bgal0WhwdXXlyJEjDBkyRFuePXt2Vq1ahYGBAQAbN25ErVazatUqbdph7dq15MqVi5MnT9KsWTPmz5/P2LFj6dChAwDLli3jyJEj8R777t27bNu2jaNHj2rf11q0aFHt+o/vxjQxMdH2eiMjI/n99985duyYdu75okWLcubMGZYvX07Dhg1ZunQpxYoVY86cOQBYW1tz48YNZs6cmaRrlCdPHkxMTOLt7f/555+0aNGCUaNGAVCyZEnOnTvHgQMH4qyfI0cOsmbNSmRkpM5LUfz8/ChRogT16tVDpVJhaWmZpPYKARLUM5wDBw6QI0cOoqKiUKvV/Pjjj0yePFm7vnz58tqADnDt2jV8fHxi5cPfvXvH/fv3CQ0Nxd/fX2fqYH19fapVqxYrBfORp6cnmTJlomHDhglut4+PD2/evKFp06Y65e/fv6dy5coA3LlzJ9YUxsl9+YhGo4k3h+7t7U379u11ymrUqBFvUI9Pjx49aNq0KdbW1jRv3pzWrVvTrFmzJLdZZGwS1DMYGxsbli5dioGBAQUKFEBfX/dHIHv27Dqfw8PDqVq1Kn/99VesfeXPnz9JbUjKixfCw8MB+PvvvylYsKDOOkNDwyS140tevnxJUFBQqr8JqEqVKvj6+nLo0CGOHTtGp06daNKkSaz7BUIkhAT1DCZ79uwUL148wfWrVKnC1q1bMTExwcjIKM465ubmXLhwgQYNGgDw4cMHLl++TJUqVeKsX758edRqNadOndKmX/7t4zeF6OhobVmZMmUwNDTEz88v3h5+6dKltTd9Pzp//vyXTzIeCxYsQE9PL94hiNbW1ly6dEmn7L+f/8vAwEDnvD4yMjLC3t4ee3t7fvjhB5o3b05wcLA2FSVEQsmNUvFZXbt2JV++fLRr147Tp0/j6+vLyZMnGTp0KE+ePAFibijOmDGDPXv24OXlxcCBAz87xtzKygpHR0d69erFnj17tPvctm0bAJaWlqhUKg4cOEBQUBDh4eHkzJmTUaNGMWLECNatW8f9+/e5cuUKf/75J+vWrQNgwIAB3Lt3j59//hlvb282bdqU4LcgvX79moCAAB4/foybmxv9+vVj2rRpTJ8+Pd4/gkOGDOHgwYPMnTuXe/fusXz5cg4dOvTZIY9WVlZcv34db29vXrx4QVRUFHPnzmXz5s14eXlx9+5dtm/fjpmZmc4oGiESTCMyDEdHR027du0Svd7f31/j4OCgyZcvn8bQ0FBTtGhRTd++fTWhoaEajUajiYqK0gwbNkxjZGSkyZUrl8bJyUnj4OCgs6+GDRtqhg0bpv389u1bzYgRIzTm5uYaAwMDTfHixTVr1qzRrp8yZYrGzMxMo1KpNI6OjhqNRqNRq9Wa+fPna6ytrTWZM2fW5M+fX2Nra6s5deqUdrv9+/drihcvrjE0NNTUr19fs2bNGg2gefXqVbznbWlpqQE0gMbAwEBTuHBhTadOnTTHjx/XqXfixIlY+1qxYoWmYMGCmqxZs2rs7Ow006ZN05iZmWnXT5o0SVOxYkXt5+fPn2uaNm2qyZEjhwbQnDhxQrNixQpNpUqVNNmzZ9cYGRlpGjdurLly5Uq87RXic+R1dkKkoL59++Ll5cXp06fTuykig5KcuhDJMHv2bJo2bUr27Nk5dOgQ69atY8mSJendLJGBSU9diGTo1KkTJ0+e5PXr1xQtWpQhQ4YwYMCA9G6WyMAkqAshhILI6BchhFAQCepCCKEgEtSFEEJBJKgLIYSCSFAXQggFkaAuhBAKIkFdCCEURIK6EEIoiAR1IYRQkP8BWw/bWX6MyTgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "print(\"Accuracy is: {0:.3f}%\".format(accuracy * 100))\n", + "cm = confusion_matrix(ytest, ypred_test)\n", + "plt.figure(figsize=(4, 4))\n", + "sns.heatmap(cm, annot=True, fmt='.0f')\n", + "plt.xlabel(\"Predicted Digits\")\n", + "plt.ylabel(\"True Digits\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lf044C1hYVdh" + }, + "source": [ + "##### XGB Multi boosting Classifier Model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "cyWpTIS6YQgH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "outputId": "2b8c591d-9955-40db-fa9f-dd6c0ae1e5f9" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "XGBClassifier(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, objective='multi:softmax', ...)" + ], + "text/html": [ + "
XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
+              "              colsample_bylevel=None, colsample_bynode=None,\n",
+              "              colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
+              "              enable_categorical=False, eval_metric=None, feature_types=None,\n",
+              "              gamma=None, grow_policy=None, importance_type=None,\n",
+              "              interaction_constraints=None, learning_rate=None, max_bin=None,\n",
+              "              max_cat_threshold=None, max_cat_to_onehot=None,\n",
+              "              max_delta_step=None, max_depth=None, max_leaves=None,\n",
+              "              min_child_weight=None, missing=nan, monotone_constraints=None,\n",
+              "              multi_strategy=None, n_estimators=None, n_jobs=None,\n",
+              "              num_parallel_tree=None, objective='multi:softmax', ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ], + "source": [ + "XGB = XGBClassifier(objective='multi:softmax')\n", + "XGB.fit(xtrain, ytrain)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "018sBXhfYyXj" + }, + "outputs": [], + "source": [ + "ypred_train = XGB.predict(xtrain)\n", + "ypred_val = XGB.predict(xval)\n", + "ypred_test = XGB.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "accuracy = accuracy_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['XG Boost Classifier', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "id": "OPWUSvCLYxou", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 420 + }, + "outputId": "f9486e3d-eee1-4dfb-ec9c-381e20c36650" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is: 83.135%\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAGCCAYAAAAfalNpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRP0lEQVR4nO3dd1gUxxvA8e+BgEgTRYoN7F2xt9gSu7EmaqxYY4+KGjXGXtDYTYwtKvYeSyyxoGLDhhI7iqJYqIIoqIDc/f7gl0sugFIO0OX95Nnn4WZnZ2cv+DL37uycSqPRaBBCCKEIBlndASGEEPojQV0IIRREgroQQiiIBHUhhFAQCepCCKEgEtSFEEJBJKgLIYSCSFAXQggFkaAuhBAKIkFdCCEURIK6EEIRTp06RevWrcmfPz8qlYo9e/akug2NRsO8efMoWbIkJiYmFChQgJkzZ+q/sxkoR1Z3QAgh9CE6OppKlSrRp08fOnTokKY2hg8fzpEjR5g3bx4VKlQgPDyc8PBwPfc0Y6lkQS8hhNKoVCp2795Nu3bttGUxMTFMmDCBLVu28OLFC8qXL8+cOXNo2LAhALdv36ZixYrcuHGDUqVKZU3H9UDSL0KIbGHo0KF4eXmxdetWrl27RseOHWnevDn37t0D4I8//qBo0aLs37+fIkWK4OTkRL9+/T65kboEdSGE4gUEBLB27Vp27NhBvXr1KFasGKNHj+azzz5j7dq1ADx48IBHjx6xY8cO1q9fj7u7O97e3nz99ddZ3PvUkZy6EELxrl+/Tnx8PCVLltQpj4mJIW/evACo1WpiYmJYv369tt7q1aupWrUqvr6+n0xKRoK6EELxoqKiMDQ0xNvbG0NDQ5195ubmADg4OJAjRw6dwF+mTBkgYaQvQV0IIT4SlStXJj4+npCQEOrVq5dknbp16/Lu3Tvu379PsWLFALh79y4Ajo6OmdbX9JLZL0IIRYiKisLPzw9ICOILFiygUaNG5MmTh8KFC9O9e3fOnj3L/PnzqVy5MqGhoXh4eFCxYkVatWqFWq2mevXqmJubs2jRItRqNUOGDMHS0pIjR45k8dWlgkYIIRTgxIkTGiDR5uLiotFoNJrY2FjNpEmTNE5OThojIyONg4ODpn379ppr165p23j69KmmQ4cOGnNzc42dnZ2mV69emufPn2fRFaWNjNSFEEJBZEqjEEIoiAR1IYRQEAnqQgihIIqc0livwBdZ3QXF8Aq9k9VdUAxHS7us7oIi3A+7kq7j48IepPlYI5ui6Tp3ZlBkUBdCiGSp47O6BxlKgroQInvRqLO6BxlKgroQIntRKzuoy41SIYRQEBmpCyGyFY2kX4QQQkEUnn6RoC6EyF5kpC6EEAoiUxqFEEJBFD5Sl9kvQgihIBLUhRDZi1qd9i0Vli1bRsWKFbG0tMTS0pLatWtz6NCh9x6zY8cOSpcuTc6cOalQoQIHDx5M9eVJUBdCZCsajTrNW2oULFiQ2bNn4+3tzeXLl/n8889p27YtN2/eTLL+uXPn6NKlC3379uXq1au0a9eOdu3acePGjVSdV5FfkiELeumPLOilP7Kgl36kd0GvmHvn0nysSYk66Tp3njx5mDt3Ln379k20r3PnzkRHR7N//35tWa1atXB2dmb58uUpPoeM1IUQ2YtGneYtJiaGly9f6mwxMTEfPGV8fDxbt24lOjqa2rVrJ1nHy8uLxo0b65Q1a9YMLy+vVF2eBHUhRPaijk/z5ubmhpWVlc7m5uaW7KmuX7+Oubk5JiYmDBw4kN27d1O2bNkk6wYFBWFnp/tpzs7OjqCgoFRdnkxpFEKIFBo/fjyurq46ZSYmJsnWL1WqFD4+PkRGRrJz505cXFzw9PRMNrDrgwR1IUT2ko556iYmJu8N4v9lbGxM8eLFAahatSqXLl1i8eLFrFixIlFde3t7goODdcqCg4Oxt7dPVR8l/SKEyF4yaUpj0qdWJ5uDr127Nh4eHjplR48eTTYHnxwZqQshspdMeqJ0/PjxtGjRgsKFC/Pq1Ss2b97MyZMnOXz4MAA9e/akQIEC2pz88OHDadCgAfPnz6dVq1Zs3bqVy5cvs3LlylSdV4K6ECJ7yaRVGkNCQujZsyeBgYFYWVlRsWJFDh8+TJMmTQAICAjAwOCfZEmdOnXYvHkzP/74Iz/88AMlSpRgz549lC9fPlXnlXnq4r1knrr+yDx1/UjvPPW3f6X+Kc2/5azUMl3nzgySUxdCCAWR9IsQIntR+CqNEtSFENmLfPOREEIoiIzUhRBCQeSbj4QQQkEUPlKX2S9CCKEgMlIXQmQvcqNUCCEUROHpFwnqQojsRUbqQgihIBLUhRBCOTQaZU9plNkvQgihIDJSF0JkL5J+EUIIBZHZL0IIoSAyUhdCCAWRkboQQiiIwkfqMvtFCCEUREbqQojsRdIvQgihIApPv0hQF0JkLxLUhRBCQRSefpEbpUno7dqT0089dLaNnmsBsMhtwYjpQ9l0yp1jfgfZeXEzw6cNwczCTHt8sbJFmbx0AjsvbeGY30E2nFzD13076JzDuXalROc4/dSDPPmstXUq1azAbPcZ7PbexumnHtRrVve9/R41ewSnn3rQsV+H99bLSmO/H4rXuQNEPPfl2ZO/2LVzNSVLFtOpY2eXD/e1S3gScJXIiHtcvPAn7du31Kmz+/e1PPC7SNTL+zx+dAX3tUtwcLDTqdO0SQPOnv6DiOe+BD69xvZtK3F0LKhTZ9BAF65fO8mrSD9u3jhF9+5fZ8yF60HX3l9zwHMbPv6n8PE/xY5D7jT4oo52/zc9O7Bp70p8/E9xP+wKFpbmidpYsXEhp30OcOuJF143DzPv1+nY2tto9xco5MD9sCuJNueqFXTaadGmMUe8dnHriRcHT22jYePEv5vFShRhxcaF+Dzw5Pqjs+w+ugGHAvZ6fEfSSK1O+/YJkJF6Mh7c8WfkN2O0r+PfJSwCZGOXl7x2eVk6fQUP7z7EvqAdo2ePxMbehonfTgWgVIWSRIS9YMYwN4KfhVKhWjnG/DQSdXw8v7vv1TlP13ouRL+K1r6OCHuh/TlnLlP8bt3nwNZDzFo97b39rde8LuWqlCE0MCy9l56h6terxbJl67js7UOOHDmYMW0chw5spkKlhrx+/QYA9zWLyZ3bkvYdehP2PJwu37Rn6+bl1KzdAh+fmwCcPHmO2bN/JjAomAL5HfhpzkS2b11JvQZtAXByKsTvu9awaPEqergMxcrSgvnzprBj+2/UqNkcgAHf9mTmjPEMGPQ9ly/7UL26MyuWzeVFRCT7DxzNmjfoPYKehTB3+hIePggAlYqvOrdm+YaFtGnUhXu+D8hpmpNTHuc45XGO7yd9l2Qb589cZtnCNYQEh2HvkI/xU0eydM1cOrbsrVOvR/uB3PW9r339IjxS+3OV6hVZtHIW82b8wvHDp2nzVXOWrV9A28+7cvdOwjGFnQqy7cBqdmzay+I5y4l6FU2J0kWJjYnJgHdG/JsE9WTEx8cTHhqRqNzf96E2eAM8exTIyjmrmbhkPIaGBsTHqzm47U+dYwIDAilXtSz1W9ZLFNQjwiKIehlNUi6cuMiFExc/2FcbextGzBjGqK5j+Wn9rJRcXpZp1bq7zus+/UYQ9Ow6VatU5PSZCwDUrl2NIcPGc+myDwCz3BYz/Lv+VKlcURvUFy9ZpW0jIOApc+b+wu8715AjRw7evXtHlSoVMTQ0ZOKkOWg0GgAWLFzB77v+qdO921esWrWRHTv2AeDvH0D1qs6MGT34owzqxw+f0nk9f9ZSuvb+GudqFbjn+wD3FZsBqFm3arJtrF2+SfvzsyeBLF+yluXrF2jfk79FRLwgLOR5km30GtCVU8e9WPXLegAWzl5G3Ya16NGvMxNHJ/z+jZowhJPHzjJn6mLtcQEPn6TyijOIpF+yp4JFCrDbexvbzm1g4s/jsc1vm2xdcwtzXke9Jj4++V8WcwszXr14lah8zZGV7LmynQVbfqJCtXKp7qdKpeLHJePYsmw7D+8+SvXxWc3KyhKA8IgX2jIvr8t0+roN1ta5UalUdOrUhpw5TfA85ZVkG9bWuenapQNeXpe1genKlWuo1Wp6uXTGwMAAS0sLunX7Cg+P09o6xibGvP3PyPHN27dUr+5Mjhwf93jHwMCAL9s3xTSXKVcvXUtTG1a5LWn7dUuuXPxLJ6ADrNy4kIu3j7Ft/2q+aF5fZ1/lahU463lBp+z0CS8qV6sIJPxONmzyGQ/vP2Lt9qVcvH2MXYfX0aRFwzT1U+8Unn7J0qAeFhbGTz/9RPv27alduza1a9emffv2zJ07l9DQ0Czr162rd5g18idGdx/P/PGLcSjswNLdizA1M01U18raEpcR3dm36UCy7ZWvVpbP2zRk38b92rLnIc+ZO3YhP/afwo/fTiHkWQhLdi6gZPkSqeprtyHfEP8unp2rf0/VcR8DlUrFgnlTOXv2Ijdv+mrLv+k6ECOjHIQG3+R1lD/Lls7h6459uX//oc7xbrN+IDLiHqHBNylcqADtv+qj3ffw4WNatOzKjOnjeB3lT3jYHQoWcOCbrgO1dY4e9aRP7y5UqZyQL65apSJ9enfB2NgYG5s8GXvxaVSyTHGuPTzD7WfnmT5vAoNdRuF31z9VbXw/6TuuPzrLFb+TOBSwZ0APV+2+19FvmDlxPkP7jKVv1++4fMGH5esX6AR2G1sbnofqjuLDQp6TzzYvAHnz5cHc3IwB3/Xm1PFzuHQczJEDJ/h13Txq1KmSjqvXE4067dsnIMuC+qVLlyhZsiRLlizBysqK+vXrU79+faysrFiyZAmlS5fm8uXLH2wnJiaGly9f6mzqdL75F05c5OT+U9y//YCLnpf5vsd4zC3N+Lx1Q516ucxz8dP6WTy8+4g189cl2VaRUk64rZnO2oXruXTKW1v++P4T9m3cz93r97hx+RazR83jxuWbdPr2qxT3s2SFEnzdtwOzRv6UpuvMaj8vmUW5cqXo2n2wTvnUKWPInduSps06U7N2SxYtXsmWzcspX760Tr1585dRrUYzmrf4hvj4eNzX/PNR384uH8uXz2XDxh3UqtOSRp93IDY2lu1bV2rrzJi5iD8Pn+DsmT94+/oRv+9aw4aNOwBQf6SjMn+/h7Ru1IWvmrmwae0OfvplGsVLFklVG6t+WU/rz7vQ86tBqOPjmffrP/drIsJfsGbZJv66coPrV28xd/rP7N1xkP5DXFLcvoGBCoBjf55k7fJN3L5xlxVL3Dl+5DRde30EN6IVPlLPss+Yw4YNo2PHjixfvhyVSqWzT6PRMHDgQIYNG4aXV9Ifuf/m5ubG1KlTdcoKmTvhaFlUb32NehnN4wdPKOiUX1tmambKvE2zeR39mgn9JmlvpP6bUwlHFm2bx75NB1i/eFOi/f912+cOFWpU+GC9v1WqWQFrm9zsvLhFW5YjhyFDJg2kY7+v6FSrW4rbymyLF82gVcvGNPqiA0+fBmrLixZ1ZOiQPlR0bsStW3cBuHbtFp/Vrcmggb0YMnSctu7z5xE8fx7BvXsPuH3Hj0f+l6lVsyrnL3gzeFAvIiNfMm78TG39nr2+45H/ZWrWqMKFi1d4+/Yt/b8dxaDBY7Gzy0dgYDD9+3Xn5ctXhIYmnU/OanFx73jk/xiAG3/dpmLlcvQa0JUfR838wJH/iAh/QUT4Cx7eD+D+XX/OXv+TytUqcvVy0mkcH+8b1G1YU/s6LCSMvPny6tSxsc1L6P9z8BHPXxAXF4ef7wOdOvfv+lOtpnOK+5lhPpHgnFZZFtT/+usv3N3dEwV0SPhYPnLkSCpXrvzBdsaPH4+rq6tOWYvSbfXWTwDTXDkp4Jifw7uOAQkj9Pmb5xAXE8u4XhOJjYlLdIxTSUcWb5/PnzuOsGrOmhSdp3i54jwPTnkwObzrGJdPX9Epm79pDod3HeXg9j+TOSrrLV40g3Ztm/NFk448fPhYZ1+uXAkprv+OlOPj47UjwKT8vc/ExDihHVNTNEm0kVBX9wPqu3fvtH9YOndqw4GDx7Q3Vz92BgYGGBsbpfl41f/fC2OT5NsoW6EkIcH/zKq6evk6derX0N6YBfisQU3tH4W4uHdcv3qLIsWddNopUqwwT58EIjJWlgV1e3t7Ll68SOnSpZPcf/HiRezs7JLc928mJiaYmJjolBmo0pdVGjxxAOeOehH0JBgb+7z0GdULtVqNx57j5DLPxYItc8iZMyfTh83CzCIXZha5AHjxPBK1Wk2RUk4s3j6Pi56X2bZyh3buuTperZ0a1rFfBwIDgvC/+xBjE2O+7NqSKnWdGdV1rLYfprlyUqBIAe1rh8L2FC9XjJcRrwh5FsLLiJe8jHip0/d3794RHhrO4/sfyUyD//h5ySy6fNOODl/14dWrKOzs8gEQGfmKt2/fcueOH/fuJeTRvx87nefhEbRt05zGjevTtl1CCqBG9cpUq1aJs+cuERHxgmJFnZg6ZQx+fv54nU9IcR085MHw4f35ccIItm7bi4W5GTOmj+Phw8dc9bkBQIkSRale3ZmLF69induKESO+pVy50vTuOyJL3psPGf3jUDw9zvHsSSBm5ma0+ao5NetWpVfHIUDCaDmfbV4cixQCoFTZEkRHRfPsSRCRL15SqUp5KlYux+ULV4l88QrHIgUZOW4Qjx481t5s7dD5S+Li4rh5LeEeR7MvP+frrm0ZP2K6th/uKzazed8q+g7uzokjZ/iyQzPKO5dlgusMbZ1Vv6xn8W+zueR1hfNnLlP/8zp83qw+Xdt+m1lvV/I+kT/YaZVlQX306NF8++23eHt788UXX2gDeHBwMB4eHqxatYp58+ZlSd9sHfIxeekELK0teREeyfWLNxjQeigvwiNxrl2JclXKArDt3Ead4zrW7ErQk2AatqqPtY01zb5qQrOvmmj3Bz4O0qZEjIyMGDJpIPnsbXj7Nob7tx8w8pvvuXrOR1u/VKVS/Lxzgfb1sCkJuedD2w9/snn0QQMTAvNxj1065X36jmT9hu28e/eO1m17MGvmePbsdsfc3Ay/+w/p3XcEh/48DsDrN29o364lkyeNxszMlMDAEA4fOckst8XExsYCcOLkWbr3HMLoUYMZPWowr1+/4fwFb1q17sbbt28BMDQ0YOSIAZQqWYy4uDhOep6jXoO2PHr0cf5BzGuTh3lLp5HPzoaol1HcuXWPXh2HaGeidO31NcO/H6Ctv23/agC+HzqZXVv/4M2btzT78nOGjx1ArlymhASHcer4OZbOH0ts7D+fNoeM6k+Bgg7Ex7/j/r2HfNdvHH/+4aHdf+XSNUYOmIDrD4MZNWEojx4EMKinq3aOOsCRgyeYOHoWg0b0ZtKsMTzwe8SQ3mPwvuCTwe9SCig8/aLSZOHnzG3btrFw4UK8vb21H40NDQ2pWrUqrq6udOrUKU3t1ivwhT67ma15hd7J6i4ohqPlhz95ig+7H3blw5Xe482miWk+1rTb9A9XymJZOhm3c+fOdO7cmbi4OMLCEnJ2NjY2GBmlPUcohBDv9YlMTUyrj+IJCyMjIxwcHLK6G0KI7EDh6Rd5olQIIRTkoxipCyFEplH47BcZqQshspdMeqLUzc2N6tWrY2Fhga2tLe3atcPX1/e9x/z97M6/t5w5c6bqvBLUhRDZSyYFdU9PT4YMGcL58+c5evQocXFxNG3alOjopFdl/ZulpSWBgYHa7dGj1C3UJ+kXIUT2kkmzX/78U/epbnd3d2xtbfH29qZ+/frJHJXwRL29fdq/TERG6kKIbEWj1qR5S2oBwZgUfvFHZGTC0+R58rx/BdCoqCgcHR0pVKgQbdu25ebNm6m6PgnqQgiRQm5ublhZWelsbm5uHzxOrVYzYsQI6tatS/ny5ZOtV6pUKdasWcPevXvZuHEjarWaOnXq8ORJyp9yztInSjOKPFGqP/JEqf7IE6X6kd4nSl8vH57mYw17/5RoZJ7U+lP/NWjQIA4dOsSZM2coWLDge+v+W1xcHGXKlKFLly5Mn56yp1klpy6EyF7SkVNPSQD/r6FDh7J//35OnTqVqoAOCQ9mVq5cGT8/vxQfI+kXIUT2otakfUsFjUbD0KFD2b17N8ePH6dIkdR9mQkkLBd9/fr1VD1xLyN1IUT2kknLBAwZMoTNmzezd+9eLCwsCAoKAsDKygpT04TvDejZsycFChTQ5uWnTZtGrVq1KF68OC9evGDu3Lk8evSIfv36pfi8EtSFECIDLFu2DICGDRvqlK9du5ZevXoBEBAQoPOlLREREfTv35+goCCsra2pWrUq586do2zZsik+rwR1IUT2kkkj9ZTMQTl58qTO64ULF7Jw4cJ0nVeCuhAie1HehD8dEtSFENmLwpfelaAuhMheUjmL5VMjQV0Ikb0o/JuPZJ66EEIoiIzUhRDZi6RfhBBCOTRyo1QIIRRERupCCKEgCr9RKkFdCJG9KHykLrNfhBBCQWSkLoTIXuRGqRBCKIjC0y8S1IUQ2YvcKBVCCAWRkboQQiiH0h8+ktkvQgihIDJSF0JkL5J+EUIIBZGgLoQQCiKzX4QQQkFkpC6EEMqhUXhQl9kvQgihIDJSF0JkLwofqUtQF0JkLwp/+EiCuhAie5GRuhBCKIgEdSGEUA6NRtlBXWa/CCGEgshIXQiRvUj6RQghFESC+qfnQphvVndBMcyMc2Z1FxQj6HV4VndBoPwnShUZ1IUQIlkS1IUQQkGU/eyRzH4RQgglkZG6ECJbkZy6EEIoiQR1IYRQEMmpCyGEcmjUmjRvqeHm5kb16tWxsLDA1taWdu3a4ev74enWO3bsoHTp0uTMmZMKFSpw8ODBVJ1XgroQIntRp2NLBU9PT4YMGcL58+c5evQocXFxNG3alOjo6GSPOXfuHF26dKFv375cvXqVdu3a0a5dO27cuJHi86o0ClzdxtikYFZ3QTFMjUyyuguK8U4dn9VdUITo1w/TdXzEVw3TfKz1rpNpPjY0NBRbW1s8PT2pX79+knU6d+5MdHQ0+/fv15bVqlULZ2dnli9fnqLzyEhdCJGtpCf9EhMTw8uXL3W2mJiYFJ03MjISgDx58iRbx8vLi8aNG+uUNWvWDC8vrxRfnwR1IUT2ko70i5ubG1ZWVjqbm5vbh0+pVjNixAjq1q1L+fLlk60XFBSEnZ2dTpmdnR1BQUEpvjyZ/SKEyFY06Zj9Mn78eFxdXXXKTEw+nKIcMmQIN27c4MyZM2k/eQpJUBdCZC/pCOomJiYpCuL/NnToUPbv38+pU6coWPD99/vs7e0JDg7WKQsODsbe3j7F55P0ixAiW9Go076l6jwaDUOHDmX37t0cP36cIkWKfPCY2rVr4+HhoVN29OhRateuneLzykhdCCEywJAhQ9i8eTN79+7FwsJCmxe3srLC1NQUgJ49e1KgQAFtXn748OE0aNCA+fPn06pVK7Zu3crly5dZuXJlis+b7pF6fHw8Pj4+REREpLcpIYTIeJk0T33ZsmVERkbSsGFDHBwctNu2bdu0dQICAggMDNS+rlOnDps3b2blypVUqlSJnTt3smfPnvfeXP2vVM9THzFiBBUqVKBv377Ex8fToEEDzp07R65cudi/fz8NGzZMTXMZQuap64/MU9cfmaeuH+mdpx7apEGaj8131DNd584MqR6p79y5k0qVKgHwxx9/4O/vz507dxg5ciQTJkzQeweFEEKfMiunnlVSHdTDwsK0d2IPHjxIx44dKVmyJH369OH69et676AQQuiTBPX/sLOz49atW8THx/Pnn3/SpEkTAF6/fo2hoaHeOyiEEHqlUaV9+wSkevZL79696dSpEw4ODqhUKu0jrRcuXKB06dJ676AQQoiUS3VQnzJlCuXLl+fx48d07NhROxHf0NCQcePG6b2DQgihT59KGiWtUh3U169fT+fOnRM9VdWlSxe2bt2qt44JIURG0Kg/jTRKWqV6SqOhoSGBgYHY2trqlD9//hxbW1vi47N+2pZMadQfmdKoPzKlUT/SO6XxWZ1GaT42/7kT6Tp3Zkj1SF2j0aBSJf5L9+TJE6ysrPTSKSGEyCiaT+SGZ1qlOKhXrlwZlUqFSqXiiy++IEeOfw6Nj4/H39+f5s2bZ0gnhRBCXySn/n/t2rUDwMfHh2bNmmFubq7dZ2xsjJOTE1999ZXeOyiEECLlUhzUJ0+eDICTkxOdO3cmZ86cGdYpIYTIKEq/UZrqnLqLi0tG9EMIITKF8r6VWVeKgnqePHm4e/cuNjY2WFtbJ3mj9G/h4eF665wQQuibjNSBhQsXYmFhof35fUFdCCE+ZkoP6qmep/4pkHnq+iPz1PVH5qnrR3rnqftXapLmY4v8dTRd584Mqc6pv3z5MslylUqFiYkJxsbG6e6UEEKItEl1UM+dO/d70y8FCxakV69eTJ48GQMD+QpUIcTHRenpl1QHdXd3dyZMmECvXr2oUaMGABcvXmTdunX8+OOPhIaGMm/ePExMTPjhhx/03mEhhEgPeaL0P9atW8f8+fPp1KmTtqx169ZUqFCBFStW4OHhQeHChZk5c6YEdSHER0fpT5SmOj9y7tw5KleunKi8cuXKeHl5AfDZZ58REBCQ/t4JIYSeqTWqNG+fglQH9UKFCrF69epE5atXr6ZQoUJAwoqN1tbW6e+dEELomUajSvP2KUh1+mXevHl07NiRQ4cOUb16dQAuX77MnTt32LlzJwCXLl2ic+fO+u2pEEKID0rTPHV/f39WrlyJr68vAKVKlWLAgAE4OTnpu39pIvPU9UfmqeuPzFPXj/TOU79TsmWajy1992C6zp0Z5OEj8V4S1PVHgrp+pDeo3y6R9qBe5t7HH9RTlH65du0a5cuXx8DAgGvXrr23bsWKFfXSMSGEyAgyTx1wdnYmKCgIW1tbnJ2dUalUJDXAV6lUH8XX2QkhRHI+lVksaZWioO7v70++fPm0PwshhPg4pSioOzo6JvmzEEJ8aj6VqYlplep56sePH2fo0KF8+eWXtG7dmu+++45Tp05lRN8+Kvnz2+O+dgmBz64T+cKPK97HqFJF9/7B5EmjefTQm8gXfhw6tIXixYvo7C9Rogi7dq7m2dNrhIXe5sTx32nQoI5OnQULpnHe6yCvXt7n0sXDyfZn5MgB3Lxxilcv7+P/4DLjxg7T38XqUZ261dm6fSV37p0jMuo+rb7UXSHv1+U/ERl1X2fbtXutTh1raytWrV7A42c+PHpylV+WumFmlku738TEmF+X/8S5Cwd5/sKXTVuWJ9kXY2NjJk4exfVbpwh5fotrNz3p3uNr7f7SZUqwYdNSrt30JDLqPoMG99LfG6EHdevWYMfO3/C7f4Ho1w/5snVTnf1t2jZj3771BDy+SvTrh1SsWFZnv7W1FfPmT+Gqjwdhz+9wx/csc+dNxtLSQqdewYL52fX7GkLDbvPw4WVmzhyPoaGhdn+9erWIfv0w0WZnl09b59btM0nWWbBwWga8M6mj0aR9+xSkap76wIEDWblyJdbW1pQsWRKNRsO5c+dYunQpgwcP5ueff86ofmap3LmtOHliN56e52jdpgdhYc8pXrwIL15EauuMHjWYIUN607ffSB76P2bKlNHs37+RSpU+JyYmBoA9u9dxz8+fZs068+btW4YN68ue3e6ULlOX4OBQbVvu67ZRo3plKlQok2R/FiyYRpPG9Rk7bjo3btzB2jo3efLkztD3IK1y5crFjRt32LhhJ5u2LEuyztEjngwe+L32dWxsrM7+VasXYmefj3ZtXDAyysGvy35i8c8z6ddnJACGhoa8ffuWFcvW0aZt8l9+7r5+Cba2NgwbPI4HDx5hZ2+rs+hcLtOcPPR/zJ7dh5g1e0J6LjtDmJnl4vr126xfv4OtW1ck3p8rF+e8LrPr9wP8+uucRPsdHOxwcLDjhx9mcef2PQoXLsDiJTNxcLCje7fBABgYGPD772sIDg7li8+/wt7elpWr5hP37h1TJs/Vaa9SxUa8ehWlfR0SEqb9uX69Njp/CMqWLcn+A5vY/XvWzx6RnPr/7d69m7Vr17JmzRpcXFy0KzWq1Wrc3d0ZNGgQTZo0oU2bNhnW2awyZvRgnjx5Rv9vR2nLHj58rFNn2LC+uM1ewh9/HAGgd58RPHl8lbZtmrF9xz7y5rWmRImifDtgNNdv3AZgwgQ3Bg3sRblypbRB3dV1EgD5bPImGdRLly7OgG97ULnKF9y9+yDJvnxMjh315NhRz/fWiYmJ1QkI/1ayVDGaNG1Aw3rtuHr1OgBjRk9l5++r+fEHN4KCQnj9+g2uIxLet5q1qmJlZZmonS8a16fuZzVxrtCQiIiEP8YBAU916ly5cp0rVxLOMXnqmNRdaCY4cuQkR46cTHb/li27AShcOOkpvbdu3aVb10Ha1/7+AUydMo/VaxZiaGhIfHw8jRvXp3SZEnz5ZXdCQsK4du0W06cvYPr0scycsYi4uDjt8aGhz4mMTHop7rAw3W9AGzVqEPfvP+T06fMpvdwMI+mX/1u7di2urq706tVLZ+ldAwMD+vTpw4gRI5JcPkAJvvyyCd5XrrFl83KePPbh4oU/6dOnq3Z/kSKFcXCw47jHaW3Zy5evuHjRh5q1qgLw/HkEvr5+dO/2NblymWJoaEj//t0JDg7VBpKUaNWqCf7+AbRs2Rhf33Pc9fVi+bK5WFvn1tv1ZrbP6tXEz/8il68cZcGiaVj/61NHjRqVeRERqQ3oACdPnEWtVlOtunOKz9Gy1Rf4XL3O8BHfcvvuWbyvHmPGzPHkzJm95+FbWlnw8mWUdtZajZqVuXnTV+eP7LGjnlhZWVK2bEmdY73OH+T+g4v88ccGav3/9zwpRkZGdP6mHevXb8+Yi0glpadfUhzUr1y5Qvv27ZPd36FDB7y9vfXSqY9NkSKFGfBtD/z8/Pnyy26sWLmBhQum0aN7Qj7271xi8H9GmyEhodj/K8/YvEUXnJ3LEf7cl1cv7zP8u/60bt1dJ42Tkr4ULlyArzp8SZ8+I+jX35UqVSqwdUvij+OfAo9jpxj47WjafNmdyZN+ou5nNdj1+xptWsTOLh+hoc91jomPjyciIhI7O5sUn8fJqTC1alejTNmSdOsyiHFjZ9CmXXPmfwQ53qySN68148YNY+3aLdoyO7t8hAT/9/c4TLsPICgohGHDfqBr14F07TKQJ08D+fPwVpydyyV5ntatm5I7tyUbN+7MoCsR/5bi9EtYWBgFCyb/pGbBggV5/vx5svvT4vHjx0yePJk1a9YkWycmJkabs/6bRqPR6/eoGhgY4O19jYmTEvKUPn/dpFy5UvTv34MNqfhFXbJ4BiGhz2n0eQfevHlLnz5d+P13d+rUbUVQUEiK+5IzZ0769B3OvXsJ00u/HTCaixf+pGTJotqUzKdi18792p9v3bzLzRt3+OvGSerVr4XnyXN6O4+BQcKzFf37juTly4Q88ITxM1m/cSmjRk7i7duYD7SgLBYW5uz6fS137vgxc8aiVB17794D7t375/fswoUrFCniyNChfenXzzVRfReXzhw5cpKgwJT9jmc0pefUUzxSj42NxcjIKNn9OXLkSHSDK73Cw8NZt27de+u4ublhZWWls6njX+m1H4GBIdy+fU+n7M6dexQqVABAmw+3s9UdOdra5iPo//saNapLy5aN6d59MF5el/HxucF3303gzdu39OjeMcV9CQoMIS4uThvQE/riB6Dtz6fs4cPHhIU9p2jRhKmzwcGh5MuXV6eOoaEh1tZWBAcnnYdPSlBQKIHPgrUBHcDX9z4GBgbkL+Cgn85/IszNzdizdx1Rr6L4pvMA3r17p90XHByKrd1/f49ttPuS433Zh6LFnBKVFypUgEaf18XdfZt+Oq8Hskrjv0ycOJFcuXIlue/169epPvm+ffveu//Bgw+POsePH4+rq+7oIK9N0rNG0srL6zIlSxbVKStRoigBAU+AhBtOgYHBNPr8M/66dgtIGAnVqOHMypXrAciVyxRIuLH8bxq1GgODlP+ynPO6hJGREUWLOvLgwSMASpZImDr5d38+Zfnz25Mnj7X2k8vFi1fJbW2Fs3N5fHxuANCgQW0MDAy4fMknxe1eOO9Nu/YtMDPLRXR0wu9q8eJFiI+P59nTQL1fx8fKwsKcvfvWExMTS8eO/RJ9yr144Srffz+UfPnyatNen39Rj8jIl4kGNv9WsWLZJD9t9ujZkdDQ5/x56Lh+LyQdlD5ST3FQr1+/vnZVxvfVSY127dolu+TA3z6URjExMcHERPdmlz5TLwCLl6zilOcexn4/lJ279lO9mjP9+nZj8OCx2jo//7ya8eO+w8/PXzul8VlgMHv3Jcw1P3/em4iISNasXsTMmQt58/Ytffp0w8mpEIcOeWjbKVbMCXOzXNjZ58PUNCeV/j/X+Nbte8TFxeHhcZorV66xcsV8Ro+ejMrAgCWLZ3L0mKfO6P1jYWaWSzvqBnB0LEiFCmWIiHhBREQk48Z/x969fxISHEqRoo5Mmz6WB/cf4XEs4abzXd/7HD3iyZJfZjJi+ESMjIyYO38Ku3bu1wkipUoXx9jICGtrK8wtzLUzh65fT5hptGP7PsaMHcqvy+cwa+Zi8ua1ZvqMcWxcv1ObejEyMqJ06eIAGBsbkT+/PRUqlCE6+rX2D2hWMjPLRbF/jYadHAtRsWJZwsNf8OTJM6ytrShUqAAODrZAwsADEkbYwcGhWFiYs++PDeQyzUnfPiOwtLTQzlEPDX2OWq3m2LFT3Ll9j99+W8iPP7phZ5ePyZNGsXLlBu0n8SFD+vDw0WNu37pLzpwm9Or1DQ0a1qFN6x46/VWpVPTo8TWbNu76qJYP+UTud6ZZlq7SWKBAAX799Vfatm2b5H4fHx+qVq2a6l+IjFilsWXLL5gxfTzFizvx8OFjFi1exZo1m3XqTJ40mr59u5I7tyVnz13iu+9+0Am0VapUZNq076lapRJGRjm4desuM2ct4vDhE9o6R4/soEGD2onOX6JkLR49ShiJOzjYsWjhdBo3rk909GsOHz7B92OnExHxQu/Xnd5VGj+rV5MDhzYnKt+0cReuIyayeetyKlYqh5WVBYGBIZw4foYZ0xcQGvLP/Rlrayvmzp9C8xafo1Zr2Lf3T8aOmaYdcQNcu+mJo2Pi/+9W5sW0P5coWZS58yZTs1ZVwsNfsPv3A8yYtkAb1AsXLsD1W4kfpDt9+jxftuiWrvcB0r9KY716tfjz8NZE5Rs37GTAgNF07/41K1bOS7R/5sxFzJq5KNnjAcqU/kz7Sa9QoQIsXjIj4SGj6Nds3rSLiRPnaP8djhw5gN59upA/vz2vX7/hxo07zHZbwqlTXjptfvFFPfb9sYFKFRvh56e/AUd6V2k85/BVmo+tE7grXefODFka1Nu0aYOzszPTpiU9A+Gvv/6icuXKiVIWHyJL7+qPLL2rP7L0rn5IUH+/VC8ToE9jxoyhTp06ye4vXrw4J06cSHa/EEKkVmbdKD116hStW7cmf/78qFQq9uzZ8976J0+eRKVSJdqCgoJSdd5Uf52dPtWrV++9+83MzGjQoEEm9UYIkR2k7nN/2kVHR1OpUiX69OlDhw4dUnycr68vlpb/PBVta2ubqvNmaVAXQojMpiFzZr+0aNGCFi1apPo4W1tbcufOnebzZmn6RQghMptak/YtJiaGly9f6mz/nRaaXs7Ozjg4ONCkSRPOnj2b6uPTFNRPnz5N9+7dqV27Nk+fJiyKtGHDBs6cOZOW5oQQItOoUaV5S+phRzc3N730y8HBgeXLl7Nr1y527dpFoUKFaNiwIVeuXElVO6lOv+zatYsePXrQrVs3rl69qv0rFRkZyaxZszh4MOuX1hRCiIyQ1MOO/31OJq1KlSpFqVKltK/r1KnD/fv3WbhwIRs2bEhxO6keqc+YMYPly5ezatUqnWUD6tatm+q/KEIIkdk0qNK8mZiYYGlpqbPpK6gnpUaNGvj5+aXqmFSP1H19fZN8ctTKyooXL16ktjkhhMhUmTX7RR98fHxwcEjd2kSpDur29vb4+fnh5OSkU37mzBmKFi2a9EFCCPGRyKzZL1FRUTqjbH9/f3x8fMiTJw+FCxdm/PjxPH36lPXrE9aHWrRoEUWKFKFcuXK8ffuW3377jePHj3PkyJFUnTfVQb1///4MHz6cNWvWoFKpePbsGV5eXowePZqJEyemtjkhhMhUmTVSv3z5Mo0aNdK+/jsX7+Ligru7O4GBgQQEBGj3x8bGMmrUKJ4+fUquXLmoWLEix44d02kjJVK9TIBGo2HWrFm4ublpV2Y0MTFh9OjRTJ8+PVUnzyiyTID+yDIB+iPLBOhHepcJOGj3TZqPbRmc9No5H5M0r/0SGxuLn58fUVFRlC1bFnNzc333Lc0kqOuPBHX9kaCuHxLU3y/NT5QaGxtTtmxZffZFCCEyXGbl1LNKqoN6o0aN3rte+fHjH89i+EII8V9qZcf01Ad1Z2dnnddxcXH4+Phw48YNXFxc9NUvIYTIEGoZqetauHBhkuVTpkwhKioqyX1CCPGxUPo3H+ltQa/u3buzZs0afTUnhBAZQp2O7VOgt6Du5eVFzpw59dWcEEKINEh1+uW/i71rNBoCAwO5fPmyPHwkhPjoqfX8xfQfm1QHdSsrK53XBgYGlCpVimnTptG0aVO9dUwIITKC0nPqqQrq8fHx9O7dmwoVKmBtbZ1RfRJCiAzzqeTG0ypVOXVDQ0OaNm0qqzEKIT5ZalXat09Bqm+Uli9fngcPHmREX4QQIsOl55uPPgVp+pKM0aNHs3//fgIDAxN9X58QQoisk+Kc+rRp0xg1ahQtW7YEoE2bNjrLBWg0GlQqFfHxsmiREOLjJTdK/2/q1KkMHDiQEydOZGR/hBAiQ30qufG0SnFQ/3uF3gYNGmRYZ4QQIqMpffZLqqY0vm91RiGE+BRI+uVfSpYs+cHAHh4enq4OCSFERpL0y79MnTo10ROlQgghPh6pCurffPMNtra2GdUXIYTIcJJT/z/JpwshlECC+v+l8fuphRDio6JR+Pg0xUFdrVb63zchRHag9EiW6qV3hRDiU6b0oK63bz4SQgiR9WSkLoTIVpR+d1CCuhAiW5GHj4QQQkGUnlOXoC6EyFYkqAshhIIoPacus1+EEEJBZKQuhMhW5EapEEIoiOTUhRBCQZSeU5egLoTIVtQKD+uKDOrmxqZZ3QXFePMuNqu7oBgvH8uXtn8MlJ5+kdkvQgihIIocqQshRHKUnXyRkboQIptRp2NLjVOnTtG6dWvy58+PSqViz549Hzzm5MmTVKlSBRMTE4oXL467u3sqzypBXQiRzahVad9SIzo6mkqVKrF06dIU1ff396dVq1Y0atQIHx8fRowYQb9+/Th8+HCqzivpFyFEtpJZs19atGhBixYtUlx/+fLlFClShPnz5wNQpkwZzpw5w8KFC2nWrFmK25GRuhAiW9GkY4uJieHly5c6W0xMjF765eXlRePGjXXKmjVrhpeXV6rakaAuhBAp5ObmhpWVlc7m5uaml7aDgoKws7PTKbOzs+Ply5e8efMmxe1I+kUIka2kZ576+PHjcXV11SkzMTFJX4f0TIK6ECJbSU9O3cTEJMOCuL29PcHBwTplwcHBWFpaYmqa8gcqJf0ihMhW0pNTz0i1a9fGw8NDp+zo0aPUrl07Ve1IUBdCZCuZNU89KioKHx8ffHx8gIQpiz4+PgQEBAAJqZyePXtq6w8cOJAHDx7w/fffc+fOHX799Ve2b9/OyJEjU3VeSb8IIbKVzJrSePnyZRo1aqR9/Xcu3sXFBXd3dwIDA7UBHqBIkSIcOHCAkSNHsnjxYgoWLMhvv/2WqumMACqNRqO4p2bzWJTI6i4ohizopT+yoJd+GNkUTdfxrk7fpPnYBQ+3puvcmUFG6kKIbEVxo9j/kKAuhMhWlL70rgR1IUS2olH4WF2CuhAiW1H6SF2mNAohhILISF0Ika3Id5QKIYSCKDukS1AXQmQzMlIXQggFUfqNUgnqQohsRelTGmX2ixBCKIiM1IUQ2YqkX4QQQkGUnn6RoC6EyFZkpC6EEAqiVt5q4zokqAshshVlh3SZ/SKEEIoiI3UhRLYiT5QKIYSCyOwXIYRQEJn9IoQQCiLpFyGEUBClp19k9osQQiiIjNSFENmK5NSFEEJBNPJEqRBCKIfcKBVCCAWR9IsQQiiIzH4RQgjxyZCRuhAiW5GcuhBCKIjMfhFCCAVR+o1Syakno3bd6mzevoKbd88Q/uoeLb9srLM//NW9JLdhw/tp67iOHsSfx7bxJPga/o+9kzxPgYIObN25iifB1/B9cJ6pM8ZiaGiYZN2ataoQEnEbz7P7Eu1zcLBj+ap5+D26yNOQ65w5vx/nyuXT8Q5kHHNzM+bOnYSv71nCw305ceJ3qlatqFNn4kRXHjy4RHi4LwcObKJYMSed/XfunOHNm0c62+jRg7T7J0wYkWj/mzePCAu7rdPO0KF9+Ouv44SH+3Lvnhc//TQRExOTDLv2lNq6ez/tew6iZpMO1GzSgW7fjuS01yXt/h17D9Jr6PfUbNKB8nVb8PJVVKI2mn7lQvm6LXS23zZsT/J8AU+eUaNxB2o3+1qnfM+Bo4naqNKojU6dCTPmJ6ozwPXHJM8TGxvLVy5DKF+3BXfu3k/t26IXmnT89ymQkXoyzHKZcuP6HTZt2MmGzb8m2l+6WG2d142bNmDJ0lns23tYW2ZsbMTe3Ye4dPEq3Xt0TNSGgYEB23auIiQ4jOaNO2Nvn49fV84lLi6OGVMX6NS1tLLg1xVzOXXSi3y2Njr7rHJbcujoVs6cvkCnDv0ICwunWDEnXrx4mZ63IMMsWzaHsmVL0afPSAIDg+nSpT0HDmyiSpXGPHsWzKhRAxk8uBf9+4/i4cPHTJo0ij/+2EDlyo2JiYnRtjN16nzWrt2iff3qX4Ft0aKV/PbbJp3zHjy4GW/vv7SvO3duy/TpYxk48Hu8vLwpUaIIq1bNR6OBsWOnZ+A78GH2+WwYObA3joUKoNFo2HvoGMPGTWPn2l8oXtSRt29j+KxmNT6rWY1Fy9cm287Qfj34uk1z7etcuXIlqhP37h1jJs+maqVy+Ny4nWi/uVku9m9Z9U+BSpWozme1qjHjh5Ha10ZGRkn2Z/6va7C1yYOv34Nk+5zRJKeeTR07eopjR08luz8kJEzndYtWX3D61HkePXysLZs9awkAXbp1SLKNz7/4jFKli9O+tQuhoc+5cf02s6YvYsq0McyZ9TNxcXHaugsWTWPXjj+Ij4+n5ZdNdNoZPvJbnj4NZOigcdqygEdPUn6xmShnThPatWtBx479OXv2IgAzZy6iZcvG9O/fg6lT5zFkSF/mzPmF/fuPAtCvnyuPHl2mTZum7Njxh7atqKgogoNDkzxPdPRroqNfa19XqFCGsmVL8t13P2jLatWqipeXN9u27QUgIOAJ27fvo3p1Z31fdqo1/KyWzuvhA3qxbfcB/rp5h+JFHenRuT0AF69ce287ZrlMscmb5711fl65jiKOhahV1TnJoK5SqT7YhrGR0QfrnPa6xLmLV1g0cwKnz19+b12RdpJ+0YN8+fLStFlDNq7fmarjqteozK2bdwkNfa4tO+5xGksrC0qXKaEt69r9KxydCjHH7eck22nR8gt8rtxg7fol+D44z8kze+nZq1PaLiaD5ciRgxw5cvD2bYxO+du3b6lTpxpOToVwcLDl+PEz2n0vX77i0iUfatasonPMqFGDePLEBy+vg4wcOSDZtBVA797fcPfufc6e/SeFcf68N5Url6datUoAODkVolmzRvz55wl9XKrexMfHc/DYSd68fYtz+dKpOva3jTuo26ITX/cawppNO3n3Ll5n/wVvH46cOMOPowYn28brN29o0sGFL9r3YNjYqfg9eJSozqWr16jf6hu+/KYf0+b+zItI3U+JYeERTJmzGLeJo8mZM2eqrkHfNBpNmrdPQZaP1N+8eYO3tzd58uShbNmyOvvevn3L9u3b6dmzZ7LHx8TE6Hwkh4T/aaokPiJmlG+6dSDqVTT79x3+cOV/sbWzIfQ/I/6/X9vZ2XAdKFrMkUlTR9OqWRfi4+OTaAUcnQrRu19Xfv1lDQvmLadK1Qq4/TSR2Ng4tm7enaZryihRUdGcP+/N+PHD8PW9R3BwGJ06taVmzSrcv/8Qe3tbIPEnoZCQMOzs8mlf//qrO1ev3iAi4gW1alVl2rSx2NvbJpk2MTExoXPndsyfr5tG27ZtL3nzWuPhsROVSoWRkRErV25g7tylGXDlqXf3vj/dBrgSGxtLLlNTFs+aSLEijik+vlvHtpQpWRwrSwt8rt9i8Qp3wp6H8/133wLwIvIlE2YuYPakMZibmSXZhpNjQaaNH0mpYkV4FR2N+5ZddB/oyp6Ny7G3Tfj/UbdWVRo3qEuB/HY8fhrI4hXuDBw1kU0rFmBoaIhGo+HHmQvo1K4V5cuU5GlgcPrfnHSQ9EsGunv3Lk2bNiUgIACVSsVnn33G1q1bcXBwACAyMpLevXu/N6i7ubkxdepUnbKcRtaYmuTN0L7/W7ceX7Fj+z5iYmL12q6BgQErVy9g9swl3Pd7+J56Knyu3tDm4a9fu0XpMiXp3bfLRxfUAfr0GcGKFXN58OAS7969w8fnBtu376Ny5QopbmPJkt+0P9+4cYfY2Dh++WUWEyfOITZW9/9D27bNsLAwY+PGXTrl9erVYsyYIQwfPpFLl65SrJgT8+ZNJjDwO2bPXpK+i9SDIoULsst9Ka+iojly4gwTZs7H/ZefUhzYXb75J+1XqngRjIxyMO2nnxkxsBfGxsZMnr2YVk0aUs05+ffduXwZnMuX+ed1hbK06fotO/YcYti3Cf8uWzZuqN1fslgRShYrQotOfbh09Rq1qlVm0859RL9+Tb8eH8enx0/lhmdaZWn6ZezYsZQvX56QkBB8fX2xsLCgbt26BAQEpLiN8ePHExkZqbPlNH5/bk+fatWpRsmSxdiwbkeqjw0JDkt00/Pv18HBYZhbmFGlakV+mj+JkIjbhETcZsy4oVSoWIaQiNvUq5+Qdw0OCsX3jp9OO3d971OgoEMarypj+fsH0LRpZ/LmLU2JErWpV68tRkY58PcPICgoBADb/7wvtrY2yebPAS5duoqRkRGOjgUT7evV6xsOHfJINPqfPHkUW7bsxt19Kzdv+rJv32EmTZrLmDGDM/WTXnKMjIwoXDA/5UqXYOSg3pQqXpSNO/amub2KZUvzLj6ep4EJ7/HFK3/hvmUXleq3olL9VkyavYhXUdFUqt+K3/cn/anTKEcOypQsRsDTZ8mep1ABB6xzWxLwJDDhPN5/8deNO1Rp1IZK9VvRsnMfADr3+44fps9L8/WklVqjSfOWFkuXLsXJyYmcOXNSs2ZNLl68mGxdd3d3VCqVzpbadFWWjtTPnTvHsWPHsLGxwcbGhj/++IPBgwdTr149Tpw4gVkyHwn/zcTEJNEUtMz8B9m9Z0euXrnOzRt3Un3spYtXcR0zCBubPISFhQPQ6PO6vIx8he8dP+Li4qhbo6XOMX36d6Neg1r07j6MR/+/GXrh/BWKlyiiU694cSeePE7+H97H4PXrN7x+/YbcuS1p3Lg+Eya48fDhYwIDQ2jUqC7Xrt0CwMLCnOrVnVm1amOybVWqVI74+HhCQ3UDt6NjIRo0qM3XX/dNdIypqSlqte6sZbU6IcWlUqk+uhyqWq0hNjbuwxWTcefefQwMDMhjbQXAxhULdK7/+Gkv1mzcwcYVC7C1SfqTbnx8PPfuP6Re7erJnicoJJQXka/I9/8bp+NHDNSO6gFCQp8zwPVH5k0dT4VypdJ8PWmVmf9Xt23bhqurK8uXL6dmzZosWrSIZs2a4evri62tbZLHWFpa4uvrq32d2niWpUH9zZs35MjxTxdUKhXLli1j6NChNGjQgM2bN2dZ38zMclGk6D8fcx0dC1K+QhkiIl7w9P8jEAsLc9q2a87EH2Yn2UaBgg5YW+emYMH8GBgaUL5CwsdY/wePiI5+zXGPM/je8WP5qnlMnvgTdnY2/DBxJL+t2qhNIdy+fU+nzbDQ58S8jdUpX7Z0LX8e28bI0QPZ8/tBqlStRM/enRn53US9vif60rhxfVQqFXfvPqBYMUdmzfqBu3fvs359wqedpUtXM3bsMPz8/Hn48DGTJ48iMDCEffuOAFCzZhWqV3fG09OLV6+iqFWrKnPmTGTLlt2JpnG6uHQiKCiEw4dPJurHwYPH+O67fvz1100uXvShWDFHJk0axcGDxxIF+8y2cNla6tWuhoOdLdGvX3PgyEkuXb3GigUzAAh7Hk7Y8wgCniT84b53/yFmuUxxsLdNyKHfuM31m3eoXqUSZrlM+evGbX5aspIvmzbCytICgGJOhXXOefP2PQwMDChR1ElbtmzNJiqWK03hgvl5FRXN2s07eRYUwletmwEJf5h/XbOJJg3rYpM3D4+fPmPBr2soXDA/df9/Y9vBXjd45TI1BRJG9H/n5ZVqwYIF9O/fn969ewOwfPlyDhw4wJo1axg3blySx6hUKuzt7dN8ziwN6qVLl+by5cuUKVNGp/yXX34BoE2bNkkdlimcK5fnj0P/zHOeOXsCAJs3/c7QgWMB6PB1K1QqFbt2/pFkG+N/HEHXf01nPHUu4aGh1i26cfbMRdRqNd90/Jb5C6dy2GM7r1+/Yevm33GbsThVfb165To9ug5h0pRRjBk7lIBHT5gwbiY7tyd+SOljYGVlwbRpYylQwJ7w8Ej27j3E5MlzeffuHQDz5y8nV65c/PKLG7lzW3Lu3GXatOmpvSEeExNLx46tmTBhBCYmJjx8+Jiff16tk2eHhH8cPXp8zYYNO5MM0rNn/4xGo2Hy5NHkz29PWNhzDhzwYMqUuRn/JnxA+IsX/DB9HqHPw7EwM6Nk8SKsWDCDOjUSAuW2PQdZtuaf30+XIWMAmPGDK+1aNcHYyIhDxzz5dc0mYmPjKJDfjh6d2+PyTftU9ePlqyimzFlCWHg4lhYWlC1VnI0r5mvz+gaGBty978++Q8d4GRWNrU0e6tSowtD+PTE2NtbTu6Ff6blRmtTEjKSyBZDwoJW3tzfjx4/XlhkYGNC4cWO8vLySPUdUVBSOjo6o1WqqVKnCrFmzKFeuXIr7qNJk4WdMNzc3Tp8+zcGDB5PcP3jwYJYvX57qUVMeixIfriRS5M07/d78zc5ePv64pkp+qoxsiqbr+NoFGqX52Gb9GySamDF58mSmTJmSqO6zZ88oUKAA586do3btfx5W/P777/H09OTChQuJjvHy8uLevXtUrFiRyMhI5s2bx6lTp7h58yYFCya+X5SULA3qGUWCuv5IUNcfCer6kd6gXit/wzQf6+l/OMUj9bQE9f+Ki4ujTJkydOnShenTU/aUc5bPUxdCiMyUnvRLcgE8KTY2NhgaGhIcrDsvPzg4OMU5cyMjIypXroyfn9+HK/+fPFEqhMhWMmtBL2NjY6pWrYqHh4e2TK1W4+HhoTNyf5/4+HiuX7+ufXYnJWSkLoQQGcTV1RUXFxeqVatGjRo1WLRoEdHR0drZMD179qRAgQK4ubkBMG3aNGrVqkXx4sV58eIFc+fO5dGjR/Tr1+99p9EhQV0Ika1k5m3Ezp07ExoayqRJkwgKCsLZ2Zk///wTOzs7AAICAjAw+CdhEhERQf/+/QkKCsLa2pqqVaty7ty5REuovI/cKBXvJTdK9UdulOpHem+UVnH4LM3HXgk88+FKWUxG6kKIbEWB41gdEtSFENmKrNIohBAKIqs0CiGE+GTISF0Ika2kdQndT4UEdSFEtqL09IsEdSFEtiIjdSGEUBAZqQshhIIofaQus1+EEEJBZKQuhMhWJP0ihBAKovT0iwR1IUS2IiN1IYRQEI0mdd95/KmRoC6EyFaUvqCXzH4RQggFkZG6ECJbkfXUhRBCQZSefpGgLoTIVmSkLoQQCiLz1IUQQkGUPk9dZr8IIYSCyEhdCJGtSE5dCCEURGa/CCGEgshIXQghFERmvwghhIIofaQus1+EEEJBZKQuhMhW5EapEEIoiNLTLxLUhRDZitwoFUIIBZFlAoQQQnwyZKQuhMhWJP0ihBAKIjdKhRBCQZSeU5egLoTIVmSkLoQQCqL0oC6zX4QQQkFkpC6EyFaUPU4HlUbpn0U+UjExMbi5uTF+/HhMTEyyujufLHkf9UfeS2WQoJ5FXr58iZWVFZGRkVhaWmZ1dz5Z8j7qj7yXyiA5dSGEUBAJ6kIIoSAS1IUQQkEkqGcRExMTJk+eLDek0kneR/2R91IZ5EapEEIoiIzUhRBCQSSoCyGEgkhQF0IIBZGgLoQQCiJBPQssXboUJycncubMSc2aNbl48WJWd+mTc+rUKVq3bk3+/PlRqVTs2bMnq7v0yXJzc6N69epYWFhga2tLu3bt8PX1zepuiTSSoJ7Jtm3bhqurK5MnT+bKlStUqlSJZs2aERISktVd+6RER0dTqVIlli5dmtVd+eR5enoyZMgQzp8/z9GjR4mLi6Np06ZER0dndddEGsiUxkxWs2ZNqlevzi+//AKAWq2mUKFCDBs2jHHjxmVx7z5NKpWK3bt3065du6zuiiKEhoZia2uLp6cn9evXz+ruiFSSkXomio2Nxdvbm8aNG2vLDAwMaNy4MV5eXlnYMyH+ERkZCUCePHmyuCciLSSoZ6KwsDDi4+Oxs7PTKbezsyMoKCiLeiXEP9RqNSNGjKBu3bqUL18+q7sj0kC+JEMIoTVkyBBu3LjBmTNnsrorIo0kqGciGxsbDA0NCQ4O1ikPDg7G3t4+i3olRIKhQ4eyf/9+Tp06RcGCBbO6OyKNJP2SiYyNjalatSoeHh7aMrVajYeHB7Vr187CnonsTKPRMHToUHbv3s3x48cpUqRIVndJpIOM1DOZq6srLi4uVKtWjRo1arBo0SKio6Pp3bt3VnftkxIVFYWfn5/2tb+/Pz4+PuTJk4fChQtnYc8+PUOGDGHz5s3s3bsXCwsL7f0dKysrTE1Ns7h3IrVkSmMW+OWXX5g7dy5BQUE4OzuzZMkSatasmdXd+qScPHmSRo0aJSp3cXHB3d098zv0CVOpVEmWr127ll69emVuZ0S6SVAXQggFkZy6EEIoiAR1IYRQEAnqQgihIBLUhRBCQSSoCyGEgkhQF0IIBZGgLoQQCiJBXWSIXr166axv3rBhQ0aMGJHp/Th58iQqlYoXL15kSVtTpkzB2dk53ecWIqUkqGcjvXr1QqVSoVKpMDY2pnjx4kybNo13795l+Ll///13pk+fnqK6+gzEKeHk5KR9X0xNTXFycqJTp04cP35cp16dOnUIDAzEysoqxW2PHj1aZ62f//6xE0LfJKhnM82bNycwMJB79+4xatQopkyZwty5c5OsGxsbq7fz5smTBwsLC721p2/Tpk0jMDAQX19f1q9fT+7cuWncuDEzZ87U1jE2Nsbe3j7Zx+qTYm5uTt68eTOiy0IkSYJ6NmNiYoK9vT2Ojo4MGjSIxo0bs2/fPuCfUeTMmTPJnz8/pUqVAuDx48d06tSJ3LlzkydPHtq2bcvDhw+1bcbHx+Pq6kru3LnJmzcv33//Pf9dfeK/6ZeYmBjGjh1LoUKFMDExoXjx4qxevZqHDx9q13SxtrZGpVJp1x9Rq9W4ublRpEgRTE1NqVSpEjt37tQ5z8GDBylZsiSmpqY0atRIp5/vY2Fhgb29PYULF6Z+/fqsXLmSiRMnMmnSJO2XMCf1CWLVqlUUKlSIXLly0b59exYsWEDu3Lm1+/+dfpkyZQrr1q1j79692k8GJ0+eJDY2lqFDh+Lg4EDOnDlxdHTEzc0tRf0W4r8kqGdzpqamOiNyDw8PfH19OXr0KPv37ycuLo5mzZphYWHB6dOnOXv2LObm5jRv3lx73Pz583F3d2fNmjWcOXOG8PBwdu/e/d7z9uzZky1btrBkyRJu377NihUrMDc3p1ChQuzatQsAX19fAgMDWbx4MZDwrffr169n+fLl3Lx5k5EjR9K9e3c8PT2BhD8+HTp0oHXr1vj4+NCvX790fe/r8OHD0Wg07N27N8n9Z8+eZeDAgQwfPhwfHx+aNGmiM7L/r9GjR9OpUyftp6XAwEDq1KnDkiVL2LdvH9u3b8fX15dNmzbh5OSU5n6L7E2W3s2mNBoNHh4eHD58mGHDhmnLzczM+O233zA2NgZg48aNqNVqfvvtN23aYe3ateTOnZuTJ0/StGlTFi1axPjx4+nQoQMAy5cv5/Dhw8me++7du2zfvp2jR49qv6+1aNGi2v1/fzemra2tdtQbExPDrFmzOHbsmHbt+aJFi3LmzBlWrFhBgwYNWLZsGcWKFWP+/PkAlCpViuvXrzNnzpw0vUd58uTB1tY22dH+zz//TIsWLRg9ejQAJUuW5Ny5c+zfvz/J+ubm5piamhITE6PzpSgBAQGUKFGCzz77DJVKhaOjY5r6KwRIUM929u/fj7m5OXFxcajVarp27cqUKVO0+ytUqKAN6AB//fUXfn5+ifLhb9++5f79+0RGRhIYGKizdHCOHDmoVq1aohTM33x8fDA0NKRBgwYp7refnx+vX7+mSZMmOuWxsbFUrlwZgNu3bydawji9Xz6i0WiSzaH7+vrSvn17nbIaNWokG9ST06tXL5o0aUKpUqVo3rw5X375JU2bNk1zn0X2JkE9m2nUqBHLli3D2NiY/PnzkyOH7q+AmZmZzuuoqCiqVq3Kpk2bErWVL1++NPUhLV+8EBUVBcCBAwcoUKCAzj4TE5M09eNDnj9/TmhoaIZ/E1CVKlXw9/fn0KFDHDt2jE6dOtG4ceNE9wuESAkJ6tmMmZkZxYsXT3H9KlWqsG3bNmxtbbG0tEyyjoODAxcuXKB+/foAvHv3Dm9vb6pUqZJk/QoVKqBWq/H09NSmX/7t708K8fHx2rKyZctiYmJCQEBAsiP8MmXKaG/6/u38+fMfvshkLF68GAMDg2SnIJYqVYpLly7plP339X8ZGxvrXNffLC0t6dy5M507d+brr7+mefPmhIeHa1NRQqSU3CgV79WtWzdsbGxo27Ytp0+fxt/fn5MnT/Ldd9/x5MkTIOGG4uzZs9mzZw937txh8ODB751j7uTkhIuLC3369GHPnj3aNrdv3w6Ao6MjKpWK/fv3ExoaSlRUFBYWFowePZqRI0eybt067t+/z5UrV/j5559Zt24dAAMHDuTevXuMGTMGX19fNm/enOJvQXr16hVBQUE8fvyYU6dO8e233zJjxgxmzpyZ7B/BYcOGcfDgQRYsWMC9e/dYsWIFhw4deu+URycnJ65du4avry9hYWHExcWxYMECtmzZwp07d7h79y47duzA3t5eZxaNECmmEdmGi4uLpm3btqneHxgYqOnZs6fGxsZGY2JioilatKimf//+msjISI1Go9HExcVphg8frrG0tNTkzp1b4+rqqunZs6dOWw0aNNAMHz5c+/rNmzeakSNHahwcHDTGxsaa4sWLa9asWaPdP23aNI29vb1GpVJpXFxcNBqNRqNWqzWLFi3SlCpVSmNkZKTJly+fplmzZhpPT0/tcX/88YemePHiGhMTE029evU0a9as0QCaiIiIZK/b0dFRA2gAjbGxsaZw4cKaTp06aY4fP65T78SJE4naWrlypaZAgQIaU1NTTbt27TQzZszQ2Nvba/dPnjxZU6lSJe3rkJAQTZMmTTTm5uYaQHPixAnNypUrNc7OzhozMzONpaWl5osvvtBcuXIl2f4K8T7ydXZC6FH//v25c+cOp0+fzuquiGxKcupCpMO8efNo0qQJZmZmHDp0iHXr1vHrr79mdbdENiYjdSHSoVOnTpw8eZJXr15RtGhRhg0bxsCBA7O6WyIbk6AuhBAKIrNfhBBCQSSoCyGEgkhQF0IIBZGgLoQQCiJBXQghFESCuhBCKIgEdSGEUBAJ6kIIoSAS1IUQQkH+B4DHCz94gxmhAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "print(\"Accuracy is: {0:.3f}%\".format(accuracy * 100))\n", + "cm = confusion_matrix(ytest, ypred_test)\n", + "plt.figure(figsize=(4, 4))\n", + "sns.heatmap(cm, annot=True, fmt='.0f')\n", + "plt.xlabel(\"Predicted Digits\")\n", + "plt.ylabel(\"True Digits\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tvCxTsOykJNN" + }, + "source": [ + "#### Deep Neural Network Model" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "wRm8HblkNgq0", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "f8d980f6-1b1d-42c5-fe16-424249fdd08f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " dense (Dense) (None, 128) 896 \n", + " \n", + " dense_1 (Dense) (None, 64) 8256 \n", + " \n", + " dropout (Dropout) (None, 64) 0 \n", + " \n", + " dense_2 (Dense) (None, 32) 2080 \n", + " \n", + " batch_normalization (Batch (None, 32) 128 \n", + " Normalization) \n", + " \n", + " dense_3 (Dense) (None, 16) 528 \n", + " \n", + " dense_4 (Dense) (None, 1) 17 \n", + " \n", + "=================================================================\n", + "Total params: 11905 (46.50 KB)\n", + "Trainable params: 11841 (46.25 KB)\n", + "Non-trainable params: 64 (256.00 Byte)\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, BatchNormalization\n", + "from keras import regularizers\n", + "from keras.callbacks import EarlyStopping\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(128, activation='relu', input_dim=xtrain.shape[1],))\n", + "model.add(Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.01)))\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)))\n", + "model.add(BatchNormalization())\n", + "model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01)))\n", + "model.add(Dense(1, activation='linear'))\n", + "\n", + "model.compile(optimizer=\"adam\", loss='mean_squared_error', metrics=['accuracy'])\n", + "\n", + "model.summary()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "ZhLO6yDwPAGC", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "cfd989ab-1456-4186-abd2-06b5d9739c1a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/20\n", + "86318/86318 [==============================] - 303s 3ms/step - loss: 0.3986 - accuracy: 0.1302 - val_loss: 1.7611 - val_accuracy: 0.1604\n", + "Epoch 2/20\n", + "86318/86318 [==============================] - 290s 3ms/step - loss: 0.3626 - accuracy: 0.1451 - val_loss: 0.4622 - val_accuracy: 0.1152\n", + "Epoch 3/20\n", + "86318/86318 [==============================] - 289s 3ms/step - loss: 0.3641 - accuracy: 0.1433 - val_loss: 0.5594 - val_accuracy: 0.0953\n", + "Epoch 4/20\n", + "86318/86318 [==============================] - 295s 3ms/step - loss: 0.3629 - accuracy: 0.1431 - val_loss: 0.5083 - val_accuracy: 0.1145\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ], + "source": [ + "early_stopping = EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True)\n", + "model.fit(xtrain, ytrain, epochs=20, batch_size=64, validation_data=(xval, yval), callbacks=[early_stopping])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zICTM3ex944u" + }, + "source": [ + "##### Evaluate the accuracy of the DNN model" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "q_1kmTA798dn", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b3e3ab2e-c7ea-41b0-d31d-228133880ca7" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "143864/143864 [==============================] - 266s 2ms/step - loss: 0.4584 - accuracy: 0.1150\n", + "Test Loss: 0.4583929777145386\n", + "Test Accuracy: 0.11496037244796753\n" + ] + } + ], + "source": [ + "eval = model.evaluate(xtest, ytest)\n", + "\n", + "print(f\"Test Loss: {eval[0]}\")\n", + "print(f\"Test Accuracy: {eval[1]}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "vy_SpgJUPaYh", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "16591d5d-c233-40bb-ccaa-012ff866183c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "172636/172636 [==============================] - 287s 2ms/step\n", + "43159/43159 [==============================] - 72s 2ms/step\n", + "143864/143864 [==============================] - 240s 2ms/step\n" + ] + } + ], + "source": [ + "ypred_train = model.predict(xtrain)\n", + "ypred_val = model.predict(xval)\n", + "ypred_test = model.predict(xtest)\n", + "\n", + "mse_train = mean_squared_error(ytrain, ypred_train)\n", + "r2_train = r2_score(ytrain, ypred_train)\n", + "\n", + "mse_val = mean_squared_error(yval, ypred_val)\n", + "r2_val = r2_score(yval, ypred_val)\n", + "\n", + "mse_test = mean_squared_error(ytest, ypred_test)\n", + "r2_test = r2_score(ytest, ypred_test)\n", + "\n", + "results.loc[len(results)] = ['Deep NN', mse_train, r2_train, mse_val, r2_val, mse_test, r2_test]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e9Ja6erjPo-0" + }, + "source": [ + "## Now, Let's watch accuracies of all the models in the increasing order of testing MSE" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "mwrWKlqQPn_W", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "outputId": "aaaae1e3-a7ce-477a-899f-c127f0498b1e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Model MSE_train R2_train MSE_val R2_val \\\n", + "4 XG Boost Regression 0.204959 0.670992 0.359257 4.233017e-01 \n", + "7 Deep NN 0.305992 0.508809 0.438734 2.957209e-01 \n", + "6 XG Boost Classifier 0.244597 0.607362 0.491024 2.117828e-01 \n", + "5 LGBM Classifier 0.323493 0.480715 0.490993 2.118316e-01 \n", + "0 Linear Regression 0.549359 0.118145 0.551217 1.151569e-01 \n", + "2 SGD Regression 0.549366 0.118134 0.551315 1.150005e-01 \n", + "1 Elastic Net Regression 0.622959 0.000000 0.622955 -2.460906e-07 \n", + "3 Decision Tree Regression 0.000000 1.000000 0.747171 -1.993990e-01 \n", + "\n", + " MSE_test R2_test \n", + "4 0.355257 4.293855e-01 \n", + "7 0.434882 3.014910e-01 \n", + "6 0.484412 2.219365e-01 \n", + "5 0.485734 2.198123e-01 \n", + "0 0.550664 1.155217e-01 \n", + "2 0.550770 1.153516e-01 \n", + "1 0.622586 -9.965216e-09 \n", + "3 0.741888 -1.916233e-01 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelMSE_trainR2_trainMSE_valR2_valMSE_testR2_test
4XG Boost Regression0.2049590.6709920.3592574.233017e-010.3552574.293855e-01
7Deep NN0.3059920.5088090.4387342.957209e-010.4348823.014910e-01
6XG Boost Classifier0.2445970.6073620.4910242.117828e-010.4844122.219365e-01
5LGBM Classifier0.3234930.4807150.4909932.118316e-010.4857342.198123e-01
0Linear Regression0.5493590.1181450.5512171.151569e-010.5506641.155217e-01
2SGD Regression0.5493660.1181340.5513151.150005e-010.5507701.153516e-01
1Elastic Net Regression0.6229590.0000000.622955-2.460906e-070.622586-9.965216e-09
3Decision Tree Regression0.0000001.0000000.747171-1.993990e-010.741888-1.916233e-01
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ], + "source": [ + "results = results.sort_values(by='MSE_test', ascending=True)\n", + "results\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Lz2PSaMKQjzF" + }, + "source": [ + "- Here we can see that R2 Score and Mean Absolute Error is best for XG Boost Regression Model.\n", + "- But DNN is also best fit to this model, due to lack to resources full epochs are not played and applying early stopping." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "id": "rzg_GAcPZNDi", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "outputId": "c551f084-e765-4270-9c96-b30e680a199e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAITCAYAAAAegm2OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0xElEQVR4nO3deXgN5///8dcRspCt1oRmERFCLYld1BpCUTtVtSttLUWtte9L7VrqgyZairbWaqmlYgkqlgSVBiFoGxSVCEoi5/eHn/NtmljCEMvzcV1zXc7MPXO/Z4bP57x6z9zHZDabzQIAAAAAGCZLZhcAAAAAAC8aghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBsmZ2AcCLLiUlRX/++accHBxkMpkyuxwAAAD8h9ls1tWrV5U/f35lyWLMWBRBC3jC/vzzT7m5uWV2GQAAAHiAs2fP6tVXXzXkWAQt4AlzcHCQdOcfrqOjYyZXAwAAgP9KSEiQm5ub5XubEQhawBN293FBR0dHghYAAMAzzMjXPJgMAwAAAAAMRtACAAAAAIPx6CDwlFQdulRWNnaZXQYAAM+s/Z+0y+wSAMMwogUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAZ76YOWp6enZsyYYXhbPJtCQkLk7Oyc2WUAAADgBfdMBq0OHTrIZDLJZDIpW7Zsypcvn2rXrq0vvvhCKSkphvYVHh6url27Gt72Ufz7vNNbPD09n1jf/+Xp6WnpN3v27CpRooQWLFjw1Pp/Ulq1aqVjx45ldhkAAAB4wT2TQUuS6tatq7i4OMXGxmr9+vWqUaOGPvzwQzVo0EDJycmG9ZMnTx5lz57d8LaPYubMmYqLi7MskhQcHGz5HB4enqr9rVu3nlgtkjR69GjFxcXpyJEjeuedd/Tuu+9q/fr1T7TPJ31OdnZ2yps37xPtAwAAAHhmg5aNjY1cXFxUoEAB+fv76+OPP9aaNWu0fv16hYSEWNpduXJFXbp0UZ48eeTo6KiaNWsqMjIy1bG+//57lStXTra2tsqdO7eaNGli2fbvxwHNZrNGjhwpd3d32djYKH/+/OrVq1e6bSXpzJkzatSokezt7eXo6KiWLVvq/Pnzlu0jR45U6dKl9dVXX8nT01NOTk566623dPXq1XTP2cnJSS4uLpZFkpydnS2fy5UrpzFjxqhdu3ZydHS0jK7t3LlTr7/+uuzs7OTm5qZevXrp2rVrluPevHlT/fr1U4ECBZQjRw5VqFBBoaGhD7wHDg4OcnFxkZeXlwYOHKicOXNq06ZNGbr2Y8eOVd68eeXg4KAuXbpo0KBBKl26tGV7hw4d1LhxY40bN0758+dXkSJFJElnz55Vy5Yt5ezsrJw5c6pRo0aKjY217BcaGqry5csrR44ccnZ2VkBAgE6fPi1JioyMVI0aNeTg4CBHR0eVKVNG+/btk5T+o4Nz585VoUKFZG1trSJFiuirr75Ktd1kMmnBggVq0qSJsmfPrsKFC2vt2rUPvH4AAAB4eT2zQSs9NWvWVKlSpbRy5UrLuhYtWujChQtav3699u/fL39/f9WqVUuXL1+WJP3www9q0qSJ3njjDR08eFBbtmxR+fLl0z3+ihUrNH36dM2bN0/Hjx/X6tWrVaJEiXTbpqSkqFGjRrp8+bK2bdumTZs26eTJk2rVqlWqdjExMVq9erXWrVundevWadu2bZo4ceIjX4MpU6aoVKlSOnjwoIYNG6aYmBjVrVtXzZo106FDh7R8+XLt3LlTPXr0sOzTo0cP7d69W8uWLdOhQ4fUokUL1a1bV8ePH3+oPlNSUrRixQr9/fffsra2tqx/0LVfsmSJxo0bp0mTJmn//v1yd3fX3Llz0xx/y5Ytio6O1qZNm7Ru3TolJSUpKChIDg4O2rFjh8LCwmRvb6+6devq1q1bSk5OVuPGjVWtWjUdOnRIu3fvVteuXWUymSRJbdq00auvvqrw8HDt379fgwYNUrZs2dI9t1WrVunDDz/URx99pCNHjqhbt27q2LGjtm7dmqrdqFGj1LJlSx06dEhvvPGG2rRpYzlPAAAA4L9MZrPZnNlF/FeHDh105coVrV69Os22t956S4cOHdLRo0e1c+dO1a9fXxcuXJCNjY2ljbe3twYMGKCuXbuqcuXK8vLy0uLFi9Pty9PTU71791bv3r01bdo0zZs3T0eOHEn3i/m/227atEn16tXTqVOn5ObmJkk6evSoihcvrr1796pcuXIaOXKkPvnkE507d04ODg6SpAEDBmj79u3as2fPA6+DyWTSqlWr1LhxY0v/fn5+WrVqlaVNly5dZGVlpXnz5lnW7dy5U9WqVdO1a9d04cIFeXl56cyZM8qfP7+lTWBgoMqXL6/x48ff87rExcUpW7ZsunnzppKTk5UzZ0798ssv8vb2fqhrX7FiRZUtW1affvqpZXuVKlWUmJioiIgISXfu9YYNG3TmzBlLiFu8eLHGjh2rqKgoS3i6deuWnJ2dtXr1apUtW1a5cuVSaGioqlWrlqZ2R0dHzZ49W+3bt0+zLSQkRL1799aVK1ckSQEBASpevLj+97//Wdq0bNlS165d0w8//GC5D0OHDtWYMWMkSdeuXZO9vb3Wr1+vunXrpunj5s2bunnzpuVzQkKC3NzcVKrn57KysUv3egMAAGn/J+0yuwS8pBISEuTk5KT4+Hg5OjoacsznakRLuvN4390v35GRkUpMTFSuXLlkb29vWU6dOqWYmBhJUkREhGrVqvVQx27RooVu3LghLy8vvfvuu1q1atU93weLioqSm5ubJWRJUrFixeTs7KyoqCjLOk9PT0vIkiRXV1dduHAhw+d9V9myZVN9joyMVEhISKrzDwoKUkpKik6dOqXDhw/r9u3b8vHxSdVm27Ztlmt0L/3791dERIR+/vlnVahQQdOnT5e3t7el3wdd++jo6DSjh+mNJpYoUSLVSFlkZKROnDghBwcHy3Fz5sypf/75RzExMcqZM6c6dOigoKAgNWzY0PJu2119+/ZVly5dFBgYqIkTJ973PKOiohQQEJBqXUBAQKp7KEklS5a0/DlHjhxydHS8532cMGGCnJycLMu//44AAADg5ZA1swvIqKioKBUsWFCSlJiYKFdX13TfN7r7Ho6d3cOPILi5uSk6OlqbN2/Wpk2b9MEHH+iTTz7Rtm3b7vno2YP8dz+TyfRYMyfmyJEj1efExER169Yt1btkd7m7u+vQoUOysrLS/v37ZWVllWq7vb39ffvKnTu3vL295e3trW+//VYlSpRQ2bJlVaxYsYe69o9zTmXKlNGSJUvStM2TJ4+kO5OE9OrVSxs2bNDy5cs1dOhQbdq0SRUrVtTIkSP19ttv64cfftD69es1YsQILVu2LNW7eRmVkfs4ePBg9e3b1/L57ogWAAAAXh7PVdD6+eefdfjwYfXp00eS5O/vr3Pnzilr1qz3nPq8ZMmS2rJlizp27PhQfdjZ2alhw4Zq2LChunfvrqJFi+rw4cPy9/dP1c7X11dnz57V2bNnUz06eOXKFRUrVuzRTzKD/P39dfToUctI03/5+fnp9u3bunDhgl5//fVH7sfNzU2tWrXS4MGDtWbNmoe69kWKFFF4eLjatfu/xwD+O3Nievz9/bV8+XLlzZv3vkO3fn5+8vPz0+DBg1WpUiV9/fXXqlixoiTJx8dHPj4+6tOnj1q3bq3g4OB0g5avr6/CwsJSPWYYFhb2WPfQxsYm1eOUAAAAePk8s48O3rx5U+fOndMff/yhAwcOaPz48WrUqJEaNGhg+eIeGBioSpUqqXHjxtq4caNiY2O1a9cuDRkyxDLL3IgRI7R06VKNGDFCUVFROnz4sCZNmpRunyEhIVq4cKGOHDmikydPavHixbKzs5OHh0eatoGBgSpRooTatGmjAwcOaO/evWrXrp2qVauW5vG+J2ngwIHatWuXevTooYiICB0/flxr1qyxTIbh4+OjNm3aqF27dlq5cqVOnTqlvXv3asKECZZ3kB7Whx9+qO+//1779u17qGvfs2dPLVy4UIsWLdLx48c1duxYHTp0yPLo5720adNGuXPnVqNGjbRjxw6dOnVKoaGh6tWrl37//XedOnVKgwcP1u7du3X69Glt3LhRx48fl6+vr27cuKEePXooNDRUp0+fVlhYmMLDw+Xr65tuX/3791dISIjmzp2r48ePa9q0aVq5cqX69euXoWsDAAAA/NszG7Q2bNggV1dXeXp6qm7dutq6datmzZqlNWvWWB6BM5lM+vHHH1W1alV17NhRPj4+euutt3T69Gnly5dPklS9enV9++23Wrt2rUqXLq2aNWtq79696fbp7Oys+fPnKyAgQCVLltTmzZv1/fffK1euXGnamkwmrVmzRq+88oqqVq2qwMBAeXl5afny5U/uoqSjZMmS2rZtm44dO6bXX39dfn5+Gj58eKqJL4KDg9WuXTt99NFHKlKkiBo3bqzw8HC5u7tnqK9ixYqpTp06Gj58+ENd+zZt2mjw4MHq16+f/P39derUKXXo0EG2trb37Sd79uzavn273N3d1bRpU/n6+qpz5876559/5OjoqOzZs+u3335Ts2bN5OPjo65du6p79+7q1q2brKysdOnSJbVr104+Pj5q2bKl6tWrp1GjRqXbV+PGjTVz5kxNmTJFxYsX17x58xQcHKzq1atn6NoAAAAA//ZMzjqIF1ft2rXl4uKS5reqXmR3Z7Fh1kEAAO6PWQeRWZ7ErIPP1TtaeL5cv35dn3/+uYKCgmRlZaWlS5daJhoBAAAAXmQELTwxdx8vHDdunP755x8VKVJEK1asUGBgYGaXBgAAADxRBC08MXZ2dtq8eXNmlwEAAAA8dc/sZBgAAAAA8LwiaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwbJmdgHAy2L72NZydHTM7DIAAADwFDCiBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwbJmdgHAy6Lq0KWysrHL7DIAAJlg/yftMrsEAE8ZI1oAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGCwlz5omUwmrV69+on24enpqRkzZjzRPvBwOnTooMaNG2d2GQAAAHjBvdBBq0OHDjKZTGmWunXrPpH+QkJC5OzsnGZ9eHi4unbt+sjH9fT0lMlk0p49e1Kt7927t6pXr/7Qx4mNjZXJZFJERMRDtbu75MyZU9WqVdOOHTseofpny8yZMxUSEpLZZQAAAOAF90IHLUmqW7eu4uLiUi1Lly59qjXkyZNH2bNnf6xj2NraauDAgQZV9HA2b96suLg4bd++Xfnz51eDBg10/vz5J9rnrVu3nujxnZyc0g3DAAAAgJFe+KBlY2MjFxeXVMsrr7xyz/YDBw6Uj4+PsmfPLi8vLw0bNkxJSUmW7ZGRkapRo4YcHBzk6OioMmXKaN++fQoNDVXHjh0VHx9vGQkaOXKkpLSPDl65ckXdunVTvnz5ZGtrq9dee03r1q2773l07dpVe/bs0Y8//njfdgsWLJCvr69sbW1VtGhRzZkzx7KtYMGCkiQ/Pz+ZTKYHjoblypVLLi4ueu211/Txxx8rISFBv/zyi2X7kSNHVK9ePdnb2ytfvnxq27atLl68aNl+9epVtWnTRjly5JCrq6umT5+u6tWrq3fv3pY2np6eGjNmjNq1aydHR0fLyN/OnTv1+uuvy87OTm5uburVq5euXbtm2W/OnDkqXLiwbG1tlS9fPjVv3tyy7bvvvlOJEiVkZ2enXLlyKTAw0LLvfx8dvHnzpnr16qW8efPK1tZWVapUUXh4uGV7aGioTCaTtmzZorJlyyp79uyqXLmyoqOj73vtAAAA8HJ74YNWRjk4OCgkJERHjx7VzJkzNX/+fE2fPt2yvU2bNnr11VcVHh6u/fv3a9CgQcqWLZsqV66sGTNmyNHR0TJy1q9fvzTHT0lJUb169RQWFqbFixfr6NGjmjhxoqysrO5bV8GCBfXee+9p8ODBSklJSbfNkiVLNHz4cI0bN05RUVEaP368hg0bpkWLFkmS9u7dK+n/RqpWrlz5UNfkxo0b+vLLLyVJ1tbWku6ExZo1a8rPz0/79u3Thg0bdP78ebVs2dKyX9++fRUWFqa1a9dq06ZN2rFjhw4cOJDm+FOmTFGpUqV08OBBDRs2TDExMapbt66aNWumQ4cOafny5dq5c6d69OghSdq3b5969eql0aNHKzo6Whs2bFDVqlUlSXFxcWrdurU6deqkqKgohYaGqmnTpjKbzeme24ABA7RixQotWrRIBw4ckLe3t4KCgnT58uVU7YYMGaKpU6dq3759ypo1qzp16nTP63Xz5k0lJCSkWgAAAPByyZrZBTxp69atk729fap1H3/8sT7++ON02w8dOtTyZ09PT/Xr10/Lli3TgAEDJElnzpxR//79VbRoUUlS4cKFLe2dnJxkMpnk4uJyz3o2b96svXv3KioqSj4+PpIkLy+vhzqXoUOHKjg4WEuWLFHbtm3TbB8xYoSmTp2qpk2bSroTzo4ePap58+apffv2ypMnj6T/G6l6kMqVKytLliy6fv26zGazypQpo1q1akmSPv30U/n5+Wn8+PGW9l988YXc3Nx07Ngxubq6atGiRfr6668t+wQHByt//vxp+qlZs6Y++ugjy+cuXbqoTZs2lpGvwoULa9asWapWrZrmzp2rM2fOKEeOHGrQoIEcHBzk4eEhPz8/SXeCVnJyspo2bSoPDw9JUokSJdI9v2vXrmnu3LkKCQlRvXr1JEnz58/Xpk2btHDhQvXv39/Sdty4capWrZokadCgQapfv77++ecf2drapjnuhAkTNGrUqAdeXwAAALy4XvigVaNGDc2dOzfVupw5c96z/fLlyzVr1izFxMQoMTFRycnJcnR0tGzv27evunTpoq+++kqBgYFq0aKFChUq9ND1RERE6NVXX7WErIzIkyeP+vXrp+HDh6tVq1aptl27dk0xMTHq3Lmz3n33Xcv65ORkOTk5Zbgv6c61KFq0qI4cOaIBAwYoJCRE2bJlk3TnEcqtW7emCbGSFBMToxs3bigpKUnly5e3rHdyclKRIkXStC9btmyqz5GRkTp06JCWLFliWWc2m5WSkqJTp06pdu3a8vDwkJeXl+rWrau6deuqSZMmyp49u0qVKqVatWqpRIkSCgoKUp06ddS8efN0HxeNiYlRUlKSAgICLOuyZcum8uXLKyoqKlXbkiVLWv7s6uoqSbpw4YLc3d3THHfw4MHq27ev5XNCQoLc3NzStAMAAMCL64UPWjly5JC3t/dDtd29e7fatGmjUaNGKSgoSE5OTlq2bJmmTp1qaTNy5Ei9/fbb+uGHH7R+/XqNGDFCy5YtU5MmTR6qDzs7u0c6j7v69u2rOXPmpHr3SpISExMl3RmRqVChQqptD3os8V7c3NxUuHBhFS5cWMnJyWrSpImOHDkiGxsbJSYmqmHDhpo0aVKa/VxdXXXixImH7idHjhypPicmJqpbt27q1atXmrbu7u6ytrbWgQMHFBoaqo0bN2r48OEaOXKkwsPD5ezsrE2bNmnXrl3auHGjZs+erSFDhuiXX36xvKP2KO4GTOnOTwJIuucjnDY2NrKxsXnkvgAAAPD84x2tf9m1a5c8PDw0ZMgQlS1bVoULF9bp06fTtPPx8VGfPn20ceNGNW3aVMHBwZLuvL90+/bt+/ZRsmRJ/f777zp27Ngj1Whvb69hw4Zp3Lhxunr1qmV9vnz5lD9/fp08eVLe3t6plrsB4+77VQ+qMT3NmzdX1qxZLQHP399fv/76qzw9PdP0lyNHDnl5eSlbtmypJpaIj49/qPP29/fX0aNH0xzX29vbcg5Zs2ZVYGCgJk+erEOHDik2NlY///yzpDtBKCAgQKNGjdLBgwdlbW2tVatWpemnUKFCsra2VlhYmGVdUlKSwsPDVaxYsQxfIwAAAOCuFz5o3bx5U+fOnUu1/HtmvH8rXLiwzpw5o2XLlikmJkazZs1K9QX9xo0b6tGjh0JDQ3X69GmFhYUpPDxcvr6+ku6805WYmKgtW7bo4sWLun79epo+qlWrpqpVq6pZs2batGmTTp06pfXr12vDhg0PfU5du3aVk5OTvv7661TrR40apQkTJmjWrFk6duyYDh8+rODgYE2bNk2SlDdvXtnZ2VkmroiPj3/oPk0mk3r16qWJEyfq+vXr6t69uy5fvqzWrVsrPDxcMTEx+umnn9SxY0fdvn1bDg4Oat++vfr376+tW7fq119/VefOnZUlSxbLiNC9DBw4ULt27VKPHj0UERGh48ePa82aNZbJMNatW6dZs2YpIiJCp0+f1pdffqmUlBQVKVJEv/zyi8aPH699+/bpzJkzWrlypf766y/LPfq3HDly6P3331f//v21YcMGHT16VO+++66uX7+uzp07P/S1AQAAAP7rhQ9aGzZskKura6qlSpUq6bZ988031adPH/Xo0UOlS5fWrl27NGzYMMt2KysrXbp0Se3atZOPj49atmypevXqWSY+qFy5st577z21atVKefLk0eTJk9PtZ8WKFSpXrpxat26tYsWKacCAARkaZcqWLZvGjBmjf/75J9X6Ll26aMGCBQoODlaJEiVUrVo1hYSEWEa0smbNqlmzZmnevHnKnz+/GjVq9NB9SlL79u2VlJSkTz/9VPnz51dYWJhu376tOnXqqESJEurdu7ecnZ2VJcudv1bTpk1TpUqV1KBBAwUGBiogIMAy9fz9lCxZUtu2bdOxY8f0+uuvy8/PT8OHD7dMpOHs7KyVK1eqZs2a8vX11eeff66lS5eqePHicnR01Pbt2/XGG2/Ix8dHQ4cO1dSpUy2TXfzXxIkT1axZM7Vt21b+/v46ceKEfvrpp/v+BAAAAADwICbzvea9Bgx27do1FShQQFOnTn2pRowSEhLk5OSkUj0/l5XN472jBwB4Pu3/pF1mlwDgPu5+X4uPj081Ed7jeOEnw0DmOXjwoH777TeVL19e8fHxGj16tCRleCQNAAAAeN4QtPBETZkyRdHR0bK2tlaZMmW0Y8cO5c6dO7PLAgAAAJ4oghaeGD8/P+3fvz+zywAAAACeuhd+MgwAAAAAeNoIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMGyZnYBwMti+9jWcnR0zOwyAAAA8BQwogUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgsKyZXQDwsqg6dKmsbOwyuwwAeO7t/6RdZpcAAA/EiBYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoIWXysiRI1W6dOnMLgMAAAAvOILWM+Svv/7S+++/L3d3d9nY2MjFxUVBQUEKCwtL1e7gwYNq1aqVXF1dZWNjIw8PDzVo0EDff/+9zGazJCk2NlYmk8myODg4qHjx4urevbuOHz/+wFr+va+jo6PKlSunNWvWPJHzfpr69eunLVu2ZHYZAAAAeMERtJ4hzZo108GDB7Vo0SIdO3ZMa9euVfXq1XXp0iVLmzVr1qhixYpKTEzUokWLFBUVpQ0bNqhJkyYaOnSo4uPjUx1z8+bNiouLU2RkpMaPH6+oqCiVKlXqocJGcHCw4uLitG/fPgUEBKh58+Y6fPiw4ef9b7du3Xqix7e3t1euXLmeaB8AAAAAQesZceXKFe3YsUOTJk1SjRo15OHhofLly2vw4MF68803JUnXrl1T586dVb9+ff3www+qU6eOvLy85Ovrq86dOysyMlJOTk6pjpsrVy65uLjIy8tLjRo10ubNm1WhQgV17txZt2/fvm9Nzs7OcnFxkY+Pj8aMGaPk5GRt3brVsv3s2bNq2bKlnJ2dlTNnTjVq1EixsbGW7cnJyerVq5ecnZ2VK1cuDRw4UO3bt1fjxo0tbapXr64ePXqod+/eyp07t4KCgiRJR44cUb169WRvb698+fKpbdu2unjxomW/7777TiVKlJCdnZ1y5cqlwMBAXbt2TZIUGhqq8uXLK0eOHHJ2dlZAQIBOnz4tKe2jgykpKRo9erReffVV2djYqHTp0tqwYYNl+92RwZUrV6pGjRrKnj27SpUqpd27dz/EXQUAAMDLiqD1jLC3t5e9vb1Wr16tmzdvpttm48aNunTpkgYMGHDP45hMpvv2kyVLFn344Yc6ffq09u/f/1C1JScna+HChZIka2trSVJSUpKCgoLk4OCgHTt2KCwsTPb29qpbt65lVGrSpElasmSJgoODFRYWpoSEBK1evTrN8RctWiRra2uFhYXp888/15UrV1SzZk35+flp37592rBhg86fP6+WLVtKkuLi4tS6dWt16tRJUVFRCg0NVdOmTWU2m5WcnKzGjRurWrVqOnTokHbv3q2uXbve87rMnDlTU6dO1ZQpU3To0CEFBQXpzTffTPN45ZAhQ9SvXz9FRETIx8dHrVu3VnJycrrHvHnzphISElItAAAAeLlkzewCcEfWrFkVEhKid999V59//rn8/f1VrVo1vfXWWypZsqQk6dixY5KkIkWKWPYLDw9XjRo1LJ+XLVumBg0a3LevokWLSrozWlO+fPl7tmvdurWsrKx048YNpaSkyNPT0xJ2li9frpSUFC1YsMASYoKDg+Xs7KzQ0FDVqVNHs2fP1uDBg9WkSRNJ0qeffqoff/wxTT+FCxfW5MmTLZ/Hjh0rPz8/jR8/3rLuiy++kJubm44dO6bExEQlJyeradOm8vDwkCSVKFFCknT58mXFx8erQYMGKlSokCTJ19f3nuc4ZcoUDRw4UG+99ZakO+Fw69atmjFjhj777DNLu379+ql+/fqSpFGjRql48eI6ceKE5Vr+24QJEzRq1Kh79gkAAIAXHyNaz5BmzZrpzz//1Nq1a1W3bl2FhobK399fISEh99ynZMmSioiIUEREhK5du3bPUZZ/uzthxoNGv6ZPn66IiAitX79exYoV04IFC5QzZ05JUmRkpE6cOCEHBwfLaFzOnDn1zz//KCYmRvHx8Tp//nyqIGdlZaUyZcqk6ee/6yIjI7V161bLce3t7S2BJiYmRqVKlVKtWrVUokQJtWjRQvPnz9fff/8tScqZM6c6dOigoKAgNWzYUDNnzlRcXFy655eQkKA///xTAQEBqdYHBAQoKioq1bq7YVeSXF1dJUkXLlxI97iDBw9WfHy8ZTl79my67QAAAPDiImg9Y2xtbVW7dm0NGzZMu3btUocOHTRixAhJd0Z+JCk6OtrS3sbGRt7e3vL29n7oPu6GiIIFC963nYuLi7y9vVWnTh0FBwerVatWlnCRmJioMmXKWELe3eXYsWN6++23M3TOOXLkSPU5MTFRDRs2THPs48ePq2rVqrKystKmTZssAXD27NkqUqSITp06JenOyNru3btVuXJlLV++XD4+PtqzZ0+GavqvbNmyWf58N6CmpKSk29bGxkaOjo6pFgAAALxcCFrPuGLFilkmeahTp45y5sypSZMmPfLxUlJSNGvWLBUsWFB+fn4PvV/58uVVpkwZjRs3TpLk7++v48ePK2/evJagd3dxcnKSk5OT8uXLp/DwcMsxbt++rQMHDjywL39/f/3666/y9PRMc+y7ocxkMikgIECjRo3SwYMHZW1trVWrVlmO4efnp8GDB2vXrl167bXX9PXXX6fpx9HRUfnz508zfX5YWJiKFSv20NcGAAAA+C+C1jPi0qVLqlmzphYvXqxDhw7p1KlT+vbbbzV58mQ1atRI0p0JMxYsWKAffvhB9evX108//aSTJ0/q0KFDlnecrKys0hz33LlzOnnypNauXavAwEDt3btXCxcuTNP2QXr37q158+bpjz/+UJs2bZQ7d241atRIO3bs0KlTpxQaGqpevXrp999/lyT17NlTEyZM0Jo1axQdHa0PP/xQf//99wMfWezevbsuX76s1q1bKzw8XDExMfrpp5/UsWNH3b59W7/88ovGjx+vffv26cyZM1q5cqX++usv+fr66tSpUxo8eLB2796t06dPa+PGjTp+/Pg939Pq37+/Jk2apOXLlys6OlqDBg1SRESEPvzwwwxdGwAAAODfmAzjGWFvb68KFSpo+vTpiomJUVJSktzc3PTuu+/q448/trRr0qSJdu3apUmTJqldu3a6fPmynJycVLZs2XQnwggMDJQkZc+eXR4eHqpRo4b+97//ZehRw7vq1q2rggULaty4cZozZ462b9+ugQMHqmnTprp69aoKFCigWrVqWR6VGzhwoM6dO6d27drJyspKXbt2VVBQ0AMD3t1RpoEDB6pOnTq6efOmPDw8VLduXWXJkkWOjo7avn27ZsyYoYSEBHl4eGjq1KmqV6+ezp8/r99++02LFi3SpUuX5Orqqu7du6tbt27p9tWrVy/Fx8fro48+0oULF1SsWDGtXbvW8pgmAAAA8ChM5rszIwBPWEpKinx9fdWyZUuNGTMms8t5ahISEuTk5KRSPT+XlY1dZpcDAM+9/Z+0y+wSALxg7n5fi4+PN+z9eka08MTcfXSvWrVqunnzpj799FOdOnUqw5NlAAAAAM8b3tHCE5MlSxaFhISoXLlyCggI0OHDh7V58+b7/q4VAAAA8CJgRAtPjJubW5oZ/QAAAICXASNaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGCwrJldAPCy2D62tRwdHTO7DAAAADwFjGgBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGCxrZhcAvCyqDl0qKxu7zC4DAJ57+z9pl9klAMADMaIFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2hlEpPJpNWrV2d2GS+dkSNHqnTp0pldBgAAAF5wBK0npEOHDmrcuPE9t8fFxalevXpPr6AMMplMlsXR0VHlypXTmjVrMrusx9avXz9t2bIls8sAAADAC46glUlcXFxkY2OTqTWYzWYlJyffc3twcLDi4uK0b98+BQQEqHnz5jp8+PATrenWrVtP9Pj29vbKlSvXE+0DAAAAIGhlkn8/OhgbGyuTyaSVK1eqRo0ayp49u0qVKqXdu3en2mfnzp16/fXXZWdnJzc3N/Xq1UvXrl2zbP/qq69UtmxZOTg4yMXFRW+//bYuXLhg2R4aGiqTyaT169erTJkysrGx0c6dO+9Zo7Ozs1xcXOTj46MxY8YoOTlZW7dutWw/e/asWrZsKWdnZ+XMmVONGjVSbGysZXtycrJ69eolZ2dn5cqVSwMHDlT79u1TjfRVr15dPXr0UO/evZU7d24FBQVJko4cOaJ69erJ3t5e+fLlU9u2bXXx4kXLft99951KlCghOzs75cqVS4GBgZZrERoaqvLlyytHjhxydnZWQECATp8+LSnto4MpKSkaPXq0Xn31VdnY2Kh06dLasGGDZfvD3hsAAADg3whaz5AhQ4aoX79+ioiIkI+Pj1q3bm0ZcYqJiVHdunXVrFkzHTp0SMuXL9fOnTvVo0cPy/5JSUkaM2aMIiMjtXr1asXGxqpDhw5p+hk0aJAmTpyoqKgolSxZ8oF1JScna+HChZIka2trS19BQUFycHDQjh07FBYWJnt7e9WtW9cyKjVp0iQtWbJEwcHBCgsLU0JCQrrvpS1atEjW1tYKCwvT559/ritXrqhmzZry8/PTvn37tGHDBp0/f14tW7aUdOexy9atW6tTp06KiopSaGiomjZtahmha9y4sapVq6ZDhw5p9+7d6tq1q0wmU7rnNnPmTE2dOlVTpkzRoUOHFBQUpDfffFPHjx9/6HvzXzdv3lRCQkKqBQAAAC8Xk9lsNmd2ES+iDh066MqVK/ec8MJkMmnVqlVq3LixYmNjVbBgQS1YsECdO3eWJB09elTFixdXVFSUihYtqi5dusjKykrz5s2zHGPnzp2qVq2arl27Jltb2zR97Nu3T+XKldPVq1dlb2+v0NBQ1ahRQ6tXr1ajRo3uW7/JZJKtra2srKx048YNpaSkyNPTU/v371fOnDm1ePFijR07VlFRUZYQc+vWLTk7O2v16tWqU6eOXFxc1K9fP/Xr10+SdPv2bXl5ecnPz89yXapXr66EhAQdOHDA0vfYsWO1Y8cO/fTTT5Z1v//+u9zc3BQdHa3ExESVKVNGsbGx8vDwSFX35cuXlStXLoWGhqpatWppzmvkyJFavXq1IiIiJEkFChRQ9+7d9fHHH1valC9fXuXKldNnn332UPcmvT5GjRqVZn2pnp/LysbuvtcdAPBg+z9pl9klAHjBJCQkyMnJSfHx8XJ0dDTkmIxoPUP+Pbrk6uoqSZZH/yIjIxUSEiJ7e3vLEhQUpJSUFJ06dUqStH//fjVs2FDu7u5ycHCwBI0zZ86k6qds2bIPVc/06dMVERGh9evXq1ixYlqwYIFy5sxpqefEiRNycHCw1JMzZ079888/iomJUXx8vM6fP6/y5ctbjmdlZaUyZcqk6ee/6yIjI7V169ZU53o30MTExKhUqVKqVauWSpQooRYtWmj+/Pn6+++/JUk5c+ZUhw4dFBQUpIYNG2rmzJmKi4tL9/wSEhL0559/KiAgINX6gIAARUVFpVp3v3vzX4MHD1Z8fLxlOXv2bLrtAAAA8OLKmpHGnTp1euSOTCaT5fEzpC9btmyWP98dJUpJSZEkJSYmqlu3burVq1ea/dzd3XXt2jUFBQUpKChIS5YsUZ48eXTmzBkFBQWlmWAiR44cD1WPi4uLvL295e3treDgYL3xxhs6evSo8ubNaxlVWrJkSZr98uTJ89DnnF49iYmJatiwoSZNmpSmraurq6ysrLRp0ybt2rVLGzdu1OzZszVkyBD98ssvKliwoIKDg9WrVy9t2LBBy5cv19ChQ7Vp0yZVrFgxQ3X92/3uzX/Z2Nhk+kQnAAAAyFwZClohISGP3BFB6/H4+/vr6NGj8vb2Tnf74cOHdenSJU2cOFFubm6S7jw6aJTy5curTJkyGjdunGbOnCl/f38tX75cefPmvefwar58+RQeHq6qVatKuvPo4IEDBx74O1b+/v5asWKFPD09lTVr+n9FTSaTAgICFBAQoOHDh8vDw0OrVq1S3759JUl+fn7y8/PT4MGDValSJX399ddpgpajo6Py58+vsLCwVI8ZhoWFpRqJAwAAADIqQ0Hr3zPO4cHi4+Mt7wLdlStXLksQyoiBAweqYsWK6tGjh7p06aIcOXLo6NGj2rRpkz799FO5u7vL2tpas2fP1nvvvacjR45ozJgxBp3JHb1791aTJk00YMAAtWnTRp988okaNWpkmbXv9OnTWrlypQYMGKBXX31VPXv21IQJE+Tt7a2iRYtq9uzZ+vvvv+85McVd3bt31/z589W6dWsNGDBAOXPm1IkTJ7Rs2TItWLBA+/bt05YtW1SnTh3lzZtXv/zyi/766y/5+vrq1KlT+t///qc333xT+fPnV3R0tI4fP6527dJ/nr9///4aMWKEChUqpNKlSys4OFgRERHpjtQBAAAADytDQSu9yQVwb6GhofLz80u1rnPnzlqwYEGGj1WyZElt27ZNQ4YM0euvvy6z2axChQqpVatWku48rhcSEqKPP/5Ys2bNkr+/v6ZMmaI333zTkHORpLp166pgwYIaN26c5syZo+3bt2vgwIFq2rSprl69qgIFCqhWrVqWEa6BAwfq3LlzateunaysrNS1a1cFBQXJysrqvv3cHWUaOHCg6tSpo5s3b8rDw0N169ZVlixZ5OjoqO3bt2vGjBlKSEiQh4eHpk6dqnr16un8+fP67bfftGjRIl26dEmurq7q3r27unXrlm5fvXr1Unx8vD766CNduHBBxYoV09q1a1W4cGHDrhsAAABePsw6iKcmJSVFvr6+atmypeGjbc+yu7PYMOsgABiDWQcBGO1JzDqYoRGte0lOTtYPP/ygvXv36uLFi6pQoYJl4ow///xTFy9eVLFixe75vg1eTKdPn9bGjRtVrVo13bx5U59++qlOnTqlt99+O7NLAwAAAJ6ox04+O3fu1DvvvKOzZ8/KbDbLZDIpKSnJErR2796tli1b6ttvv1XTpk0fu2A8P7JkyaKQkBD169dPZrNZr732mjZv3ixfX9/MLg0AAAB4oh4raB09elR169ZVUlKSevbsqSpVqqhly5ap2jRs2FDZs2fXihUrCFovGTc3N4WFhWV2GQAAAMBT91hBa8yYMfrnn3/0448/qk6dOum2sba2lr+/vw4ePPg4XQEAAADAcyPL4+y8detWlS9f/p4h664CBQrozz//fJyuAAAAAOC58VhB68qVKw/1m1DXrl1TUlLS43QFAAAAAM+NxwpaefPm1YkTJx7YLioq6pF+pBcAAAAAnkePFbRq1qypiIgIbd269Z5tVq1apRMnTqh27dqP0xUAAAAAPDceK2gNGjRI1tbWaty4sebOnatz585Ztv3999/64osv1LlzZ+XIkUN9+/Z97GIBAAAA4HnwWEGraNGiWrp0qVJSUtSjRw8VKFBAJpNJixYtUu7cufXuu+/q5s2bWrJkiQoWLGhUzQAAAADwTHusoCVJjRs31pEjR9SzZ08VLVpUtra2sra2lpeXl7p166ZDhw7pzTffNKJWAAAAAHguPNbvaN3l4eGhGTNmGHEoAAAAAHjuPfaIFgAAAAAgNYIWAAAAABgsQ48OWllZPXJHJpNJycnJj7w/AAAAADwvMhS03NzcZDKZUq0zm806c+aM5bOzs7Mk6cqVK5Z17u7uafYDAAAAgBdVhoJWbGxsqs9JSUlq3ry5kpOTNWzYMLVu3VqOjo6SpKtXr2rp0qUaM2aMSpUqpRUrVhhWNPA82j72//59AAAA4MX2WO9ojRs3Tlu2bNH27dvVrVu3VF8iHRwc1LVrV23btk2bN2/W6NGjH7tYAAAAAHgePFbQWrx4sWrWrCkvL697tvHy8lKtWrW0ZMmSx+kKAAAAAJ4bjxW0/vjjD9nY2DywnY2Njf7888/H6QoAAAAAnhuPFbRcXV21devWVBNf/Nfff/+tn3/+WS4uLo/TFQAAAAA8Nx4raLVu3VqXL19W7dq1tX379jTbd+zYoaCgIF25ckVt2rR5nK4AAAAA4LlhMpvN5kfd+Z9//lGdOnW0c+dOmUwm5c2bVx4eHpKk06dP68KFCzKbzQoICNCmTZtka2trWOHA8yIhIUFOTk6Kj49n1kEAAIBn0JP4vpah6d3/y9bWVlu2bNG0adM0Z84cnT17VufPn7dsd3Nz0/vvv6+PPvpI2bJle+xiAQAAAOB58FgjWv919uxZy6QXrq6ucnd3N+rQwHOLES0AAIBn2zM3ovVfbm5ucnNzM/KQAAAAAPDcMSxo/fHHHwoLC9Mff/whSSpQoIACAgJUoEABo7oAAAAAgOfCYwetv/76S927d9eqVauUkpKSapvJZFKzZs306aefKk+ePI/bFfBcqzp0qaxs7DK7DAB4oP2ftMvsEgDgufdYQSs+Pl5Vq1ZVdHS07OzsVKdOHXl6espkMik2NlY//fSTvv32Wx06dEh79uyRk5OTUXUDAAAAwDPrsYLWxIkTFR0drRYtWqQ7anXx4kX16NFD33zzjSZNmqTx48c/VrEAAAAA8Dx4rFkHixYtqhs3bujEiRP3nL49KSlJ3t7esrW1VXR09CMXCjyv7s5iU6rn5zw6COC5wKODAF42T2LWwSyPs/Pp06cVEBBw39/IypYtmwICAnTmzJnH6QoAAAAAnhuPFbTs7Ox08eLFB7a7ePGi7Oz4L/kAAAAAXg6PFbTKlCmjbdu2ad++ffdss3//foWGhqps2bKP0xUAAAAAPDceK2j16dNHSUlJqlWrloYNG6aoqCjduHFDN27c0G+//aYRI0YoMDBQt2/fVp8+fYyqGQAAAACeaY81GYYkTZgwQcOGDdO9DmMymTRmzBgNHjz4cboBnltMhgHgecNkGABeNs/cZBiSNHjwYO3Zs0fvvPOOPD09ZW1tLWtra3l6eqpt27bavXs3IQsAAADAS+WxfkfrrrJly2rRokVGHAoAAAAAnnuPPaIFAAAAAEiNoAUAAAAABsvQo4NeXl6P3JHJZFJMTMwj7w8AAAAAz4sMBa3Y2FiZTKZ7zjB4PyaTKcP7AAAAAMDz6JEmwyhTpozeeecdNWrUSHZ2TFcNAAAAAP+WoaC1bNkyLVmyRBs2bFDfvn01fPhwNW3aVO+8845q1qzJqBUAAAAAKIOTYbRs2VJr1qxRXFycZs+ereLFi2vRokWqU6eO3Nzc1L9/f0VERDyhUgEAAADg+fBIsw7mzJlTH3zwgXbt2qWYmBiNHDlSDg4Omjp1qsqUKaPXXntNkyZN0tmzZ42uF8+xkSNHqnTp0k+lr+rVq6t3796Wz9evX1ezZs3k6Ogok8mkK1euyNPTUzNmzHgq9QAAAODl8tjTuxcsWFDDhg1TVFSUfvnlF/Xs2VOXLl3Sxx9/rHLlyhlR40unQ4cOaty48X3bHDx4UK1atZKrq6tsbGzk4eGhBg0a6Pvvv7dMVnJ38pK7i7W1tby9vTV27NhUE5qMHDlSJpNJdevWTdPPJ598IpPJpOrVqz+w7hUrVqh69epycnKSvb29SpYsqdGjR+vy5csZOn8jrFy5UmPGjLF8XrRokXbs2KFdu3YpLi5OTk5OCg8PV9euXZ96bQAAAHjxGfo7Wh4eHvLy8lL+/PllNpuVkpJi5OHx/61Zs0YVK1ZUYmKiFi1apKioKG3YsEFNmjTR0KFDFR8fn6r95s2bFRcXp+PHj2vUqFEaN26cvvjii1RtXF1dtXXrVv3++++p1n/xxRdyd3d/YE1DhgxRq1atVK5cOa1fv15HjhzR1KlTFRkZqa+++urxTzqDcubMKQcHB8vnmJgY+fr66rXXXpOLi4tMJpPy5Mmj7NmzP3Ift27dMqJUAAAAvIAeO2hdv35dixcvVr169fTqq6+qT58+OnXqlN59912tXLnSiBrxL9euXVPnzp1Vv359/fDDD6pTp468vLzk6+urzp07KzIyUk5OTqn2yZUrl1xcXOTh4aE2bdooICBABw4cSNUmb968qlOnjhYtWmRZt2vXLl28eFH169e/b0179+7V+PHjNXXqVH3yySeqXLmyPD09Vbt2ba1YsULt27dPd7/w8HDVrl1buXPnlpOTk6pVq5aqLrPZrJEjR8rd3V02NjbKnz+/evXqZdk+Z84cFS5cWLa2tsqXL5+aN29u2fbvRwerV6+uqVOnavv27alG5/776OCVK1fUpUsX5cmTR46OjqpZs6YiIyMt2+8++rhgwQIVLFhQtra2970uAAAAeHk90vTuKSkp+umnn7R48WKtXbtW169fl7W1td5880298847euONN2RtbW10rZC0ceNGXbp0SQMGDLhnm/vN/rhv3z7t379f7dq1S7OtU6dOGjBggIYMGSLpzmhWmzZtHljTkiVLZG9vrw8++CDd7c7Ozumuv3r1qtq3b6/Zs2fLbDZr6tSpeuONN3T8+HE5ODhoxYoVmj59upYtW6bixYvr3LlzluCzb98+9erVS1999ZUqV66sy5cva8eOHen2s3LlSg0aNEhHjhzRypUr7/l3s0WLFrKzs9P69evl5OSkefPmqVatWjp27Jhy5swpSTpx4oRWrFihlStXysrK6oHXBgAAAC+nDAWtX375RUuWLNHy5cv1119/yWQyqWrVqnrnnXfUvHnzNCMpMN6xY8ckSUWKFLGsCw8PV40aNSyfly1bpgYNGlg+V65cWVmyZNGtW7eUlJSkrl27phu0GjRooPfee0/bt29XmTJl9M0332jnzp1pHjP8r+PHj8vLy0vZsmXL0LnUrFkz1ef//e9/cnZ21rZt29SgQQOdOXNGLi4uCgwMVLZs2eTu7q7y5ctLks6cOaMcOXKoQYMGcnBwkIeHh/z8/NLtJ2fOnMqePbusra3l4uKSbpudO3dq7969unDhgmxsbCRJU6ZM0erVq/Xdd99Z3uW6deuWvvzyS+XJk+ee53Xz5k3dvHnT8jkhIeHhLwoAAABeCBkKWpUqVZLJZFKJEiXUr18/vf322ypQoMCTqg0PqWTJkpZp9QsXLqzk5ORU25cvXy5fX18lJSXpyJEj6tmzp1555RVNnDgxVbts2bLpnXfeUXBwsE6ePCkfHx+VLFnygf3/e2KNjDh//ryGDh2q0NBQXbhwQbdv39b169d15swZSXdGmGbMmCEvLy/VrVtXb7zxhho2bKisWbOqdu3alncC69atq7p166pJkyaP/M5VZGSkEhMTlStXrlTrb9y4oZiYGMtnDw+P+4YsSZowYYJGjRr1SHUAAADgxfBI72gdPXpUQ4YMUcGCBWVtbf1Qy91RAjyewoULS5Kio6Mt62xsbOTt7S1vb+9093Fzc5O3t7d8fX3VokUL9e7dW1OnTtU///yTpm2nTp307bff6rPPPlOnTp0eqiYfHx+dPHlSSUlJGTqX9u3bKyIiQjNnztSuXbsUERGhXLlyWSaZcHNzU3R0tObMmSM7Ozt98MEHqlq1qpKSkuTg4KADBw5o6dKlcnV11fDhw1WqVClduXIlQzXclZiYKFdXV0VERKRaoqOj1b9/f0u7HDlyPPBYgwcPVnx8vGXhZw4AAABePhkOWmazWcnJyRleMvolHOmrU6eOcubMqUmTJj3yMaysrJScnJzurHnFixdX8eLFdeTIEb399tsPdby3335biYmJmjNnTrrb7xV+wsLC1KtXL73xxhsqXry4bGxsdPHixVRt7Ozs1LBhQ82aNUuhoaHavXu3Dh8+LEnKmjWrAgMDNXnyZB06dEixsbH6+eefH6rm//L399e5c+eUNWtWS2i9u+TOnTtDx7KxsZGjo2OqBQAAAC+XDD06yHTtT098fLzlccC7cuXKJTc3Ny1YsECtWrVS/fr11atXLxUuXFiJiYnasGGDJKWZpOHSpUs6d+6ckpOTdfjwYc2cOVM1atS4ZwD4+eeflZSUdM9JLP6rQoUKGjBggD766CP98ccfatKkifLnz68TJ07o888/V5UqVfThhx+m2a9w4cL66quvVLZsWSUkJKh///6ys7OzbA8JCdHt27dVoUIFZc+eXYsXL5adnZ08PDy0bt06nTx5UlWrVtUrr7yiH3/8USkpKaneXcuIwMBAVapUSY0bN9bkyZPl4+OjP//8Uz/88IOaNGmismXLPtJxAQAA8HJ6pFkH8eSFhoammdyhc+fOWrBggZo0aaJdu3Zp0qRJateunS5fviwnJyeVLVs2zUQY0p0QId0JYK6urnrjjTc0bty4e/b9MI/H/dekSZNUpkwZffbZZ/r888+VkpKiQoUKqXnz5vec3n3hwoXq2rWr/P395ebmpvHjx6tfv36W7c7Ozpo4caL69u2r27dvq0SJEvr++++VK1cuOTs7a+XKlRo5cqT++ecfFS5cWEuXLlXx4sUzXLt0Z6bGH3/8UUOGDFHHjh31119/ycXFRVWrVlW+fPke6ZgAAAB4eZnMjzqTAYCHkpCQICcnJ5Xq+bmsbOwevAMAZLL9n6SdmRYAXmR3v6/Fx8cb9trHY/9gMQAAAAAgNYIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYLCsmV0A8LLYPra1HB0dM7sMAAAAPAWMaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYLCsmV0A8LKoOnSprGzsMrsMALiv/Z+0y+wSAOCFwIgWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKCFp6Z69erq3bv3U+nLZDJp9erVls+//fabKlasKFtbW5UuXVqxsbEymUyKiIh4KvUAAADg5ULQyqDbt2+rcuXKatq0aar18fHxcnNz05AhQ1KtX7FihWrWrKlXXnlFdnZ2KlKkiDp16qSDBw/etx+TyWRZsmbNKnd3d/Xt21c3b940/JzuJSQkRM7Ozg/V9tatW5o8ebJKlSql7NmzK3fu3AoICFBwcLCSkpKebKHpiIuLU7169SyfR4wYoRw5cig6OlpbtmyRm5ub4uLi9Nprrz312gAAAPDiI2hlkJWVlUJCQrRhwwYtWbLEsr5nz57KmTOnRowYYVk3cOBAtWrVSqVLl9batWsVHR2tr7/+Wl5eXho8ePAD+woODlZcXJxOnTqlOXPm6KuvvtLYsWOfyHk9jlu3bikoKEgTJ05U165dtWvXLu3du1fdu3fX7Nmz9euvvz71mlxcXGRjY2P5HBMToypVqsjDw0O5cuWSlZWVXFxclDVr1kfu49atW0aUCgAAgBcQQesR+Pj4aOLEierZs6fi4uK0Zs0aLVu2TF9++aWsra0lSXv27NHkyZM1bdo0TZs2Ta+//rrc3d1VpkwZDR06VOvXr39gP87OznJxcZGbm5saNGigRo0a6cCBA6nazJ07V4UKFZK1tbWKFCmir776KtX2M2fOqFGjRrK3t5ejo6Natmyp8+fPW7ZHRkaqRo0acnBwkKOjo8qUKaN9+/YpNDRUHTt2VHx8vGVkbeTIkenWOWPGDG3fvl1btmxR9+7dVbp0aXl5eentt9/WL7/8osKFC6e731dffaWyZcvKwcFBLi4uevvtt3XhwgXL9r///ltt2rRRnjx5ZGdnp8KFCys4OFjSnZDTo0cPubq6ytbWVh4eHpowYYJl338/OmgymbR//36NHj3ach7pPTp45MgR1atXT/b29sqXL5/atm2rixcvWrZXr15dPXr0UO/evZU7d24FBQXd++YBAADgpUbQekQ9e/ZUqVKl1LZtW3Xt2lXDhw9XqVKlLNuXLl0qe3t7ffDBB+nubzKZMtTfsWPH9PPPP6tChQqWdatWrdKHH36ojz76SEeOHFG3bt3UsWNHbd26VZKUkpKiRo0a6fLly9q2bZs2bdqkkydPqlWrVpZjtGnTRq+++qrCw8O1f/9+DRo0SNmyZVPlypU1Y8YMOTo6Ki4uTnFxcerXr1+6tS1ZskSBgYHy8/NLsy1btmzKkSNHuvslJSVpzJgxioyM1OrVqxUbG6sOHTpYtg8bNkxHjx7V+vXrFRUVpblz5yp37tySpFmzZmnt2rX65ptvFB0drSVLlsjT0zPdfuLi4lS8eHF99NFH9zyPK1euqGbNmvLz89O+ffu0YcMGnT9/Xi1btkzVbtGiRbK2tlZYWJg+//zzdPu7efOmEhISUi0AAAB4uTz6c1MvOZPJpLlz58rX11clSpTQoEGDUm0/duyYvLy8Uj2aNm3aNA0fPtzy+Y8//pCTk9M9+2jdurWsrKyUnJysmzdvqkGDBqkeOZwyZYo6dOhgCXN9+/bVnj17NGXKFNWoUUNbtmzR4cOHderUKbm5uUmSvvzySxUvXlzh4eEqV66czpw5o/79+6to0aKSlGr0ycnJSSaTSS4uLve9FsePH1f16tUfcMXS6tSpk+XPXl5emjVrlsqVK6fExETZ29vrzJkz8vPzU9myZSUpVZA6c+aMChcurCpVqshkMsnDw+Oe/dx9RNDe3t5yLv8eqZKkTz/9VH5+fho/frxl3RdffCE3NzcdO3ZMPj4+ku5cn8mTJ9/3vCZMmKBRo0Y93EUAAADAC4kRrcfwxRdfKHv27Dp16pR+//33B7bv1KmTIiIiNG/ePF27dk1ms/m+7adPn66IiAhFRkZq3bp1OnbsmNq2bWvZHhUVpYCAgFT7BAQEKCoqyrLdzc3NErIkqVixYnJ2dra06du3r7p06aLAwEBNnDhRMTExD33+dz3oPO5l//79atiwodzd3eXg4KBq1apJuhOiJOn999/XsmXLVLp0aQ0YMEC7du2y7NuhQwdFRESoSJEi6tWrlzZu3PhINdwVGRmprVu3yt7e3rLcDZ//viZlypR54LEGDx6s+Ph4y3L27NnHqg0AAADPH4LWI9q1a5emT5+udevWqXz58urcuXOqwFG4cGGdPHky1Yx7zs7O8vb2VoECBR6qDxcXF3l7e6tIkSKqX7++Ro0apeXLl+vEiROGncfIkSP166+/qn79+vr5559VrFgxrVq1KkPH8PHx0W+//Zahfa5du6agoCA5OjpqyZIlCg8Pt/R7d5KJevXq6fTp0+rTp4/+/PNP1apVy/LYn7+/v06dOqUxY8boxo0batmypZo3b56hGv4tMTFRDRs2VERERKrl+PHjqlq1qqXdvR6D/DcbGxs5OjqmWgAAAPByIWg9guvXr6tDhw56//33VaNGDS1cuFB79+5N9c5O69atlZiYqDlz5hjWr5WVlSTpxo0bkiRfX1+FhYWlahMWFqZixYpZtp89ezbViMrRo0d15coVSxvpTlDq06ePNm7cqKZNm1omnLC2ttbt27cfWNfbb7+tzZs3pztlfVJSkq5du5Zm/W+//aZLly5p4sSJev3111W0aNFUE2HclSdPHrVv316LFy/WjBkz9L///c+yzdHRUa1atdL8+fO1fPlyrVixQpcvX35gvenx9/fXr7/+Kk9PT3l7e6daHiZcAQAAAP9G0HoEgwcPltls1sSJEyXdeXdoypQpGjBggGJjYyVJlSpV0kcffaSPPvpIffv21c6dO3X69Gnt2bNHCxculMlkUpYs97/8V65c0blz5/Tnn39q27ZtGj16tHx8fOTr6ytJ6t+/v0JCQjR37lwdP35c06ZN08qVKy2jPoGBgSpRooTatGmjAwcOaO/evWrXrp2qVaumsmXL6saNG+rRo4dCQ0N1+vRphYWFKTw83HJ8T09PJSYmasuWLbp48aKuX7+ebp29e/dWQECAatWqpc8++0yRkZE6efKkvvnmG1WsWFHHjx9Ps4+7u7usra01e/ZsnTx5UmvXrtWYMWNStRk+fLjWrFmjEydO6Ndff9W6desstU2bNk1Lly7Vb7/9pmPHjunbb7+Vi4vLQ//u1391795dly9fVuvWrRUeHq6YmBj99NNP6tix40OFTQAAAODfCFoZtG3bNn322WcKDg5W9uzZLeu7deumypUrp3qEcMqUKfr666918OBBNWjQQIULF1aLFi2UkpKi3bt3P/CRso4dO8rV1VWvvvqqWrdureLFi2v9+vWWCTYaN26smTNnasqUKSpevLjmzZun4OBgy8QUJpNJa9as0SuvvKKqVasqMDBQXl5eWr58uaQ7I2SXLl1Su3bt5OPjo5YtW6pevXqWiRwqV66s9957T61atVKePHnuOQmEjY2NNm3apAEDBmjevHmqWLGiypUrp1mzZqlXr17p/ihwnjx5FBISom+//VbFihXTxIkTNWXKlFRtrK2tNXjwYJUsWVJVq1aVlZWVli1bJklycHDQ5MmTVbZsWZUrV06xsbH68ccfHxhe7yV//vwKCwvT7du3VadOHZUoUUK9e/eWs7PzIx8TAAAALy+T+VFnMgDwUBISEuTk5KRSPT+XlY1dZpcDAPe1/5N2mV0CADx1d7+vxcfHG/Z+Pf+pHgAAAAAMRtACAAAAAIMRtAAAAADAYAQtAAAAADAYQQsAAAAADEbQAgAAAACDEbQAAAAAwGAELQAAAAAwGEELAAAAAAxG0AIAAAAAgxG0AAAAAMBgBC0AAAAAMBhBCwAAAAAMRtACAAAAAIMRtAAAAADAYAQtAAAAADBY1swuAHhZbB/bWo6OjpldBgAAAJ4CRrQAAAAAwGAELQAAAAAwGEELAAAAAAxG0AIAAAAAgxG0AAAAAMBgBC0AAAAAMBhBCwAAAAAMRtACAAAAAIMRtAAAAADAYAQtAAAAADAYQQsAAAAADJY1swsAXhZVhy6VlY1dZpcB4Dmw/5N2mV0CAOAxMaIFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWjBMhw4dZDKZZDKZlC1bNuXLl0+1a9fWF198oZSUlMwuT9L/1Thx4sRU61evXi2TyWT5HBoaKpPJpOLFi+v27dup2jo7OyskJORplAsAAIDnFEELhqpbt67i4uIUGxur9evXq0aNGvrwww/VoEEDJScnZ3Z5kiRbW1tNmjRJf//99wPbnjx5Ul9++eVTqAoAAAAvEoIWDGVjYyMXFxcVKFBA/v7++vjjj7VmzRqtX78+1SjQlStX1KVLF+XJk0eOjo6qWbOmIiMjUx1rzZo18vf3l62trby8vDRq1KhUYc1kMmnu3LmqV6+e7Ozs5OXlpe++++6BNQYGBsrFxUUTJkx4YNuePXtqxIgRunnz5sNfBAAAALz0CFp44mrWrKlSpUpp5cqVlnUtWrTQhQsXtH79eu3fv1/+/v6qVauWLl++LEnasWOH2rVrpw8//FBHjx7VvHnzFBISonHjxqU69rBhw9SsWTNFRkaqTZs2euuttxQVFXXfeqysrDR+/HjNnj1bv//++33b9u7dW8nJyZo9e/ZDn+/NmzeVkJCQagEAAMDLhaCFp6Jo0aKKjY2VJO3cuVN79+7Vt99+q7Jly6pw4cKaMmWKnJ2dLSNSo0aN0qBBg9S+fXt5eXmpdu3aGjNmjObNm5fquC1atFCXLl3k4+OjMWPGqGzZsg8Vipo0aaLSpUtrxIgR922XPXt2jRgxQhMmTFB8fPxDneuECRPk5ORkWdzc3B5qPwAAALw4CFp4Ksxms2WyicjISCUmJipXrlyyt7e3LKdOnVJMTIylzejRo1Ntf/fddxUXF6fr169bjlupUqVU/VSqVOmBI1p3TZo0SYsWLXpg+86dOytXrlyaNGnSQx138ODBio+Ptyxnz559qP0AAADw4sia2QXg5RAVFaWCBQtKkhITE+Xq6qrQ0NA07ZydnS1tRo0apaZNm6ZpY2tra0hNVatWVVBQkAYPHqwOHTrcs13WrFk1btw4dejQQT169HjgcW1sbGRjY2NIjQAAAHg+EbTwxP388886fPiw+vTpI0ny9/fXuXPnlDVrVnl6eqa7j7+/v6Kjo+Xt7X3fY+/Zs0ft2rVL9dnPz++ha5s4caJKly6tIkWK3LddixYt9Mknn2jUqFEPfWwAAAC8vAhaMNTNmzd17tw53b59W+fPn9eGDRs0YcIENWjQwBKIAgMDValSJTVu3FiTJ0+Wj4+P/vzzT/3www9q0qSJypYtq+HDh6tBgwZyd3dX8+bNlSVLFkVGRurIkSMaO3aspb+773lVqVJFS5Ys0d69e7Vw4cKHrrdEiRJq06aNZs2a9cC2EydOVFBQUMYvCgAAAF46vKMFQ23YsEGurq7y9PRU3bp1tXXrVs2aNUtr1qyRlZWVpDvTsv/444+qWrWqOnbsKB8fH7311ls6ffq08uXLJ0kKCgrSunXrtHHjRpUrV04VK1bU9OnT5eHhkaq/UaNGadmyZSpZsqS+/PJLLV26VMWKFctQzaNHj36oH1SuWbOmatas+cz8HhgAAACeXSaz2WzO7CKAR2EymbRq1So1btw4s0u5r4SEBDk5OalUz89lZWOX2eUAeA7s/6TdgxsBAAxz9/tafHy8HB0dDTkmI1oAAAAAYDCCFgAAAAAYjMkw8NziqVcAAAA8qxjRAgAAAACDEbQAAAAAwGAELQAAAAAwGEELAAAAAAxG0AIAAAAAgxG0AAAAAMBgBC0AAAAAMBhBCwAAAAAMRtACAAAAAIMRtAAAAADAYAQtAAAAADAYQQsAAAAADEbQAgAAAACDZc3sAoCXxfaxreXo6JjZZQAAAOApYEQLAAAAAAxG0AIAAAAAgxG0AAAAAMBgBC0AAAAAMBhBCwAAAAAMRtACAAAAAIMRtAAAAADAYAQtAAAAADAYQQsAAAAADEbQAgAAAACDEbQAAAAAwGBZM7sA4GVRdehSWdnYZXYZwAtv/yftMrsEAAAY0QIAAAAAoxG0AAAAAMBgBC0AAAAAMBhBCwAAAAAMRtACAAAAAIMRtAAAAADAYAQtAAAAADAYQQsAAAAADEbQAgAAAACDEbQAAAAAwGAELQAAAAAwGEELAAAAAAxG0AIAAAAAgxG0AAAAAMBgBC0AAAAAMBhBCwAAAAAMRtACAAAAAIMRtPBS8fT01IwZMzK7DAAAALzgXvqgdfv2bVWuXFlNmzZNtT4+Pl5ubm4aMmRIqvUrVqxQzZo19corr8jOzk5FihRRp06ddPDgwfv2YzKZLEvWrFnl7u6uvn376ubNm4af072EhITI2dn5odrdrTVLlixydXVVq1atdObMmSdf5BMWHh6url27ZnYZAAAAeMG99EHLyspKISEh2rBhg5YsWWJZ37NnT+XMmVMjRoywrBs4cKBatWql0qVLa+3atYqOjtbXX38tLy8vDR48+IF9BQcHKy4uTqdOndKcOXP01VdfaezYsU/kvB6Xo6Oj4uLi9Mcff2jFihWKjo5WixYtnni/SUlJT/T4efLkUfbs2Z9oHwAAAMBLH7QkycfHRxMnTlTPnj0VFxenNWvWaNmyZfryyy9lbW0tSdqzZ48mT56sadOmadq0aXr99dfl7u6uMmXKaOjQoVq/fv0D+3F2dpaLi4vc3NzUoEEDNWrUSAcOHEjVZu7cuSpUqJCsra1VpEgRffXVV6m2nzlzRo0aNZK9vb0cHR3VsmVLnT9/3rI9MjJSNWrUkIODgxwdHVWmTBnt27dPoaGh6tixo+Lj4y2jVSNHjrxnrSaTSS4uLnJ1dVXlypXVuXNn7d27VwkJCZY2a9askb+/v2xtbeXl5aVRo0YpOTnZsv23335TlSpVZGtrq2LFimnz5s0ymUxavXq1JCk2NlYmk0nLly9XtWrVZGtrawm7CxYskK+vr2xtbVW0aFHNmTPHctxbt26pR48ecnV1la2trTw8PDRhwgRJktls1siRI+Xu7i4bGxvlz59fvXr1suz730cHH3Q9R44cqdKlS+urr76Sp6ennJyc9NZbb+nq1av3vHYAAABA1swu4FnRs2dPrVq1Sm3bttXhw4c1fPhwlSpVyrJ96dKlsre31wcffJDu/iaTKUP9HTt2TD///LM6dOhgWbdq1Sp9+OGHmjFjhgIDA7Vu3Tp17NhRr776qmrUqKGUlBRLKNi2bZuSk5PVvXt3tWrVSqGhoZKkNm3ayM/PT3PnzpWVlZUiIiKULVs2Va5cWTNmzNDw4cMVHR0tSbK3t3+oWi9cuKBVq1bJyspKVlZWkqQdO3aoXbt2mjVrll5//XXFxMRYHskbMWKEbt++rcaNG8vd3V2//PKLrl69qo8++ijd4w8aNEhTp06Vn5+fJWwNHz5cn376qfz8/HTw4EG9++67ypEjh9q3b69Zs2Zp7dq1+uabb+Tu7q6zZ8/q7Nmzku482jl9+nQtW7ZMxYsX17lz5xQZGZluvw9zPSUpJiZGq1ev1rp16/T333+rZcuWmjhxosaNG5fucW/evJnqkdB/h1MAAAC8HAha/5/JZNLcuXPl6+urEiVKaNCgQam2Hzt2TF5eXsqa9f8u2bRp0zR8+HDL5z/++ENOTk737KN169aysrJScnKybt68qQYNGqR65HDKlCnq0KGDJcz17dtXe/bs0ZQpU1SjRg1t2bJFhw8f1qlTp+Tm5iZJ+vLLL1W8eHGFh4erXLlyOnPmjPr376+iRYtKkgoXLmw5vpOTk2Wk6kHi4+Nlb28vs9ms69evS5J69eqlHDlySJJGjRqlQYMGqX379pIkLy8vjRkzRgMGDNCIESO0adMmxcTEKDQ01NLfuHHjVLt27TR99e7dO9U7ciNGjNDUqVMt6woWLKijR49q3rx5at++vc6cOaPChQurSpUqMplM8vDwsOx75swZubi4KDAwUNmyZZO7u7vKly+f7jk+zPWU7gSykJAQOTg4SJLatm2rLVu23DNoTZgwQaNGjXrgNQYAAMCLi0cH/+WLL75Q9uzZderUKf3+++8PbN+pUydFRERo3rx5unbtmsxm833bT58+XREREYqMjNS6det07NgxtW3b1rI9KipKAQEBqfYJCAhQVFSUZbubm5slFEhSsWLF5OzsbGnTt29fdenSRYGBgZo4caJiYmIe+vz/zcHBQREREdq3b5+mTp0qf3//VMEiMjJSo0ePlr29vWV59913FRcXp+vXrys6Olpubm6pQt29Ak/ZsmUtf7527ZpiYmLUuXPnVMceO3as5Vw6dOigiIgIFSlSRL169dLGjRst+7do0UI3btyQl5eX3n33Xa1atSrV44z/9jDXU7rzuOHdkCVJrq6uunDhwj2v3eDBgxUfH29Z7o62AQAA4OVB0Pr/du3apenTp2vdunUqX768OnfunCo4FS5cWCdPnkw1WYOzs7O8vb1VoECBh+rDxcVF3t7eKlKkiOrXr69Ro0Zp+fLlOnHihGHnMXLkSP3666+qX7++fv75ZxUrVkyrVq3K8HGyZMkib29v+fr6qm/fvqpYsaLef/99y/bExESNGjVKERERluXw4cM6fvy4bG1tM9TX3VGyu8eVpPnz56c69pEjR7Rnzx5Jkr+/v06dOqUxY8boxo0batmypZo3by5JcnNzU3R0tObMmSM7Ozt98MEHqlq16mNNspEtW7ZUn00mk1JSUu7Z3sbGRo6OjqkWAAAAvFwIWpKuX7+uDh066P3331eNGjW0cOFC7d27V59//rmlTevWrZWYmJhqUobHdfd9pxs3bkiSfH19FRYWlqpNWFiYihUrZtn+7/eRJOno0aO6cuWKpY10Z3KPPn36aOPGjWratKmCg4MlSdbW1rp9+/Yj1Tpo0CAtX77cMnmHv7+/oqOj5e3tnWbJkiWLihQporNnz6aaWCI8PPyB/eTLl0/58+fXyZMn0xy3YMGClnaOjo5q1aqV5s+fr+XLl2vFihW6fPmyJMnOzk4NGzbUrFmzFBoaqt27d+vw4cNp+nrY6wkAAABkFO9o6c6jXmazWRMnTpR051GxKVOmqF+/fqpXr548PT1VqVIlffTRR/roo490+vRpNW3aVG5uboqLi9PChQstvzl1P1euXNG5c+eUkpKi48ePa/To0fLx8ZGvr68kqX///mrZsqX8/PwUGBio77//XitXrtTmzZslSYGBgSpRooTatGmjGTNmKDk5WR988IGqVaumsmXL6saNG+rfv7+aN2+uggUL6vfff1d4eLiaNWtmOa/ExERt2bJFpUqVUvbs2R96qnM3Nzc1adJEw4cP17p16zR8+HA1aNBA7u7uat68ubJkyaLIyEgdOXJEY8eOVe3atVWoUCG1b99ekydP1tWrVzV06FBJD544ZNSoUerVq5ecnJxUt25d3bx5U/v27dPff/+tvn37atq0aXJ1dZWfn5+yZMmib7/9Vi4uLnJ2dlZISIhu376tChUqKHv27Fq8eLHs7OxSvcd114OuJwAAAPCoXvoRrW3btumzzz5TcHBwqtDRrVs3y7Tmdx8hnDJlir7++msdPHhQDRo0UOHChdWiRQulpKRo9+7dD3xErGPHjnJ1ddWrr76q1q1bq3jx4lq/fr1lgo3GjRtr5syZmjJliooXL6558+YpODhY1atXl3QnoKxZs0avvPKKqlatqsDAQHl5eWn58uWS7oyQXbp0Se3atZOPj49atmypevXqWSZmqFy5st577z21atVKefLk0eTJkzN0rfr06aMffvhBe/fuVVBQkNatW6eNGzeqXLlyqlixoqZPn24JNFZWVlq9erUSExNVrlw5denSxfLjzw96tLBLly5asGCBgoODVaJECVWrVk0hISGWES0HBwdNnjxZZcuWVbly5RQbG6sff/xRWbJkkbOzs+bPn6+AgACVLFlSmzdv1vfff69cuXKl6edB1xMAAAB4VCbzg2ZwAAwSFhamKlWq6MSJEypUqFBml/PUJCQkyMnJSaV6fi4rG7vMLgd44e3/pF1mlwAAeM7c/b4WHx9v2Pv1PDqIJ2bVqlWyt7dX4cKFdeLECX344YcKCAh4qUIWAAAAXk4ELTwxV69e1cCBA3XmzBnlzp1bgYGBmjp1amaXBQAAADxxBC08Me3atVO7djzCAwAAgJfPSz8ZBgAAAAAYjaAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAAAAABiMoAUAAAAABiNoAQAAAIDBCFoAAAAAYDCCFgAAAAAYLGtmFwC8LLaPbS1HR8fMLgMAAABPASNaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMGYDAN4wsxmsyQpISEhkysBAABAeu5+T7v7vc0IBC3gCbt06ZIkyc3NLZMrAQAAwP1cunRJTk5OhhyLoAU8YTlz5pQknTlzxrB/uHh2JSQkyM3NTWfPnmU6/5cA9/vlwv1+uXC/Xy7x8fFyd3e3fG8zAkELeMKyZLnzKqSTkxP/Q/0ScXR05H6/RLjfLxfu98uF+/1yufu9zZBjGXYkAAAAAIAkghYAAAAAGI6gBTxhNjY2GjFihGxsbDK7FDwF3O+XC/f75cL9frlwv18uT+J+m8xGzmEIAAAAAGBECwAAAACMRtACAAAAAIMRtAAAAADAYAQtAAAAADAYQQswwGeffSZPT0/Z2tqqQoUK2rt3733bf/vttypatKhsbW1VokQJ/fjjj0+pUhghI/d7/vz5ev311/XKK6/olVdeUWBg4AP/fuDZktF/33ctW7ZMJpNJjRs3frIFwlAZvd9XrlxR9+7d5erqKhsbG/n4+PC/6c+RjN7vGTNmqEiRIrKzs5Obm5v69Omjf/755ylVi0e1fft2NWzYUPnz55fJZNLq1asfuE9oaKj8/f1lY2Mjb29vhYSEZLhfghbwmJYvX66+fftqxIgROnDggEqVKqWgoCBduHAh3fa7du1S69at1blzZx08eFCNGzdW48aNdeTIkadcOR5FRu93aGioWrdura1bt2r37t1yc3NTnTp19McffzzlyvEoMnq/74qNjVW/fv30+uuvP6VKYYSM3u9bt26pdu3aio2N1Xfffafo6GjNnz9fBQoUeMqV41Fk9H5//fXXGjRokEaMGKGoqCgtXLhQy5cv18cff/yUK0dGXbt2TaVKldJnn332UO1PnTql+vXrq0aNGoqIiFDv3r3VpUsX/fTTTxnr2AzgsZQvX97cvXt3y+fbt2+b8+fPb54wYUK67Vu2bGmuX79+qnUVKlQwd+vW7YnWCWNk9H7/V3JystnBwcG8aNGiJ1UiDPQo9zs5OdlcuXJl84IFC8zt27c3N2rU6ClUCiNk9H7PnTvX7OXlZb5169bTKhEGyuj97t69u7lmzZqp1vXt29ccEBDwROuEsSSZV61add82AwYMMBcvXjzVulatWpmDgoIy1BcjWsBjuHXrlvbv36/AwEDLuixZsigwMFC7d+9Od5/du3enai9JQUFB92yPZ8ej3O//un79upKSkpQzZ84nVSYM8qj3e/To0cqbN686d+78NMqEQR7lfq9du1aVKlVS9+7dlS9fPr322msaP368bt++/bTKxiN6lPtduXJl7d+/3/J44cmTJ/Xjjz/qjTfeeCo14+kx6rtaViOLAl42Fy9e1O3bt5UvX75U6/Ply6fffvst3X3OnTuXbvtz5849sTphjEe53/81cOBA5c+fP83/gOPZ8yj3e+fOnVq4cKEiIiKeQoUw0qPc75MnT+rnn39WmzZt9OOPP+rEiRP64IMPlJSUpBEjRjyNsvGIHuV+v/3227p48aKqVKkis9ms5ORkvffeezw6+AK613e1hIQE3bhxQ3Z2dg91HEa0AOApmThxopYtW6ZVq1bJ1tY2s8uBwa5evaq2bdtq/vz5yp07d2aXg6cgJSVFefPm1f/+9z+VKVNGrVq10pAhQ/T5559ndml4AkJDQzV+/HjNmTNHBw4c0MqVK/XDDz9ozJgxmV0anlGMaAGPIXfu3LKystL58+dTrT9//rxcXFzS3cfFxSVD7fHseJT7fdeUKVM0ceJEbd68WSVLlnySZcIgGb3fMTExio2NVcOGDS3rUlJSJElZs2ZVdHS0ChUq9GSLxiN7lH/frq6uypYtm6ysrCzrfH19de7cOd26dUvW1tZPtGY8uke538OGDVPbtm3VpUsXSVKJEiV07do1de3aVUOGDFGWLIxfvCju9V3N0dHxoUezJEa0gMdibW2tMmXKaMuWLZZ1KSkp2rJliypVqpTuPpUqVUrVXpI2bdp0z/Z4djzK/ZakyZMna8yYMdqwYYPKli37NEqFATJ6v4sWLarDhw8rIiLCsrz55puWWavc3NyeZvnIoEf59x0QEKATJ05YArUkHTt2TK6uroSsZ9yj3O/r16+nCVN3Q/adORbwojDsu1rG5ukA8F/Lli0z29jYmENCQsxHjx41d+3a1ezs7Gw+d+6c2Ww2m9u2bWseNGiQpX1YWJg5a9as5ilTppijoqLMI0aMMGfLls18+PDhzDoFZEBG7/fEiRPN1tbW5u+++84cFxdnWa5evZpZp4AMyOj9/i9mHXy+ZPR+nzlzxuzg4GDu0aOHOTo62rxu3Tpz3rx5zWPHjs2sU0AGZPR+jxgxwuzg4GBeunSp+eTJk+aNGzeaCxUqZG7ZsmVmnQIe0tWrV80HDx40Hzx40CzJPG3aNPPBgwfNp0+fNpvNZvOgQYPMbdu2tbQ/efKkOXv27Ob+/fubo6KizJ999pnZysrKvGHDhgz1S9ACDDB79myzu7u72dra2ly+fHnznj17LNuqVatmbt++far233zzjdnHx8dsbW1tLl68uPmHH354yhXjcWTkfnt4eJglpVlGjBjx9AvHI8nov+9/I2g9fzJ6v3ft2mWuUKGC2cbGxuzl5WUeN26cOTk5+SlXjUeVkfudlJRkHjlypLlQoUJmW1tbs5ubm/mDDz4w//3330+/cGTI1q1b0/3/4rv3t3379uZq1aql2ad06dJma2trs5eXlzk4ODjD/ZrMZsY6AQAAAMBIvKMFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMEIWgAAAABgMIIWAACPwWQyZWjx9PTMtFqrV68uk8mk2NjYTKvhXjw9PS3XaOnSpfdst3fv3lTXMz1bt25Vs2bNVKBAAVlbW+uVV15RkSJF1KJFC3366aeKj49P1f7udXlW7xuA51PWzC4AAIDnWfv27dOs27lzp2JiYlSqVCmVLl061bbcuXM/sVpMJpM8PDyeySCVEUuWLFHr1q3T3bZ48eL77jt69GiNGDFCkuTr66sKFSooW7Zsio6O1sqVK/Xdd9+pbNmyqlixYpp9g4KC5OLiku5xn+R9A/BiImgBAPAYQkJC0qzr0KGDYmJi1LhxY40cOfKp13QvX375pa5fv64CBQpkdin35Ofnp59++kkXL15ME26Sk5O1fPlyFStWTDExMbp582aq7fv379fIkSOVLVs2ffPNN2rcuHGq7efOndPixYvl7Oycbt+DBg1S9erVDTwbAC8zHh0EAOAl4e7urqJFiypbtmyZXco9tWnTxhKo/mvjxo26cOGC3nnnnXT3Xblypcxms1q2bJkmZEmSi4uL+vXrp6JFixpdNgCkQdACAOApSk5O1ty5c1WpUiU5OjrKzs5OpUuX1owZM5ScnJym/V9//aVBgwapWLFisre3l5OTk3x8fNSuXTvt3btX0p1RtbvvK50+fTrVu0X/HqG51ztad99Bun37tiZNmiQfHx/Z2NjIzc1NAwcOTDNydNehQ4fUsGFDOTs7y8HBQVWrVtWmTZsUGhoqk8mkDh06ZPj6vPnmm3JwcEj3EcHFixfLZDKpTZs26e77119/SZLy5MmT4X4BwGg8OggAwFNy48YN1a9fX1u3blXOnDlVsWJF2dra6pdfflGfPn20detWrVq1Slmy3PnvoFevXlWFChV06tQpubm5qXbt2sqaNavOnDmjZcuWycvLS+XLl5e3t7fat2+vRYsWKUeOHGrevLmlz4yM3rz99tv68ccfVb16dRUpUkQ7duzQ5MmT9ccff6QJPrt371ZgYKCuX7+ukiVLWh7nq1u3rrp37/7I18jOzk5NmzbVokWLFBMTo0KFCkmSEhMTtWbNGlWpUkXu7u7p7uvm5iZJWrFihQYPHqy8efM+ch0A8NjMAADAUO3btzdLMo8YMSLV+g8++MAsydyqVSvzlStXLOsTEhLMb7zxhlmSee7cuZb1X3zxhVmS+c033zTfvn071bEuXLhgPnz4cKp1ksweHh73rKtatWpmSeZTp06l2U+S2dfX1xwXF2dZf/LkSbOzs7NZkvnEiROW9bdv3zb7+PiYJZnHjRuX6lgLFiywHK99+/b3rOW/PDw8zJLMZ8+eNW/atMksyTxq1CjL9i+//NIsyTxv3jyz2Ww229jYmP/7NSYmJsZsZ2dnlmR2cHAwt2/f3jx//nzzgQMHzMnJyQ+8Llu3bn3oegHgQXh0EACAp+DChQuaP3++3NzcFBwcLCcnJ8s2BwcHLVy4UNbW1po7d65l/d1H4WrWrGkZ5borT548eu211wytcdasWalm3StYsKDlfagdO3ZY1v/88886duyYChcurEGDBqU6RufOnRUQEPBYddSsWVOurq5asmSJZd3ixYtlY2OjFi1a3HM/Ly8vff/993Jzc9PVq1e1aNEivfvuu/L391fu3Ln1wQcfKC4u7p7716hR457Tu/fu3fuxzgnAy4dHBwEAeApCQ0OVlJSkunXrys7OLs12FxcXFS5cWIcPH9aNGzdkZ2enMmXKSJI++eQT5cuXT/Xr15eDg8MTqS9btmyqUaNGmvU+Pj6SlCqghIWFSZKaNWuWJgBKUqtWrSxtHkWWLFnUunVrTZs2TeHh4XJzc9OWLVv05ptv6pVXXrnvvrVq1dKJEyf0ww8/aOPGjdq7d68OHTqkK1euaO7cuVqxYoW2b9+uIkWKpNn3ftO7ly9f/pHPB8DLiaAFAMBTcHcCivnz52v+/Pn3bXv58mUVKFBAtWrVUp8+fTRjxgy1bt1aWbNmlb+/v2rXrq1OnTrJy8vLsPpcXFxkZWWVZv3dYPfvCTHuhq6770T9173eocqId955R9OmTdOSJUvk4eGh27dv33O2wf+ytrZWkyZN1KRJE0nSlStXtGzZMn388ce6cOGCevTooU2bNqXZj+ndARiJoAUAwFOQkpIiSSpdurRKlSp137Y2NjaWP0+bNk3dunXTmjVrtHnzZoWFhWnv3r2aPHmyli5dqmbNmhlSX3ojU5nJz89Pvr6+WrZsmVxdXeXs7Kz69es/0rGcnZ313nvvKX/+/GrUqJG2bt2q69evK3v27AZXDQD/h6AFAMBT8Oqrr0qSqlSpotmzZ2do3yJFimjAgAEaMGCA/vnnH3366afq37+/3n//fcOCVka4urpKks6ePZvu9nutz6h33nlHQ4YM0fnz5/Xuu++mCqCPombNmpKk27dv68qVKwQtAE/Us/WfrwAAeEHVqFFDVlZWWrdunZKSkh75OLa2turXr59cXV31119/6cKFC5Zt2bJlS/e3uIx2d7KLVatWyWw2p9n+zTffGNLP22+/rdy5cytXrlxq167dA9unV8u/nThxQtKdRwtz585tSI0AcC8ELQAAnoICBQqoU6dOio2NVevWrXX+/Pk0bU6cOKEVK1ZYPq9evVp79uxJ027//v06f/687O3t5ezsbFmfP39+nT9/XleuXHkSp2BRs2ZNFS5cWNHR0Zo8eXKqbSEhIalmKHwcnp6e+uuvv3Tx4kVVqVLlge2HDRum/v37KyYmJs22P/74Q926dZN050eRra2tDakRAO6FRwcBAHhKZs6cqdjYWK1YsUIbNmxQ6dKl5e7urmvXruno0aM6ceKEGjVqZHkcMDQ0VDNnzlSBAgXk5+cnR0dH/fnnn9qxY4dSUlI0atSoVIHhzTff1OzZs+Xv76/KlSvL1tZWRYoUUf/+/Q09jyxZsmjRokUKDAzUoEGDtHTpUssPFoeHh6t79+767LPPnnqYSUxM1MyZMzVlyhT5+PioWLFisrW11e+//65ffvlFSUlJ8vb21owZM9Ldf+LEiQoJCbnn8efMmcPjhgAeGkELAICnxM7OTuvXr9eSJUu0aNEiRUREaO/evcqTJ488PDzUtm1bvfXWW5b2HTp0UNasWbV9+3bt3btX8fHxcnFx0RtvvKEPP/xQtWrVSnX8CRMmyGw2a82aNVq+fLmSk5NVrVo1w4OWJFWqVEm7du3S0KFDtX37dp04cUKlS5fWjz/+qEuXLumzzz5Trly5DO/3foYOHaqyZcvqp59+UmRkpHbs2KH4+Hg5OjqqfPnyatSokT744APlyJEj3f1/+umn+x5/xowZBC0AD81kftADzQAAABnw3nvvad68eVq2bJlatWqV2eUAQKYgaAEAgAy7fPmyEhIS5OnpmWr98uXL1aZNGzk4OOj333+/5+gRALzoeHQQAABk2LFjx1SpUiWVLFnS8sPJUVFRio6OlpWVlebNm0fIAvBSY0QLAABk2IULFzR69Gj9/PPP+vPPP3Xt2jXlzp1blStXVr9+/VSpUqXMLhEAMhVBCwAAAAAMxu9oAQAAAIDBCFoAAAAAYDCCFgAAAAAYjKAFAAAAAAYjaAEAAACAwQhaAAAAAGAwghYAAAAAGIygBQAAAAAGI2gBAAAAgMH+HypvOJBRxFVHAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "f, axe = plt.subplots(1,1, figsize=(8,6))\n", + "\n", + "results.sort_values(by=['MSE_test'], ascending=False, inplace=True)\n", + "\n", + "sns.barplot(x='MSE_test', y='Model', data = results, ax = axe)\n", + "axe.set_xlabel('Testing MSE', size=15)\n", + "axe.set_ylabel('Model', size=15)\n", + "axe.set_xlim(0,1)\n", + "\n", + "plt.savefig('MSE_plot.png', bbox_inches='tight')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2W_Vg5STQlet" + }, + "source": [ + "# XG Boost Regression is best fit for `Nurse Stress Prediction` dataset, let's visualize its results." + ] + }, + { + "cell_type": "code", + "source": [ + "ypred = xgb.predict(xtest)" + ], + "metadata": { + "id": "RUo1HvaUg6pk" + }, + "execution_count": 64, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "HelMtABWQGYb", + "outputId": "347ca45b-0817-40ea-ca7b-614a8d185c08" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv8AAAIjCAYAAACUB3R2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABn/0lEQVR4nO3dd3hU5dbG4WcSSCMFQpWO9BakI6iUAwJWjgrHTleRrqjg0QOKCAgqRaQ3KwgKKoLSQ5MOIigICoL0moQAATL7++P9UjY1CUl2JvO7ryuXZs2emRUCyTNr3v1ul2VZlgAAAABkez5ONwAAAAAgcxD+AQAAAC9B+AcAAAC8BOEfAAAA8BKEfwAAAMBLEP4BAAAAL0H4BwAAALwE4R8AAADwEoR/AAAAwEsQ/gEA+H8lS5ZUu3btnG7jupYvXy6Xy6Xly5c73QoAD0X4B+DRnn76aQUEBOiPP/646rYhQ4bI5XJp3rx5tnpcXJxGjx6tu+66S3ny5JGfn58KFy6shx56SF9++aXi4+Nv+rwlS5aUy+VK/AgICFDZsmX1yiuv6NSpU+n29aXV/PnzNWDAgBQf36hRI9vXExgYqIiICI0YMUJutzvjGoUkadq0aVf9fSpXrpy6deumo0ePpstzpPbvBIDsKYfTDQDArfjggw80f/58vfDCC1q6dGlife/evXr77bf16KOP6oEHHkisHz9+XC1bttSmTZvUvHlzvfHGGwoPD9eRI0e0ePFiPfnkk9qzZ4/efPPNmz73HXfcoZdfflmSdOHCBW3atEkjRoxQZGSk1q9fn/5fbCrMnz9fY8aMSVXYK1q0qAYPHixJOnHihL744gv17t1bx48f16BBgzKo06xl165d8vFxbi729ttvq1SpUrpw4YJWrVqlsWPHav78+dq+fbuCgoJu6bHT8ncCQPZD+Afg0QoUKKChQ4fqueee0/Tp09W2bVtJ0osvvqicOXNq5MiRtuOfeeYZbdmyRV9//bUeeeQR2239+vXTxo0btWvXrhQ9d5EiRfT0008nft6pUycFBwdr+PDh2r17t8qWLXuLX13mCgsLs309L7zwgipUqKDRo0fr7bfflq+vb6b1cuHCBfn5+WV6EPf398/U57tSy5YtVatWLUnm71PevHn1wQcf6Ntvv9UTTzzhaG8AsgeW/QDweJ06dVKDBg3Up08fnTx5UjNmzNCPP/6od955R0WKFEk87ueff9ZPP/2k55577qrgn6BWrVp66qmn0txLoUKFJEk5cthnK0uXLtXdd9+tXLlyKXfu3Hr44Yf1+++/X3X/LVu2qGXLlgoNDVVwcLD+9a9/ae3atbZjLl26pLfeektly5ZVQECA8ubNq7vuukuLFi2SJLVr105jxoyRJNtSktQKCAhQ7dq1FRMTo2PHjtlu++yzz1SzZk0FBgYqPDxcjz/+uA4cOHDVY4wZM0a33367AgMDVadOHa1cuVKNGjVSo0aNEo9JWMc+Y8YMvfHGGypSpIiCgoIUHR0tSVq3bp1atGihsLAwBQUFqWHDhlq9erXteWJiYtSrVy+VLFlS/v7+KlCggJo1a6bNmzcnHrN79249+uijKlSokAICAlS0aFE9/vjjioqKSjzmWmv+//rrL7Vu3Vrh4eEKCgpSvXr19MMPP9iOSfgavvrqKw0aNEhFixZVQECA/vWvf2nPnj2p+nNPrkmTJpLMO1k3MmvWrMTvR758+fT000/r4MGDiben198JAJ6PyT8Aj+dyuTR+/HhVr15dXbp00cqVK1WrVi117drVdtz3338vSbbp9q24dOmSTpw4IclMqrds2aIPPvhA99xzj0qVKpV43OLFi9WyZUvdfvvtGjBggM6fP6/Ro0erQYMG2rx5s0qWLClJ2rFjh+6++26Fhobq1VdfVc6cOTV+/Hg1atRIkZGRqlu3riRpwIABGjx4sDp16qQ6deooOjpaGzdu1ObNm9WsWTM9//zzOnTokBYtWqRPP/30lr7Gffv2yeVyKXfu3Im1QYMG6c0331SbNm3UqVMnHT9+XKNHj9Y999yjLVu2JB47duxYdevWTXfffbd69+6tffv2qVWrVsqTJ4+KFi161XMNHDhQfn5+6tOnj+Li4uTn56elS5eqZcuWqlmzpvr37y8fHx9NnTpVTZo00cqVK1WnTh1J5l2K2bNnq1u3bqpUqZJOnjypVatW6ffff1eNGjV08eJFNW/eXHFxcerevbsKFSqkgwcPat68eTpz5ozCwsKu+fUfPXpU9evX17lz59SjRw/lzZtX06dP10MPPaTZs2fr3//+t+34IUOGyMfHR3369FFUVJTee+89PfXUU1q3bl2a/vz//PNPSVLevHmve8y0adPUvn171a5dW4MHD9bRo0c1cuRIrV69OvH7kZ5/JwB4OAsAsol+/fpZkixfX19r06ZNV93+73//25JknTlzxlY/f/68dfz48cSP06dP3/S5SpQoYUm66qNBgwbWiRMnbMfecccdVoECBayTJ08m1n755RfLx8fHevbZZxNrrVq1svz8/Kw///wzsXbo0CErJCTEuueeexJr1apVs+6///4b9te1a1crNT/iGzZsaFWoUCHxz2Dnzp3WK6+8YkmyPde+ffssX19fa9CgQbb7//rrr1aOHDkS63FxcVbevHmt2rVrW5cuXUo8btq0aZYkq2HDhom1ZcuWWZKs22+/3Tp37lxi3e12W2XLlrWaN29uud3uxPq5c+esUqVKWc2aNUushYWFWV27dr3u17dlyxZLkjVr1qwb/jmUKFHCatu2beLnvXr1siRZK1euTKzFxMRYpUqVskqWLGnFx8fbvoaKFStacXFxiceOHDnSkmT9+uuvN3zeqVOnWpKsxYsXW8ePH7cOHDhgzZgxw8qbN68VGBho/fPPP7bnWbZsmWVZlnXx4kWrQIECVpUqVazz588nPt68efMsSdb//ve/xFpq/04AyJ5Y9gMg28iXL58kqXDhwqpSpcpVtycsIwkODrbVx40bp/z58yd+3HXXXSl6vrp162rRokVatGiR5s2bp0GDBmnHjh166KGHdP78eUnS4cOHtXXrVrVr107h4eGJ942IiFCzZs00f/58SVJ8fLwWLlyoVq1a6fbbb0887rbbbtOTTz6pVatWJfafO3du7dixQ7t3707pH02K7Ny5M/HPoEKFCho2bJgeeughTZs2LfGYb775Rm63W23atNGJEycSPwoVKqSyZctq2bJlkqSNGzfq5MmT6ty5s20J1FNPPaU8efJc8/nbtm2rwMDAxM+3bt2q3bt368knn9TJkycTnys2Nlb/+te/tGLFisSdiHLnzq1169bp0KFD13zshMn+Tz/9pHPnzqX4z2T+/PmqU6eO7e9EcHCwnnvuOe3bt0+//fab7fj27dvLz88v8fO7775bklk6lBJNmzZV/vz5VaxYMT3++OMKDg7WnDlzbMvXktu4caOOHTumF198UQEBAYn1+++/XxUqVLhqeRIAEP4BZAsHDhxQ//79VaVKFR04cEDvvffeVceEhIRIks6ePWurP/roo4khPiIiIsXPmS9fPjVt2lRNmzbV/fffr9dff12TJk3SmjVrNGnSJEnS33//LUkqX778VfevWLFiYpg9fvy4zp07d93j3G534pr6t99+W2fOnFG5cuVUtWpVvfLKK9q2bVuK+76ekiVLatGiRfrpp5/08ccfq0iRIjp+/LgtVO7evVuWZals2bK2F0z58+fX77//nnhuQMLXXaZMGdtz5MiRI3GZ05WSL5VKeC7JvCi48rkmTZqkuLi4xPX67733nrZv365ixYqpTp06GjBggC1wlypVSi+99JImTZqkfPnyqXnz5hozZoxtvf+1/P3339f9niT/OhMUL17c9nnCC53Tp0/f8HkSjBkzRosWLdKyZcv022+/6a+//lLz5s1v2J907b9fFSpUuKo/AGDNP4BsoVu3bpKkBQsW6KWXXtKgQYP05JNP2qboFSpUkCRt375dDRo0SKwXK1ZMxYoVk2TCWsI6/rT417/+JUlasWKFunfvnubHuZF77rlHf/75p7799lstXLhQkyZN0ocffqhx48apU6dOaX7cXLlyqWnTpomfN2jQQDVq1NDrr7+uUaNGSZLcbrdcLpcWLFhwzd1/rnxXJTWST/0TnkuShg0bpjvuuOOa90l4vjZt2ujuu+/WnDlztHDhQg0bNkxDhw7VN998o5YtW0qS3n//fbVr1y7xz61Hjx4aPHiw1q5de81zENLiejsiWZaVovvXqVMncbcfAMgITP4BeLw5c+bou+++08CBA1W0aFGNGDFCfn5+V53wm7Df/+eff55hvVy+fFlS0rsLJUqUkKRrbh+6c+dO5cuXT7ly5VL+/PkVFBR03eN8fHwSX6BIUnh4uNq3b68vv/xSBw4cUEREhG3/9vTYySUiIkJPP/20xo8fr/3790uSSpcuLcuyVKpUqcR3PZJ/1KtXz/Z1X7nTzeXLl7Vv374UPX/p0qUlSaGhodd8rqZNmypnzpyJx99222168cUXNXfuXO3du1d58+a96voEVatW1RtvvKEVK1Zo5cqVOnjwoMaNG3fdHkqUKHHd70nyr9MpN/r7tWvXLlt/7O4DQCL8A/BwMTEx6tGjh6pXr544aS9cuLAGDhyoH3/8UbNmzUo8tkGDBmrWrJkmTJigb7/99pqPl9IJ7fUk7ChUrVo1SSaQ3nHHHZo+fbrOnDmTeNz27du1cOFC3XfffZLMxPjee+/Vt99+awvHR48e1RdffKG77rpLoaGhkqSTJ0/anjM4OFhlypRRXFxcYi1XrlySZHvOtHj11Vd16dIlffDBB5KkRx55RL6+vnrrrbeu+rOyLCuxt1q1ailv3ryaOHFi4gsiybzwSukSmJo1a6p06dIaPnz4VUu1JHPBNsmcL3Hl8p0CBQqocOHCiX8m0dHRtj4k80LAx8fH9ud2pfvuu0/r16/Xzz//nFiLjY3VhAkTVLJkSVWqVClFX0tGqVWrlgoUKKBx48bZvo4FCxbo999/1/33359YS6+/EwA8G8t+AHi0N954Q4cOHdI333xjW3LRtWtXTZ8+Xb169VKLFi0S1/t/9tlnatGihVq1aqWWLVuqadOmypMnT+IVflesWJG4TORmDh48qM8++0ySdPHiRf3yyy8aP3688uXLZ1vyM2zYMLVs2VJ33nmnOnbsmLjVZ1hYmG1a/84772jRokW666679OKLLypHjhwaP3684uLibOcwVKpUSY0aNVLNmjUVHh6ujRs3Jm5zmaBmzZqSpB49eqh58+by9fXV448/nuo/30qVKum+++7TpEmT9Oabb6p06dJ655131K9fv8StO0NCQrR3717NmTNHzz33nPr06SM/Pz8NGDBA3bt3V5MmTdSmTRvt27dP06ZNU+nSpVM0hfbx8dGkSZPUsmVLVa5cWe3bt1eRIkV08OBBLVu2TKGhofr+++8VExOjokWL6rHHHlO1atUUHBysxYsXa8OGDXr//fclmessdOvWTa1bt1a5cuV0+fJlffrpp/L19dWjjz563R769u2rL7/8Ui1btlSPHj0UHh6u6dOna+/evfr6668dvRqwJOXMmVNDhw5V+/bt1bBhQz3xxBOJW32WLFlSvXv3Tjw2vf5OAPBwTm41BAC3YuPGjZavr6/VrVu3a96+fv16y8fHx+rRo4etfv78eWvEiBHWnXfeaYWGhlo5cuSwChUqZD3wwAPW559/bl2+fPmmz33lVp8+Pj5WgQIFrCeeeMLas2fPVccvXrzYatCggRUYGGiFhoZaDz74oPXbb79dddzmzZut5s2bW8HBwVZQUJDVuHFja82aNbZj3nnnHatOnTpW7ty5rcDAQKtChQrWoEGDrIsXLyYec/nyZat79+5W/vz5LZfLddMtHhs2bGhVrlz5mrctX77ckmT1798/sfb1119bd911l5UrVy4rV65cVoUKFayuXbtau3btst131KhRVokSJSx/f3+rTp061urVq62aNWtaLVq0SDwmYfvK623DuWXLFuuRRx6x8ubNa/n7+1slSpSw2rRpYy1ZssSyLLOt6CuvvGJVq1bNCgkJsXLlymVVq1bN+vjjjxMf46+//rI6dOhglS5d2goICLDCw8Otxo0bW4sXL7Y915VbfVqWZf3555/WY489ZuXOndsKCAiw6tSpY82bN892zPW+hr1791qSrKlTp17za0uQsNXnhg0bbnjclVt9Jpg5c6ZVvXp1y9/f3woPD7eeeuqpxO1BE6T27wSA7MllWbf4HjcAACnkdruVP39+PfLII5o4caLT7QCA12HNPwAgQ1y4cOGq8wI++eQTnTp1So0aNXKmKQDwckz+AQAZYvny5erdu7dat26tvHnzavPmzZo8ebIqVqyoTZs22S6GBQDIHJzwCwDIECVLllSxYsU0atQonTp1SuHh4Xr22Wc1ZMgQgj8AOITJPwAAAOAlWPMPAAAAeAnCPwAAAOAlvGrNv9vt1qFDhxQSEsJlzgEAAJAtWJalmJgYFS5c+KYXH/Sq8H/o0CEVK1bM6TYAAACAdHfgwAEVLVr0hsd4VfgPCQmRZP5gQkNDHe4GAAAAuHXR0dEqVqxYYta9Ea8K/wlLfUJDQwn/AAAAyFZSsqydE34BAAAAL0H4BwAAALwE4R8AAADwEoR/AAAAwEsQ/gEAAAAvQfgHAAAAvAThHwAAAPAShH8AAADASxD+AQAAAC9B+AcAAAC8BOEfAAAA8BKEfwAAAMBLEP4BAAAAL0H4BwAAALwE4R8AAADwEoR/AAAA4FZFRUkXLjjdxU0R/gEAAIBbMX++VLmy1L+/053cFOEfAAAASIvTp6V27aT775cOHpSGD5fWr3e6qxsi/AMAAACp9d13Zto/fXpSLUcOaft253pKgRxONwAAAAB4jJMnpR49pC++sNfr1JGmTDEvCLIwJv8AAABASnzzjVSpkj34+/tLQ4dKq1dn+eAvMfkHAAAAbuz4calbN+mrr+z1O+800/4KFZzpKw2Y/AMAAADXYlkm8FeqZA/+AQHS++9LK1d6VPCXmPwDAAAAVzt6VHrxRbPUJ7m77pImT5bKlXOmr1vE5B8AAABIYFlmTX+lSvbgHxQkjRwpRUZ6bPCXmPwDAAAAxuHDUpcu0rff2usNG5ppf+nSzvSVjpj8AwAAwLtZlvTpp2a3nuTBP1cuacwYaenSbBH8JSb/AAAA8GYHD0ovvCDNm2evN2kiTZoklSrlTF8ZhMk/AAAAvI9lSVOnmml/8uAfEiKNGyctXpztgr/E5B8AAADe5sAB6bnnpB9/tNfvvVeaOFEqXtyZvjIBk38AAAB4B8sy4b5yZXvwDw01J/T++GO2Dv4Sk38AAAB4g337pM6dzXKe5O67Txo/Xipa1JG2MhuTfwAAAGRfbrc0dqxUtao9+OfOLU2fbtb7e0nwl5j8AwAAILv66y+pY0dp+XJ7/aGHzAuCwoUdactJTP4BAACQvbjd0ujRZtqfPPiHh0uffy7NneuVwV9i8g8AAIDsZPduM+1fudJef+QRc8GuQoWc6SuLYPIPAAAAzxcfL334oVStmj3458snzZwpzZ7t9cFfYvIPAAAAT7drl9S+vfTzz/Z6mzbSRx9J+fM701cWxOQfAAAAnik+Xho2zEz7kwf/AgXMpH/mTIL/FZj8AwAAwPP89puZ9q9fb68/+aQ0cqRZ7oOrMPkHAACA57h8WRo8WKpe3R78CxUyu/h8/jnB/waY/AMAAMAz/PqrmfZv2mSvP/usOdk3PNyZvjwIk38AAABkbZcuSQMHSjVr2oN/4cLmCr3TpxP8U4jJPwAAALKuX34x0/4tW+z1Dh2k99+Xcud2pC1PxeQfAAAAWc/Fi9KAAVKtWvbgX7SotGCBNHkywT8NmPwDAAAga9m82Uz7t22z1597zmztGRrqTF/ZgMdM/seOHauIiAiFhoYqNDRUd955pxYsWOB0WwAAAEgvcXHSG29IderYg3+JEtKiRdL48QT/W+Qx4b9o0aIaMmSINm3apI0bN6pJkyZ6+OGHtWPHDqdbAwAAwK3asMGc0DtokLl4V4IuXcwuP02bOtdbNuKyLMtyuom0Cg8P17Bhw9SxY8cUHR8dHa2wsDBFRUUplFeNAAAAzrtwwaztHzZMcruT6qVKmXX9jRs71pqnSE3G9cg1//Hx8Zo1a5ZiY2N15513Xve4uLg4xcXFJX4eHR2dGe0BAAAgJX7+2ezas3Onvd69u/Tuu1JwsDN9ZWMes+xHkn799VcFBwfL399fL7zwgubMmaNKlSpd9/jBgwcrLCws8aNYsWKZ2C0AAACu6dw56eWXpQYN7MG/TBlpxQpp1CiCfwbxqGU/Fy9e1P79+xUVFaXZs2dr0qRJioyMvO4LgGtN/osVK8ayHwAAAKesXGmm/Xv2JNVcLql3b3Mhr6Ag53rzUKlZ9uNR4f9KTZs2VenSpTV+/PgUHc+afwAAAIfExkqvvy6NHi0lj5/ly0tTpkj16zvXm4dLTcb1qGU/V3K73bbJPgAAALKgyEgpIsIs50kI/j4+0iuvmAt4Efwzjcec8NuvXz+1bNlSxYsXV0xMjL744gstX75cP/30k9OtAQAA4FrOnpX69pXGjLHXK1Uy0/66dZ3py4t5TPg/duyYnn32WR0+fFhhYWGKiIjQTz/9pGbNmjndGgAAAK60ZInUqZO0b19SzddXeu016X//k/z9HWvNm3lM+J88ebLTLQAAAOBmoqOlV181V+NNrkoVado0cyEvOMaj1/wDAAAgC1m40IT85ME/Rw7pzTelTZsI/lmAx0z+AQAAkEVFRZl9+69cqVGtmpn233GHE13hGpj8AwAAIO3mz5cqV7YH/5w5pbfekjZsIPhnMUz+AQAAkHqnT5sLc02fbq/XqCFNnWq29kSWw+QfAAAAqfPdd2banzz4+/lJ77wjrV1L8M/CmPwDAAAgZU6elHr2lD7/3F6vXdtM+ytXdqYvpBiTfwAAANzcN9+YcJ88+Pv7S0OHSmvWEPw9BJN/AAAAXN/x41L37tLMmfZ6vXpm2l+hgjN9IU2Y/AMAAODaZs0yE/3kwT8gQHr/fWnVKoK/B2LyDwAAALujR6WuXaWvv7bX77rLbOlZrpwzfeGWMfkHAACAYVnSl1+aaX/y4B8YKI0cKUVGEvw9HJN/AAAASIcPS126SN9+a683bGim/aVLO9MX0hWTfwAAAG9mWdKnn5ppf/LgnyuXNGaMtHQpwT8bYfIPAADgrQ4elJ5/XvrhB3v9X/+SJk6USpVypi9kGCb/AAAA3sayki7KlTz4h4RI48dLixYR/LMpJv8AAADe5MABqXNn6aef7PV77zXT/uLFnekLmYLJPwAAgDewLBPuK1e2B//QUHNC748/Evy9AJN/AACA7G7fPjPtX7zYXm/ZUpowQSpa1JG2kPmY/AMAAGRXbrc0dqxUtao9+OfOLU2fbtb7E/y9CpN/AACA7Oivv6SOHaXly+31hx4yLwgKF3akLTiLyT8AAEB24nZLo0ebaX/y4B8eLn3+uTR3LsHfizH5BwAAyC527zbT/pUr7fVHHjEX7CpUyJm+kGUw+QcAAPB08fHShx9K1arZg3++fNKMGdLs2QR/SGLyDwAA4Nl27ZI6dJDWrLHXW7eWPvpIKlDAmb6QJTH5BwAA8ETx8dKwYWbanzz4588vzZolffUVwR9XYfIPAADgaX77TWrfXlq/3l5/4glp1Ciz3Ae4Bib/AAAAnuLyZWnwYKl6dXvwL1hQmjNH+uILgj9uiMk/AACAJ/j1VzPt37TJXn/mGWnECLOVJ3ATTP4BAACyskuXpIEDpZo17cG/cGHp+++lTz4h+CPFmPwDAABkVb/8Yqb9W7bY6x06SO+/L+XO7Uhb8FxM/gEAALKaixelAQOkWrXswb9oUWnBAmnyZII/0oTJPwAAQFayebOZ9m/bZq8/95zZ2jM01Jm+kC0w+QcAAMgK4uKkN96Q6tSxB//ixaWFC6Xx4wn+uGVM/gEAAJy2YYOZ9u/YYa936SINHSqFhDjTF7IdJv8AAABOuXBB6ttXqlfPHvxLlZKWLpU+/pjgj3TF5B8AAMAJP/9sdu3ZudNe795devddKTjYmb6QrTH5BwAAyEznz0t9+kgNGtiDf+nSUmSkNGoUwR8Zhsk/AABAZlm1ykz7d+9OqrlcUq9e0jvvSEFBjrUG70D4BwAAyGixsdLrr0ujR0uWlVQvV06aMsW8CwBkApb9AAAAZKTly6WICLOcJyH4+/hIr7wibd1K8EemYvIPAACQEc6eNTv5jBljr1esKE2dKtWt60xf8GpM/gEAANLbkiVS1ar24O/rK/XrZ67gS/CHQ5j8AwAApJfoaOnVV83VeJOrUsVM+2vVcqYv4P8x+QcAAEgPCxeakJ88+OfIIb35prRxI8EfWQKTfwAAgFsRFSW9/LI0ebK9Xq2amfZXr+5MX8A1MPkHAABIq/nzpcqV7cE/Rw7prbek9esJ/shymPwDAACk1unTUu/e0vTp9nqNGmbaHxHhTF/ATTD5BwAASI3vvzfT/uTB389PGjRIWruW4I8sjck/AABASpw6JfXsKX32mb1eu7aZ9leu7ExfQCow+QcAALiZOXOkSpXswd/fXxo6VFqzhuAPj8HkHwAA4HqOH5e6d5dmzrTX69Uz0/4KFZzpC0gjJv8AAADXMmuWmegnD/4BAdLw4dKqVQR/eCQm/wAAAMkdPSp17Sp9/bW93qCBNGWKVK6cM30B6YDJPwAAgCRZlvTll2Ztf/LgHxgojRghRUYS/OHxmPwDAAAcPix16SJ9+629fs895gJeZco40xeQzpj8AwAA72VZ0qefmrX9yYN/rlzS6NHSsmUEf2QrTP4BAIB3OnhQev556Ycf7PUmTaRJk6RSpZzpC8hATP4BAIB3sayki3IlD/4hIdK4cdLixQR/ZFtM/gEAgPc4cEB67jnpxx/t9XvvlSZOlIoXd6YvIJMw+QcAANmfZZlwX7myPfiHhpolPj/+SPCHV2DyDwAAsre//5Y6d5YWLbLX77tPGj9eKlrUmb4ABzD5BwAA2ZPbLY0dK1WpYg/+uXNL06dL8+YR/OF1mPwDAIDs56+/pE6dzFadyT30kHlBULiwM30BDmPyDwAAsg+32+zPX7WqPfiHh0uffy7NnUvwh1dj8g8AALKHPXukjh2lFSvs9UcekcaMkQoVcqYvIAth8g8AADxbfLw0YoQUEWEP/vnySTNnSrNnE/yB/8fkHwAAeK5du6QOHaQ1a+z11q2ljz6SChRwpi8gi2LyDwAAPE98vDRsmHTHHfbgnz+/NGuW9NVXBH/gGpj8AwAAz/Lbb2bav26dvf7EE9KoUWa5D4BrclmWZTndRGaJjo5WWFiYoqKiFBoa6nQ73svtlrZskY4dk06elPLmNdOZ6tUlH5+rj920KekHfM2a0u7d5vLsRYqYKzZu3CjlyiU9/LA52Wv9evvna9dKsbFmOpQ3r3T6tHTokLl/njymdvKkdOaMef7q1aUFC8zUKDZWKlFCatXKTJO2b5d++cXsEX3vvdKGDdLevVJQkNlWbv9+6cIFKWdOyddXCg6WLl0yfV6+bG67dElyuUyPLpepSVJgoHT+vBQXd+M/P5fLPF9sbPp+XwAASIvwcCkkxPxuvXxZCgiQ+vQxv6d27JAOHjS/t+Pjze/F4GDz+zm5okWlbt2kRo3M7+JTp8yLuGrVzO/dEyfM59Wrm+O3bLHXrpUfkh9zrce58j634srnS+/Hv4nUZFyPCf+DBw/WN998o507dyowMFD169fX0KFDVb58+RQ/BuE/C1i6VBoyxPwDPHPG/CDw9TVhulo1qW9fqUmTpGNffdUE7kuXzD8sAACQveXMaV5M5MhhXkzkyGGCtJ+fGcRJ0vHj0sWLpla+/NX5YcgQcz7IxYsmP1z5OFfe51Zc+Xzp/fgpkC3Df4sWLfT444+rdu3aunz5sl5//XVt375dv/32m3LlypWixyD8O2zpUun5582U/exZ84/R19f81+Uyk4C8ec2l1iXpmWeko0eT7h8f70zfAAAgc/n4mI/4eBPaS5Qwg8B//jG3Fy1q3nGIizO5IiQkKT88/7wUE2MyxcWL0t9/J4X/EiVMOE9+n1sJ6AnZJuH5/P2v7ikTXgBky/B/pePHj6tAgQKKjIzUPffck6L7EP4d5HZLLVpI27aZtwEvXDD/+CSzJObSJbPsJTDQbNVmWdLKlUkvEG62FAYAAGQ/gYFJGUGSzp0zA8PAQKlsWfP/lmWWFlWtao759VeztNflkv74wyypzZkz6XHKljXHHTxoMsePP6ZtiU7ybJPwfAkSerqVx0+F1GRcjz3hNyoqSpIUHh5+3WPi4uIUlyw0RkdHZ3hfuI4tW8zbYUFBZs19jmR/9Vwu8/mFC+ZVc/JlPjlysNwHAABvZVkmC5w/bz7PmdP898IF80Ig4fy58HCTHySTJVwuc3tcnLl/8qyRcL/wcJNNtmwx5xSmVkK2SXi+5BJ6upXHzyAeudWn2+1Wr1691KBBA1WpUuW6xw0ePFhhYWGJH8WKFcvELmFz4oR5683HJ2mZT3IJr9wTpvwJL9oS6gAAwPtYVlIWSPj/hM8vX046LiAgKT/4+5va5cv2zHHl/QICTDY5cSJtvSVkm4Tnu9KtPn4G8cjw37VrV23fvl0zZsy44XH9+vVTVFRU4seBAwcyqUNcJV8+s8zH7TYvAK4M9An/oOPjzT+ihH9ICXUAAOB9EgJ78tCf8HnyVQQXLiTlh4QBYsIJvgmZ48r7JSxBTuvWsAnZ5npLk2/18TOIx4X/bt26ad68eVq2bJmKFi16w2P9/f0VGhpq+4BDqlc3Z76fO2f+ISR/tZ7wKjwgwNxepYrZltPHx9QJ/wAAeCeXy2SBhPMCL11KygxBQeYYyzJbg1apYj5OnjS1oCDzYuDyZXvWCApKuk/58knbh6ZWQrZJeL7k0uPxM4jHhH/LstStWzfNmTNHS5cuValSpZxuCanh42O2vAoJMev1XC7zSvny5aR973PkkMLCpH79pNdfN6+UE/6x+vo6/RUAAIDM4uOTtEbf5ZIKFjRr6CWTDfLkMf89d86cWBsaavJDv34maxw8aG4rWDDpmjoJj3P+fNJ9+vZN+8m4ybNNwvO53faebuXxM4jH7Pbz4osv6osvvtC3335r29s/LCxMgQlngN8Eu/1kAezzDwAAboR9/lMtW2716brO0o+pU6eqXbt2KXoMwn8WwRV+ucIvACD74Aq/XOE3qyL8AwDgoFWrpA4dzBAngcsl9ewpDRqUtIYbQKp4xT7/AADAQ8TGSv/9rzRqlP3EyHLlpKlTpfr1nesN8DJZ6wwEAACQvURGmqucjhyZFPx9fMyykK1bCf5AJmPyDwAA0t/Zs+aExzFj7PWKFc20v25dZ/oCvByTfwAAkL6WLJGqVrUH/4RtETdvJvgDDmLyDwAA0kd0tNmiefx4e71KFTPtr1XLmb4AJGLyDwAAbt3ChSbkJw/+OXJIb75ptmQm+ANZApN/AACQdlFR0ssvS5Mn2+vVqplpf8K+7ACyBCb/AAAgbebPlypXtgf/nDmlt94yF1wk+ANZDpN/AACQOqdPS717S9On2+s1aphpf0SEM30BuCkm/wAAIOW+/95M+5MHfz8/c4XetWsJ/kAWx+QfAADc3MmTUs+e0uef2+u1a5tpf+XKzvQFIFWY/AMAgBubM8eE++TB399fGjpUWrOG4A94ECb/AADg2o4fl7p3l2bOtNfr1jXT/ooVnekLQJox+QcAAFebNctM9JMH/4AAafhwafVqgj/goZj8AwCAJMeOSV27SrNn2+sNGkhTpkjlyjnTF4B0weQfAABIliV9+aVUqZI9+AcGSiNGSJGRBH8gG2DyDwCAtztyROrSRZo7116/5x5zAa8yZRxpC0D6Y/IPAIC3sizp00/NtD958M+VS/roI2nZMoI/kM0w+QcAwBsdPCi98II0b5693qSJNGmSVKqUM30ByFBM/gEA8CaWlXRRruTBPzhYGjdOWryY4A9kY0z+AQDwFgcOSJ07Sz/9ZK83ayZNnCiVKOFMXwAyDZN/AACyO8sy4b5yZXvwDw01S3x++ongD3gJJv8AAGRnf/8tdepklvMk17KlNGGCVLSoM30BcASTfwAAsiO3Wxo7VqpSxR78c+eWpk2TfviB4A94ISb/AABkN3/9Zab9y5bZ6w8+aE7qLVzYmb4AOI7JPwAA2YXbLY0eLVWtag/+efKY/fy//ZbgD3g5Jv8AAGQHe/ZIHTtKK1bY6//+t/Txx1KhQs70BSBLYfIPAIAni4+XRoyQIiLswT9fPmnGDOnrrwn+ABIx+QcAwFPt2iV16CCtWWOvt24tffSRVKCAM30ByLKY/AMA4Gni46Xhw6U77rAH//z5pVmzpK++IvgDuCYm/wAAeJLff5fat5fWrbPXn3hCGjXKLPcBgOtg8g8AgCe4fFkaMkSqXt0e/AsWlObMkb74guAP4KaY/AMAkNVt326m/Rs32uvPPGNO9g0Pd6QtAJ6HyT8AAFnVpUvSwIFSjRr24F+4sPT999InnxD8AaQKk38AALKiX34x0/4tW+z19u2lDz6Qcud2pC0Ano3JPwAAWcnFi9KAAVKtWvbgX7SotGCBNGUKwR9AmjH5BwAgq9i82Uz2t22z1zt3loYNk8LCnOkLQLbB5B8AAKfFxUlvvCHVqWMP/sWLSwsXShMmEPwBpAsm/wAAOGnDBjPt37HDXu/SRRo6VAoJcaYvANkSk38AAJxw4YLUt69Ur549+JcqJS1dKn38McEfQLpj8g8AQGZbu9ZM+3futNe7d5fefVcKDnamLwDZHpN/AAAyy/nzUp8+UoMG9uBfurQUGSmNGkXwB5ChmPwDAJAZVq+WOnSQ/vgjqeZySb16Se+8IwUFOdYaAO9B+AcAICOdOyf997/SyJGSZSXVy5WTpk6V6td3rjcAXodlPwAAZJTISCkiQhoxIin4+/hIr7wibd1K8AeQ6VId/g8cOKB//vkn8fP169erV69emjBhQro2BgCAxzp7VurWTWrUSPrzz6R6xYrSmjXSe+9JgYGOtQfAe6U6/D/55JNatmyZJOnIkSNq1qyZ1q9fr//+9796++23071BAAA8ypIlUtWq0pgxSTVfX7Ot5+bNUt26zvUGwOulOvxv375dderUkSR99dVXqlKlitasWaPPP/9c06ZNS+/+AADwDNHR0gsvSE2bSvv2JdWrVDFbew4eLAUEONYeAEhpCP+XLl2Sv7+/JGnx4sV66KGHJEkVKlTQ4cOH07c7AAA8wcKFJuSPH59U8/WV3nhD2rhRqlXLud4AIJlUh//KlStr3LhxWrlypRYtWqQWLVpIkg4dOqS8efOme4MAAGRZUVFSp05S8+bSgQNJ9WrVpA0bpIEDpf8fmAFAVpDq8D906FCNHz9ejRo10hNPPKFq1apJkr777rvE5UAAAGR78+dLlStLkycn1XLkkPr3l9avl6pXd643ALgOl2Ul33Q4ZeLj4xUdHa08efIk1vbt26egoCAVKFAgXRtMT9HR0QoLC1NUVJRCQ0OdbgcA4IlOn5Z695amT7fXq1c3+/b//1AMADJLajJumvb5tyxLmzZt0vjx4xUTEyNJ8vPzUxBXJwQAZGfff2+m/cmDf86c5gq969YR/AFkeam+wu/ff/+tFi1aaP/+/YqLi1OzZs0UEhKioUOHKi4uTuPGjcuIPgEAcM7Jk1LPntLnn9vrtWubaX/lys70BQCplOrJf8+ePVWrVi2dPn1agckuUPLvf/9bS5YsSdfmAABw3Jw5JtwnD/7+/tLQoeaCXQR/AB4k1ZP/lStXas2aNfLz87PVS5YsqYMHD6ZbYwAAOOr4cal7d2nmTHu9Xj0z7a9QwZm+AOAWpHry73a7FR8ff1X9n3/+UUhISLo0BQCAo2bPNhP95ME/IEB6/31p1SqCPwCPlerwf++992rEiBGJn7tcLp09e1b9+/fXfffdl569AQCQuY4dk1q3Nh/HjyfV77pL+uUX6aWXzMW7AMBDpXqrz3/++UfNmzeXZVnavXu3atWqpd27dytfvnxasWIFW30CADyPZUkzZphlPidPJtUDA6UhQ6Ru3SSfNG2QBwAZLjUZN037/F++fFkzZszQtm3bdPbsWdWoUUNPPfWU7QTgrIjwDwC4ypEjUpcu0ty59vo995gLeJUp40hbAJBSqcm4qT7hV5Jy5Mihp59+Ok3NAQCQJViW2cGnRw9z4a4EuXKZnXy6dGHaDyDbSXX4/+STT254+7PPPpvmZgAAyBQHD0ovvCDNm2evN2kiTZoklSrlTF8AkMFSvewnT548ts8vXbqkc+fOJV7h99SpU+naYHpi2Q8AeDnLkqZNk3r3lqKikurBwdLw4dJzz0kul2PtAUBaZOiyn9PJ3xr9f7t371aXLl30yiuvpPbhAADIHAcOmHD/44/2erNm0sSJUokSzvQFAJkoXRYzli1bVkOGDFHPnj3T4+EAAEg/lmXCfeXK9uAfGmrqP/1E8AfgNdJ0wu81HyhHDh06dCi9Hg4AgFv3999S587SokX2esuW0vjxUrFizvQFAA5Jdfj/7rvvbJ9blqXDhw/ro48+UoMGDdKtMQAA0sztNuH+1Vels2eT6mFh0ogRUtu2rO0H4JVSHf5btWpl+9zlcil//vxq0qSJ3n///fTqCwCAtPnrL6lTJ2nZMnv9gQekceOkIkWc6QsAsoBUh3+3250RfQAAcGvcbmnMGKlvX+ncuaR6njzSqFHSU08x7Qfg9dJ0hV9PxVaf8Fhut7Rli3TihJQvn1S9evpcfCglj5twzLFj0smTUni4dOqUlDevuU9cnDRwoLRunRQba06ujI+/9d4AICvy9TU/B6OjzecBAVLu3OZn37Fj5udfrlzSf/5jfn6eP29ejObNa5adVakiFShgPqpXN49xo5/DGfXzH9lKum/1+dJLL6X4yT/44IMUH5taK1as0LBhw7Rp0yYdPnxYc+bMuWoZEpDtLF0qDRki7dolXbwo+flJ5cub6WaTJhn7uAnH/PKLdOaMdPmy+QXncplfPpcvp8uXCAAeIz5eOn486fO4OPs1IyTz83L8+Os/hq+veTGQcML58ePX/jmcUT//4dVSFP63bNmSogdzZfDbqbGxsapWrZo6dOigRx55JEOfC8gSli6Vnn9eiokxvyj8/c0vmm3bTH38+LT9AkjJ40rm/0+eNCdMut3mQzIvAFgCCABpk/AC4sQJM0wpWlS67Tb7z+EXXjDnqKT3z394PY9d9uNyuVI9+WfZDzyK2y21aGF+0BcpYl+rbFnSwYNSRITZtzw1bwGn5HGrVjWfb9tm3rI+f978skqY+nvmjw0AyHpy5JACA6WyZZN+vv7zj3lnNWfO9P35j2wrNRk3W/+NiYuLU3R0tO0D8Bhbtpi3evPmvfokRZfLrDndtcscl96Pu327+ciVS7pwIemXCydLAkD68vExP2cTTlJ3uaSgILOUKCgofX/+A0rjRb42btyor776Svv379fFixdtt33zzTfp0lh6GDx4sN566y2n2wDS5sQJs8bT3//atwcESKdPm+PS+3Hj4sz/58pln/YT/gEg/VmW/RwqX19Tu95UP60//wGlYfI/Y8YM1a9fX7///rvmzJmjS5cuaceOHVq6dKnCwsIyosc069evn6KiohI/Dhw44HRLQMrly2dO7koI4le6cMHcni9f+j+uv7/5cLuTAj/BHwAyhstllv8kiI83teudW5XWn/+A0hD+3333XX344Yf6/vvv5efnp5EjR2rnzp1q06aNihcvnhE9ppm/v79CQ0NtH4DHqF7d7Opw8uTVa+wty2y3Wb580lZx6fm4VaqYj9hYM2FKfqIvACD9uN3m52xQkPncsswSoLAw89/0/PkPKA3h/88//9T9998vSfLz81NsbKxcLpd69+6tCRMmpHuDgNfy8THbuYWEmJO7zp0zvyTOnTOfh4aa21N7sldKHrdfP/MRGmqmUQlbe0q8AACA9JDwc9WyzIXoEkL/wYMm+L/+evr//AeUhvCfJ08excTESJKKFCmi7du3S5LOnDmjc8mvqJgBzp49q61bt2rr1q2SpL1792rr1q3av39/hj4v4JgmTcx2bhERZgp/+LD5b0SE2QIurdu8peRxE46pVcv8YvL1Nb9oEn5h5UjTKUMAAF9fKX9+M7m/4w5Tu/Ln8MsvZ8zPf3i9VG/1+eSTT6pWrVp66aWXNHDgQI0ePVoPP/ywFi1apBo1amToCb/Lly9X48aNr6q3bdtW06ZNu+n92eoTHosr/AJA1sAVfpEFpSbjpjj8b9++XVWqVNGpU6d04cIFFS5cWG63W++9957WrFmjsmXL6o033lCePHnS5YvICIR/AMiCEl5ADhlif+FYvLg0caJ0773O9QYAHiBDwr+Pj49q166tTp066fHHH1dISEi6NJuZCP8AkMVs2CC1by/t2GGvd+kiDR1q1jwDAG4oQy7yFRkZqcqVK+vll1/WbbfdprZt22rlypW33CwAwAtduGBOWKxXzx78S5WSli6VPv6Y4A8AGSDF4f/uu+/WlClTdPjwYY0ePVr79u1Tw4YNVa5cOQ0dOlRHjhzJyD4BANnFzz+bdctDh9r3Me/eXdq2TbrGuV0AgPSR6jNGcuXKpfbt2ysyMlJ//PGHWrdurTFjxqh48eJ66KGHMqJHAEB2cP681KeP1KCBtHNnUr10aSkyUho1SgoOdq4/APACqd7t50qxsbH6/PPP1a9fP505c0bxWXiXD9b8A4BDVq+WOnSQ/vgjqeZySb16Se+8k3SBIwBAqqUm46Z5o+4VK1ZoypQp+vrrr+Xj46M2bdqoY8eOaX04AEB2FBsr/fe/ZqqffNZUrpw0dapUv75zvQGAF0pV+D906JCmTZumadOmac+ePapfv75GjRqlNm3aKFeuXBnVIwDAE0VGSh07Sn/+mVTz8TEXL3rrLSkw0LneAMBLpTj8t2zZUosXL1a+fPn07LPPqkOHDipfvnxG9gYA8ERnz5qdfMaMsdcrVDDT/nr1nOkLAJDy8J8zZ07Nnj1bDzzwgHx9fTOyJwCAp1q61Ez79+1Lqvn4SK++KvXvb66GCgBwTIrD/3fffZeRfQAAPFlMjAn448bZ61WqmGl/rVrO9AUAsEn1Vp8AANgsXGhCfvLg7+srvfGGtHEjwR8AspA07/YDAPByUVHm5N3Jk+31atXMtL96dWf6AgBcF5N/AEDqLVhgpv3Jg3+OHNKAAdL69QR/AMiimPwDAFLu9Gmpd29p+nR7vXp1M+2vVs2ZvgAAKZKi8J+ak30feuihNDcDAMjCvv9eev556fDhpFrOnGYXn1dfNf8PAMjSUhT+W7VqlaIHc7lcio+Pv5V+AABZzcmTUs+e0uef2+u1aplpf5UqzvQFAEi1FIV/t9ud0X0AALKiOXOkLl2ko0eTav7+Zm1/nz5mnT8AwGPwUxsAcLUTJ6Tu3aUZM+z1evWkKVOkihWd6QsAcEvSFP5jY2MVGRmp/fv36+LFi7bbevTokS6NAQAcMmuW1LWrdPx4Ui0gQHrnHalXL7OHPwDAI6U6/G/ZskX33Xefzp07p9jYWIWHh+vEiRMKCgpSgQIFCP8A4KmOHTOhf/Zse71BAzPtL1fOmb4AAOkm1fv89+7dWw8++KBOnz6twMBArV27Vn///bdq1qyp4cOHZ0SPAICMZFlmeU+lSvbgHxgoffihFBlJ8AeAbCLV4X/r1q16+eWX5ePjI19fX8XFxalYsWJ677339Prrr2dEjwCAjHLkiPTII9ITT5hdfRLcc4+0bRvLfAAgm0l1+M+ZM6d8fMzdChQooP3790uSwsLCdODAgfTtDgCQMSxL+uwzM+2fOzepniuX9NFH0rJlUpkyjrUHAMgYqV7zX716dW3YsEFly5ZVw4YN9b///U8nTpzQp59+qirs9QwAWd+hQ+ZiXfPm2etNmkiTJkmlSjnTFwAgw6V68v/uu+/qtttukyQNGjRIefLkUZcuXXT8+HFNmDAh3RsEAKQTy5KmTZMqV7YH/+Bgadw4afFigj8AZHMuy7Isp5vILNHR0QoLC1NUVJRCQ0OdbgcAMs+BA2bav2CBvd6smTRxolSihDN9AQBuWWoybqon/wAAD2JZZilPlSr24B8aauo//UTwBwAvkuo1/6VKlZLL5bru7X/99dctNQQASCd//y117iwtWmSvt2wpTZggFS3qTF8AAMekOvz36tXL9vmlS5e0ZcsW/fjjj3rllVfSqy8AQFq53dL48dKrr0pnzybVw8KkkSOlZ5+VbjDEAQBkX6kO/z179rxmfcyYMdq4ceMtNwQAuAV//SV16mS26kzuwQfNSb2FCzvTFwAgS0i3Nf8tW7bU119/nV4PBwBIDbdbGj1aqlrVHvzDw81+/t9+S/AHAKR+8n89s2fPVnh4eHo9HAAgpfbskTp2lFassNf//W/p44+lQoWc6QsAkOWk6SJfyU/4tSxLR44c0fHjx/Xxxx+na3MAgBuIjzfT/tdfl86fT6rny2eu0tumDWv7AQA2qQ7/Dz/8sC38+/j4KH/+/GrUqJEqVKiQrs0BAK5j1y6pQwdpzRp7vXVrE/wLFHCmLwBAlsZFvgDAk8THSx9+KL35pnThQlI9f36zxOexx5zrDQDgiAy9yJevr6+OHTt2Vf3kyZPy9fVN7cMBAFLq99+lBg2kV16xB/8nnpB++43gDwC4qVSH/+u9URAXFyc/P79bbggAcIXLl6UhQ6Tq1aV165LqBQtKc+ZIX3xh1vkDAHATKV7zP2rUKEmSy+XSpEmTFBwcnHhbfHy8VqxYwZp/AEhv27dL7dtLV15H5emnzQW72GUNAJAKKQ7/H374oSQz+R83bpxtiY+fn59KliypcePGpX+HAOCNLl2Shg6V3n7b/H+CwoXN1XsfeMC53gAAHivF4X/v3r2SpMaNG+ubb75Rnjx5MqwpAPBqv/xipv1bttjr7dtLH3wg5c7tSFsAAM+X6q0+l115yXgAQPq4eFF6911p0CCzzj9B0aLShAlSy5bO9QYAyBZSfcLvo48+qqFDh15Vf++999S6det0aQoAvM7mzVLt2tJbb9mDf6dOZt0/wR8AkA5SHf5XrFih++6776p6y5YtteLKS8sDAG4sLk564w2pTh1p27akevHi0sKF0sSJUliYc/0BALKVVC/7OXv27DW39MyZM6eio6PTpSkA8AobNph1/Dt22OsvvCC9954UEuJMXwCAbCvVk/+qVatq5syZV9VnzJihSpUqpUtTAJCtXbgg9e0r1atnD/4lS0pLlkhjxxL8AQAZItWT/zfffFOPPPKI/vzzTzVp0kSStGTJEn355ZeaNWtWujcIANnK2rVm2r9zp73erZs0eLCU7BoqAACkt1SH/wcffFBz587Vu+++q9mzZyswMFARERFavHixGjZsmBE9AoDnO39eevNN6cMPJbc7qV66tDR5ssTPTwBAJnBZlmWl14Nt375dVapUSa+HS3fR0dEKCwtTVFSUQkNDnW4HgLdYvVrq0EH644+kmssl9ewpvfOOlCuXc70BADxeajJuqtf8XykmJkYTJkxQnTp1VK1atVt9OADIPmJjpV69pLvvtgf/cuWklSvNuwAEfwBAJkpz+F+xYoWeffZZ3XbbbRo+fLiaNGmitWvXpmdvAOC5IiOlatWkkSOlhDdYfXykPn2krVulBg0cbQ8A4J1Steb/yJEjmjZtmiZPnqzo6Gi1adNGcXFxmjt3Ljv9AIAknT1rdvIZM8Zer1hRmjLF7PADAIBDUjz5f/DBB1W+fHlt27ZNI0aM0KFDhzR69OiM7A0APMvSpVLVqvbg7+NjXgxs3kzwBwA4LsWT/wULFqhHjx7q0qWLypYtm5E9AYBniY6WXn1VGj/eXq9SRZo6VapVy5m+AAC4Qoon/6tWrVJMTIxq1qypunXr6qOPPtKJEycysjcAyPoWLTLT/uTB39dXeuMNaeNGgj8AIEtJcfivV6+eJk6cqMOHD+v555/XjBkzVLhwYbndbi1atEgxMTEZ2ScAZC1RUVLnztK990r79yfVIyKk9eulgQMlf3/n+gMA4BpuaZ//Xbt2afLkyfr000915swZNWvWTN9991169peu2OcfQLpYsEB67jnpn3+SajlymGl/v36Sn59zvQEAvE6m7fNfvnx5vffee/rnn3/05Zdf3spDAUDWd/q01L69dN999uBfvbpZ4tO/P8EfAJClpesVfrM6Jv8A0uz776Xnn5cOH06q5cxpAv+rr5r/BwDAAanJuKna5x8AvM6pU1LPntJnn9nrtWqZnXyqVHGmLwAA0uCWlv0AQLY2Z45UqZI9+Pv5SYMHSz//TPAHAHgcJv8AcKUTJ6Tu3aUZM+z1unXNtL9iRWf6AgDgFjH5B4DkZs0y0/7kwT8gQBo2TFq9muAPAPBoTP4BQJKOHZO6dpVmz7bX69eXpkyRypd3pi8AANIRk38A3s2yzJS/UiV78A8MlD78UFqxguAPAMg2mPwD8F5Hjkhdukhz59rr99wjTZ4slSnjSFsAAGQUJv8AvI9lmR18KlWyB/9cuaTRo6Vlywj+AIBsick/AO9y6JC5WNe8efZ6kybSpElSqVLO9AUAQCZg8g/AO1iWNG2aVLmyPfgHB0vjxkmLFxP8AQDZnsuyLMvpJjJLai59nK7cbmnLFrN3eL58UvXqkk8WfN2VvM/wcFM7dcr0XLWq9NVX0t9/S8WKmRMgT50yO6Rs22bqAQFSwYJSiRJmP3RJWrdO2r9fOnpUOn9eKlnSPFb+/OZ5TpyQtm4195VMQDt40Hx+7py5PSpKCgmRLl2S4uMlX1/p4kUpJkaKizP3y5lTKltWOntWOnlScrnMcVFR5uvKlUuKjZXOnLn5n4Ovr3keAAAyg5+flCOHdPmy+f12JR8fc3uOHJK/v/mdlzOnGV7Expr7BQRId9xhfme7XOZ3adGi5vdybKz5nVqokLk6eYEC5j5z5pjb6taVnnzSPD48UmoyLuE/oy1dKg0ZIu3aZf5B+/mZ4Ny3r1lmkFUk7/PsWfNDwrKkoCDz37NnTYi2LPPhcpn7ec9fHwAAsgeX6+rf3yEhUv/+0ssvO9MTbklqMm4WHD/f2JgxY1SyZEkFBASobt26Wr9+vdMtXd/SpWZt8bZt5tX5bbeZ/27bZupLlzrdoZG8T5fLBP1Ll8xUIDraTMsvX04K/1LSiwAAAOBZrvX7OyZGeu016f33M78fZCqPCv8zZ87USy+9pP79+2vz5s2qVq2amjdvrmPHjjnd2tXcbjNJj4mRihQxe4b7+Jj/Fili6kOGmOOyUp+nTpmav795+4/lLwAAZG8J7+bHx0vvvmsGfsi2PCr8f/DBB+rcubPat2+vSpUqady4cQoKCtKUKVOueXxcXJyio6NtH5lmyxazhCZv3qR/VAlcLrOmftcuc5yTkvd5/rxZQ5+w5i/5ZODKrwEAAGQfCb/nz5wxFz5EtuUx4f/ixYvatGmTmjZtmljz8fFR06ZN9fPPP1/zPoMHD1ZYWFjiR7FixTKrXXOi6sWLZoJ+LQEB5vYTJzKvp2tJ3mfC0h7W8wMA4J0sy2zigWzLY8L/iRMnFB8fr4IFC9rqBQsW1JEjR655n379+ikqKirx48CBA5nRqpEvnzm5N2E3mitduGBuz5cv83q6luR95shhliYlhH6m/QAAeBeXy+zah2zLY8J/Wvj7+ys0NNT2kWmqVze7+pw8efUE3bLM2vry5c1xTkreZ2Bg0jsAkj388y4AAADZV8Lv+dy5pccfd7QVZCyPCf/58uWTr6+vjh49aqsfPXpUhQoVcqirG/DxMdt5hoSYvXbPnTNLas6dM5+Hhprbnd7v/8o+w8NNLS7OvAjw9XW2PwAAkLESgr+vr/T66+z3n815TPj38/NTzZo1tWTJksSa2+3WkiVLdOeddzrY2Q00aSKNHy9FRJiLaBw+bP4bEWGuKJpV9vlP3qdlme1Ic+Y0//hDQ80UIGFJUMK7AS4Xy4IAAPBE1/r9HRIiDR3KPv9ewKNe2r300ktq27atatWqpTp16mjEiBGKjY1V+/btnW7t+po0kRo1yvpX+L2yT67wm75/vgAAXA9X+EUm8rgr/H700UcaNmyYjhw5ojvuuEOjRo1S3YSgeROOXOEXwK25fFkaPlwaMMB+An3BguYdtFatnOoMAIAsITUZ1+PC/60g/AMeZvt2qX17aeNGe/2ZZ6QRI5LeoQIAwIulJuNmsbUnACCzxOudd6QaNezBv3Bh6fvvpU8+IfgDAJAGLO4CkLX88ouZ9l959et27aQPPpDy5HGkLQAAsgMm/wCyhosXpbfeMiejJQ/+RYtK8+dLU6cS/AEAuEVM/gE4b8sWM9nfts1e79TJnOwbFuZIWwAAZDdM/gE4Jy5OevNNqXZte/AvXlxauFCaOJHgDwBAOmLyD8AZGzeaaf+OHfb6Cy9I771nru0AAADSFZN/AJnrwgWpb19zUZnkwb9UKWnJEmnsWII/AAAZhMk/gMyzdq3ZyWfnTnu9Wzdp8GBztUoAAJBhmPwDyHjnz0t9+kgNGtiDf+nS0vLl0ujRBH8AADIBk38AGWv1aqlDB+mPP5JqLpfUs6e5kFeuXM71BgCAlyH8A8gYsbHSf/8rjRolWVZSvWxZs2d/gwbO9QYAgJdi2Q+A9BcZKVWrJo0cmRT8fXykl182V/Al+AMA4Agm/wDSz9mzZiefMWPs9QoVzLS/Xj1n+gIAAJKY/ANIL0uXSlWr2oO/j495MbBlC8EfAIAsgMk/gFsTEyO9+qo0bpy9XqWKmfbXquVMXwAA4CpM/gGk3aJFJuQnD/6+vuZE340bCf4AAGQxTP4BpF5UlNm3f9Ike71aNTPtr17dmb4AAMANMfkHkDo//mim/cmDf44c0oAB0vr1BH8AALIwJv8AUub0aemll6Rp0+z16tXNtL9aNUfaAgAAKcfkH8DNff+9VLmyPfjnzCkNHCitW0fwBwDAQzD5B3B9p05JPXtKn31mr9eqZab9Vao40xcAAEgTJv8Arm3uXKlSJXvw9/OTBg+Wfv6Z4A8AgAdi8g/A7sQJqXt3acYMe71uXTPtr1jRmb4AAMAtY/IPIMns2Wbanzz4BwRIw4ZJq1cT/AEA8HBM/gFIx45JXbua8J9cgwbS5MlS+fLO9AUAANIVk3/Am1mWmfJXqmQP/oGB0ocfSpGRBH8AALIRJv+AtzpyROrSxZzYm9zdd0tTpkhlyjjSFgAAyDhM/gFvY1nSp5+aaX/y4B8UJI0eLS1fTvAHACCbYvIPeJNDh6Tnn5fmzbPXGzUya/tvv92RtgAAQOZg8g94A8syV+etXNke/IODpbFjpSVLCP4AAHgBJv9AdnfggJn2L1hgrzdrJk2cKJUo4UxfAAAg0zH5B7Iry5ImTTJX4k0e/ENDTej/6SeCPwAAXobJP5Ad/f231LmztGiRvd6ypTRhglS0qDN9AQAARzH5B7ITy5LGjzfT/uTBP3dus+b/hx8I/gAAeDEm/0B2sXev1KmTtHSpvf7AA+YFQeHCzvQFAACyDCb/gKdzu6WPPpKqVrUH/zx5zH7+331H8AcAAJKY/AOebc8eqWNHacUKe71VK7OFZ6FCjrQFAACyJib/gCeKj5dGjJAiIuzBP29e6csvpW++IfgDAICrMPkHPM2uXVKHDtKaNfb6Y49JY8ZIBQo40xcAAMjymPwDniI+Xho+XLrjDnvwz59f+uoradYsgj8AALghJv+AJ/j9d6l9e2ndOnv9P/+RRo82LwAAAABugsk/kJVdviwNGSJVr24P/gULmnX9M2YQ/AEAQIox+Qeyqu3bzbR/40Z7/emnzcm+efM60hYAAPBcTP6BrObSJWnQIKlGDXvwL1xY+v57s3c/wR8AAKQBk38gK/nlFzPt37LFXm/XTvrgA3PhLgAAgDRi8g9kBRcvSm+9JdWqZQ/+RYtK8+dLU6cS/AEAwC1j8g84bcsWM9nfts1e79TJbO0ZFuZIWwAAIPth8g84JS5OevNNqXZte/AvXlxauFCaOJHgDwAA0hWTf8AJGzeatf3bt9vrL7wgvfeeFBLiTF8AACBbY/IPZKYLF6R+/aR69ezBv1QpackSaexYgj8AAMgwTP6BzLJ2rdShg7lab3LdukmDB0vBwc70BQAAvAaTfyCjnT8vvfKK1KCBPfiXLi1FRkqjRxP8AQBApmDyD2SkNWvM2v4//kiquVxSz57mQl5BQc71BgAAvA7hH8gI585J//2vNHKkZFlJ9XLlpClTzLsAAAAAmYxlP0B6W7FCioiQRoxICv4+PlKfPtLWrQR/AADgGCb/QHo5e9bs5PPRR/Z6hQrmCr316jnTFwAAwP9j8g+kh6VLzbQ/efD38ZFee81cwZfgDwAAsgAm/8CtiImRXn1VGjfOXq9c2Uz7a9d2pi8AAIBrYPIPpNWiRVKVKvbg7+srvfGGtGkTwR8AAGQ5TP6B1IqKMifvTppkr0dEmGl/jRrO9AUAAHATTP6B1FiwwEz7kwf/HDmk/v2lDRsI/gAAIEtj8g+kxOnT0ksvSdOm2evVq5tpf7VqjrQFAACQGkz+gZv5/ntzAm/y4J8zpzRwoLRuHcEfAAB4DCb/wPWcOiX17Cl99pm9XquWmfZXqeJMXwAAAGnE5B+4lrlzpUqV7MHfz08aPFj6+WeCPwAA8EhM/oHkTpyQuneXZsyw1+vWNdP+ihWd6QsAACAdMPkHEsyebab9yYN/QIA0bJi0ejXBHwAAeDwm/8CxY1LXrib8J9eggTRlilSunDN9AQAApDMm//BeliXNnGmm/cmDf2CgNGKEFBlJ8AcAANkKk394pyNHpBdflObMsdfvuUeaPFkqU8aZvgAAADKQx0z+Bw0apPr16ysoKEi5c+d2uh14KssyO/hUrmwP/rlySaNHS8uWEfwBAEC25THh/+LFi2rdurW6dOnidCvwVIcOSQ89JD3zjNnDP0HjxtKvv0rdukk+HvNPAgAAINU8ZtnPW2+9JUmalvwqqzcRFxenuLi4xM+jo6PTuy14AsuSpk+XeveWzpxJqgcHm518nnuO0A8AALxCtk48gwcPVlhYWOJHsWLFnG4Jme3AAen++6X27e3Bv2lTaft26YUXCP4AAMBrZOvU069fP0VFRSV+HDhwwOmWkFksS5o0yVyJd8GCpHpIiDRxorRwoVSihHP9AQAAOMDR8N+3b1+5XK4bfuzcuTPNj+/v76/Q0FDbB7zA/v1S8+ZS585S8qVeLVpIO3ZInTpJLpdz/QEAADjE0TX/L7/8stq1a3fDY26//fbMaQaez7KkCROkPn2ks2eT6mFhZt/+tm0J/QAAwKs5Gv7z58+v/PnzO9kCsou9e81Ef+lSe/2BB6Rx46QiRZzpCwAAIAvxmN1+9u/fr1OnTmn//v2Kj4/X1q1bJUllypRRcHCws83BOW63NHas9NprUmxsUj1PHmnUKOmpp5j2AwAA/D+PCf//+9//NH369MTPq1evLklatmyZGjVq5FBXcNSff0odO0qRkfZ6q1bmBUGhQo60BQAAkFW5LMuynG4is0RHRyssLExRUVGc/OvJ3G5zNd5+/aTz55PqefNKH30k/ec/TPsBAIDXSE3G9ZjJPyBJ2rVL6tBBWrPGXn/sMRP8CxZ0pi8AAAAPkK33+Uc2Eh8vDR8u3XGHPfjnzy999ZU0axbBHwAA4CaY/CPr+/13c4Xedevs9f/8xyz/YccoAACAFGHyj6zr8mVpyBCpenV78C9YUPrmG2nGDII/AABAKjD5R9a0fbuZ9m/caK8//bS5YFfevI60BQAA4MmY/CNruXRJeucdqUYNe/C/7Tbpu++kTz8l+AMAAKQRk39kHb/8Yqb9W7bY6+3aSR98YC7cBQAAgDRj8g/nXbwoDRgg1aplD/5Fikjz50tTpxL8AQAA0gGTfzhr82Yz7d+2zV7v1Mls7RkW5kxfAAAA2RCTfzgjLk564w2pTh178C9eXPrpJ2niRII/AABAOmPyj8y3YYOZ9u/YYa+/8II0dKh0k8tSAwAAIG2Y/CPzXLgg9e0r1atnD/4lS0pLlkhjxxL8AQAAMhCTf2SOtWvNtH/nTnu9Wzdp8GApONiZvgAAALwIk39krPPnpT59pAYN7MG/dGlp+XJp9GiCPwAAQCZh8o+Ms3q11KGD9McfSTWXS+rZUxo0SAoKcq43AAAAL0T4R/o7d07673+lkSMly0qqly1r9uxv0MC53gAAALwYy36QvlaulCIipBEjkoK/j49Z+vPLLwR/AAAABzH5R/qIjZX69TNr+JOrUMFM++vVc6YvAAAAJGLyj1u3bJlUtao9+Pv4mG09t2wh+AMAAGQRTP6RdjEx0quvSuPG2euVK5tpf+3azvQFAACAa2Lyj7RZtEiqUsUe/H19pTfekDZtIvgDAABkQUz+kTpRUebk3UmT7PWICDPtr1HDmb4AAABwU0z+kXI//mim/cmDf44cUv/+0oYNBH8AAIAsjsk/bu70aemll6Rp0+z16tXNtL9aNUfaAgAAQOow+ceNff+9OYE3efDPmVMaOFBat47gDwAA4EGY/OPaTp2SevaUPvvMXq9Vy0z7q1Rxpi8AAACkGZN/XG3uXKlSJXvw9/OTBg+Wfv6Z4A8AAOChmPwjyYkTUvfu0owZ9nrdumbaX7GiM30BAAAgXTD5hzF7tpn2Jw/+AQHSsGHS6tUEfwAAgGyAyb+3O3ZM6tZNmjXLXq9fX5oyRSpf3pm+AAAAkO6Y/Hsry5JmzjQ7+SQP/oGB0ocfSitWEPwBAACyGSb/3ujIEenFF6U5c+z1u+820/4yZZzpCwAAABmKyb83sSzp88/NtD958A8KkkaPlpYvJ/gDAABkY0z+vcWhQ9ILL5iLdiXXuLE0aZJ0++3O9AUAAIBMw+Q/u7Msafp0M+1PHvyDg6WxY6XFiwn+AAAAXoLJf3b2zz/Sc89JCxbY602bmml/iRLO9AUAAABHMPnPjizLhPvKle3BPyREmjBBWriQ4A8AAOCFmPxnN3//LXXuLC1aZK+3aGGCf7FizvQFAAAAxzH5zy7cbmncOKlKFXvwDwuTpk6V5s8n+AMAAHg5Jv/Zwd69UseO0rJl9voDD5gXBEWKONMXAAAAshQm/57M7ZY++kiqWtUe/PPkkT79VPruO4I/AAAAEjH591R79php/4oV9nqrVmYLz0KFHGkLAAAAWReTf08THy+NGCFFRNiDf9680pdfSt98Q/AHAADANTH59yS7dkkdOkhr1tjrjz1mlv8ULOhMXwAAAPAITP49QXy8NHy4dMcd9uCfP7/01VfSrFkEfwAAANwUk/+s7vffpfbtpXXr7PXHH5dGjTIvAAAAAIAUYPKfVV2+LA0ZIlWvbg/+BQuadf1ffknwBwAAQKow+c+Ktm83a/s3bLDXn37anOybN68jbQEAAMCzMfnPSi5dkt55R6pRwx78b7tN+vZbs3c/wR8AAABpxOQ/q/jlF7O2f8sWe71dO+mDD8yFuwAAAIBbwOTfaRcvSgMGSLVq2YN/kSLS/PnS1KkEfwAAAKQLJv9O2rzZTPu3bbPXO3UyW3uGhTnTFwAAALIlJv9OiIuT3nxTqlPHHvyLFZN+/FGaOJHgDwAAgHTH5D+zbdxo1vHv2GGvP/+89N57UmioI20BAAAg+2Pyn1kuXJD69ZPq1bMH/5IlpcWLpXHjCP4AAADIUEz+M8P69Wba//vv9nrXruZCXsHBjrQFAAAA70L4zwxHjtiD/+23S5MnS40aOdYSAAAAvA/LfjLDQw9JTz0luVxSz57mJF+CPwAAADIZk//MMnKk9MIL0l13Od0JAAAAvBST/8ySNy/BHwAAAI4i/AMAAABegvAPAAAAeAnCPwAAAOAlCP8AAACAlyD8AwAAAF6C8A8AAAB4CcI/AAAA4CUI/wAAAICXIPwDAAAAXsIjwv++ffvUsWNHlSpVSoGBgSpdurT69++vixcvOt0aAAAA4DFyON1ASuzcuVNut1vjx49XmTJltH37dnXu3FmxsbEaPny40+0BAAAAHsFlWZbldBNpMWzYMI0dO1Z//fVXiu8THR2tsLAwRUVFKTQ0NAO7AwAAADJHajKuR0z+ryUqKkrh4eE3PCYuLk5xcXGJn0dHR2d0WwAAAECW5RFr/q+0Z88ejR49Ws8///wNjxs8eLDCwsISP4oVK5ZJHQIAAABZj6Phv2/fvnK5XDf82Llzp+0+Bw8eVIsWLdS6dWt17tz5ho/fr18/RUVFJX4cOHAgI78cAAAAIEtzdM3/8ePHdfLkyRsec/vtt8vPz0+SdOjQITVq1Ej16tXTtGnT5OOTutcurPkHAABAduMxa/7z58+v/Pnzp+jYgwcPqnHjxqpZs6amTp2a6uAPAAAAeDuPOOH34MGDatSokUqUKKHhw4fr+PHjibcVKlQoxY+T8CYHJ/4CAAAgu0jItilZ0OMR4X/RokXas2eP9uzZo6JFi9puS82qpZiYGEnixF8AAABkOzExMQoLC7vhMR67z39auN1uHTp0SCEhIXK5XI71ER0drWLFiunAgQOce+Dh+F5mH3wvsw++l9kH38vsg+9lxrIsSzExMSpcuPBNl8Z7xOQ/vfj4+Fz1zoGTQkND+QeQTfC9zD74XmYffC+zD76X2Qffy4xzs4l/As6aBQAAALwE4R8AAADwEoR/B/j7+6t///7y9/d3uhXcIr6X2Qffy+yD72X2wfcy++B7mXV41Qm/AAAAgDdj8g8AAAB4CcI/AAAA4CUI/wAAAICXIPwDAAAAXoLw76B9+/apY8eOKlWqlAIDA1W6dGn1799fFy9edLo1pMGgQYNUv359BQUFKXfu3E63g1QYM2aMSpYsqYCAANWtW1fr1693uiWkwYoVK/Tggw+qcOHCcrlcmjt3rtMtIQ0GDx6s2rVrKyQkRAUKFFCrVq20a9cup9tCGo0dO1YRERGJF/e68847tWDBAqfb8mqEfwft3LlTbrdb48eP144dO/Thhx9q3Lhxev31151uDWlw8eJFtW7dWl26dHG6FaTCzJkz9dJLL6l///7avHmzqlWrpubNm+vYsWNOt4ZUio2NVbVq1TRmzBinW8EtiIyMVNeuXbV27VotWrRIly5d0r333qvY2FinW0MaFC1aVEOGDNGmTZu0ceNGNWnSRA8//LB27NjhdGtei60+s5hhw4Zp7Nix+uuvv5xuBWk0bdo09erVS2fOnHG6FaRA3bp1Vbt2bX300UeSJLfbrWLFiql79+7q27evw90hrVwul+bMmaNWrVo53Qpu0fHjx1WgQAFFRkbqnnvucbodpIPw8HANGzZMHTt2dLoVr8TkP4uJiopSeHi4020AXuHixYvatGmTmjZtmljz8fFR06ZN9fPPPzvYGYAEUVFRksTvxmwgPj5eM2bMUGxsrO68806n2/FaOZxuAEn27Nmj0aNHa/jw4U63AniFEydOKD4+XgULFrTVCxYsqJ07dzrUFYAEbrdbvXr1UoMGDVSlShWn20Ea/frrr7rzzjt14cIFBQcHa86cOapUqZLTbXktJv8ZoG/fvnK5XDf8uDJYHDx4UC1atFDr1q3VuXNnhzrHldLyvQQApI+uXbtq+/btmjFjhtOt4BaUL19eW7du1bp169SlSxe1bdtWv/32m9NteS0m/xng5ZdfVrt27W54zO233574/4cOHVLjxo1Vv359TZgwIYO7Q2qk9nsJz5IvXz75+vrq6NGjtvrRo0dVqFAhh7oCIEndunXTvHnztGLFChUtWtTpdnAL/Pz8VKZMGUlSzZo1tWHDBo0cOVLjx493uDPvRPjPAPnz51f+/PlTdOzBgwfVuHFj1axZU1OnTpWPD2/GZCWp+V7C8/j5+almzZpasmRJ4omhbrdbS5YsUbdu3ZxtDvBSlmWpe/fumjNnjpYvX65SpUo53RLSmdvtVlxcnNNteC3Cv4MOHjyoRo0aqUSJEho+fLiOHz+eeBtTR8+zf/9+nTp1Svv371d8fLy2bt0qSSpTpoyCg4OdbQ7X9dJLL6lt27aqVauW6tSpoxEjRig2Nlbt27d3ujWk0tmzZ7Vnz57Ez/fu3autW7cqPDxcxYsXd7AzpEbXrl31xRdf6Ntvv1VISIiOHDkiSQoLC1NgYKDD3SG1+vXrp5YtW6p48eKKiYnRF198oeXLl+unn35yujWvxVafDpo2bdp1AwbfFs/Trl07TZ8+/ar6smXL1KhRo8xvCCn20UcfadiwYTpy5IjuuOMOjRo1SnXr1nW6LaTS8uXL1bhx46vqbdu21bRp0zK/IaSJy+W6Zn3q1Kk3XYaJrKdjx45asmSJDh8+rLCwMEVEROi1115Ts2bNnG7NaxH+AQAAAC/BAnMAAADASxD+AQAAAC9B+AcAAAC8BOEfAAAA8BKEfwAAAMBLEP4BAAAAL0H4BwAAALwE4R8AAADwEoR/APAC7dq1U6tWrRI/b9SokXr16pXpfSxfvlwul0tnzpzJ0OdxuVyaO3duhj4HAHgiwj8AOKRdu3ZyuVxyuVzy8/NTmTJl9Pbbb+vy5csZ/tzffPONBg4cmKJjMyuwX7x4Ufny5dOQIUOuefvAgQNVsGBBXbp0KUP7AIDsjPAPAA5q0aKFDh8+rN27d+vll1/WgAEDNGzYsGsee/HixXR73vDwcIWEhKTb46UHPz8/Pf3005o6depVt1mWpWnTpunZZ59Vzpw5HegOALIHwj8AOMjf31+FChVSiRIl1KVLFzVt2lTfffedpKSlOoMGDVLhwoVVvnx5SdKBAwfUpk0b5c6dW+Hh4Xr44Ye1b9++xMeMj4/XSy+9pNy5cytv3rx69dVXZVmW7XmvXPYTFxen1157TcWKFZO/v7/KlCmjyZMna9++fWrcuLEkKU+ePHK5XGrXrp0kye12a/DgwSpVqpQCAwNVrVo1zZ492/Y88+fPV7ly5RQYGKjGjRvb+ryWjh076o8//tCqVats9cjISP3111/q2LGjNmzYoGbNmilfvnwKCwtTw4YNtXnz5us+5rXeudi6datcLpetn1WrVunuu+9WYGCgihUrph49eig2Njbx9o8//lhly5ZVQECAChYsqMcee+yGXwsAZEWEfwDIQgIDA20T/iVLlmjXrl1atGiR5s2bp0uXLql58+YKCQnRypUrtXr1agUHB6tFixaJ93v//fc1bdo0TZkyRatWrdKpU6c0Z86cGz7vs88+qy+//FKjRo3S77//rvHjxys4OFjFihXT119/LUnatWuXDh8+rJEjR0qSBg8erE8++UTjxo3Tjh071Lt3bz399NOKjIyUZF6kPPLII3rwwQe1detWderUSX379r1hH1WrVlXt2rU1ZcoUW33q1KmqX7++KlSooJiYGLVt21arVq3S2rVrVbZsWd13332KiYlJ3R92Mn/++adatGihRx99VNu2bdPMmTO1atUqdevWTZK0ceNG9ejRQ2+//bZ27dqlH3/8Uffcc0+anw8AHGMBABzRtm1b6+GHH7Ysy7Lcbre1aNEiy9/f3+rTp0/i7QULFrTi4uIS7/Ppp59a5cuXt9xud2ItLi7OCgwMtH766SfLsizrtttus957773E2y9dumQVLVo08bksy7IaNmxo9ezZ07Isy9q1a5clyVq0aNE1+1y2bJklyTp9+nRi7cKFC1ZQUJC1Zs0a27EdO3a0nnjiCcuyLKtfv35WpUqVbLe/9tprVz3WlcaNG2cFBwdbMTExlmVZVnR0tBUUFGRNmjTpmsfHx8dbISEh1vfff59Yk2TNmTPnuv1v2bLFkmTt3bs3se/nnnvO9rgrV660fHx8rPPnz1tff/21FRoaakVHR1+3bwDwBEz+AcBB8+bNU3BwsAICAtSyZUv95z//0YABAxJvr1q1qvz8/BI//+WXX7Rnzx6FhIQoODhYwcHBCg8P14ULF/Tnn38qKipKhw8fVt26dRPvkyNHDtWqVeu6PWzdulW+vr5q2LBhivves2ePzp07p2bNmiX2ERwcrE8++UR//vmnJOn333+39SFJd955500f+4knnlB8fLy++uorSdLMmTPl4+Oj//znP5Kko0ePqnPnzipbtqzCwsIUGhqqs2fPav/+/Snu/0q//PKLpk2bZvtamjdvLrfbrb1796pZs2YqUaKEbr/9dj3zzDP6/PPPde7cuTQ/HwA4JYfTDQCAN2vcuLHGjh0rPz8/FS5cWDly2H8s58qVy/b52bNnVbNmTX3++edXPVb+/PnT1ENgYGCq73P27FlJ0g8//KAiRYrYbvP3909THwlCQ0P12GOPaerUqerQoYOmTp2qNm3aKDg4WJLUtm1bnTx5UiNHjlSJEiXk7++vO++887onRPv4mDmXley8hyt3DDp79qyef/559ejR46r7Fy9eXH5+ftq8ebOWL1+uhQsX6n//+58GDBigDRs2KHfu3Lf09QJAZiL8A4CDcuXKpTJlyqT4+Bo1amjmzJkqUKCAQkNDr3nMbbfdpnXr1iWuSb98+bI2bdqkGjVqXPP4qlWryu12KzIyUk2bNr3q9oR3HuLj4xNrlSpVkr+/v/bv33/ddwwqVqyYePJygrVr1978i5Q58bdRo0aaN2+e1qxZY9sBafXq1fr444913333STLnFpw4ceK6j5Xwoujw4cPKkyePJPNuR3I1atTQb7/9dsPvRY4cOdS0aVM1bdpU/fv3V+7cubV06VI98sgjKfqaACArYNkPAHiQp556Svny5dPDDz+slStXau/evVq+fLl69Oihf/75R5LUs2dPDRkyRHPnztXOnTv14osv3nCP/pIlS6pt27bq0KGD5s6dm/iYCctuSpQoIZfLpXnz5un48eM6e/asQkJC1KdPH/Xu3VvTp0/Xn3/+qc2bN2v06NGaPn26JOmFF17Q7t279corr2jXrl364osvNG3atBR9nffcc4/KlCmjZ599VhUqVFD9+vUTbytbtqw+/fRT/f7771q3bp2eeuqpG757UaZMGRUrVkwDBgzQ7t279cMPP+j999+3HfPaa69pzZo16tatm7Zu3ardu3fr22+/TTzhd968eRo1apS2bt2qv//+W5988oncbnfiDkwA4CkI/wDgQYKCgrRixQoVL15cjzzyiCpWrKiOHTvqwoULie8EvPzyy3rmmWfUtm1b3XnnnQoJCdG///3vGz7u2LFj9dhjj+nFF19UhQoV1Llz58RtLosUKaK33npLffv2VcGCBRMD8cCBA/Xmm29q8ODBqlixolq0aKEffvhBpUqVkmSWy3z99deaO3euqlWrpnHjxundd99N0dfpcrnUoUMHnT59Wh06dLDdNnnyZJ0+fVo1atTQM888ox49eqhAgQLXfaycOXPqyy+/1M6dOxUREaGhQ4fqnXfesR0TERGhyMhI/fHHH7r77rtVvXp1/e9//1PhwoUlSblz59Y333yjJk2aqGLFiho3bpy+/PJLVa5cOUVfDwBkFS7LumLzZwAAAADZEpN/AAAAwEsQ/gEAAAAvQfgHAAAAvAThHwAAAPAShH8AAADASxD+AQAAAC9B+AcAAAC8BOEfAAAA8BKEfwAAAMBLEP4BAAAAL0H4BwAAALzE/wHZ6IRpmWVzfwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Creating regression plot to visualize the model performance\n", + "plt.figure(figsize=(9,6))\n", + "\n", + "sns.regplot(x=ypred, y=ytest, color='red')\n", + "\n", + "plt.xlabel('Predicted Values')\n", + "plt.ylabel('Actual Values')\n", + "plt.title('XG Boost Regression Plot')\n", + "\n", + "plt.savefig('prediction_plot.png', bbox_inches='tight')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 698 + }, + "id": "-KTjfhCUQwt2", + "outputId": "c19a10ae-7565-48fe-bc78-c7b65db939ad" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbgAAALBCAYAAACa1selAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dYG8PdMek/ovShIFQXErmAFu17sBVTsBUW9lvuBIKiAigI2UJoovSNIJwRCTYAEAumk994zmbK/P8KMKTOT6SV5f8/Do8mcsmdy5pS1115bEkIIEBERERERERERERG5GJmjG0BEREREREREREREZA4GuImIiIiIiIiIiIjIJTHATUREREREREREREQuiQFuIiIiIiIiIiIiInJJDHATERERERERERERkUtigJuIiIiIiIiIiIiIXBID3ERERERERERERETkkhjgJiIiIiIiIiIiIiKXxAA3EREREREREREREbkkBriJiIiIiMgsqampkCQJkiQhNTW10WuHDh3SvmZvY8aMgSRJmDFjht333RbZ6vOeMWMGJEnCmDFjrLpdIiIial0Y4CYiIqJWTxMkkSQJvr6+yM7O1rtsw4DdoUOH7NdIF5GWlobPPvsMo0aNQkhICDw8PNC5c2cMGzYM48ePx/z58xEdHd1svaioKMyYMQPz58+3f6OdWJ8+fbTHW8N/AQEBGDp0KN5++21cvHjR0c10Glu3bsWMGTOwdetWRzfFJhqeqyRJwtq1a1tc54EHHmi0TtOOBiIiIqLWjgFuIiIialNqamrwxRdfOLoZLmnVqlUYPHgw5syZg8jISJSWlsLX1xfV1dU4f/48Nm/ejClTpuCRRx5ptm5UVBS++OILBrj18Pb2RufOndG5c2d07NgRVVVVuHDhAn755Rdce+21WLp0qaObaDJfX18MGDAAAwYMsNo2t27dii+++KLFAHevXr0wYMAAdOjQwWr7doTly5cbfD07Oxt79uyxU2uIiIiInBMD3ERERNTmLFu2DAkJCY5uhkuJiIjAhAkTUF1djWHDhmHjxo2orKxEWVkZKioqkJ+fj61bt+LFF1+En5+fo5vrcp566ink5uYiNzcX+fn5qKqqwvr169G5c2coFAq8/vrrOHfunKObaZLrr78ecXFxiIuLs/u+V65cibi4OLzzzjt237c1dOjQAX5+fti/fz8yMzP1Lrdy5UqoVCr06dPHfo0jIiIicjIMcBMREVGb0bNnTwwbNgxKpRL/+9//HN0clzJ//nyo1Wp06tQJhw8fxvjx4xsFsjt27IhHHnkEy5cvR2RkpANb2jr4+PjgiSeewF9//QUAUKlU+PXXXx3cKrIXPz8/PP7441Cr1VixYoXe5TQZ3i+++KJ9GkZERETkhBjgJiIiojZDJpNh9uzZAIBNmzbh1KlTJq1vaEK9hjR1lZsGppqun5ycjNdeew19+/aFl5dXsyzMdevW4b777kPnzp3h4eGB4OBg9O/fHw8//DB+/vln1NbW6tx/QUEBpk6diuHDhyMoKAje3t644oorMGnSJFy4cMGk96wRFRUFoH4yuaCgIIPL+vj4NPpZkiS89NJLAOpreDetN91wYroXX3wRkiThxRdfhBACS5Yswa233or27dvr/Uzff/99DBkyBP7+/vD19cXAgQPx3nvvIT09XW8b4+Li8Nprr+Gqq66Cr68vvL290bNnT9x444343//+pzPrODMzE1OmTMGQIUPg5+cHLy8vdOvWDSNHjsSUKVMQERFh8HMxx913342uXbsCQKPtN518b9OmTbj33nvRqVMnyGSyZpP9WXJMZGVl4fXXX0fPnj3h5eWFHj164KWXXkJSUpLB9YyZZLKurg5LlizBuHHj0LlzZ3h5eaFr16646aabMHPmTKSkpDTa1h9//AEA+OOPP5odRw1r5hsz6eHmzZvx4IMPonPnzvD09ETnzp3x4IMPYsuWLXrXaXh8AsDGjRsxZswYtGvXDr6+vrj22muxYMECqNVqg5+NMTTfGX0B7vDwcCQkJOCKK67A7bff3uL2amtrMX/+fNx8880ICQmBt7c3evfujQkTJmi/3/qoVCr8+OOPGDFiBPz8/NCuXTuMGTMGGzduNPr9HD16FM8//zx69+4Nb29vBAUF4frrr8fcuXNRWVlp9HaIiIiImnJ3dAOIiIiI7On+++/H6NGjERYWhk8//RQHDx50SDuOHTuG119/HZWVlfD19YWHh0ej119++eVG9Xf9/f2hUCiQlJSEpKQk/P3333jggQeaBcX379+PJ554AqWlpQAADw8PeHp6IiUlBSkpKfjrr7/w+++/Y8KECWa121C5BH06d+6MmpoalJeXQyaToWPHjo1e9/f3b7aOEAJPPPEENm3aBJlMhqCgIMhkjXMzVq1ahUmTJkEulwMAvLy8IJPJEB8fj/j4eCxfvhwbN27Evffe22i9ffv24aGHHtKu5+HhAT8/P2RmZiIzMxMnT56Ep6dno+BodHQ07rjjDpSUlAAA3NzcEBgYiNzcXOTk5ODMmTMoKSkxmG1rrh49eiAnJwfl5eU6X//www/x/fffQ5IkBAcHN/ucLDkmzpw5g7vvvlv7vn18fFBWVoYVK1Zg8+bN+P33381+XykpKXj44YcRExMDANr2l5eX48SJEzhx4gSKi4sxf/58bQC6rKwMtbW12gBpQ56enkbtt66uDhMmTMC6desAQHt8FRYWYufOndi5cyeeeeYZ/PHHH82+lw298847+PnnnyGTyRAYGIiamhpER0fj/fffx5kzZ7TBeHPdfvvtuPLKK5GcnIzDhw83C2I3zN421IkA1HdSjBs3TvtZe3h4wNfXF+np6fjzzz+xatUqzJ8/H++++26zdeVyOR555BFtrW+ZTAZPT08cPnwYYWFh+OSTTwzuW61WY8qUKVi4cKH2d/7+/qiqqkJERAQiIiKwfPly7NmzB7179275gyEiIiJqghncRERE1ObMmTMHABAaGordu3c7pA2vv/46hgwZgoiICFRVVaGyshJ79+4FUJ+ZuXz5cshkMsydOxdFRUWoqKhAVVUVCgsLsWfPHkycOLFZQO/8+fN4+OGHUVpaildffRUXL15ETU0NKisrkZaWhrfeegt1dXWYNGmSyWVErr/+egD1gfl58+ahrq7O6HVzc3OxYMECAPVlYjS1pjX/Pvroo2brbN68Gdu2bcN3332HkpISFBcXo6ysDGPHjgVQH6SeMGECVCoVPv74Y6SkpKCmpgZVVVWIi4vDE088gYqKCjzxxBPNMrnffPNNyOVy3HvvvTh//jzq6upQUlKCmpoaxMTE4IsvvmjWcfDhhx+ipKQEI0aMwPHjx6FQKFBcXIza2lokJCTgu+++w5AhQ0z5SI2mGS3Qrl27Zq+dPn0a33//PT755BPk5eWhuLgYVVVV2uxfS46JiooKPPbYYygpKUGvXr2wd+9eVFVVoaKiAseOHUPPnj3x+uuvm/WeysvLMXbsWMTExCAkJAS//fab9u9cVVWF5ORkzJs3TxvwvPnmm5Gbm4unnnoKQOOa5Zp/N998s1H7/t///od169ZBkiRMmzYNRUVFKC4uRmFhobZ00Zo1azBt2jS929i+fTt+//13fP/99ygpKUFJSQkKCwvxyiuvAKivjW1p51nDTPFly5Y1ek1To10mk7VYnkSlUmH8+PGIiYlBUFAQ/vrrL1RWVqK0tBTJycl48MEHoVar8d5772HXrl3N1v/ss8+wZ88eSJKEL7/8Uvt+c3Nz8eabb2Lu3LkGM8CnT5+OhQsXolOnTvj555+157OamhqEhoZi+PDhiI+Px3/+8x+rZL4TERFRGySIiIiIWrnp06cLAKJ3797a3z322GMCgLj22muFWq3W/j4lJUUAEABEaGhoo+00fC0lJUXv/nr37i0AiOXLl+tdv3fv3qKiokLn+nPnzhUAxL333mvS+7zzzjsFAPHZZ5/pXWby5MkCgHjkkUdM2nZcXJwICAjQtj8kJEQ8+uij4ssvvxS7du0SJSUlBtdfvnx5s7+BLhMnTtTuY+HChTqXUalUon///gKAWLx4sd5tPfzwwwKAeO+997S/y8vL024/OzvbYFsa8vHxEQDEsWPHjF7HGJpjZeLEiTpf37Bhg7a9Dd+H5pgGID744AO927fkmNAch56enuLixYvN1svJyREhISF6vxOhoaHa15qaOnWqACC8vLzEmTNn9LatKc3xoe/z0hg9erQAIKZPn97o95mZmcLd3d3gZ/LBBx8IAMLDw6PZMdLw+Gz6/dYYOXKkACBeeeUVY9+WVtNzVXp6upDJZMLPz6/R+WLZsmUCgLjnnnuEEI0/66Z/h7Vr12pf27NnT7N9KhQKccMNNwgAYujQoY1ey8rK0n5e06ZN09nmZ555Rrv9pp93SkqKcHNzEz4+PiIqKkrn+uXl5aJHjx4CgNiyZYvOz2P06NE61yUiIiISQghmcBMREVGb9PXXX8PNzQ1RUVFYs2aN3ff/zjvv6CzNAQDBwcEA6usmq1Qqo7aXmpqKgwcPwt3dXWdGtIamDMX+/fuN3jYADBgwAGFhYRg1ahQAoKSkBFu3bsXUqVNx3333oX379hgzZgy2bt1q9DYNCQkJ0ZsdfPjwYSQmJqJDhw7ajFldNO9VU1oBAAICArQlPHJycoxuj+ZvYso65hJCIC0tDT/++CMmTZoEoL78xttvv91sWZlMprdEhKXHxNq1awEATzzxBAYNGtRsvS5duuCNN94w/o01oMlIfuWVVzB8+HCztmGOTZs2QalUwtvbG59++qnOZaZOnQovLy8oFAq9NaZ79uyJiRMn6nzt4YcfBgCcO3fO4vb27NkTd999tzZjW0NTnuTll19ucRuaUiw33XRTs3I9AODu7o7p06cDAGJiYnD+/Hntaxs3boRSqYSPj4/eY8hQnfMVK1ZApVJh3LhxuOaaa3QuExAQgEcffRRA4+8qERERkbEY4CYiIqI2aeDAgdoyDtOmTYNCobDr/m+55Ra9r911113w9vbG2bNncdttt2Hp0qXayfb0OXr0KID6ereDBw9Gly5ddP4bN24cgPoSB0VFRSa1efjw4Th16hQiIiLwxRdfYNy4cejSpYt2v2FhYXjsscfw0ksvQQhh0rabGjVqlN6aypr3WlZWhm7duul9r6+++iqA+oktNXx8fHDXXXcBAMaNG4fPP/8cJ0+ebLHkyoMPPggAmDhxIj788EOEhYWhurraovfYUMNJE2UyGfr06YPJkyejvLwc/v7+WLNmDfr3799svX79+qFTp046t2nJMVFXV6cNdN555516223oNX3S0tKQnZ0NAHjooYdMXt8SmjIso0aNQmBgoM5lQkJCcN111zVavqlRo0bprXvdrVs3AEBxcbGlzQXw72STmk6BpKQkHDlyBCEhIdrAsCGa93D33XfrXeaOO+6Am5tbo+Ub/v91112n9/O66qqr0L17d52vaY7BvXv36j3+unTpog3YN/yuEhERERmLk0wSERFRmzVjxgysWrUKly5dwqJFi3ROsGYr+oKSAHDllVdiyZIleOONN3D8+HEcP34cANCxY0fccccdePbZZ/Hwww83CrBpAoZqtRp5eXlGtcHcAO11112nDQAC9ZnCmzZtwpw5c1BYWIgVK1Zg5MiReOedd8zaPmD489G8V4VCYdR7rampafTzkiVL8PDDDyM6OhqzZs3CrFmz4OnpiVGjRuGRRx7BpEmTmtW7/uabb5CUlITQ0FB8//33+P777+Hm5oZrr70WDzzwAF577TW9QT5jNJw0UZIk+Pn5oVevXrj99tvxyiuvoEePHjrXM+ZzMueYKC4uhlKpBACD70tfuwzJzc3V/r+9JxXMz88HYPg9Af++L83yTQUEBOhd1929/hHLWp1mjz32GEJCQnD06FEkJiZqJzJ95pln4O3t3eL6xrxnb29vdOjQAXl5eY3esymfV1ZWVrPfa47BqqoqVFVVtdhWa3YaERERUdvBDG4iIiJqs7p3764Nan/55ZeorKy027412ZL6PPfcc0hLS8OiRYvw1FNPoWfPnigoKMD69evx6KOPYvTo0SgvL9curykt0blzZwghjPrXdCJFc/Xp00eb1ezj4wOgPohsCUOfj+a93nDDDUa/14Z69eqFM2fOYPfu3Zg8eTJGjhwJtVqNo0eP4uOPP0a/fv2aTRAYHByMgwcP4siRI/j4449xyy23wN3dHadPn8bMmTPRv39/i0rdNJw0MScnB0lJSTh48CBmzJhhMIhszOfkiGPCEH2Zz6Sbl5cXnnnmGQD136uVK1cC+Dez25lpjsFPPvnEqOPv0KFDjm0wERERuSQGuImIiKhN+/TTTxESEoL8/HzMmzfP4LKazEwAqK2t1btcWVmZVdrWrl07vP7661i7di3S09ORlJSETz/9FJIk4ciRI41q32pKhRQWFhqVKWkLgwcPxq233goAiI+Pt9l+NO/VknIGMpkMY8eOxYIFCxAZGYni4mKsWrUKvXr1QklJCZ599lmdZUtuvfVWzJ07F+Hh4SgtLcW2bdtw9dVXo6amBi+//LLRmdL2YMkx0a5dO23wXFdmroah11pqF2D/khSajPfMzEyDy2leN5Qhb0+aYPb8+fORmZmJoUOHNhpFYYgx77m2tlZbnqbhe9b8f0t/Z32vW+O7SkRERNQSBriJiIioTQsJCdFONjdv3jwUFBQYXFYjIyND5zIJCQkoLS21ahs1rrzySsyePRvPPvssAGDfvn3a1zQ1vVUqFXbt2mWT/RtDM3Gml5dXo99rJna0tDY38O97zc3N1Vsj2VQBAQF49tlnsXTpUgBAXl5eo8n2dPH29sbDDz+MzZs3A6gPEoaHh1ulPdZgyTHh6emJYcOGAQBCQ0P1Ltc0090YvXr10pa8+Pvvv01a19LjqGFtbX0dUaWlpY1qdTuD6667DldffbW208WYySUbrgsABw4c0LvMoUOHtCVpGr7nhp+XvhEuiYmJeoPnmmNw//79BjsFiYiIiCzBADcRERG1ee+++y569OiBiooKzJo1S+9yfn5+uPLKKwEAmzZt0rnMV199ZXF75HK5wdc1ZUA0wT4A6N+/P8aMGQMA+L//+78Ws8hNnQDv4MGDLdYUzsrKwv79+wEAI0aMaPSaZoI6awT/77jjDvTr1w8AMGXKlBYniGz4XltaVvPZAv9+vkqlEmq12qR1nIGlx8RTTz0FANiwYYPOjPz8/HwsWrTIrLZNmjQJQH3JjbNnzxq9nqXH0fjx4+Hu7o7a2lrMnTtX5zJff/015HI5PDw8MH78eLP2Ywtz587Fhx9+iA8//BDPP/+80es9/fTTAIDjx49j7969zV5XKpWYOXMmAGDo0KEYOnSo9rXx48fDzc0NNTU1+O6773RuX7OuLi+//DLc3d1RWFiI6dOnG2xnXV2dXctEERERUevhPHfgRERERA7i4+OjLffRUkapphbusmXL8Msvv2gnMMzIyMArr7yCdevWwdfX16L2vPPOO3jyySexadOmRhO+VVZWYtGiRdoavA888ECj9X788Uf4+/sjISEBN954I7Zt29YoazIrKwt//vkn7rrrLnzyyScmtenjjz/GFVdcgU8//RTh4eGNJm4sLi7GkiVLcOutt6KiogIA8OGHHzZaXxM0Ky8vx/r1603ad1Pu7u5YtGgR3N3dER4ejttvvx0HDhxoFIDXTBw6atQo/PLLL9rfHzt2DMOGDcMPP/yA2NhYbeBaCIFjx47hzTffBFA/aZ4mgzkzMxP9+/fHl19+ibNnz2ozXQHg3Llz2mCjn58fRo8ebdF7szZLjok333wTPXr0gFwux7hx43DgwAFt5vTJkydx9913Gwz8G/LRRx+hf//+kMvluOuuu/D77783qimfnJyMmTNnNguqao6jI0eOIC4uzuT9du/eHe+99x4AYM6cOZg+fbo2WF5aWopp06bh22+/BQB88MEH6Nq1qzlvzybuu+8+fPfdd/juu+/QsWNHo9cbP348brjhBgDAk08+idWrV2u/KykpKRg/frx2Ittvvvmm0brdu3fH22+/DQCYNWsWZs+erf2OFxQU4J133sFff/2lnSC1qSuvvBLTpk3TbnvChAmIiYnRvq5UKhEVFYWZM2eiX79+iIqKMvp9EREREWkJIiIiolZu+vTpAoDo3bu33mWUSqUYOHCgAKD9Fxoa2my5iooKMXjwYO0yMplMBAcHCwDCw8NDrFmzRvTu3VsAEMuXL2+0bkpKina9lJQUvW2ZOHFio3b4+/tr96H5d+utt4rKyspm64aHh4suXbpol3NzcxPt27cXPj4+jdZ/5ZVXjPz06t14442N1pckSQQFBQlfX99Gv/f09BQLFizQuY277rpLu1xAQIDo3bu36N27t/jhhx+avfeJEye22KYtW7aIgIAA7TY9PDxE+/bthZeXV6M2ffnll9p1QkNDG72mWcfd3V37u8DAQHH48GHtOg3/bprPtF27dsLT07PR+96wYYNJn6kQQnusGPN+G9Ic06NHj25xWUuOiYiIiEbHnq+vr/D399f+DdetW6f3mG74WeuSnJzc7LvUrl27RsfUe++912id4uJi0bFjR+3rHTp00B5Hx48f1y43evRoAUBMnz692X7lcrl48sknG+03JCREyGQy7e+eeeYZUVdX12xdY47P5cuXt3i+0ceYc5UuDT9rXeeWzMxMMWTIkEbHa8O/q0wm0/u9rampEXfffXej4yckJERIkiQAiE8++cTg561Wq8W0adO0ywMQPj4+on379sLNza3RMRgeHq7z8zDmOCciIqK2ixncRERERADc3Nzw9ddft7icv78/wsPD8cEHH6Bv375wd3fXljI4fvy4thyAJaZNm4aFCxfisccew8CBA+Hu7o7Kykp06tQJ99xzD5YtW4ZDhw7Bz8+v2bq33HILEhIS8N133+H2229HcHAwSktL4ebmhkGDBuH555/HqlWrMH/+fJPaFBoaih07duCDDz7Abbfdhs6dO6OmpgYKhQIdOnTAzTffjP/7v/9DbGwsJk+erHMbGzduxJQpU3DVVVdBoVAgLS0NaWlpZpebePTRR5GUlITp06fj+uuvh7+/P0pLS+Hl5YVrrrkGr7zyCrZs2YL//ve/2nVGjRqF9evX480338TIkSPRoUMHlJeXw9vbG9deey0+/vhjxMbG4rbbbtOu0717d2zfvh1TpkzBjTfeiK5du6KyshLu7u4YPHgw3n77bcTExODxxx83633YmiXHxHXXXYdz587hlVdeQffu3aFUKhEUFISJEyfizJkzuP76681u1xVXXIGzZ8/il19+wZgxYxASEoKKigoEBwfjpptuwqxZszBlypRG64SEhODw4cN4+umn0b17d5SVlWmPI2NrPHt6emLdunXYuHEj7rvvPrRv3x4VFRVo37497rvvPmzevBmrV6+Gh4eH2e/N2XTv3h2RkZH4/vvvceONN8LHxwfV1dXo2bMnXnjhBZw+fVrv99bb2xu7du3CggULcO2118LT0xNCCNx2221Yv3495syZY3DfkiRh5syZOHfuHN566y0MGjQIbm5uKCsrQ0hICG6++Wb897//xbFjx7Q1u4mIiIhMIQlhhZl+iIiIiIiIiIiIiIjsjBncREREREREREREROSSGOAmIiIiIiIiIiIiIpfEADcRERERERERERERuSQGuImIiIiIiIiIiIjIJTHATUREREREREREREQuiQFuIiIiIiIiIiIiInJJ7o5ugD2p1WpkZ2cjICAAkiQ5ujlEREREREREREREpIMQAhUVFejWrRtkMv152m0qwJ2dnY2ePXs6uhlEREREREREREREZISMjAz06NFD7+ttKsAdEBAAoP5DCQwMdHBriIiIiIiIiIiIiEiX8vJy9OzZUxvT1adNBbg1ZUkCAwMZ4CYiIiIiIiIiIiJyci2VmuYkk0RERERERERERETkkhjgJiIiIiIiIiIiIiKXxAA3EREREREREREREbmkNlWDm4iIiIiIiIiIiACVSgWFQuHoZlAb5uHhATc3N4u3wwA3ERERERERERFRGyGEQG5uLkpLSx3dFCIEBwejS5cuLU4kaQgD3ERERERERERERG2EJrjdqVMn+Pr6WhRYJDKXEALV1dXIz88HAHTt2tXsbTHATURERERERERE1AaoVCptcLt9+/aObg61cT4+PgCA/Px8dOrUyexyJZxkkoiIiIiIiIiIqA3Q1Nz29fV1cEuI6mmORUvqwTPATURERERERERE1IawLAk5C2sciwxwExEREREREREREZFLYoCbiIiIiIiIiIiIyEySJGHr1q023ceYMWPw/vvv23QfrooBbiIiIiIiIiIiInJ6x48fh5ubGx544AGT1+3Tpw/mz59v/Ua14KGHHsK4ceN0vnbkyBFIkoRz587ZuVWtCwPcRERERERERERE5PSWLl2Kd999F4cPH0Z2drajm2OUSZMmYd++fcjMzGz22vLly3Hddddh2LBhDmhZ68EANxERERERERERETm1yspKrFu3Dm+++SYeeOABrFixotkyf//9N0aNGgVvb2906NABjz32GID68h5paWmYMmUKJEnSTmw4Y8YMXHvttY22MX/+fPTp00f7c0REBO655x506NABQUFBGD16NM6cOWN0ux988EF07NixWXsrKyuxYcMGTJo0CUVFRXjmmWfQvXt3+Pr64uqrr8aaNWsMbldXWZTg4OBG+8nIyMCTTz6J4OBgtGvXDo888ghSU1O1rx86dAjXX389/Pz8EBwcjFtuuQVpaWlGvzdnwQA3ERERERERERFRGySEQHWd0iH/hBAmtXX9+vUYOHAgBgwYgOeffx7Lli1rtI2dO3fisccew/3334+zZ8/iwIEDuP766wEAmzdvRo8ePTBz5kzk5OQgJyfH6P1WVFRg4sSJCA8Px4kTJ9C/f3/cf//9qKioMGp9d3d3TJgwAStWrGjU3g0bNkClUuGZZ55BbW0tRo4ciZ07dyImJgavvfYaXnjhBZw6dcrodjalUCgwduxYBAQE4MiRIzh69Cj8/f0xbtw41NXVQalU4tFHH8Xo0aNx7tw5HD9+HK+99po2+O9K3B3dACIiIiIiIiIiIrK/GoUKgz/f45B9X5w5Fr6exocmly5diueffx4AMG7cOJSVlSEsLAxjxowBAHz11Vd4+umn8cUXX2jXueaaawAA7dq1g5ubGwICAtClSxeT2nnnnXc2+vm3335DcHAwwsLC8OCDDxq1jZdffhnffvtto/YuX74c48ePR1BQEIKCgvDRRx9pl3/33XexZ88erF+/XhukN9W6deugVquxZMkSbdB6+fLlCA4OxqFDh3DdddehrKwMDz74IK688koAwKBBg8zal6Mxg5uIiIiIiIiIiIicVnx8PE6dOoVnnnkGQH1W9FNPPYWlS5dql4mKisJdd91l9X3n5eXh1VdfRf/+/REUFITAwEBUVlYiPT3d6G0MHDgQN998M5YtWwYASEpKwpEjRzBp0iQAgEqlwqxZs3D11VejXbt28Pf3x549e0zaR1PR0dFISkpCQEAA/P394e/vj3bt2qG2thbJyclo164dXnzxRYwdOxYPPfQQFixYYFJmuzNhBjcREREREREREVEb5OPhhoszxzps38ZaunQplEolunXrpv2dEAJeXl746aefEBQUBB8fH5PbIJPJmpVKUSgUjX6eOHEiioqKsGDBAvTu3RteXl646aabUFdXZ9K+Jk2ahHfffRc///wzli9fjiuvvBKjR48GAHz77bdYsGAB5s+fj6uvvhp+fn54//33De5DkiSDba+srMTIkSOxatWqZut27NgRQH1G9+TJk7F7926sW7cOU6dOxb59+3DjjTea9N4cjQFuIiIiIiIiIiKiNkiSJJPKhDiCUqnEypUrMW/ePNx7772NXnv00UexZs0avPHGGxg2bBgOHDiAl156Sed2PD09oVKpGv2uY8eOyM3NhRBCW8YjKiqq0TJHjx7FL7/8gvvvvx9A/cSNhYWFJr+PJ598Eu+99x5Wr16NlStX4s0339Tu8+jRo3jkkUe0JVjUajUSEhIwePBgvdvr2LFjo4zrxMREVFdXa38eMWIE1q1bh06dOiEwMFDvdoYPH47hw4fjs88+w0033YTVq1e7XICbJUqIiIiIiIiIiIjIKe3YsQMlJSWYNGkShg4d2ujf+PHjtWVKpk+fjjVr1mD69OmIjY3F+fPnMXfuXO12+vTpg8OHDyMrK0sboB4zZgwKCgrwzTffIDk5GT///DN27drVaP/9+/fHn3/+idjYWJw8eRLPPfecWdni/v7+eOqpp/DZZ58hJycHL774YqN97Nu3D8eOHUNsbCxef/115OXlGdzenXfeiZ9++glnz55FZGQk3njjDXh4eGhff+6559ChQwc88sgjOHLkCFJSUnDo0CFMnjwZmZmZSElJwWeffYbjx48jLS0Ne/fuRWJiokvW4WaAm4iIiIiIiIiIiJzS0qVLcffddyMoKKjZa+PHj0dkZCTOnTuHMWPGYMOGDdi+fTuuvfZa3HnnnTh16pR22ZkzZyI1NRVXXnmltkTHoEGD8Msvv+Dnn3/GNddcg1OnTjWa7FGz/5KSEowYMQIvvPACJk+ejE6dOpn1XiZNmoSSkhKMHTu2UbmVqVOnYsSIERg7dizGjBmDLl264NFHHzW4rXnz5qFnz5647bbb8Oyzz+Kjjz6Cr6+v9nVfX18cPnwYvXr1wn/+8x8MGjQIkyZNQm1tLQIDA+Hr64u4uDiMHz8eV111FV577TW8/fbbeP311816b44kiabFWlqx8vJyBAUFoayszGBqPhERERERERERUWtTW1uLlJQU9O3bF97e3o5uDpHBY9LYWC4zuImIiIiIiIiIiIjIJTHATUREREREREREREQuiQFuIiIiIiIiIiJqVb7+JxZPLj4OhUrt6KYQkY0xwE1ERERERERERK3Kb4cv4VRKMfZfzHN0U4jIxhjgJiIiIiIiIiKiVkmpFo5uAhHZGAPcREREREREREREROSSGOAmIiIiIiIiIiIiIpfEADcRERERERERERERuSQGuImIiIiIiIiIiIjIJTHATURERERERERERATgxRdfxKOPPqr9ecyYMXj//fft3o5Dhw5BkiSUlpbadD+SJGHr1q023YetMcBNREREREREREStknB0A8gqXnzxRUiSBEmS4OnpiX79+mHmzJlQKpU23/fmzZsxa9Yso5a1V1C6rq4OHTp0wJw5c3S+PmvWLHTu3BkKhcKm7XAWDHATERERERERERGRUxs3bhxycnKQmJiIDz/8EDNmzMC3336rc9m6ujqr7bddu3YICAiw2vaswdPTE88//zyWL1/e7DUhBFasWIEJEybAw8PDAa2zPwa4iYiIiIiIiIiIyKl5eXmhS5cu6N27N958803cfffd2L59O4B/y4p89dVX6NatGwYMGAAAyMjIwJNPPong4GC0a9cOjzzyCFJTU7XbVKlU+OCDDxAcHIz27dvj448/hhCN8/6bliiRy+X45JNP0LNnT3h5eaFfv35YunQpUlNTcccddwAAQkJCIEkSXnzxRQCAWq3G7Nmz0bdvX/j4+OCaa67Bxo0bG+3nn3/+wVVXXQUfHx/ccccdjdqpy6RJk5CQkIDw8PBGvw8LC8OlS5cwadIkRERE4J577kGHDh0QFBSE0aNH48yZM3q3qSsDPSoqCpIkNWpPeHg4brvtNvj4+KBnz56YPHkyqqqqtK//8ssv6N+/P7y9vdG5c2c8/vjjBt+LpRjgJiIiIiIiIiIiaouEAOqqHPNPWFZAxsfHp1Gm9oEDBxAfH499+/Zhx44dUCgUGDt2LAICAnDkyBEcPXoU/v7+GDdunHa9efPmYcWKFVi2bBnCw8NRXFyMLVu2GNzvhAkTsGbNGixcuBCxsbFYvHgx/P390bNnT2zatAkAEB8fj5ycHCxYsAAAMHv2bKxcuRKLFi3ChQsXMGXKFDz//PMICwsDUB+I/89//oOHHnoIUVFReOWVV/Dpp58abMfVV1+NUaNGYdmyZY1+v3z5ctx8880YOHAgKioqMHHiRISHh+PEiRPo378/7r//flRUVJj2YTeQnJyMcePGYfz48Th37hzWrVuH8PBwvPPOOwCAyMhITJ48GTNnzkR8fDx2796N22+/3ez9GcPdplsnIiIiIiIiIiIi56SoBr7u5ph9/y8b8PQzeTUhBA4cOIA9e/bg3Xff1f7ez88PS5YsgaenJwDgr7/+glqtxpIlSyBJEoD64G9wcDAOHTqEe++9F/Pnz8dnn32G//znPwCARYsWYc+ePXr3nZCQgPXr12Pfvn24++67AQBXXHGF9vV27doBADp16oTg4GAA9RnfX3/9Nfbv34+bbrpJu054eDgWL16M0aNH49dff8WVV16JefPmAQAGDBiA8+fPY+7cuQY/i0mTJuGjjz7CwoUL4e/vj4qKCmzcuBELFy4EANx5552Nlv/tt98QHByMsLAwPPjggwa3rc/s2bPx3HPPabPa+/fvj4ULF2rfR3p6Ovz8/PDggw8iICAAvXv3xvDhw83al7GYwU1ERERERERERERObceOHfD394e3tzfuu+8+PPXUU5gxY4b29auvvlob3AaA6OhoJCUlISAgAP7+/vD390e7du1QW1uL5ORklJWVIScnBzfccIN2HXd3d1x33XV62xAVFQU3NzeMHj3a6HYnJSWhuroa99xzj7Yd/v7+WLlyJZKTkwEAsbGxjdoBQBsMN+SZZ56BSqXC+vXrAQDr1q2DTCbDU089BQDIy8vDq6++iv79+yMoKAiBgYGorKxEenq60e1vKjo6GitWrGj0XsaOHQu1Wo2UlBTcc8896N27N6644gq88MILWLVqFaqrq83enzGYwU1ERERERERERNQWefjWZ1I7at8muOOOO/Drr7/C09MT3bp1g7t747Cmn1/jbPDKykqMHDkSq1ataratjh07mt5e1JdFMVVlZSUAYOfOnejevXuj17y8vMxqh0ZgYCAef/xxLF++HC+//DKWL1+OJ598Ev7+/gCAiRMnoqioCAsWLEDv3r3h5eWFm266Se8knDJZfS50wzrkCoWi2ft5/fXXMXny5Gbr9+rVC56enjhz5gwOHTqEvXv34vPPP8eMGTMQERGhzWq3Nga4iYiIiIiIiIiI2iJJMqtMiCP4+fmhX79+Ri8/YsQIrFu3Dp06dUJgYKDOZbp27YqTJ09qa0QrlUqcPn0aI0aM0Ln81VdfDbVajbCwMG2JkoY0GeQqlUr7u8GDB8PLywvp6el6M78HDRqknTBT48SJEy2/SdSXKRkzZgx27NiBY8eO4dtvv9W+dvToUfzyyy+4//77AdTX+i4sLNS7LU3gPycnByEhIQDqs9YbGjFiBC5evGjwb+Hu7o67774bd999N6ZPn47g4GAcPHhQWwrG2liihIiIiIiIiIiIWiVh4USG5Lqee+45dOjQAY888giOHDmClJQUHDp0CJMnT0ZmZiYA4L333sOcOXOwdetWxMXF4a233kJpaanebfbp0wcTJ07Eyy+/jK1bt2q3qSkR0rt3b0iShB07dqCgoACVlZUICAjARx99hClTpuCPP/5AcnIyzpw5gx9//BF//PEHAOCNN95AYmIi/vvf/yI+Ph6rV6/GihUrjHqft99+O/r164cJEyZg4MCBuPnmm7Wv9e/fH3/++SdiY2Nx8uRJPPfccwaz0Pv164eePXtixowZSExMxM6dO7V1wTU++eQTHDt2DO+88w6ioqKQmJiIbdu2aSeZ3LFjBxYuXIioqCikpaVh5cqVUKvVGDBggFHvxxwMcBMREREREREREVGr4uvri8OHD6NXr174z3/+g0GDBmHSpEmora3VZnR/+OGHeOGFFzBx4kTcdNNNCAgIwGOPPWZwu7/++isef/xxvPXWWxg4cCBeffVVVFVVAQC6d++OL774Ap9++ik6d+6sDfrOmjUL06ZNw+zZszFo0CCMGzcOO3fuRN++fQHUl/bYtGkTtm7dimuuuQaLFi3C119/bdT7lCQJL7/8MkpKSvDyyy83em3p0qUoKSnBiBEj8MILL2Dy5Mno1KmT3m15eHhgzZo1iIuLw7BhwzB37lx8+eWXjZYZNmwYwsLCkJCQgNtuuw3Dhw/H559/jm7d6icrDQ4OxubNm3HnnXdi0KBBWLRoEdasWYMhQ4YY9X7MIYk21JVVXl6OoKAglJWV6R2aQERERERERERErq3PpzsBAAuevhaPXNu9haXbjtraWqSkpKBv377w9vZ2dHOIDB6TxsZymcFNRERERERERERERC6JAW4iIiIiIiIiIiIickkMcBMRETmhpPwKPPLzUYTG5zu6KUREREREREROiwFuIiIiJ/TmX2cQnVGKl5ZHOLopRERERERERE6LAW4iIiInVFKtcHQTiIiIiIiolRJCOLoJRACscywywE1ERERERETUipRW1zm6CUTkpDw8PAAA1dXVDm4JUT3Nsag5Ns3hbq3GEBEREREREZFjbYjMwH83nsN7d/XHlHuucnRziMjJuLm5ITg4GPn59XP9+Pr6QpIkB7eK2iIhBKqrq5Gfn4/g4GC4ubmZvS0GuImIiIiIiIhaif/bEgMAWHAgkQFuItKpS5cuAKANchM5UnBwsPaYNBcD3ERERERERERERG2EJEno2rUrOnXqBIWCc/+Q43h4eFiUua3BADcREREREREREVEb4+bmZpXgIpGjcZJJIiIiIiIiIiIiInJJDHATERE5JeHoBhARERERERE5PQa4iYiIiIiIiIioVRLMGyFq9RjgJiIiolahoEKOqIxSRzeDiIiIiIiI7IiTTBIREVGrMOqr/QCALW/djOG9QhzcGiIiIiIiIrIHZnATERFRq3L8UpGjm0BERERERER2wgA3EREREREREREREbkkBriJiIiIiIhaCaVKDcEZ1YiIiKgNYYCbiIiIWhXGdYioraquU+LG2Qfx8ooIRzeFiIiIyG4Y4CYiIiIiImoFDicUoLBSjtD4Akc3hYiIiMhuGOAmIiJyQsxCJiIiIiKynABvrIlaOwa4iYiInBBvw/+VWVKNx345ip3nchzdFCIiIiIiInIyDHATERGRU5u6NQZn00vx9uozjm4KERGR85Mc3QAiIiL7YoCbiIiInFpZjcLRTSAiIiIiIiInxQA3ERER6VVQIccTi45h85lMRzeFiIiIiBxMoVJjW1QW8sprHd0UIiItBriJXFiVXImk/Aqb7qOsWgGFSm3TfRCR8/p2TxwiUkvwwfpoRzeFWgm5UoXyWmblt3VFlXJHN6FNK6qUQ3A2Y7vLLavFhsgMyJUqRzeFyGy/Hb6E99ZGYdz8w45uClGrdamgEmfSSxzdDJfCADeRC7trXhju/v4wIlOLbbL9/IpaXDNzL+6cd8gm2yci51deo3R0E6iVuXn2QQybsRdl1Qxyt1Xz9ydg5Jf7sfJ4KgCguk6Jf87noFLO840uMVllKKmqs9r2DsTmYeSX+/Hfjeestk0yzgMLj+C/G89h4YFERzeFyGwH4/IBACW8jhM1s+9iHl5afgqFFnbk3zkvDP/55RiySmus1LLWjwFu0uvHA4lYcuSSo5vRTHFVHT7aEI0IKwd143Mr8MH6KKQXVQOof9j6ZOM5HIrPb7TcsvAUzN+fYNV9myv38rCwPRdybbL98MRCAEBGcQ3WR2Tgq50XIYRAYl79Z5VaWGX2ttVqgclrzmJRWDK+3HER6yMzrNVsmzicUICPN0ajSq5Eea0CH2+MxtGkQhyKz8cnG8+hus78h/J/zudg6tbzUDpxpvxSJzruDUkuqMQH66OQXFBp1vp7L+Tis83ndWZWLQtPwYCpu7AoLNnSZpIFsktr8MH6KMRkleldpjVlJSpUavzflvPYdT5H+7vv98bjj2Opetf583gqvtsTb/G+1WqBGdsvYOvZLJ2vF1bK8dGGaJxOK0FkajE+2hBtVFZu0eVAXVRmKQAgpbAKH6yPQlK+7u/tqpNpmLMrDgAQllCATzaeQ5WJgdDS6jr8d0M0Tl4q0vl6VEYpPlwfjfwK44Zbf/H3BfT5dCcyiqtNakdL5EoVPtt8Dvsu5ll1u/ZS0eD6aMj8/fXBvc+3XQAA/G/zeby16gzedaKJZFefTMfsXbF2O58IIfDVzotYH9H4fuhMegke/DEc13+93+D6GcXV+GB9FOJyWx7Zt+BycHXj6dZbeiopv/5+IMWCe9WWbDmbiRnbL+CVPyLR59OduGTEvYfm/HcovsBm7TJECIGv/4nFuoh0h+zfmhx1vtwenY1pW2OgUosWr1/WciG7DB+sj8Lsf2Ixb69x13e1Whg1WuqPY6lGb9Nchu6vDdkWlYXp22KgVpt+Hj4Qm4fPNv/biWfKqbyoUo5PNp5zePZsrUKFTzedw8E4045xtVpg+rYYbIvSff9GtvXqykiExhfgq52xLS4rhMDsf2Kx9pT+c7IlMZe2xt3RDTDWr7/+il9//RWpqakAgCFDhuDzzz/Hfffd59iGtVK5ZbWYt68+mPX8jb3h7eHm4Bb9a+bfF7A1KhsbT2cidc4DVtvuwz+FQ65U43xmGfZ9MBqLDiVjXWQG1kVmNNrPzB0XAQDjR/RAz3a+Vtu/s/t4U/0Nwp0DO+ONv06jrEaByNQSHP74DrO2F5ZQgO3R2dgena393ZPX9bRKW21hwrJTAIAQP0/IFWqsj8zE+sh/Hww7B3njg3uuMmvbb62qf6Af1j0YT45yvs9ACIFZNj7u5UoV3l51Brf174iJN/cxezvP/n4CeeVyHE0qxMn/3W3y+q/9eRoAcGVHP7xy2xWNXtN89+fsisPzN/aGv5dtL6GtKUhrTZPXnEVkWgk2n8my6jXAWW06nYlVJ9Ox6mQ6Uuc8gKT8Siw8mAQAer8r0y4HDR+6phsGdAkwe997L+ZixeVA+qPDuzd7feqWGOy+kNsoSFajUOHnZ0eYtJ/nfj+B7LJaHE4oROTU5t/b/9sSAwC4/+oumHj5XNzO3xOfjBto9D6+/icWG05nYoOee4dHfz4KACiprsOyF0e1uL3lR1MBALd9E2rV43DlsTSsOZWBNacyXPL4/n5fgvb6aEr7t0bV3wuEOijop8v/tpwHAIwd0gUjeoXYfH/HLxXh9yMpANDoXuBwQv1nolAZvia89udpxOaU266BLubp346jsLIOJy8V4+ind9pkH1PWNS7d9fySkzj22V022Ze1RKaV4LfD9QlMT43q5eDWWMZR58vJa84CAEb2DsE3u+OQXVaLsPgCnJ52j832+cDC8EY/P3JtN/TrZPj6PnH5KRxJLMS+Kbejf2f9y07ffsHobZrL0P21Ie+tjQIA3HBFe9x/dVeT9jnpj0iTlm9o2rYY/HM+t1kcwN6WHLmEtREZWBthWjt2xeTij+Np+ON4Gh65tvn9G9mHMRncZ9JLsPjyOfnp6137nOwMXCaDu0ePHpgzZw5Onz6NyMhI3HnnnXjkkUdw4cIFRzetVWqYjTpw2m58tfOiA1vTWGqRdbOlNOTK+uzZxMs98FmlhrO4ahRts3ZeWY0CZTX12QDpFmSuVde55ueXXVqLzJLm7zvHCkOHClygHqmtjvv1kZnYH5uvvck2V165vNF/zd+O4e+/qoVAA9lOQp5t5x1wNvkVjY9lUzKXLS33UFhpuCRCalHzjJI0Hb9rSXZZ7eX9Gf7eVtT++36ySkw756YZee9gy2xPY+S6+IRdGcWtbxhtw+POlkotHOofn8vgdkOa85c9h3ZrzmXOzNLjzJk4+nxZVFWn/ZsXWbGEkDEq5S3fjx+5PBJ3tYHMUFO3aSlzJ6W09+d7qcA5MmbNPacUVTn/MyXVYylI63KZAPdDDz2E+++/H/3798dVV12Fr776Cv7+/jhx4oSjm9YmaDJKiMg1CCHwwtKTeMWC7AV7MrXcABERtX7nMksx+59YiztrnLkEGDVWp1RzBBORk2ut31GVWrTa90bUFrhMgLshlUqFtWvXoqqqCjfddJPe5eRyOcrLyxv9IyJqC7LLanEksRD7Y/Msqg9O5Iqs+WwihMBnm8/hexvXpyT7KatW4L21Z5vNsUHO5+GfjmLx4UsW1ZTfeS4HA6btxj8N6tiTc6qoVWDYF3vwzO9MYKLW6ds9cbhr3iGjamOTfVXXKXHj7AN4daVrJAcRUXMuFeA+f/48/P394eXlhTfeeANbtmzB4MGD9S4/e/ZsBAUFaf/17Ol8tW2JiGyh4WQsEiTt/zMrgcg0CXmVWHMqQ1v3ui1prWeL7/bGY1tUNl5cHuHoppCREvPNL0309uozUKmFdr4Lcl5hCQWoVahx4lIxpqyLgqINZt4LIVDjomX8qGU/hyYjuaAKf51Ic3RTqIlD8QUoqJBjfyw7v03x/b4E3PtDGDttyCm4VIB7wIABiIqKwsmTJ/Hmm29i4sSJuHhRf23ozz77DGVlZdp/GRkZepclspbUwip8tCHa5rNpE5lqxvYLuGXOQZS1ovqLRLYmVzpPoIEPxNaRU9b66kST62P/c2NbzmZhU4MJbNuKjzeew6DPd3PCUCNILS/itBomohC5soUHEpGQV4k/j/MelRzPpQLcnp6e6NevH0aOHInZs2fjmmuuwYIFC/Qu7+XlhcDAwEb/yPVJTn43M2HZKWw8nYknFx93dFNaJITAn8dTEZ1R6uimkB2sOJaK7LJarDrFG5CWMNBAzmjq1hhHN4GInJTk7DfIZtBMat6WbLgc1F8cluzglhC1Lq3wFOlUVOy0ISfg7ugGWEKtVkMu5wyxtsDTk/nSi6sBAMV2nu3ZHP+cz8W0bRcAAKlzHnBwa4jIGQleEagVMPbBls+/RERErQ+TV4haP5cJcH/22We477770KtXL1RUVGD16tU4dOgQ9uzZ4+imUSvliF7e3LJadArwgkxmn53H5zpu+GN+Ra3D9k1ExjtxqdjRTTCZ5hkmv7wW7fw84e7mUgPWqBWrkivh5+Uyt99E5KLYWed8WlN5LMaKW5/CSjkCvT3g6e7Ye+ZKuRJqIRDo7eHQdpBrcpknvvz8fEyYMAEDBgzAXXfdhYiICOzZswf33HOPo5vm0ooq5fh+XwIyLmcdk+McjMvDjbMP4M1Vpx3dFJs7lVKML/7WXz9fn0sFlaxtbgdCCHy+LQZ/st6vQznLw4MzDBFvmHVj7OdyOq0E1399AM/+ftImbWoTmO5kVesjMzBk+h6sOJqidxkGpdoujpYhe+Bk446xLiIdN80+6OhmuBR7j4Zuy1+N9KJqXPflftz9fZhD26FWCwydvgfDZuxFrcJ55sAh1+EyKSRLly51dBNapclrz+JoUhE2Rmbg2Gd3Obo5RmmtD3+Lwy4BAPZcyHNwS2xv5fFUk9dRqNS4c179RffizLHw9XTk6au1HoX1jl8qwsrLE4W8cGNvu+yzdX+i5AhrT6UDAE6lul4GOjnOpcIqZBRXo2c7X6tv++ON5wAAM/6+iBdv6Wv17ZPpCivl+CU0GU9f3xNXdQ5wdHMswuuoa2E9YMu50mc4d3e8o5vgcv5vy3lHN6HN2B9bH39Id3DSY51Krf3/ggq5Te7FnI4LncdcgctkcJNtHE8uAgBkl9muXERCXgXSi1p3hvi+i3nYd9FxgWllG5jUQa7894JXWu34jNLWrKJW6egmEJELMHZSuzqlGseSCyFXukY2zm3fhDq6CWQn/90QjWVHU3DvD4cd3RSiNkOlFjieXIQqOe837cFVM5PPZZY5uglE5GIY4CabKq2uw70/HMbt37beh8UquRKvrozEqysjUV3nmBu15UdTHbJf+pczZ5E4c9uclTM8C7jqA4kz4GfnXKZvj8Gzv5/E/zbHcMgpOZXzWY6bi4SorVoafgnP/H4Czy9lCbHWYPXJ9FZVX5yIXBcD3GRT2aWtfyLB6rp/H9blCrWBJclaLhVUOboJRCZj3cvWLyarDMuPpkDdSkbVWOtdrDmVAQDYdCYTA6ftttJWTSNxDCgRubCyagUWhyW3ikDiuoj6a8LZ9FLHNoTM1vCW9n9bzuOBheGOa4wNGDtCjYicCwPcpJOzxGFcZTizKYQQqFO6ciDc8oPD0i04MuOjrQcpLXn7dUq1UYE/e37vhRB22d+JS0UY9dV+7DqfY9TydUo11K3wWJMrVTq/Q0qVGkqVdc+Ljng2efDHcHzx90VsPJNp/53bgCMPQWO/l63xPsESQgiHZsnr+96Z8ncy57ysUgsorHwOMYdCpYbKwHXO0Lmu4fetLR7Xjrw/1ndtaspe9wxA83vljzdFY/auODyx6Lhd9m8KQ9+/hp9ZWzyujaVWW378W/PzNfW+zN4TQppDLYz/jEy9hbTVse0sjwKu+t21xvfKEnKXjvm4Jga4yWmtOpmGAVN3Y8e57Ea/t1ePqq328tTiE7h6xh6U17KOdFOhcfmObgLZSJVciWu+2IvHFx1rcdkBU3ebNRGpOV5cHoHBn++x+Y35hKWnUFhZhzdXnWlx2VqFCtd9ua/V1UIvr1Xg6hl78dRvJxr9XqUWuO2bUIz57lCryXyOz61wdBNsQgiBmKwy7YOOra6TS45cwoCpu7G/hbktwhMLMWDqbvwcmmSjlrieV/6IxMBpu5FX7jwj6I4l1f+dFh5INGr5DzdEY8DU3UgrMm60lhACd3x3CLfMOWj1jjLN9o2hUKlx0+wDuOf7MJ3rqNUCo789hNu/CdV5rmv4mwFTd2P50RST2mnu7fGplH8n4lWrBZ5cfBxvG3Gtsrbnl57EB+uj7b7filoFhs3YiycXtxw4ttc9gy6HEwoBAJklzpXBLYTAnfP0f/9e+/M0Bkzdjdn/xGLA1N04EGu9OYtaU5btU78dx7Av9qBCx/NhTFbLtag3ns7EgKm7sem05R3sarXAHfMO4da5oQY77FzNRxuiMXT6HpTpmctJmJmCFRqXjwFTd+P3w5csaV4zpdV1cIaiiTO2X8CAqbtxMdv1Sno9+GM4Rn65z2Ed/6dSilFYKTe4THkNY0LWxAA3Oa3/2xIDAHhn9VkHt8R6skprcCq1GHKlGocTChzdHKfz4Qb7P9i4mrIaBd748zR2x+SavQ1TsgG2ns3C26stf9A9nlyEGoUKZxoMR917IRev/xmp80bz820XLN6nMcISCqBSC+yKMS6zWsPUm2Cl2vigS0xWGcpbWXAbAMLiC1CnVDcKpgD1s6TnlNUis6QGlVaax8DchxRn1PT76sh39sexVDz4YzheXXkagO2y5L/cGQug5WvCJ5vOAQC+3RNvm4a4oAOXO4o3n8lycEv+NXVb/f3c9/sSjFpe03Zj5xeprlMhvbga+ZfPJaax3jcqragahZV1uFRYpfM6W1Jdh6zSGmSX1aKkuuUA6Rd/X7Ra25pq+NV9cvFx7QN4bG45TqUUY6eRo41M8cexVHy4PlpvR+bRpKLm7bTyOUZXx8PhhELIlWpEpJa0uL7mnsEWn4+rkivVSCuq//7pKk2573JH5eLLwT9HdGK4gojUEtQq1Dq/Bz8Yce786PL10hrPUpV1SmQU1yC3vBb5Fc7TWWoNCpXAwXjrdbIAwAfrowAAX/0Ta7VtRmeU4tqZ+7Ql3hxpxbFUADC6k9qZXMwpR0WtEueN6CSyle1R2QZf/9qI48ZZMvldAQPcRHZ0y5yDjm5CIy2dK3U9WJzNKLVFU5yKo4czGbJgfyJ2X8jFG3+dtsv+3l8XhX/Omx9MN+S1P09jz4U8fLeXwSlqG+qUajy1+Djm7o5zdFOM0jQYtPzyQ05b6KBdH5nR7P3nl9fiSGKBTUtVuWpCYlJ+JZ757QROXGoenCH7UKjMPy4LKuoD3LZ8iJ6+/QI2ncnEQQeN1pu9Kxajvz2kN3uzrbD0T1xRq8CB2Dyd98m1ShX+OpGGzJJqC/dCjtDWyzA6E1NH8FjKGe89zD0cXa2cSl654QxvMg0D3OTShBBIL6q2yQXZGU/0tpRv5HDmxWHWHX7ljJ5cfBzXztyLKrl9s2iNOeYKWhjm5Ej5FbVYeTxV5/BKQzQP1qZIKazCpBUROJPecsaVOZaGpyC96N8HNN70ux5nnFRw38U8nEwpxq+Hkh3dFJux1+du62/kxxvPYc+Fxp17N8w+gBeWntJmJNqCqw65f+3PSBy/VNTqSiu5Clcq01NlpZE6plocdgnpxdX4w04l0FqrSX9EYtIfkfh2T/OO2nl74zF1awzGzT/igJa1Lba4L3W2O10XvRy2CsuPphg9b5AzWX40xagSd9R6McBNLm3x4Uu4/dtQzNphvSFBtlCrUOFPJ7+hfuyXlmsjW42z3UE1EZlWguo6FY4n685Ec4UbLkfEY59fchKfb7uAzzafN3ldUz/T11ZG4kBcPv5jw+P2i7/tUyaFTGTEsX3iUpFTdgbZfxI8Jz/ZOrmm9SY159XwpEIHtMa5FTADyWKWBKxYpudfQgiD8yC0xgmc7UlTZmyDjlrPRxLrz42VdkoQcYHb8Vahpk6FrNLGtd/5LWq9EvIq8MXfF42aN8jZaEp7vb8uyrENIYdhgJtsyhZ1UBvezMzZVZ89sMzOw3hM9cO+BEyzU01hczW9cbFUfnktSqw4CQ8zaJ1fQl4lAGC/FScQ0scekywpTJxY51RKMX48kNiqJuRxtBnbL+Dzy/V7TXHiUrHDhsG3Ja7Q2ReVUYrCSrlLtNVYQgi8u+YsvtxhuxrNZBleBRzn9yOXMHb+YUc3o0WWjnZZH5mBGdsv8P6YbO62b0Jxy5yDSMpvXRNol1TV4YP1UdqEpoZfpdZ0z2Cqokr7T6Krz4lLRS5fFo9naPtigJv04FfRmo4mt5zt1ZoupJVyJa7/+gCGz9oHtVqYXLKCyBU9ufg45u1L0DmDPWPepiurUWDFsVSsPJ6Goqq2kR1aXFWH7/fGI62oytFNaRVOp5Xg0Z+P4rov9zd5xbUvuLE5Ffg7OhtLwq3TuX8ksQCzdlx02rknAOcsOaRxMC4PU7eed8AIDdLlx4OuU67FEh9vPIcVx1JxONFxI0pUaoFSM2qau2oppqYsfRfHkgpxJNH5g3eaSWhD45y/raaYtfMiNp/JwjO/n3B0U0gHlRB4+rcTmLDsFEqNmJiZCADcHd0AImflzA9T+iQXVOLP42l4Y/SV6BLk7bB2ZBT/W7t44vJTOJJYiNCPxqBvBz+r7aO6TglfT57CXEUreZYxSgqDk1ahbtAroG4jcaP/bojGgbh8/HkiDWc/v9cKW7Tsi+fq/TLhdgz8fLsnDoUVdZgz/mqbB2+URn4h6pRq/HkiDbf374D+nQP0LvfC0lMAgK5B3njltius0saGnPn0b43k15dXRAIALI1v2/N4pdajrEZ3gNke913PLTmBE5eKbb+jVkiuVOPZJScBAOdnWON6T6Zq+LzqbCy5j1C3kqyahiNiS6sVCPb1NHtbHOjSdjCDu41rLT3ojmSLMixFlXI89stRrDmVbtJ6j/58FCuOpeKtVaet3iZzaerxbTydYdXtLrNS5pq1OFuHyNkM20y+aIxahWlP+bsv5DardUvmS8qvQJ6Rk8aSczmVWh8oKDEjI86s/aUU4/qv9mN3TG7LC8PxDwjOdZZt7OfQZKyLzEBifqWjm6K1JPwSZu24iHt+MK5cg7VLlbU1uWWGP7+IVMPXZV01jantstX59u/obKttqy0Et4UQOJ1WYvUM0oYjZuxVs9ylOfoGxEVUypW47ZtQfO6EpVGFEDieXKQdEWCJUynFeGf1GeRb+XmnSq7E/P0JSMhrXeV42hIGuNuo7NIanbViCyrkegMjtugNPJ9ZhkVhyVA6+bDOMB21n3LKahGbU468MusPnf9ubwLOppeaPFlfRW39DdL5rDKrt8marNEpoC9jpS3760Sadqjje2ujGr121EqToh1vUG7H0M2+qfvbGmW9B66WVMmV+Dk0CckFtgtERaQWo8+nO/HckhN2zaTILavF3d8fxg1fH7DL/qrkSoTG52sf1E6lFCM6o9SibW6LysJvh5OR28qD9Al5Ffg5NAmVciUOxefb5JyWkFeBW+Yc1Fk2BwCeX3oS+RVyvPHXaZd7wE4tdM6REs5U5kPXd7Gl81GtQmWj1lh/n7UKFXacy9b7sLz2VDr+OZ/T6Hc/hyahus4xx/obf5mXfGDJJWTNqfRmE2bnl9ciOrPl+8QquRIrj6fiULx15zNoeK4rqpRj38U8bHSx4P75zFJHN8FsO87ltLyQq7BDr+fzS09i/K/HcO3MffhgfZTZNc8NNTXFytezYivOgaSXHQLOzMNr7mx6CX47nKz3Wr7lbJZZndX2+KgPxObjmd9P4Na5B81av6JWoY0ZPbn4OHacy8GnemIlhr6nf0dnY8c53c+d3+yOw/z9ibj3h8P4OTQJ+y9aPq8U50mwL47vb2NUaoGcsho88/sJZBTXNHtt1Ff1dSr/fufWZutuOpOJJ67radX2PPRTOADAx8MNE2/uY9Q6hi52NXUq5JTV4IqO/gDqT4S1CjU6BnjpXL5OqUZqURX6d/I3uM+Jy04hdc4DjU5QE5edMqltpqjSE2hQqwVkMue72iflV6BHiC+8Pdwc3RSnUFOnQnZZDa7saPi4spaI1GI8sei49ufUOQ80W+a5y8MgLTXj74t48Za+WBeRjk82nceH91yFd+/q32y55UdTcUu/Dnq3I1faP4iiMXtXLP46kY5v98SbvY3SagUq5Ur0CPHV+fqzl+v5HU0qwqYzpj24t3QbFJFaDKVK4KYr2zd7zZSMg+zSGhxOKMCjw7sb/d09nVaMkb3baX9+5Y9IHL9UhEm39sU7d/TDk4vrj8NLX9/f6Fx1JLEA7645a9Q+/u2cidO9gBmnwNyyWpTVKHBFRz94uDlH3/69l7Nqv9sbDyGAQV0DG71eUCHXe+3SRwiB7LJ/OwY0naQfbojG+JE9mi3fsHN56PQ9iJs1zqTzuK6RKyq1QFxuOQZ0DrDpKDFn78jNLKmGv5e7RUNqy2sVKK1SoFf7xucZc0cM/XkiDXN3xeHPSddjeK+QZq8fSyrCwGm78c4d/fDR2AGNXpMrVcgorka/TvpLnZjrndVnTF6npk6FQZ/vBgAEeDV/nMksqdb54PvtnngUVsox/aEhzV4z5rjNL68FJKBTQPMycA3Xq79ftM7xv/BAotnras4BDe8LJi6PaLacrrc8ZPoe7f/ruq8w1+fbLmDCTX3wz/kcvLXK9L+9M1gfmYlvHr/GqGWFEIjPq0C/jv5wd5LrDxknragKR5P+7SDafCYLrzYo42StScWf/b3xPbpaLZCQX4H+nQLgZsZz30srIrDt7Vus0jZb2H8xD7ticjHr0SHw9XSHWi2w43wO7h3c2S7PksZcQy846cjSx345BgAI8fW0elxGo+H1oGkHqSEKlRoJeRXo38lf53U09HJnqfEjff/9fhVWyjHmu0O4qrM/9k4Zrf19ZolpZWbKaxXa55E7B3ZqVu40qkHnr+Y5UXP9Sy6oRLcgH/h4Nj9GlSo1kgoqbXbvuz82D9f1CWGsxQi8yrYxr62MxK1zQ5sFt4HGWUcFlc0z55JsOOw2LrfloMzumFx8vi0GCpX+m4l7fgjDnfPCEHl5mPfVM/Zi1Ff79WaavroyEvf+cBgbIh2fOdLSxXZDZAaGTN+DY1bKxLWW3TG5uPv7w3j6N8sn6Kip0x30VKkFFoUlG7WNvPJavLT8lPYi6gj3LTiMu+aF4eQl428K9NkQmdFiRmzD4LY1GFOT7pNN9Q/N8/YlmLWPZ8w4XlRqoe1ksuTe4XRaqfkrXzbmu0O4dW4oCip0Zw42PE9Z89xZp1TjiUXH8czvJyyevPWe78Pw6ebz+PGg8cGTx5sca8cvH+NLw1MaTQTZ9CytqfHrKDfOPoCx8w/jjT/tU77JlMNT028am9P4YUrT4WyK7/cl4JY5LWfG5JbV6hyt1fRBoWnSiTFZ9RdzyjFu/hGnm+jNms8b8hYezvIranHr3FBcO3Ofydtu+DcYOWsfbv821GrZ6tO2xqBSrsSUdVE6X4+/3EH2U2jzv93Tv53A3d8fxu4Y62d/7o81/Xp9rMFoogodSQGGRkScTS/V/n/DQ7yl41auVOH6rw/g+q8O6JxQ0hbdOf/bYtpIPmM0PdfYg66/hzGdzLYo/zZ/fyK2RWVZfbtNvboyEhOWncLyo6kYN/+I0Z28GoZCpw1HPVQ70eibaj338a4oMa8Co7891Oz3Db/7X/0Ta5N9f7c3HuPmH8HMv80rM2HpSDpzZRuZOfzKykhsOpOJRWGXAAC3fROKyWvOYuC03Y2Ws3f5R1fKs02y4SjUhg43mAS1pLoO/9tyHmfSdZfb+vFgEu794TA2nzH//KrvXk3zXJ+QZ9n7rm1wjjJlxN2x5ELcNS8MD/x4ROfr/914DuPmH8Fvhy9Z1D59VhxLxYztzld2xhkxwN3GHIgzP+hX4uDZa9/46zRWHk9DlIGLdmZJ/YX1n/ON64nqC6BrSo+sOJZqlTZai64L7H83nkONQoXX7BSg0RdsbmpdRH2dcEN/F6P3qWeY8pazWfg51LgA97StMQiNL8BLOjKU7CW1qD5AseNcDmrqVHqHkeVX1BocRnY0qRD/3XgOj/x81Cbt1McaN+xHkwoxbWuM9jhqesNypkGAwRh1SjXGfBfqdDOdx+U2DxRYOhLN0PoNM98tLSlRdflvY8rEZq4+ys7Ya2BKYZXTl87SxZigslypwo2zD+CGrw+YXPrAlIcBS7JOnd26SMNzSliS+dXw/kXTUXYyxfTOUmuUAtt1PgeJl4PemqDw2gjrzqdhiK3uzRp+Mk2HDhs6bksb1Ma3VyBv9UnT5mJxVml2mnzZ2KHgTcu4mcNQuZ8quRL7LubhcEIBZu64CADYZeRcB00JIfD93vhG98gNA9xVRhyLb68+Y9YweSFEq5mwzlS6ylPayy+H6p95/jie5rA2mONmIzrYG8q7POKM8z8053zjtYGTKcVYfTId/7mcRa7PyhPWP24bztWkL7nIljRzF1wq0H0t23K2PqivK0HAWux5/+XKGOAmo613gixnsi5997prT6Vj0Oe7sc5JTqSXTOilzrfBRa/hCABTBh3nlddi0Oe78eySEzofLK7/6oDBbEtbjpowxNRnoNNpxbjn+7BGv6tRqPDniTQsPmxcx0RLzmeVIqO4BicuFUOpUtsl0Fpbp7L5JCMKlRrvrz2L9Q2+a4cd+FDlCLaYqNcSW89m4Y7vDpldL9fZldlpAktjNc00a5oZy/kWmjM2G92SPppjSYV4c9UZoyeoNMSeE5q7Ss1W5zrrWV9YQgE+3hitt+SeLfywLwHXfblfOx+NrW01kAVuzb/vkcRCLLRwRMzOczm4aEbm/oRlp3DnvENWnVvAmvVonW2Cd7LcrXMPmhzAVKjU+PVQMs7ZqDZ+kRUmRbS2xWGX9GZStyQ+twJ/nUizWokdewiN//fZ6KMN0Savb8l5x5oBdSEEPlgXZVQ29gkrjARvixjgbkNMmXCiTmn+SaC4qk57EjH2XOLIerz6OPIhqcSMyUGsOaGIpm6lrWZHN/UaY+71t6xaYdLFW99n+PzSlutXF18OgjfMdNl7eWKKE5eKce3MfQ4rL2PrY/np304gUU8wXjOqwppumXtQb7a/LiUNzkmA8ROanUotxr0/HDYq4GzOdxao7/HfGpWNjzed0/7uUmHzz1Lf5L+GOPOkJkqVWmfg0qhDtcHbqpQrrX79+P1I/fBCXWUThBB6zxMNzzXFZo54sldgxlhqC48hpUrdYkA9vMl5cfDn/w5RLqtR4Jov9lrUBkdT6DnWTSFXqlElV+o89vR9l9Rqgf2xhidHKqqU43Sa7gfkmOx/61A2HNGl95BwsjiTocBX+eXPq0quRIme47PciBJQcqWqUamohtdatTD/uuAI3+6Ox94L5mUY6zJx2Smsj8zEC0bcPxmjsFKOvRdyDY6sWXAgEUVmfOZNO1l3nc/B8qMp2p+b3kNoWCP4IIRo8RrWUnBFX/uaUhoo8ajPkcRCpBZVWz1w6KjThTWy0U25LBYb+bcxl1otDE74bkvGvCtd16yWPo7MkhrM35+Ah34MR3qTkokqtdB5T7HqRBrm7o7Dwz/ZZsTr/P3NR/YkF1Ti7+hsm/x965RqnaW3mo6EaSmTWp+x8w9j6tYYbGhhNJq5ojNKbTryw95zsGSX1lgtsSq1qBqbz2ZhxbFUncdOw/sGR45Gd2UMcLcR3+2Jx4hZhmtBNuydNzdzbVtUFkbM2oevTSxxYEmtJmswJ6vBlpo+8BvjNgMzEoclFGDG9gsO7UioqTM/+8PY+ttNXTNzL/7zq3EX/+VHUzBi1r5G5UA0NYVjslo+PvZdzMN3e+LxyspIna+X1SgwQcfEpA05Mh4phPk3yYbq4ttCXrnxPenHkgsxfNY+TL48HFmpUps8W/32aN0zbWucuFSE4S2cX/UpbxKYyiuvbVZiCQBu+PqAdm4BQ1QNDiJT36c9jVtwBNd8sRe5ZcYF7vUNXx06fQ+u/+qANZtm0Fc7YzFi1j5cPX1Po6x7AI3K52w+k4Vv9+iZJNOKzM3eMdaXOw1fy1vqPHvk56O4ZqZpAWp7n08MWXgwCYvNvP5o9P+/XSYd67p8vu0ChkzfgxGz9mFpeEqj1/pd3n7T2qdNvzNNO8l+OpiIkV/ux3gjrpGDGnQ66Os0drbOmfwK/Z+35tzYcBLFhgor5Rg249/jVt8RefPsg7i6wXINg+Vv/HUaw2ft09uBEJ1RiuVHU7DbzLIVQH2JLGNr3rbkQFy+TUrgnUkvxVkrnKceWHgEr/152i4lBd9cdQZf/H0RcbnlOJJYgOGz9uHD9c0zBi0d2Xo+qwx9P/sHA6butqhEw0+hSY1qtVfXKTFj+4VmE7ktDU+xyt9Co9ROo4G+2R1nlZJXGyIzcPWMPUZ3TPzdwr1fS3bH5GDErH34fJvt6ua+uCIC187cZ9F5pCV/mVFuQgiB677cr/OataTJz7oCoTvP5+gMYj7923FcM3NvsxGuxszl1ZKyGgVW6XmvupJq7poXhnfXnEXfz/7R21EK1HcQv/JHJNabEEy+7ZuD2HexeQf1xBaeI011zoJA8QtLT+JUiv7nElNLtW05m4lnfz9htfNK06Mqq7QGH2+MxgUzYj6P/HzUauVBGnbS6hrdNnzWPu0cI842wtVVMMDdRhhTD2jEl+YFaBqadbnO3O9HUpw6e9AZhCcWNiq9YWmWraEafBOXncKKY6n4w4G1xlMuZ6UKIVq86IXG5+P2b0IRYURAryXGTrTyxd8Xmy3/yabz2HrW+M6Xn0KTcNBAjV+lWlg8zM2Yw8ScB4F31pzFtTP3GRVEdSW/Xq5jqHlQKbdBEEazD31MORMa6lxcfcqIWqzmnHYdMFxF83Bi6PtiLHOzYxUqNS5ml5t0rdI8mFXIlfh407lGQYmmN/rGzhtgCXOzd6ylpSPHklrU9tLSpLqzd1mno8JaEx9r7rOaavow3HQkXtPaqN/tNW+C4IYd8Cq1QL4Zo0vs4asWOmcMOWpkkkHTbOGGwWzNuW3Z0cbBHI1Jf0Tii78vmp1Qkl1ag3Hzj5hc89YRHrPCeUrTsb23wXEuhMCfx1NtNoy7uLIOPx6of37abMK9oDnWGXN9N2DNqX+DL7+EJuvsCNgenW2Vv4W16esEAoD88lr8cigZ3+9L0Dn6zpTbl/9uPIeqOhVeN6IjJzyxENGZlmWJvvHXGQDAnyYGiHW9J313KZoRhi2dRyx5JjfnXuZUSjEKLz/v6Ltmach1lL/R15EakVp/rGw+Y/2yqc8vOYmTBgK2GqXVddh13vjJlpcfS8H+2Dx8vPGcwefaWoVK+771JfJo5niyhYbBVmO+VkcSC/Hk4uN6Xzc1ODtlXTSOJRfhezPvTVrywfporI/MdImsaM1zJUNp5mGAm7SsXYfp5yZB9f0X8wxeYFt6yLSnHecs67U3xtqIDNw5L6zlBfUwZ7hgVoNyEUIIpNhp0p+GloanNBty1tRLyyOQXlyNZ51gQsHZu6w7Q7otMzk0vt9n+s3BznP1N2ua8gzWZss6icbeuB+IzUOMnYe1meqsiZNvNuPAMgHLjqY6bN/Glp1p6J3VZ3D/wiMWtfukiYEVc/oS7JnBIVeqnepabA59JQz0nYOa3quYw1CAxlE2NQkA2KLW5tO/Hcf1Ro4usTdDGXXmcqaHzXgbzQ9h6XssqpQjp8x6pcnOZjT5bon6Duv1ERkYN/8Ipm27gKd/s+xe0Zn+rg0Zurf5Zk+83tdSHXBvb4ryWmWjsnbjfz2G48m6r6WagCZg/t/JnGNy/n7bBNkacYKyThezy/HAwiNW326uk3Z8aiw+fKnZ84CxZS+e/u0E3lx1xuh9NSyp8sSi4zpLDlXJlRgyfY9N/haWaimJx9qMKQ+mT6WZcz6sPpmO99eetc7k8iaep5gQan0McJPNLDyQhAMNapi+sjLSYAbTbd+E6s3CMCd4YcmM7e+sPmv2uramuR+KMpCZ3FIwcdf5HIz8cr82qGlPS47ozmbSxZmGqluLoyaOdEUVRt7kjPxyP/4xIpti0h+RLZaJsYaWApLVddbPIlerBfp8urNRZoKx3+8sK9VJX33S9Aw0awVvfzHjBnzPhfpMwKU26tTR5bPN51teqAWWlLpoyUM/huO2b0JtXvpE44N1UfjWQKCmqZaOlsJKOYZ9sRcfrI+yqF2mMqbMR2uTXlStDT61NLqk4R2JJaXSdsfk4Pqv9hscFp2QV2H1B0Zdd1SuMpmlqSzt1B/55X7cNLt5Vrm5ndxNS3adSi3Gu2vO4uNN56wW5A+1wkgiS62LzMDsXbFGH7vmXG+dWXiS7rlO3l5tOJBozFGl75g0JNKCTsuSqjpt9rIh+SaU27OVl1dENBppJUR9pv+EpebfK3++LcboZc29B9x9IRfz9yeYfa6PzSnHgz+Gm7WuqeVQjiQ2HhGka06dyLQSqNTCKqVWnMXDPx1Fgo06YnUpqarDUD1lx1ryvy3nsTUqu8WSlObSd5iWVNW5xCgsV8MAN1lVYeW/wzXrVGr80KQHPDLV8A3DxtPWG3I0a4dlN+nm1MG2hQd/PKKzTIYlmcBvrjpj1UkpNTaezsRrKyNNmgDQHhpm6Fmld9bGhBBIL6q2S69ueGIhRn8batI6T/+mf0iaNb27xriOpuKqOry16gxe+cP5h50BwODP9yDVCvWxX/kjUhss2qdjMrl5RmbyG/Mg5uxirTiPgr4JU83x0I/hjeouVhsoJWWsb2xY21uT5LvNxsPxNcyZEM6QtafSUV2nanFeD0dkOFqjhmxLbJGlrc+iw+ZldT37u/mTDr7x1xnkV8gNTlz48opIkzrSqbFjejJpbcFZ5onItFIdc0vklcuxOOySw0eD7L+Yh+/3JWDT6UyXyCxsOlLFHgx9Kiq1wPBZ+3Ddl/sb/f5YUmGz690WO11nDSmtaX4NnrzmrMEkKo1zekq4rDxues1uU10qqML8/YkWn69sOboUqJ8noek8X0IA8bkVNp2E0Vnc+8Nhi0b0mHIKssa1q+m8SOZQCWH0nAp/HE9Fjo6kFc3ogtZ/hNgGA9xklj0XctHn053YcvbfGwtbzuLc0gziAHDz7MYTjanUlgUyM5tkNcblmh5AWXsqHafTSoyapFCfmKxyvL8uyuz17emjDdHYezEPK+xQqqDpRS80Lh83zz6g86ZMkyFYXFWH4TP3YYoJn6cpExoaw1DGkWYys6XhKbj921DMbFC37kK29UprNLypen7pSaQ1qOmmyWo15MQl44ejn0krMbv27KF43Rk9+uyPtU0W1raorGaTNVlqzHeHLN7Ghexy7USH+upQH04owM2zDyA8seUOu/9tOW+XiRGdXZ2OepAt0Xd9OJ9Vho83nrO0SY3IrXws6mLsxM+GykAonfjhreFImrURGTidZvic9tVOwzVEjaHrIaahnedymt3H6KMve/hIomnnTEewRgCvpUD+z4eSbJJhrbTgvrItBDN0TcRIprFkeL6lkvIr8crKSCw8kIgPN0TbdOJCa7HmPfrhhAKjytipDUTd9CX4PLvE/I49W2p6b9vSs8ZX/8SaNaraGpoGigHdCRpvrbL+ZLnmOpNW2ux3s3ZcxNj5h/HtXuNHr1nLlzsuGqybbZN9mjgfhquPjqquU+EWI7Oy9d0W2KLEWlvCADeZRTNBx5R1/97M2vLLaMwwomwbDtsGGr9XY326+bzTDV22xwOII27QX1oR0eIxsPF0BirkSqfImtClvFaJWoUKcy5PatbwwvfAwnCU6Mh2NKdcwbx9CXZ72L5UWIWXlke0GNxxtCMJhXoDmwqVwFf/WB7gsoVKueEHjQnLTiG7rBbPG8h4BIBLBZVYfTLdLhMjNtT0OdGcUiPWpGvWemNoJiJrLSp01DFsWoexUq5scT4FVzH+V8MPfL/bISP47dVnLL6PaY1lvfSxd3JpamEVbp1r2minhhLy9Xduh8blO929YlPG1Ko3lE37a5j550hz66pam8IFRgBa4niTMpHG1iTW5zsTyk85WlpRFSYsO2XU8+Y7JtRftiVbnAKNGR28K8b25S11dWI2nEjVkKZljQyx5RwnEanF+N+W5mXpTl2es8Leta2B+onSm5b4Kq9V4PFfj2H69n//9pIVo8zVNj5/68vCd4EBKGQjDHCTU2o6LE5fdqIhGVaqK6uhVKlbfPi09VAnczSdMMwRw/laG1v2LhvKDMnWMcxrzHctP3DrOi7zjRgVYU26as45k90XcrUdC7o4ol69PTlLYMwRN/wNvboy0qH7b0pXKSl9559oI4YUm6JpZtTc3Y2/H5cK2tZ8Al/8bfsJgl1JgovXCjV1VN6PBy3rxDKU/P3SigiLMtvtkVTw7Z54HGowGiutqMqkeuqmBJ2arWuj62+VjsBLwwlTm14VTZkvwJqc4+psup+sMIFvQ4fMHA1oDFM6a22dUOXsLBwgbRRrlHMzhrEl6TaezsQ3u00b4WiXiUqt4LewSxbVnLelGRbcd9myXOoTi45hxnbj22ZOR0phpVznyd9RIyhcCQPc5HRKq+tw2zfmZ8kAQH5FrU0m8zN2yIlNSabVLbT0s7Q3e9b8E0Lgf1vOG5WZ5KysXTrDVlxhyNlfJ8yrG5hRYvjBSN8xnVdea/JEUfb4dmw5m6md4NOWpac0TO0YtPQz+Pqf2Ea1+C3JVLH192/ErH3aMjQtMaeMliFNa4i6Okvrbi+3Q+ktY+n6zti7Xq69H4itfQ3Zb+ZoDUfLLavFseTGJacW2aljUFO66GhSIUZ/ewiPtzDywVpirXxu09D1jWlYRm7vhVxkNri+rzLzHsHedrTSDvk3V51pE6V+2hpbZlG3uG8Tdu3oEYa2UmWDie+t5WiSZXW1dY18NuRMeqlRB0VEaglWHEs1r1FGum/BEZ2/n27BHGxtBQPc5HRWHEttVv/aVA1nhHYFVXKlSZMjWHNCNWez54L9av7FZJVj9cl0h2XlkG29vCLC5kObVx5Pw6UC8wJnE5edwqUGnVXrIkwLdlvTgbh/gz1T1kVj8uUJPs2pR20Kaz3WmPKQ8tvhS1gfaZ2RLLqGn1pbS9li+RVtO5vMWJbeV7QmxnxdrDWqQ60WzbLkDidYVivclvXdjd2yo/psb5x9AM/+fhLHGkyEbs8SHkn5lXjucj3h81llWHUyzSqTJhviqM6lP46nuVS27pxdcVYdLdf0uyCEsFmA2diO7rYQ3r6o4xnWmXJEzPkbWGMeC1swZ4Q4NWbKPai1JtHVNbpRlyQTRxpuj85GtJ7JUy2xPTobH66PRp1S3ej7Y+h7XVAh19n5sy7SuKSXtowBbjLJofh8iyZvMCZYYurEcrrYIpPJmBrC1QrzHjJMHfbk7HT1mBr7FzHn4tfShFO6lNcqzOq1tsZN5sbTmQ6dSMiVqNTC7If3g3H5OJteavTydWbU19RZs7nJ4ajvdBTXZIj/J5tMD5ZW1CoQkVps1IiV1MIq5JfX4kBsXrOH1G92N+7kCY0vsGtnkymsEczJNnKGc2M89svRFofqXyqoxL0/hFltnw29s7q+M6Kt1xt8fslJyJvcYzgyM8wRjB26WlzZ8sOhtTp+fz9yqdnvJiw7ZZVtG9LSZ6HvdG/O/YSGPUcqNawLb8p335Lzp1Ktxt3fNz6P/d+WGKtMmmxroXGWl7eoskLZhJZKSW2LyjZ724vCkvHan7aZYE8AeOyXYxg7/7BNtq9RVqPA7phcyJUq7UgyU9TUqVp81mz4jPjdnni8sPQklE5Spg0AFhxItPk+ahUqu04iao95LOzhaFLLE7bnldfiYFyeUedlzbI5Ft6TVsqV2B2T65DyFfFGlitTqNQ2STQwdE2rrLVt529KYRWOJRe2GHeKySrHpjOZWGtiIpOzlI90Ne6ObgC5lheXR1i0/pLwFEx9cLDe148mFVplMrrUIutPfGXMQ8FNs00vYaJQqfHHcfsMe2xpPymFVejbwc+kbYbq6JAw1PtpzYDD39HZKK1RYI2JZR4AYNiMvegS6G3yetZo/UcbooENpq9nbgArs4USGvb2z3njh88++GM4YnPKsej5ETZskW0tCbfdjf0vh5KNHjbZMAjx3RPXtLj863+exua3bm72+7JqBYJ8PYxuY0usdU4wt2NTCIEP1kUhwNu8WyJjOlHunGe94HbTB4TojFJEZZTi0822zyZ3NEPlpMKTCpFoYCK/1kRfINXYMku6JhG1hKGJm1fa6P6m6YR4TVW08GD7g4H6qNEZje9hfjyYhD7tW743kqD7HqGsRoH7F+oebmwNfxr5d88qrbGo1N7eC85b1kVXPe2GXlph2fOLtTzy81GDrzcMcJtzRbP2XAwaCqUaUWZs29jsTk2H/4vLT+FseilevqWvyaNVa+pUGPT5bnTw90Lk1LuNWkdTJ7x3e1+T9uUMWgrKr2+Q6fnH8TQ8fG13jOwdAgD4cudF/HXCvFGDS8NT8PjIHmat25SrdcxrRq8YcsPXB4ze3s1zDlrUqarx5l+ncSSxEE9e1wNX9wjWuYw19qPLC0tb7rBeGp6CWTtsk8WfVVqjN6N7uRFlRLZF6b9/ackdJnbuNm2nPTqz2iJmcJPdqdUCF7PLdQ5zs0Zw29VENJnN2CokYH1EhsmTYtly0rBD8QWN6t4aKzFPd8BCAHh3zVlM2xqDi0beBDcdApnr5BMfWstbOmZ8v3H2AaN73a1tugkTc2gecA5aIfuK/mXsZE0FOiYjvWbmXlzIttIQPid4uskuq8Xms1l262i0hbd1fMf1sdYnbumke+ZoqZRXjZ0mpnJW5TbOVtJH39dYCIEsK46WaGipDTsOlx1tvG1Lh1U//usxi9a3FkvnkbFlaRhLxWRZf1g5WW6PkZ0imjkkNB3GW85mttiJ1ZSmVnvTCZKbKq9VQqUWjZItzA32OtKuGMPJIh9vPNfo5/ENzkPrI8wv0xabU25Wdj01Z62g85HE+sxyQ+X3dHU2RWeUIktHVrW1RyPZKritMW1rDD7bfK7Z7+UtZLTXKtR4b22UjVpFjsIMbrK7r/6JxdLwFLx8S19HN8Up2Opx4eNNzU/0jmZOJtc9P1hnOKS1ytbsdMHJey7pqY9p66GmDTXsXNAVNCXndF7PaIy3V53Bof/eYdQ2+CBke/aeYBDQU57HyYRZWOuZLHPGhBJRrVnTGuStUUtBxaZMnfzLFuQKFfy93NtGYWcDyqoVCI3Px3dNyhI5Qf+zxfRdG1edTMPneiZra2k0gCH2rJXtyImP81u4j7dk8m6ykAlf3AvZ5TrnLbPmX6+k2rRnAFMnngeAnSaMDG5IVwk1cn3M4Ca702TdNM2QsaXQuHy8vCIC+U6YsVtq8om/5WuXrSeGM5cpE2lamxMnHhktPreixYwNXZzheLhUaNkDvrUmBTRXlbxtZob+pKckRNNax4YYqiEnACiUzv3lNOdm255M+Vu0NabU4LcWa02i5MyMDU62VJu+tdEV1HHG+05bGGtiMsKqk44fMfPk4uOOboJRbN2B+dqfkXh/XVSbmnAvzMB8T0Om7zF7u2sj2sYEcL+EGi6Nt9rI77elRzYD6c7PnNJG1tLS8WXNSXmNUatQY80p1xst4mqYwU1twuLD9T1007dfwK/PjwTgPMMZ31931qTly2uVeHu18cPRTeXoE29rmYjEXMuPpuodBvzhhuhGP5/LLLVDi6zDkomTnIE5E1A6M2cJKX++7QKGdLPGA6Fp70hf4J5cmzM87E7ffgGT7+xn033oepv2/E6/acFk4/ZgauKAOXQda7qOvojU1t/hAQBFJmZkW/u7as7xn1xQhenbYpx2MtqYrDJMWHbK5qPeTtqiVKKFnPMv0jJbl2KwVGGlHB38vSxO0W3pnvjEJeOPKVv03xyIzcNdgzpbf8Nkc8k2LJfa1A47j8peFGbcnElkGWZwk9WUVjt+uGFLGt4k/nLIOQIczjZD7mdtYKIyZ/ZtkyGihjyxyDWyj9oa5/pGO0Z+RS3WRaTjbHrLwR1dwyNNlVXaNrIk9ck2Yv4KTY3TEhe4Vru6hTauT56ko+SFPcsJmBK8sBa5wrGdjJvONB5FpGtyayfoX2mzzM0+tsXcC7N3xVplO2lF1TicUGDyZIumMBQ8bxSMsfGx3fS7o6+TylA2+4omJTuEEDabWM+ezJm/SJ/rvtyPeXuNf86wtdyyWoz6ar/Vtzvpj0irb5OsLzqjFNujs5FRXK39XZwV54dqDd9/Mh0zuMlqHvvFOSbRaUmtQgVvDzf8cz7X0U1xOrZ+OCuvUSCv3DqZKOY8zLe2h0+WJiBnddPsfyczOzPtHpvvz5YBgNZi3PwjOPLxHZi8xrRRQ+R83lmt+2/oiFrs9nIq1bmyTL/6xzpBTLKOv044vuSJxuKwS3hz9JWOboZRbBFcdJTt0f+OFHzzr9O4VFCFF27qrXPZCgvqbNvb07+dQKCPh9W29+PBJHi6O0eOY3hSoaOb0GaYUm7vcTslUD3y81EAwOu3X2GT7beFknHUnHOc3cilhScWYl2Ea9QTikwrwcBpu3HKCYfjtQXWfEBVmJjR4EwPP0TmSsxr/ZOVmeuMEdnibd2F7HIk8BhyGnsv5OLzbTEmX89cRuuNt7scfRMGk20cTmTgDqifyNPa1EZkZe6KyUV8XgW+2R2n83VXeg6MtEGQrjXl+7Tmjl1jGDvXhb3rTZtCU0qWyBqYwU0We37pSUc3wWSuMrEM6feniQHr6dsv4D/Du9uoNUT2Mf5X1xgp05C9Hj7G/8rzekucvT6opVxpkrQDsXl47c/6Wtb9O/k7uDVkDfUZcs4ZbHnop3BHN6GRSitn0BZVOlfpJY6UqffNbuuWw1gbkYGv/4nFDX3bwU3Wcp5eea3rZGq7EmcJKofFF+DTTed0zl2050LbGKk9YOpuo5Z7l+ckaiMY4CaiNmPz2SxHN4HagN9cIRPBOZ5NyM6ySmsc3QS6rGGNUGuV7nI28/YlOLoJ9tWa0iJt7NdD1p1s6yLLVDkla0/QPXVrDAAgNL7Aqtt1dtYutWDpLaC9J+fTp+ncCA29/qdzT4ZsK7rqTqcXVSO9QZ1rcm1l1QoE+VqvbFFrwxIlREREZDOMpRMZ9lOoc0x6bW1trf4l49uuKSK1bR2nziijuAZjfzjs6GY4LWuPTqrjHD6t1oy/m4/Uu/3bUAe0hGxFqeb31xAGuIlI61Aby4ggcilWjBTvPG+/7Jvrvmw9k1iR67B2CQSilrS2iayJ7Ck+r8LRTSByuGOceJPIIgxwE5HWyuOciJHIWbHEjv0JIVBS7Vy1Xck4Q6fvcXQTqI2pVTCrilqnk5dcZ1JGIlf27BLXm9uMyJmwBjcRERGRDh9tOGewxiORs2ApICLLncsoc3QTnNLei3mObgIREVGLmMFNREREJskpq20TNRwZ3CYiajvWRWY4uglOKZaTeBIRkQtggJuIiIhMtjQ8xdFNIKLLUgurEJfLGrZERETk3JSq1p8kQ47BADcRERGZLCaLQ7mJnMWfJziHBhERETm/ZUeZJEO2wQA3ERERERERERER2dQ+1vU3myRJjm6CU2OAm4iIiEy283yOo5tAREREREQuRHBmbLMpWN7FIAa4iYiIiIiIiIiIyKYi00oc3QSX9RdL0hnEADcRERERERERERGRkyqokDu6CU6NAW4iIiIiIiIiIiIickkMcBMRERERERERERE5qeo6laOb4NQY4CYiIiIiIiIiIiJyUtujsx3dBKfGADcRERERERERERERuSQGuImIiIiIiIiIiIjIJTHATUREREREREREREQuiQFuIiIiIiIiIiIiInJJDHATERERERERERERkUtigJuIiIiIiIiIiIiIXBID3ERERERERERERETkkhjgJiIiIiIiIiIiIiKXxAA3EREREREREREREbkkBriJiIiIiIiIiIiIyCUxwE1ERERERERERERELokBbiIiIiIiIiIiIiJySQxwExEREREREREREZFLYoCbiIiIiIiIiIiIiFwSA9xERERERERERERE5JIY4CYiIiIiIiIiIiIil8QANxERERERERERERG5JAa4iYiIiIiIiIiIiMglMcBNRERERERERERERC6JAW4iIiIiIiIiIiIickkMcBMRERERERERERGRS2KAm4iIiIiIiIiIiIhcEgPcREREREREREREROSSGOAmIiIiIiIiIiIiIpfEADcRERERERERERERuSQGuImIiIiIiIiIiIjIJTHATUREREREREREREQuiQFuIiIiIiIiIiIiInJJDHATERERERERERERkUtigJuIiIiIiIiIiIiIXBID3ERERERERERERETkkhjgJiIiIiIiIiIiIiKXxAA3EREREREREREREbkkBriJiIiIiIiIiIiIyCUxwE1ERERERERERERELokBbiIiIiIiIiIiIiJySQxwExEREREREREREZFLcpkA9+zZszFq1CgEBASgU6dOePTRRxEfH+/oZhERERERERERERGRg7hMgDssLAxvv/02Tpw4gX379kGhUODee+9FVVWVo5tGRERERERERERERA7g7ugGGGv37t2Nfl6xYgU6deqE06dP4/bbb3dQq1zHcCkRH7qvRxGC0FPKR7EIQGepBMUiEP1kWcgSHTBUSsUl0RUBqEYJAhCESgRLVUgRXXBB3QdBUhVGyBIRo+6LrlIR+ki5UEGGeHUvVMMLY2RRUMId0eIK+EIOOTyQK0IwWEoDACjhjkCpClXCG35SLSqELwKlalQIH7SXynFG3R+DZWnwRh3yRAjyRAjcoMYtbheQrO6KSvjgGtkllAh/CAAx6r4IlirhjxrUwAudpBIkqXvAU1IgCFXoJJWiVPjBV5IjRXTBlVI2glCFneobcbPsAjpI5QCAJHU3uEOFZNENnaQSFIhgSBDoKhXDA0qUww+Vwhv9ZNnwRh3cocIF0Qe+qEWl8MENslicF1egg1SGZHU33CS7ADVkyBId4C3VoUgEog4eyBXtEIwKeEgqDJLScEHdFwJAoFSNjlIpskUHpItO6CIVo7tUiCBUIUCqQZ4IRqy6N8rgh+tlccgQHTFAykC86ImhUirSRSco4QYfyOEryVEkAtFLykep8EMtPFEKf1wtpSBZdEM/KQvl8EOcuieukmXCCwpUwwsKUf+3iVH3hZekQHepEDXCCyFSBfJFCLxQhzL4QQ0ZaoQnAqRqXCHl4pLoilp4whMK+EKOjlIp1JAhSd0dHaQy+Es1KBKBUEGGXlI+6uCOPBGCNNEZ3aQiqCGhRnjBT6pFR5Siu1So/SzLhB+GyNKQJ4IRiGqUwB8lIgACEq6SMpAj2qOzVIIs0QFZogN6SvlIEV1xk+wi4kQv5IkQdJMKoYQbykX9Z3dR9IY/aqCCDCmiK8qFD/pKebhWloRE0R3DZCk4qR6I7lIh5MIDWaID/KRa9JOykC46oUQEwA1qtJMq0EkqQXupAlHqK9BFKkGV8EauaIcM0bH+2IM/ukuF6IAy1MEdvaV8KOAGJdzQXqpAqfBDjmiHQKkaXlDgoro3ihGA/lIWOkhlSBOd0VMqgEK4wUeqQ7nwRR08oLz8WWaL9ugj5SFPhMBdUqFU+MMNahSLgPrjQZIjENUQAHxQh0r4QA4PeEKhbUu+CEaIVIlM0RFpojP8UIsBUjqUcEeAVI1j6iHoLhXCHzXwRh28JAWqhRdOqQdiqCwVAaiGG9SXvy9FCFNfAy8oMECWgTrhgXL4IhDVSBbdoIaErlIRauAFN6jRS8qHL2pRDl+o4AZPKNBOqgQAZIn2yBQdIYMaAajBQFkGItRXoatUDAkC5cIXcnigUARBQAYF3BCIKrhLapQJPwhI8EIdekn5KIMfaoUnOkhlyBMh6CvLRa3wRCV80EEqgwxqFIlACEhQwB21whO+khx1cMcgKf3ye6hCoFSDMNUw3Ci7iFjRGxXCB/1lWVDCDSohQ6roAgXc0EMqRKEIRJBUBTcICAACElJFFwyRUnBGXIWhUgo8oEQlfNBbykOQVI0iEYAM0RE9pELUwhMX1b3RV8qFABAsVcEdSvhBDglqZIqOUMAdMggESlXac6Ub1FDCDUNlqTiv7oNS4Y8+Uh46SqXadYKlSlxU90Z/KRO+khxn1P3RW8qDEm64SsqEh6RCsrorvCQFckQ7dJWK4Q4Vzqr7YYiUivZSufac4ws5kkR3jHWLBAAcUA2Hn1SLQFTDF7UoQiAUcEeN8AQAeEEBb6kOcuGJcvjCDzUIkGpQC090QBkkCFwQfRCEKvSQChAtrsQtsgs4qR6Iu2VncE5cAXeo4IM6BEpVqBPuqII3rpalIlndFUFSFXwhhwoyCEhQQYZ00Qk9pAIEoBrnxJXoLeUiU3SCD+Sogjd6SAVIE53hCSU6SSXIEe2hggxy4YERskTkinYoQQC8UQdf1CJK9MMgKR1qSBgopSNZdIMXFPCUlHCDGufVfVEggjBCloggqQolIgAeUKIYASgTfrhRFgs3qFEggpAhOiFEqkQfKReJojuulLIRL3qip1SASuGNTNER7aVy5Ih2GC5LQhCqUIggqCGhSATCGwqki07oI+UiXXTCHW7RUAoZChAMd6hQLAJQC090lEpRLAJRLALgI8lRI7wQLFWio1QGb9QhQfRApuiAQNRfiwJQg3L4QYIacngiU3RANxRjqCwFKsiQKjrjWtklRKuvQL4IgRweCEEFekr5kMMTRQiEEBIq4IN+UhaCpCrteVgNCQNkmUhX1x/r6aIT+sjyUCr8kCS6o5+UhWzRAYFSFbqiCBFiICQI9JOykC9C4AkFfCQ5CkUQauCF3lIeMkVH5IlgDJclIVe0gwxqyCAgIMENahSKIPSTZUEt6r/jXpICKiFDJ6kUZfBDluiAIFShGPXXlz5SLjpLpTimGoxCBKGbVAQVZKgT7hgiS0WxCIQHlNp1+0q5CJTqky3yRQiulSUjXwTjoro3KuGDQFShi1QMN6iRI9rBXVKjj5SLDNER7lBDCRn8UYsU0QVjZNFIE50RIlXAF7UoEMHIEh3QWSpBKfzRBcVwk+rfUwepDFXCG5XwgT9q6r9r8IQHVCgQQbhJdhH5IhgyCFTAB1XwwZVSFlRwgxcUCJEqsUN1AwAJ3aVCdJGKcVI9EEOlVPSU8qGAO1JFF7hBhTL4wx81CEQVFHDHRdEbnaT6a3aW6AA/1EIGAT/UwE2qvybkinYYKUvEKfUAXCVlas9PhSIIyaIbPKCEGjIESZWXr1WS9nw8RJaKTNGx/niRMlALL6SKzhgmSwEA5IlgCEhIUPeAO1TwlWohhyc6oQQCEgoRBAAYKqWiDH4oEoHoJhXirLo/hsmS0VEqx17VSARK1QhG/XcwVXRBnghBZ6kEVfBGjfBER6kM3aQi1MITqaIzAlENd6ighqz+nCzJ4Q4l/FGDDNFJ+7eohSfk8MAQKRVxohe8L1+9vSQF3KGCJ5SogjeyRAf0kXIhFx7a70K58EMd3HGtLBmFIhBFIhBeUCBQqkKsujf8pBp0lYpRLvxQCj9IAIJQBW/UIU70wiBZGnpIhSgTvpDDE25Q4aK6N25zi0GRCIAC7khQ94ASbugvZaEO9efRrlIx8kQIOkhlKBRB6CSVIl8Eww81UMIdSsjgBQV6SgUQANygRqj6WnSWSgAA3aVClIn6+8Q8EQJ/qQbDZCmQCw/I4Y7T6qtwiywGnpIK59R9UQMvtEMF3C/fZ4egAjloj24oQrBUiXPqKzBClohQ9bUYJruEdHUnFCMQfqjB9bI4RKuvxFWyTBSLABSJIFwpy0am6AB/1KAOHgiWKlEsAtBOqkC6uhM6SaXwlurgjxpIEMgTISiFP3pLeUhSd4enVH9v1EkqxXHVYHSRiuAv1cALSpxW90cPqRASBNygQproor3HGiRLR4EIvPx380CAVI1M0RHDpURUwBcqyBCEKpQgAAUiCH2lXNTBHYUiCO5QQQUZLoluuF12DqmiCyrgg3aoQDl8USW8MUCWgc5SKc6r+0ANGYpFALpIxaiAL2qFJwQkqCGhp1SA3lIeSuEPGdRoL1UgQd0dBSIYV8kykCU6QA0Z+knZOKPuj0GyNHSWSpGs7op40RNuUCMA1WgnVUBcvl/zhBKH1cPgAzn6SLnIQ0j990sEoqNUhk4ohbukQrnww2BZGmLVvdBOKke8uidukl1EIYLqP2fhjx5SAZRwQ0epVHu/6QY10kUnSBDoL8tCngjBcCkJCaIHskV79JOy4CUpUCl84AElfCU5skV7DJOlQC0kXBJdIYcHJABKyNDx8rNDuuiEANTAR5IjANXIEJ0QIFUjT4TgZtkFVAhfXBJdUQJ/9JVy0VUqvnyPX388pInO6CSVogZeGCylIf3yPcN50Rc3ymJRdfn6PESWCiXc4I06xIue6IhSeEkKxKl7IUSqQCCqkS3a4wZZLAoQjDh1TxSKINzmdl57r1Im/FAJHyjgfvnzL0em6IRAVKEU/ghBBerPGm7IEe3QRSqGD+ToJhUhS3RABXxQKgLQR8pFguiBLlIx1JDgBSWSRVcEoObyfWYVjqsHIwhV6CfLQrnwQ4roglp4YowsGgJAqfBHHTyQI9phlCweSaIbAlENGQSUkKGrVAw1ZDimHgwl3NFBKkOJCEB3qRBqSJdbqYYnFEgU3eEFBbpJRZAgEKEeiI5SKfpKOWgnVaBABEN9+d5YDg9cJWWivVSO4+rB6Hj52uYn1aI9yuEOJTJFR/SQCtBeqkCy6AYJAhIEauAFP9Sgl5SPONELvaR81AoP+Eh1UMINeSIEPqhDiFSBzMvfgXLhiyp440opW3uvcEl0xb2ySJSj/vybru6E7lIhukpFOC+uQNHl+/puKEI5fBEneuEKKQe5IgTtpApcIeWgo1SGZHXX+piKLAUeUCFTdEAHqQyBqEHl5XO+FxTwunz/1lEqxRVSLgDgguiNUuGPEKkSZcIPQ2UpyBMhUENCNbxRLnzRXSpCoFQFd6hQIgLgDTkEJCSJ7mgn1Z9PSy6f9/JECK6UsqGCDBKAONETd8iikCvawe3ydcxfqoEaMiiEG8rgBxkEhsjSoBQynFIPRDn8MFKWgFTRGddIyYgS/dBHykOF8IEnlJef4WRQwg1+qEWc6IWeUj4kAIOlVJwV/VEn3BEiVaCzVIpU0RnDpSSki05QQ4YQqQJVwhtyeKAMfvBHDQCgp1SAY+oh6C3laT+zIKkKxSIAPaV8BF2+HvaW5SFKfSWKL1/jO0plCEQV2kvlKBRBCJYqUQcPnFNfgTp4oJeUBx/UQQ4PdJRKoYA71EJCgugBGQT6SjlQwh35Ihhl8MNwWRL8UYMs0QEJogeukHJwpZSNI+qr0VkqgT9qIIP68pEvoYtUDPnl63+t8ERfKQfh6qsxTHYJR9VDIYcHvFB3+RruiwCpBiGoAAB0kkqRK9ohR7QDALSXyrXnvUrhA08ocIUsF8uVY/GL8mErRwpbF0kIIRzdCHMkJSWhf//+OH/+PIYOHapzGblcDrlcrv25vLwcPXv2RFlZGQIDA+3VVOcwI8jRLSAiIiIiIiIiIiITpas7otfMJEc3w+7Ky8sRFBTUYizXZUqUNKRWq/H+++/jlltu0RvcBurrdgcFBWn/9ezZ046tJCIiIiIiIiIiIrJML1mBo5vg1FwywP32228jJiYGa9euNbjcZ599hrKyMu2/jIwMO7WQiIiIiIiIiIiIiGzNZWpwa7zzzjvYsWMHDh8+jB49ehhc1svLC15eXnZqGRERERERERERERHZk8sEuIUQePfdd7FlyxYcOnQIffv2dXSTiIiIiIiIiIiIiMiBXCbA/fbbb2P16tXYtm0bAgICkJtbP+NsUFAQfHx8HNw6IiIiIiIiIiIiIrI3l6nB/euvv6KsrAxjxoxB165dtf/WrVvn6KYRERERERERERERkQO4TAa3EMLRTSAiIiIiIiIiIiIiJ+IyGdxERERERERERERERA0xwE1ERERERERERERELokBbiIiIiIiIiIiIiJySQxwExEREREREREREZFLYoCbiIiIiIiIiIiIiFwSA9xERERERERERERE5JJMDnBnZGQgMzNT+/OpU6fw/vvv47fffrNqw4iIiIiIiIiIiIiIDDE5wP3ss88iNDQUAJCbm4t77rkHp06dwv/93/9h5syZVm8gEREREREREREREZEuJge4Y2JicP311wMA1q9fj6FDh+LYsWNYtWoVVqxYYe32ERERERERERERERHpZHKAW6FQwMvLCwCwf/9+PPzwwwCAgQMHIicnx7qtIyIiIiIiIiIiIiLSw+QA95AhQ7Bo0SIcOXIE+/btw7hx4wAA2dnZaN++vdUbSERERERERERERESki8kB7rlz52Lx4sUYM2YMnnnmGVxzzTUAgO3bt2tLlxARERERERERERER2Zq7qSuMGTMGhYWFKC8vR0hIiPb3r732Gnx9fa3aOCIiIiIiIiIiIiIifUzO4AYAIQROnz6NxYsXo6KiAgDg6enJADcRERERERERERER2Y3JGdxpaWkYN24c0tPTIZfLcc899yAgIABz586FXC7HokWLbNFOIiIiIiIiIiIiIqJGTM7gfu+993DdddehpKQEPj4+2t8/9thjOHDggFUbR0RERERERERERESkj8kZ3EeOHMGxY8fg6enZ6Pd9+vRBVlaW1RpGRERERERERERERGSIyRncarUaKpWq2e8zMzMREBBglUYREREREREREREREbXE5AD3vffei/nz52t/liQJlZWVmD59Ou6//35rto2IiIiIiIiIiIiISC+TS5TMmzcPY8eOxeDBg1FbW4tnn30WiYmJ6NChA9asWWOLNhIRERERERERERERNWNygLtHjx6Ijo7G2rVrce7cOVRWVmLSpEl47rnnGk06SURERERERERERERkSyYHuAHA3d0dzz//vLXbQkRERERERERERERkNJMD3CtXrjT4+oQJE8xuDBERERERERERERGRsUwOcL/33nuNflYoFKiuroanpyd8fX0Z4CYiIiIiIiIiIiIiu5CZukJJSUmjf5WVlYiPj8ett97KSSaJiIiIiIiIiIiIyG5MDnDr0r9/f8yZM6dZdjcRERERERERERERka1YJcAN1E88mZ2dba3NEREREREREREREREZZHIN7u3btzf6WQiBnJwc/PTTT7jlllus1jAiIiIiIiIiIiIiIkNMDnA/+uijjX6WJAkdO3bEnXfeiXnz5lmrXUREREREREREREREBpkc4Far1bZoBxERERERERERERGRSaxWg5uIiIiIiIiIiIiIyJ6MyuD+4IMPjN7g999/b3ZjiIiIiIiIiIiIiIiMZVSA++zZs0ZtTJIkixpDRERERERERERERGQsowLcoaGhtm4HEREREREREREREZFJWIObiIiIiIiIiIiIiFySURncTUVGRmL9+vVIT09HXV1do9c2b95slYYRERERERERERERERlicgb32rVrcfPNNyM2NhZbtmyBQqHAhQsXcPDgQQQFBdmijUREREREREREREREzZgc4P7666/xww8/4O+//4anpycWLFiAuLg4PPnkk+jVq5ct2khERERERERERERE1IzJAe7k5GQ88MADAABPT09UVVVBkiRMmTIFv/32m9UbSERERERERERERESki8kB7pCQEFRUVAAAunfvjpiYGABAaWkpqqurrds6IiIiIiIiIiIiIiI9TJ5k8vbbb8e+fftw9dVX44knnsB7772HgwcPYt++fbjrrrts0UYiIiIiIiIiIiIiomaMDnDHxMRg6NCh+Omnn1BbWwsA+L//+z94eHjg2LFjGD9+PKZOnWqzhhIRERERERERERERNWR0gHvYsGEYNWoUXnnlFTz99NMAAJlMhk8//dRmjSMiIiIiIiIiIiIi0sfoGtxhYWEYMmQIPvzwQ3Tt2hUTJ07EkSNHbNk2ov9v787DoyrP/49/Zs+eEEJCCAkBEnYIYQs7hB0FQRR3ZVWrKCqISlVc6l611mpd6kJttfqtWrWLK62i/tS61H1pte7iSpU9CUl+f2QmJmSSzHJmzjkz79d1cWkmM2fuzHLOc+7zPPcNAAAAAAAAAO0KOcE9adIk3XbbbdqyZYt+9atf6aOPPtKUKVPUr18/XX755fryyy9jGScAAAAAAAAAAK2EnOAOSE9P17Jly/TUU0/p3//+txYvXqzrr79eJSUlOuCAA2IRIwAAAAAAAAAAbYSd4G6prKxMP/3pT3XOOecoMzNTf/3rX42KCwAAAAAAAACADoXcZHJfmzdv1m233ab77rtPTqdThxxyiFasWGFkbAAAAAAAAAAAtCusBPcXX3yhjRs3auPGjXr//fc1fvx4XXvttTrkkEOUnp4eqxgBAAAAAAAAAGgj5AT33Llz9cQTTygvL0/HHHOMli9frv79+8cyNgAAAAAAAAAA2hVygtvj8ejee+/VvHnz5HK5YhkTAAAAAAAAAACdCjnB/dBDD8UyDgAAAAAAAAAAwuI0OwAAAAAAAAAAACJBghsAAAAAAAAAYEskuAEAAAAAAAAAtkSCGwAAAAAAAABgSyE1mQynweQBBxwQcTAAAAAAAAAAAIQqpAT3woULW/3scDjU2NjY6ueA+vp6YyIDAAAAAAAAAKADIZUoaWhoaP732GOPafjw4Xr44Yf1/fff6/vvv9ff/vY3jRgxQo888kis4wUAAAAAAAAAQFKIM7hbOvXUU3XjjTdq4sSJzbfNnj1baWlpOu644/TOO+8YGiAAAAAAAAAAAMGE3WTygw8+UE5OTpvbs7Oz9dFHHxkQEgAAAAAAAAAAnQs7wT169GitWbNGX331VfNtX331ldatW6cxY8YYGhwAAAAAAAAAAO0JO8F92223acuWLSopKVFZWZnKyspUUlKizz//XLfeemssYgQAAAAAAAAAoI2wa3CXlZXp9ddf1+OPP653331XkjRw4EDNmDFDDofD8AABAAAAAAAAAAgm7AS3JDkcDs2aNUuTJ0+Wz+cjsQ0AAAAAAAAAiLuwS5Q0NDToZz/7mYqKipSRkaEPP/xQknTuuedSogQAAAAAAAAAEDdhJ7gvuugibdy4UVdccYW8Xm/z7UOGDNEtt9xiaHAAAAAAAAAAALQn7AT3HXfcoZtvvllHHnmkXC5X8+0VFRXNNbkBAAAAAAAAAIi1sBPcn3/+ucrKytrc3tDQoLq6OkOCAgAAAAAAAACgM2EnuAcNGqSnn366ze333nuvKisrDQkKAAAAAAAAAIDOuMN9wIYNG7RkyRJ9/vnnamho0P3336/33ntPd9xxh/7yl7/EIkYAAAAAAAAAANoIewb3ggUL9Oc//1lPPPGE0tPTtWHDBr3zzjv685//rJkzZ8YiRgAAAAAAAAAA2gh7BrckTZo0SY8//rjRsQAAAAAAAAAAELKwZ3D36dNH3333XZvbv//+e/Xp08eQoAAAAAAAAAAA6EzYCe6PPvpI9fX1bW6vqanR559/bkhQAAAAAAAAAAB0JuQSJQ899FDz/z/66KPKzs5u/rm+vl6bNm1SaWmpocEBAAAAAAAAANCekBPcCxculCQ5HA4tWbKk1e88Ho9KS0t11VVXGRocAAAAAAAAAADtCTnB3dDQIEnq3bu3XnzxReXl5cUsKAAAAAAAAAAAOhNygjvgww8/jEUcAAAAAAAAAACEJewmk6tXr9a1117b5vbrrrtOp556qhExAQAAAAAAAADQqbAT3Pfdd58mTJjQ5vbx48fr3nvvNSQoAAAAAAAAAAA6E3aC+7vvvlN2dnab27OysvTtt98aEhQAAAAAAAAAAJ0JO8FdVlamRx55pM3tDz/8sPr06WNIUAAAAAAAAAAAdCbsJpNr1qzRSSedpG+++UbTpk2TJG3atElXXXWVrrnmGqPjAwAAAAAAAAAgqLAT3MuXL1dNTY0uvvhi/exnP5MklZaW6oYbbtAxxxxjeIAAAAAAAAAAAAQTdoJbkk444QSdcMIJ+uabb5SamqqMjAyj4wIAAAAAAAAAoEMRJbgDunXrZlQcAAAAAAAAAACEJaQE94gRI7Rp0yZ16dJFlZWVcjgc7d73lVdeMSw4AAAAAAAAAADaE1KCe8GCBfL5fJKkhQsXxjIeAAAAAAAAAABC4mhsbGw0O4h42bZtm7Kzs/XDDz8oKyvL7HDi6/xssyMAAAAAAAAAEInzfzA7grgLNZfrjGNMUdu8ebPmz5+vHj16yOFw6IEHHjA7JAAAAAAAAACASUIqUdKlS5cO6263tHXr1qgC6sjOnTtVUVGh5cuXa9GiRTF7HgAAAAAAAACA9YWU4L7mmmua//+7777TRRddpNmzZ2vcuHGSpOeee06PPvqozj333JgEGTB37lzNnTs3ps8BAAAAAAAAALCHkBLcS5Ysaf7/gw46SBdeeKFOOumk5ttWr16t6667Tk888YROO+0046OMUE1NjWpqapp/3rZtm4nRAAAAAAAAAACMFHYN7kcffVRz5sxpc/ucOXP0xBNPGBKUUS699FJlZ2c3/ysuLjY7JAAAAAAAAACAQcJOcHft2lUPPvhgm9sffPBBde3a1ZCgjLJ+/Xr98MMPzf8+/fRTs0MCAAAAAAAAABgkpBIlLV1wwQVauXKlnnzySVVVVUmSXnjhBT3yyCP6zW9+Y3iA0fD5fPL5fGaHAQAAAAAAAACIgbAT3EuXLtXAgQN17bXX6v7775ckDRw4UM8880xzwhsAAAAAAAAAgFgLO8EtSVVVVbrzzjuNjqVTO3bs0Pvvv9/884cffqhXX31Vubm5KikpiXs8AAAAAAAAAADzhF2DW5I++OADnXPOOTriiCP09ddfS5IefvhhvfXWW4YGt6+XXnpJlZWVqqyslCStWbNGlZWV2rBhQ0yfFwAAAAAAAABgPWEnuJ966ikNHTpUL7zwgu677z7t2LFDkvTaa6/pvPPOMzzAlqZOnarGxsY2/zZu3BjT5wUAAAAAAAAAWE/YCe6zzjpLF110kR5//HF5vd7m26dNm6bnn3/e0OAAAAAAAAAAAGhP2AnuN954QwceeGCb2/Pz8/Xtt98aEhQAAAAAAAAAAJ0JO8Gdk5OjLVu2tLn9X//6l4qKigwJCgAAAAAAAACAzoSd4D7ssMN05pln6ssvv5TD4VBDQ4OeffZZnX766TrmmGNiESMAAAAAAAAAAG2EneC+5JJLNGDAABUXF2vHjh0aNGiQJk+erPHjx+ucc86JRYwAAAAAAAAAALThDufOjY2N+vLLL3Xttddqw4YNeuONN7Rjxw5VVlaqvLw8VjECAAAAAAAAANBG2AnusrIyvfXWWyovL1dxcXGs4gIAAAAAAAAAoENhlShxOp0qLy/Xd999F6t4AAAAAAAAAAAISdg1uC+77DKtW7dOb775ZiziAQAAAAAAAAAgJGGVKJGkY445Rrt27VJFRYW8Xq9SU1Nb/X7r1q2GBQcAAAAAAAAAQHvCTnD/4he/kMPhiEUsAAAAAAAAAACELOwE9+GHH669e/cqPT09FvEAAAAAAAAAABCSkGtwf/PNN5o7d64yMjKUlZWlsWPH6v33349lbAAAAAAAAAAAtCvkBPeZZ56pV199VRdeeKGuvPJKff/99zr22GNjGRsAAAAAAAAAAO0KuUTJ448/ro0bN2r27NmSpHnz5mngwIGqqamRz+eLWYAAAAAAAAAAAAQT8gzuL774QhUVFc0/l5eXy+fzacuWLTEJDAAAAAAAAACAjoSc4JYkl8vV5ufGxkZDAwIAAAAAAAAAIBQhlyhpbGxUv3795HA4mm/bsWOHKisr5XT+mCffunWrsRECAAAAAAAAABBEyAnu22+/PZZxAAAAAAAAAAAQlpAT3EuWLIllHAAAAAAAAAAAhCWsGtwAAAAAAAAAAFgFCW4AAAAAAAAAgC2R4AYAAAAAAAAA2BIJbgAAAAAAAACALUWd4K6vr9err76q//3vf0bEAwAAAAAAAABASMJOcJ966qm69dZbJTUlt6dMmaIRI0aouLhYTz75pNHxAQAAAAAAAAAQVNgJ7nvvvVcVFRWSpD//+c/68MMP9e677+q0007T2WefbXiAAAAAAAAAAAAEE3aC+9tvv1X37t0lSX/729+0ePFi9evXT8uXL9cbb7xheIAAAAAAAAAAAAQTdoK7oKBAb7/9turr6/XII49o5syZkqRdu3bJ5XIZHiAAAAAAAAAAAMG4w33AsmXLdMghh6iwsFAOh0MzZsyQJL3wwgsaMGCA4QECAAAAAAAAABBM2Anu888/X0OGDNGnn36qxYsXy+fzSZJcLpfOOusswwMEAAAAAAAAACCYsBPcn376qQ4++OA2ty9ZssSQgAAAAAAAAAAACEXYNbhLS0s1ZcoU/eY3v9H//ve/WMQEAAAAAAAAAECnwk5wv/TSSxo9erQuvPBCFRYWauHChbr33ntVU1MTi/gAAAAAAAAAAAgq7AR3ZWWlrrzySn3yySd6+OGH1a1bNx133HEqKCjQ8uXLYxEjAAAAAAAAAABthJ3gDnA4HKqurtZvfvMbPfHEE+rdu7d++9vfGhkbAAAAAAAAAADtijjB/dlnn+mKK67Q8OHDNWbMGGVkZOj66683MjYAAAAAAAAAANrlDvcBN910k+666y49++yzGjBggI488kg9+OCD6tWrVyziAwAAAAAAAAAgqLAT3BdddJEOP/xwXXvttaqoqIhFTAAAAAAAAAAAdCrsBPcnn3wih8MRi1gAAAAAAAAAAAhZ2DW4SW4DAAAAAAAAAKwg4iaTAAAAAAAAAACYiQQ3AAAAAAAAAMCWSHADAAAAAAAAAGwp7AT37t27tWvXruafP/74Y11zzTV67LHHDA0MAAAAAAAAAICOhJ3gXrBgge644w5J0vfff6+qqipdddVVWrBggW644QbDAwQAAAAAAAAAIJiwE9yvvPKKJk2aJEm69957VVBQoI8//lh33HGHrr32WsMDBAAAAAAAAAAgmLAT3Lt27VJmZqYk6bHHHtOiRYvkdDo1duxYffzxx4YHCAAAAAAAAABAMGEnuMvKyvTAAw/o008/1aOPPqpZs2ZJkr7++mtlZWUZHiAAAAAAAAAAAMGEneDesGGDTj/9dJWWlmrMmDEaN26cpKbZ3JWVlYYHCAAAAAAAAABAMO5wH3DwwQdr4sSJ2rJliyoqKppvnz59ug488EBDgwMAAAAAAAAAoD1hz+CWpO7duyszM1OPP/64du/eLUkaPXq0BgwYYGhwAAAAAAAAAAC0J+wE93fffafp06erX79+2m+//bRlyxZJ0ooVK7R27VrDAwQAAAAAAAAAIJiwE9ynnXaaPB6PPvnkE6WlpTXffuihh+qRRx4xNDgAAAAAAAAAANoTdg3uxx57TI8++qh69uzZ6vby8nJ9/PHHhgUGAAAAAAAAAEBHwp7BvXPnzlYztwO2bt0qn89nSFAAAAAAAAAAAHQm7AT3pEmTdMcddzT/7HA41NDQoCuuuELV1dWGBgcAAAAAAAAAQHvCLlFyxRVXaPr06XrppZdUW1urM844Q2+99Za2bt2qZ599NhYxAgAAAAAAAADQRtgzuIcMGaJ///vfmjhxohYsWKCdO3dq0aJF+te//qW+ffvGIkYAAAAAAAAAANoIewa3JGVnZ+vss882OhYAAAAAAAAAAEIWdoJ78+bNHf5+8uTJEQcDAAAAAAAAAECowk5wT506tc1tDoej+f/r6+ujCggAAAAAAAAAgFCEXYP7f//7X6t/X3/9tR555BGNHj1ajz32WCxiBAAAAAAAAACgjbBncGdnZ7e5bebMmfJ6vVqzZo1efvllQwIDAAAAAAAAAKAjYc/gbk9BQYHee+89ozYHAAAAAAAAAECHwp7B/frrr7f6ubGxUVu2bNFll12m4cOHGxUXAAAAAAAAAAAdCjvBPXz4cDkcDjU2Nra6fezYsbrtttsMCwwAAAAAAAAAgI6EneD+8MMPW/3sdDrVrVs3paSkGBYUAAAAAAAAAACdCTvB3atXr1jEAQAAAAAAAABAWEJKcF977bUhb3D16tURBwMAAAAAAAAAQKhCSnD/4he/CGljDoeDBDcAAAAAAAAAIC5CSnDvW3cbAAAAAAAAAACzOc0OAAAAAAAAAACASITdZFKSPvvsMz300EP65JNPVFtb2+p3V199tSGBAQAAAAAAAADQkbAT3Js2bdIBBxygPn366N1339WQIUP00UcfqbGxUSNGjIhFjAAAAAAAAAAAtBF2iZL169fr9NNP1xtvvKGUlBTdd999+vTTTzVlyhQtXrw4FjECAAAAAAAAANBG2Anud955R8ccc4wkye12a/fu3crIyNCFF16oyy+/3PAAAQAAAAAAAAAIJuwEd3p6enPd7cLCQn3wwQfNv/v222+NiwwAAAAAAAAAgA6EXYN77NixeuaZZzRw4EDtt99+Wrt2rd544w3df//9Gjt2bCxiBAAAAAAAAACgjbAT3FdffbV27NghSbrgggu0Y8cO3XPPPSovL9fVV19teIAAAAAAAAAAAAQTdoK7T58+zf+fnp6uG2+80dCAAAAAAAAAAAAIRdg1uFeuXKknn3wyBqEAAAAAAAAAABC6sBPc33zzjebMmaPi4mKtW7dOr732WiziAgAAAAAAAACgQ2EnuB988EFt2bJF5557rl588UWNGDFCgwcP1iWXXKKPPvooBiECAAAAAAAAANBW2AluSerSpYuOO+44Pfnkk/r444+1dOlS/e53v1NZWZnR8QEAAAAAAAAAEFRECe6Auro6vfTSS3rhhRf00UcfqaCgwKi4AAAAAAAAAADoUEQJ7n/84x869thjVVBQoKVLlyorK0t/+ctf9NlnnxkdHwAAAAAAAAAAQbnDfUBRUZG2bt2qOXPm6Oabb9b8+fPl8/liERsAAAAAAAAAAO0KO8F9/vnna/HixcrJyYlBOAAAAAAAAAAAhCbsBPexxx4bizgAAAAAAAAAAAhLVE0mAQAAAAAAAAAwi+0S3Ndff71KS0uVkpKiqqoq/fOf/zQ7JAAAAAAAAACACWyV4L7nnnu0Zs0anXfeeXrllVdUUVGh2bNn6+uvvzY7NAAAAAAAAABAnNkqwX311Vfr2GOP1bJlyzRo0CDdeOONSktL02233WZ2aAAAAAAAAACAOAupyeRDDz0U8gYPOOCAiIPpSG1trV5++WWtX7+++Tan06kZM2boueeeC/qYmpoa1dTUNP+8bdu2mMQGAAAAAAAAAIi/kBLcCxcuDGljDodD9fX10cTTrm+//Vb19fUqKChodXtBQYHefffdoI+59NJLdcEFF8QkHgAAAAAAAACItavqDtZas4OwsJAS3A0NDbGOIybWr1+vNWvWNP+8bds2FRcXmxiReUr33KUyx2fa1ZiiVEeNauRRpnZrh1KUphrtkVcZ2qOd8smrvdorl1xqkFMNqpdTbjVoh1KVrZ3aplR5VK807VGd3Norl2rkVZ5+kFt79T9lyqlGSZJDjUrXHu2RV5LkVKPq5JJTjaqXU17tVb2ccqhRO/2xNEpyq1575FW9nErXHu1QqpxqVJZ2qkFOudSg75Xe/Hi36uXVXu1Uilxq+rym+v8uSaqTW17VyaO9+l6ZStduebRXjXJot3zK0Q79oHS51KAGOdQoh9yqV6McqvdX8nGpQV7VqVFO7ZFHKarVNqUpWzu1Wz75VKfd8smrOrlVrx1Kbd5G033TlaIaOSSlqFa1cmuPvHKpQW7Vq97/d9XKLa/2yqFGebRXe+XWXjlVL5fcarqAlKJa7VSKfKpTnf+92uv/fa086qLt2q40ebTXv22XauWWy//X7VSKUv2xNMjhf68bVeN/P7O0S7vkk8cfV+D9apBDe+WSV3v9z+mUR/Vq8L9ObjXIpQbtkk8ONcqnOtXKrQY5laldqpNbdXJpj3xyqV5u1Td/1lxqUJr2aLd8apRDDXIoVTWqk1spqtVufzy75FO6dqteLklSvZzN//bKpWztVJ3c2i2vPKqXw/9ZTFGdavyvbaMc2qEUOfzvq091zZ+7XUpRmvaoUQ45JP92mr4Te+VSoxzyqk4OSZnapR+U3vw+N73zTmVot7YpXR7tlcv/O7fqm19/r/aqVh45/e934PVtes5G/3vh8b9GTa9LjbzaLa8a5VCWdjZ/JxrkaP6vJHlUrzq5/J9iNX8/Ap/hXfIpWztVI0/zZ2m3fNqllOZ4vdorpxq0SylqkEMpqtNe//fAqUZtb0xTlmNn82cu8Lp/q2w1yKFM7dYu+eRUo7yq0x55m2No9EcWeM092quG5m3/eKwJ/H0pqpUk//u/t/k9T9cebVOaHP7H1cqtdNWo1v8Z9qlOXtWpRp7m59umdGVrhySHdsvb/PkKvEZO/3cj8H6ma7f/fWqUz/86+fyP2KkUNfq/O4F9xG555VNd8/MHflcvp2rklU+1za+XQ41qlEMe1StFtaqRRw1yNO/fdihFWdqlvf79pU+1qpNbDjU2xxH47tT490eB71rg+x/4bgf2JTuVKq/qmvfDaarR98qQ2/9dDNxvj7z+fUyqXKpv/t6lqLbVPtyrOv2gdGVptxxqaH7OVP/fWeP/RDX9nXtb7Usb/fuSwO1Z2qVa/2sQ2BfubExRhmO3djSmKtv/eauVWx7V+7/VUr3/76jx397gf68Dr80u+fx/X4N2+z+HLeMIfNecamj+nAfiSFON6vzf+8BxrFZupapWDjXKrQb/u9x0371yaZd8zd+TwGfb5b9fjbzK1C45/N/3wL7Vo73aLZ+ytEv/U4YytUt75G21X/CpTj7VNX+vAsfNpn1+0/ueqtrmb1jg2Nwgp9K1WzuVKqf/722U1OD/zAfuW9PoUYqjtvm9afAft3b79+WBfWngd2mq0XalNt8WON5nare2KrM51m76ofnYs1Mp8qheqarRDqXKp1rtkVdZ/r+3Rp7m72G9/9jSdLzwKkO7tVs+5Wqbdsun3f7Po9d/3N2lFKVrd/P7HthPBMYFPtXJoUbtlUupCqzsczR/bmrlbv5MpqrGv79I017/2CGwbwp8xgL7rMBxJvC92iWfMrWr+f9dami1/3OqUXvkkc+/XwzsTxrk1G55lavtzcfnev/3LDBOC3wHA39fjX87gdfC4f8sB44jgWNdo9S8T5LU/B1yq17/U6Z8qm3+jtbJLZ/q1OA/Zu2RVw3+z1rgeO5Rvfb4jx8Z2q3tSlOaf98bOH55/fvbDO1u/qz7/MeVvXKpzr9fqJNbqappPoYFPlfp2tM8hknXHtXKrV1K8W+v6fEpqtUOpTaPc35QutK1p3m/G3h95P/7M/yfzVT/5+YHpcvp/w6l+Y8FO/yflcBYyukfnzkk7fF/Pj3+fXhgjFIvl1yqV53czfuZVNU0vw975G3+ngT2P6n+/fnufT4bgTF3IN6mbTa9D17/vrlR8r9Hzub9QyDOXfIpQ3uaj22B/a8kuf3jyZYxBT5LTd97Ncecqlrtlrd5jNj0vahVnX+f3fQau7TTfywK3C+wrcBj07RHKapVvVzaqkzlaIca5NAe/0g5xb/3CnwuG/2vQ2AsHhizB843Ap+XFNU2j1Ed/mNS037W3Xz8Duxn3P7vbEBgzB3Yzwc+z4HjROCzETgupqpWW5WpNNX499kNzZ9dn+r84zNP82vq9O9TA+NEl/9dCrwXgWOXWw2qkVs+7dVeOZu/y4Hjdo08zecCTb/zNo+hAsfAOrmVrj3a5R83p2mP/9vgbB6zpKpGtfI0fy8C4/oGOZSh3ZKkr9XFv1drbB7fB8Znu5Qih38sFhifO/3jisDf0TSOrm1+3fbIqy7aod3+97lW7ubvWKZ2aadS/OPPpnF5rTzyqk71/v1vYIyVod3N53HyxxN4jwP7UPlfh0DMLv/5qtf/HUn3f3YaJe2Rt/m4HtjfO9WoNO3RLqXIqQalqkbblN48hmwad3iaH+fxj9/3yNM81nGpQduV6j+PqWk+5gT+zkztVq3//KfB/14HzkFr/X9PYJ8X2Ec27Weczd8Pl/8zG/iepqiueT8c+C7t8p/DB96bpnF+01jWpzptVZZSVOP/DjToB6U1/96tBv/fVNO8797tP1fz+d8bl/980uX/7P74vjSN9wJjHq/2qkbuVueYOxtT5HA07VtS/a9RYL8YGB8HXjOnGpXqPxak+I9HgfFA0/mTu3k/ERjPeFWn7UpTqn8sFjjO18rTajwhNeUHdvvHaoGxak2jV7mO7f5va9NnxaO9zWPhwLgxxX+8DIwbA+c0KapVmmqazy0D4y2nf9QkqfkssOV5dWA/7Fa9dvvPEjK0p9V3OHB8aBrP+Py5Eof/jC3wejfFEzguBM7xA8ffwPEh0/+db9ofqXm/EHiP61qcvwTyMIHvXWAfkO4/NgU+p4H9b72czfukGv9nqeV3veV30KkG//6pVnv851le7W3ezwXyMj7VNR/nW+5zAueDgVxKYGwaGI9JapUjCpzrBN6zwHsfON8I5G8Cx8DAvjZwfNsjj2rkVZr2NJ9/Bo7pgccFxnRO/7GoTm6laY+2+ccm25WmxkYp1VHTPFZNVY1q/Lmgpn2Cms+lAvuNQE4tMAb7pjFHW5VFgrsDISW4rSAvL08ul0tfffVVq9u/+uorde/ePehjfD6ffD5fPMKzhfcbezb9T2PH9+vIZ+oW0e8S2admBxDEhyo0OwTTfGZ2AEliS2NXs0OISDLspxLq++8/Xn3emPjvm+miGBu05zPlG7q9hPpsB2H06wVYyScq6PxOSAgfmx0ArCcGYwwj2fW8BjZj8e9BIogowb1z50499dRT+uSTT1RbW9vqd6tXrzYksH15vV6NHDlSmzZtai6Z0tDQoE2bNumkk06KyXMCAAAAAAAAAKwr7AT3v/71L+23337atWuXdu7cqdzcXH377bdKS0tTfn5+zBLckrRmzRotWbJEo0aN0pgxY3TNNddo586dWrZsWcyeEwAAAAAAAABgTWEnuE877TTNnz9fN954o7Kzs/X888/L4/HoqKOO0imnnBKLGJsdeuih+uabb7RhwwZ9+eWXGj58uB555JE2jScBAAAAAAAAAInP0djYGFYlmJycHL3wwgvq37+/cnJy9Nxzz2ngwIF64YUXtGTJEr377ruxijVq27ZtU3Z2tn744QdlZWWZHU5clZ71V7NDAAAAAAAAABCBjy7b3+wQ4i7UXK4z3A17PB45nU0Py8/P1yeffCJJys7O1qefWrHdHgAAAAAAAAAgEYVdoqSyslIvvviiysvLNWXKFG3YsEHffvutfve732nIkCGxiBEAAAAAAAAAgDbCnsF9ySWXqLCwUJJ08cUXq0uXLjrhhBP0zTff6OabbzY8QAAAAAAAAAAAggl7BveoUaOa/z8/P1+PPPKIoQEBAAAAAAAAABCKsGdwAwAAAAAAAABgBWHP4O7du7ccDke7v//vf/8bVUAAAAAAAAAAAIQi7AT3qaee2urnuro6/etf/9IjjzyidevWGRUXAAAAAAAAAAAdCjvBfcoppwS9/frrr9dLL70UdUAAAAAAAAAAAITCsBrcc+fO1X333WfU5gAAAAAAAAAA6JBhCe57771Xubm5Rm0OAAAAAAAAAIAOhV2ipLKyslWTycbGRn355Zf65ptv9Otf/9rQ4AAAAAAAAAAAaE/YCe4FCxa0SnA7nU5169ZNU6dO1YABAwwNDgAAAAAAAACA9oSd4D7//PNjEAYAAAAAAAAAAOEJuwa3y+XS119/3eb27777Ti6Xy5CgAAAAAAAAAADoTNgJ7sbGxqC319TUyOv1Rh0QAAAAAAAAAAChCLlEybXXXitJcjgcuuWWW5SRkdH8u/r6em3evJka3AAAAAAAAACAuAk5wf2LX/xCUtMM7htvvLFVORKv16vS0lLdeOONxkcIAAAAAAAAAEAQISe4P/zwQ0lSdXW17r//fnXp0iVmQQEAAAAAAAAA0JmQE9wB//jHP2IRBwAAAAAAAABgH5P7dTM7BEsLu8nkQQcdpMsvv7zN7VdccYUWL15sSFAAAAAAAAAAAOnMOf3NDsHSwk5wb968Wfvtt1+b2+fOnavNmzcbEhQAAAAAAAAAQHLIYXYIlhZ2gnvHjh3yer1tbvd4PNq2bZshQQEAAAAAAAAA0JmwE9xDhw7VPffc0+b2u+++W4MGDTIkKAAAAAAAAACA1DWj7WRj/CjsJpPnnnuuFi1apA8++EDTpk2TJG3atEl/+MMf9Mc//tHwAAEAAAAAAAAgWRVkpZgdgqWFneCeP3++HnjgAV1yySW69957lZqaqmHDhumJJ57QlClTYhEjAAAAAAAAAABthJ3glqT9999f+++/f5vb33zzTQ0ZMiTqoAAAAAAAAAAA6EzYNbj3tX37dt18880aM2aMKioqjIgJAAAAAAAAAIBORZzg3rx5s4455hgVFhbqyiuv1LRp0/T8888bGRsAAAAAAAAAAO0Kq0TJl19+qY0bN+rWW2/Vtm3bdMghh6impkYPPPCABg0aFKsYAQAAAAAAAABoI+QZ3PPnz1f//v31+uuv65prrtEXX3yhX/3qV7GMDQAAAAAAAACAdoU8g/vhhx/W6tWrdcIJJ6i8vDyWMQEAAAAAAAAA0KmQZ3A/88wz2r59u0aOHKmqqipdd911+vbbb2MZGwAAAAAAAAAA7Qo5wT127Fj95je/0ZYtW3T88cfr7rvvVo8ePdTQ0KDHH39c27dvj2WcAAAAAAAAAAC0EnKCOyA9PV3Lly/XM888ozfeeENr167VZZddpvz8fB1wwAGxiBEAAAAAAAAAgDbCTnC31L9/f11xxRX67LPP9Ic//MGomAAAAAAAAAAA6FRUCe4Al8ulhQsX6qGHHjJicwAAAAAAAAAAdMqQBDcAAAAAAAAAAPFGghsAAAAAAAAAYEskuAEAllbaNc3sEAAAAAAAgEWR4AYAWNqvDh9hdggAAAAAAMCiSHADACzN43aYHQIAAAAAALAoEtwAAEvzujhUAQAAAEZL87rMDgEADEHWAAAAAAAAAABgSyS4AQCW53ElT5mSip7ZZocAAIjSIaN6mh0CAABA0iDBDQCwvGfOnGZ2CHGzbEJvs0MAAETpkFHFZoeQlKYNyDc7BAAAYAIS3AAAS2uUVJCVYnYYAACEbFRprtkhAACSWIqHdB+SC594IIEMKswyOwQANnTytDKzQwAAS8vP9JkdAgAAIZtc3s3sEIC4IsENJJCfLRxidggAbKhfQabZIcBAMwYWmB0CkHD2G1rY4e+9Lk6rrKBX1zSzQwAMl+Z1mR0CAFgeIzEggSRTIz6EZ7+h3c0OAUCcODgUIEqHUj86bGfM6W92CJC0ZmY/s0MIW2F27MqwOTkeAACSBAluAEgC1x8xwuwQAAA20ahGs0Owndx0r9khQFJmisfsEMJGDhoAgOiR4AaAJOBgSieQNKYNyI/pjEAAgHkOH1MirzvxTuPv/ck4s0MAgLgqyklVXgY9PoySeEdGmGpMbzrGAwDsZ/qAfLNDMMStS0bp0FHFmto/Mf4eAEBreRleuZi4ACDJ3bWyyuwQouJ2OrT5jGq9ePZ0s0NJGCS4k9RfV0+MyXb/73iuvMMaFo/saXYICceXgLOF0ITzZOnSRUPNDsEQ0wcWyNlO0dWl40vb3EZ9fsTCsJ7ZZocAJDSO2wCS3fiyPLNDiMppM/vJ5XSw0tpAZCuS1OAenHggsTk5UBiOkgfWc+3hlWaHkBRuOWaU2SEYIi+jbY1gr4uhIIz30EmxmUgBAPHGKQWAaA0vzjE7hKTAWQ2QQBpN7gl14tS+5gaQINy0vG/F7M+1lR1Q0aPd33XLpJ6bUYYVm3dR+LaliZFch3m6pIXfdK80Lz0GkSQ2jlWIFB8dIDIHjWDFbke6BpnYAHM8sGqC2SEkBRLcSWxIUZbZIcBgsRogh5pwPWPOgBhFADOsnNi71c+rp5ebFAki8eLZM5TmdZkdBqI0bUCB2SEgCWX43HrmzGpNKrf38t94crtid3G6d4JccODcw/76FWTEbNuxTPQ/t35aDLdub3YeK151SIXZIVga525INiS4k9htS0abHUJSKspJNTuEhLT/0EKzQ+jQNBs2sBvbp2urnxdFOEsiJ4LZg8lsav9uhm2LWvTGcIhVFQjf1Z2ceE/uZ9x3PRZ6dknT71bYo4HTmRa4wJ7udcds2w6H/UtSTbR5rVQ0iXUJwFA+J94IesIUZod3/pVMF/e6Z6do3ez+ZofRSq+uaaY998ZliZMjyUrhHCwcVb1z4/p8nKcZjwR3EsvPop6uGUpyzTtgJ7Ky/NjNKDHCrUvsV2agNM+Yz+rL58w0ZDudGVpkz94Cuemtlw/mpLGcEEgEi0b01CUHJkbz0nC8fM6MiB4XTd6MsRWQGELZD+w7ASM2cSTXhe1V1WVmh9CKmWP6qf3zO71AjcS0bELvzu9kIPJxxiPBDQBxYMeBcll+piHbccWppvidx9pjpuG+jp/cJ/T7Tgn9vu2x81JUhG7B8PbrsyN+euQk38lL14zI6v8/c+Y0TbH4rHbAbtxOTvcBJJ4xcZ5tDXvgiAfEwfq55i+dhX3QbCgydl2GN6o09AHazIHR12MuCDJbgKS3Pa2qbmrsm+FrWxphbJ+u2rR2SqvbaIIXP3cfN1aSlOpp/7tVWZwTp2jsoSgnVb9dPkYDuhtzcRWhu8f/eY01yj0ZJ9T9uQ3nV1gOx87k0z+Gx6G/rp4Ys20nkzuWjzE7BFgQCW4kjdc2zNLTZ1SH9ZjMIEkDWBN1nu3pF4eyBLB/90zNHdLd1Bgqi7sYtq2Tp1lrmWsiWzd7gN68YLZmDAxe479vt85LN9lxdUlnjO51MXNQ2wtLG+YN6vAxgYsOY3rnamE7s+lPmNo3+uBCYNZ7HM8atlMM7F2QjKriUPIBiSHRxttn7zdQT6yZbHYYsJjBPWJXIiWW204mKR1MIEDyIsGNsGWl2DPpm53mUVZqeIOynHRjBnH9Cn68CpyAuQRLOKKqJKT7JdLrX2pwA5a8jPjWfl49vTzo0tnTZvTr8HFWaCZmJI/LEXJTk1h8frume+V2GbfhwT2ybVlzvjPDeoZ+QjImjFn5wUwoCz3ZFGz2drK5fWnrhlDxKIsUrATM+L5t3zeHw6FrDgveHNDKJ2dGzFi87ogRuvyg+NQg53tgnPPnD2rTG8IIjWrUYWOKDd8u4qeyJEc/PzixJiZ0Sfe2Kcn34KoJJkVjjJ9Mic3F01uOSbyxHYDEQoIbYbvr2ODLGG9bmpgHvdGlkc9sXDKul644eJimmjCzKDvMZL7d+dyhJQpGlhg3UzXejhnXq9XPRp+APnhSfJfMrZkZPJE9qV/Hs/48BiZjrSDUz24sZRpc3mW6AaVUrMYZxtWFBZU9dG4nM3xhnBEm7NeD1Zneb2hh3OOwsuxUjw4dHdrFZ5hn3zJ6/btn6eVzZqhbZmS11DsyoHuW4dtEfCyf0Ft/OnGCipOgoWsF5aOCCneiGIzzyrkzzQ4BsAUS3AhbezP9pg0wNqHRp1t6RI8LdSZkqC4+MPLZR+fNH6xDRhWHvDz47/vUS43GwEJqWNpVo0nF/oIt6//1kSNMiATxRGlJc/1swWCzQzBVRzWqrW5WkNIl8RRq09niLsaWbEFiOT7IbE+Hw6GBhcYmo6m/bW+NjBZi4vZlozu/U5R+edhwQ7bTy+CVowhdLFbVmGX/Yck7GWD24MSbAGQ1JLhhWXeurIrocYXZbRuomcUZ5jLp7haKvaWOhrShHHCPndTbuGCilGi1A2OtawINqJB82lslYCWkDOxr6fjSqLdx1NjQZjjvm0y//ogROn1W/06TI788bLgGUe8zYp3VWo9EPGuTd+bRU+NXeziRSsQlikUjiswOwXRmfyyr+wfvoWGkGQML9JeTo1+lGaxJeazMGxa8dwXs74CK5H1vf33kyOb/P6mankWxQIIbMbWqOngNsLL8zhtfFWabP+OIrtmdu2px57X4Ur3WqY1ppVjaw8cOHZmfxAPDcIXSZNFsU/qZ2xxv6fhSFWT5VFmSY2ocRrLqxeKWfrZwSFSP339YoTwuZ4fJkawUtxYMT8wE1g1xWl3UO8TVhHMGh9couH+BNVbZ9e9ujTiSXUdJ1gMri3TK9HI9fprxFyOuPmS44ds02sEjexq2rXgklAZ1sPLhjz8ZF/J9jTakKLoLnfGMVWKmqxHs2jctXL9bMSbix8Y72e5yOprH28eM79XxnREREtwIWzhLDA9L0NqLwUo5JLKOBkU9bPZaxKH3mKHCaTYXCx638YeJp8+o1uvnz2r397G4sHTdEcGbvMF4nTV7ywtSu9gSDNw3hFOvO9x+CUavqshN9+r59dN1zv7RzVRdMs4aA/WRvbronP0Hmh1Gp44ea43XKxRzBncP2ji1IMu87/Jgi81KP7G6r0a3eI0WBmlC2lKKN/zSPEODjMV+dTjHNqtLi+C9binD59ZpM/up3CIXRaIV7sWdfANrwcdjFWd+B/vF3nmRld80Sjz7M5Xkpun9i+dG/PhQy3uiff9v/XRLTpoy+p2dVB75RJFrIziGLo7yott9Pxmvty+crfzM8CdjXLooPo277YwEN5oNSPJZHCN7BW9SFWwmmFWb3MWqdnMiXQFeN7u/oYPlWLvpaHObtw7vmaMZA/M7XYp/+9LRun1paHUEi3PTlNVBU8PBPYydJXLRwiEJtdTRrBrtoSrN67hGY78Ca86q7pbhM2w2tTvKK2nD22lw9fApk3TGnP5RbTuYSE4kj6xqfQH7ggXRzUg2yg1HjmhVOquPyQmFRHDj0SP1f/vMPERb2WkevXH+LP3l5Im6srPVbRHsx4MlxzITaHxmNefNN6Y8zeUHDTNkO3bwWAxmmcM4fztlUlyfz+2ydqqpJDdNyydYp4ym0TqbcILIRFtD3Ol0KC2CFeVLxvXS4WMSc/Kokay910Fc/eaY+CXSQp31+9P9BnR+pyBuieBvue+E8UFvz0rx6O9rp+iZM6t1hP+Efu0s4xMMiI+eXdL0wk+nmx2GbTidDt2yZLTOP6DjRnj5WT5VDwi/jmCwfYHLbtPsDcBMFfM5HA79dvkYzTS5caAkrZ5err+cPLFN42GX09H8PWs5Cy4weyWeF1+jacAcS/umDR84aYIpcSA5ZaZ4NKQoO2aJnWCNHyMdKyerUGvn9+ySFvXsayuI5xL80q7WuqDojcEqxM5kdjCBwwzdMn3Nn+NEXYF8b4QXYDefUd3uBDckp9GlfB7sjgQ3TOEN8SQ80vqpM8JMUEzt3/GsvT7dMtSzS5ouXjhE/zx7uiVq4A4qzLLMknC7sUIysb0ZmslmZK8uunDBYJpPhcHo+dtWnxEeDbOSE6EmyXt1DT7b3ed2aUhRtvoEOQbmZ6bojfNn6a+rf2wYdWBlkW45ZpSeOXNaZAHb2L7NF/cV7Wz6YNpLErAfs4/i3PATPSkeayY7q3r/WMrsZwsG67UN7ZcA60i/ggz53M6EH590dsE+0Yzu3ba8kJU8sCp2FyEvPyj+F2L3H1oYUq+plowu3dbysPfgqgmWOO+JpVFBSmjFi9mlJCVpXB/zY7CzQ0cVqzg3VS/8dLq6hvBdTNyzpsRAgjsJTTa5oVU4rJZ3cTgcEdVLioXpA/N1kIGNV+zsxqPi02wqUidObdtslWXFPzpmXKkmluWFfP9w6hsjuZXlZ+i4yX2i3k44M6N/fvAw5aR5O71wML5v15DL+uwrM8XTaoao0+nQjEEFKsiyxvEpngqzUzos6BjJOKKzWX8+/++NThrYqXyWJI3pnVwn1T+ZEv2+JBaG9fyxNrfP41J2hHWGHz5lsl4/f5ZSLTJreWyfXNvXGLdC+cd4N1ELVywvqHRUDi9W3E6Hrj0svM/tS+fMMPS8wO1y6rQZ/XT85D6W75V065JRuuKgYaY33A4m3SL7ws784bixuv4Ia58LW9nlBw/T5nXVSTmGTkQkuJPM4B5Z2hjhCbWxQjspNDq/TV7M+iIZ4MwZEl0trFB1ifCk0RPmUmWjL+zcd0LoS/es2Lwid5+metMG5GtMaa4OHVVs6POcVF1m6PasKtl2gz/db2DEjRnXze6v02f1U06aN+Tjhy/EWZ53HTs26AztRHbFQcOibs4TikgSz9NalFj604nBS5btKy+j9ecqJ9XYBqBWlZ3q0brZ/fWzBfaaCRusvEdAKBdZc9K8zRc3rMSoCy0up0M+t3USOncfN84SKyajYYUSJ1ZdeYDWjB6bnTKjXOv3s37D5fL8TB0yulhWrE64+YxqS1ykCsX+wwoteZHAatr7nCX6KodkYr1RGmJq2oB8Oa14BIHhjGwsEc+abVY+vqycFPrsrZ5drDFj4ppDh2tkr9CX7llxaXIgwf3Lw4brggMGqzQvXf/3k3G6/GBjGzedPD3xEtzDS3LMDsHWVlWX6aRp5WaHkTAOGV2so8Zar7TWmXMGtJo9N7hHdgf3/lHL49XfVk+yRDIrHkpy07SqusxytWY7s2xCadDb188doHkhNo36/cqqhK1juy8LD8fiIpHLd0UrWMNTO6xAifQtNerUuaPnH0EtaMvpmuFTlQVK/IwIcSwfzjn0ufOMaaJrN78+0roz3QuzmUFuBBLcSeLva6fo3HmDtMriMxT7drNWcxI7M7LGILM/omPmKdKAwvjMPHDE6FS4ZcPJBcOLtCTE5lAt7TvgqwiSxO+a7rXUzDWjLKgoantjsmctWhjft6uyUz26oMX+smXzRhgvUVNG/feZ5dXRieaTp08NeruVGneGktyLdldSkGX9hNi+Rpfm6tmz2ta67x7F0uYZA8Nv0Gxl/zh9qu46tqrT+y0cbtzs7Ghq7S8aEeQ4iQ617AERkMjJmR45qYavGtzXVYsr9JMpbUsawlyzB3c3O4SYNC1eMbG34du0gyFFP05gsNpFua4ZHa8CHNozJz6B2BwJ7iTRp1uGVkzsbflEZXaqvWYDWVnPLsGblxmN9wxmSuQTKiOwYqdjdx07Vq+dN6vVhZNV1WVaVd03po2vkLzGlOaqNMjsR6mpOenxBtSMD7D6xYR4J3Mi2RuG8pi7VlYpP9a1O/1vZqj1lF0m7vu7Zng1vm/nJV9+cehwVVpgldGgDkrXdEmLT9khq39X95XmTb4+MkavGtxX1wyfzpo7oN3fzxgYWvNqq2g04FM90gKz2seX5emc/a1f6iVRHVhp7AXInl3StGntFP3l5InafEa1oduOlbF9cnXZoqFaZPBrkahIcMNSTphq7RnmVmfGALl7dop+fvCwmDV6/MvJbWeJ2A0pxs6lR3iy9KvDK5XmdeniA4cYHFHo4lFT+Ed8mmIt1evSutkDLFmuJ17eu2iO2SEkjSOrmkq2TO3fVDtzzax+hte2tlrpr0Dt8qn9rT1zed/+Dy2tnv5j6aLxYTRJDiac5u89ckJLpL98zoxIw4kbh8NhaDm9lqKZ0d3SLUtGJfWxwO6i2feN7WN+aYqAny0YbOo4tzOZQb7HRlT4+b/jx6m0a3wmbHUk1LJlCE049a6vPqRCr22YFXEfrGD6dsvQkKJsy0/8DCjPz9RhY0qYtBQiEtywlI5OJmIpnruLjmaK2NXiUcUxafR42ox+GlKUrZUGLaO657ixhmzHLAuGR3fltji387qhpV3NKRN07vxBGtwjSz8/eFir72NKJw29RpXm6s3zZzcniWKlo6XUP19cEdPnRvQmlUeXgIqEnRvWtFeu55eHDY9vIBYVrMxRpAYWZum1DbN025KmBuA+t0sHj4ztUvhYOmFq57Oynz5jmp5bPy1oHV+ruOWYUXr01Mnt/j41ihPjfWcFH1nVS9cfMUL9CoxrOpsTp5nHVrFvLq29koxDitqOwTsqQTCwMIvVPAZZ4B9HnTSt/clMDlnn2LlyYuiraWJ9EeTocaWG9Tx4+JRJOmSUsRMzjh4XmzG4y+mIea8HI2aaV/QkAR6qdbP7h5V3cTgcyjYouf231ZMM2U4wJbnmX4hBExLcsIwbjxppdgi669gq3XT0j3GcMt245mJ/Wz1Jq6eXa82sfoZtM9EFmn6dY1AjjKo+XQ3ZjlkKs1Oi+kz+Y+3UTu+T6nXp9fNn6Z0L4zuDsygnVX9dPUmLRxW3qjXXI4RmXp1d0TaiPnihlZqK2W0tswX8bKF1Zz7FmtV7W4wxoIFTeovmjjkGzvIJ2HcPkpVi7KzT7DSPrWbmdJQQCDbbrus+kxdSvS4VZltonxrEjEEF6haj+pznzGu93N3ldGj/YYUqiHWZEzXV+bW6m44eqftOGG/oNn9xaIXOmz9IG5eNafO7YgMSE+1NxOBw/aNfHDJcz62fpvlByuwsGlGkESU5qiwxvyRFgLfFBIvOZiNfuTiy8iWrDTzPDNXAwixdcXD4+4Fk+CwX5aTq9CDn6Z1dc7n/RGtcBAtl1vyzZ03Tfy6eG/tg2mFmaclBPRJvkiHaIsENy5gzJPImDsNCvHLa2enj+L55mj24u14+Z4buPm6sDjaw9MCgHllaM7OfoXXruFrYmtEzEqwozRv5rLFQm5RkpXiUGsXzWF4Y6ybXze6v6QPyNccCTWYShRHLVoPpaPlirGcAJYJAk0RvB/uJWMys+8Whw6Pehtvl1CvnztRL58xIyGaxEbNIRuIf66ZqfN/QLzBH+jm74cjOS6VV+0vBLBlX2ur2eL5U+ZmxO8Ef2L3jE/iD4lBSK1i5gnDMHtzd8Nq72akeLZvQW3kZxl+0GFGSY9hEDLvr6OKX0+lo98LW1YcM1/0nTjCldrwR332XM/yUyt3HjY3q3NdKIk0cVvTMVs8uHV/sjORwMG9YZKuKnz1rmk6aFt5Fh8ZGc3sehKsoJ1WeIOO8pS160cRSd5v1Tvrn2dN12OhijbP5JLlkQoIbITl+Sh95XA6dGMLSUzMYPdOja4ZPY/t0jfsyuWAHnI7suwQ1VomjaMXruH/potg2gEHyWVVdpluXjrbV4DVZdVROIJ6KQqyRG2DECgMjZPjceu28WXr9/Flxfd7cdG/UCbHAdmKRvLIKix7eQ5KV4tHgGMycCpQ48biavkNzhxZ2Oh688eiReuikCVo+wZjSZ2Yq7Zqmcf4LB0+smaKNy0ZrqAWWyoczdjZq3Npo4gDYKiU1zLbvOzCsZ7YOHxN9uaWxQRJLdn3FW14AiNUKkUhEc+xM97q0/9DIEsoPrJpg+OqlXx85QkeNjW3ZwnCleKyfcutXkBmX5xlaFJ9jlFFjjvzMFF120LBOJ1MaUeoGxrD+tw2W0C8/U+9cOEdnzGm/uzOi53E59cefjNOpM+K/ZC0WVlX3Va+uaVo2PvoTycAJbEeiTUKuMKjWd3u8ndSTRvKqLMkxOwTTzBhYENbMiNc2zAraSTw/Dsv7O/L7FVX62YLBGtkrvJIb2Wkew7vEt6ezPEx2qsc2TXcCBlior0VZvnE1lNG525aO1v7DCvXgqh+bUY/s1aXDWtY+t0vDeuaEnFQxMnk5d0h3Q8sl/X3t1OYVC2X5GZZv2pmsBhZGlziqHhC8CWl7qxaXxKge8r5GdTLLflSvXDkN+P6E04S1M6YnoVo8vZWS9JccODTix54+u3/E+8mWj0vEC0VFOam6sJOm0dH0c0D8WOmCFDpGtgUhC7W8Qbh+v6JKT59RHZNth8pKB9XRpbka3zf+DdE6E8ly0XWzB+ipddWGNId4bv30qLfR0rNnTdPty0a3ui3WFxbuWlml4txU3bZ0VEyfx0qMrGNvRUY1LxzWM0d/OHZsVPvCSK/vLIxTcrU9tywZFVZNPo/bOvvrliaW5+nofcoehOoXhw6PyyqBo8eWqmeXVB01tiTmzxWWCP70O1dWacO8QTpklHUaMras5WuVmfmxYJXVYr3z0nX9ESNsU1fzhqNG6mgDZxbaqW57MivLz2xusBiJ6nYuXKzfb6BuPrpt/6LzDxgcl9Us/3f8OL15wewO72ORXUVc2e1v9rmdIfW7iad9z8/sZHTpj+fLz541Tcd0Mi7sm5+uP504nhIYFnf0uF46eGRP/frIEfb7kicZEtwwXCgzbVuaWJ7XboMXM5cchqvlAS0RZaeaW8PW6MF6UU5q0JOG/h0s0Yq2EdGo0lw9fcY0TRtQ0OH9cvdpyGVnHdVFtrvq/t10x/K2Das6s2/DtYBxfbtG9Rm7/ojO688Gs6q6LOLnDIUdlmZaQUe1rwOinQ2XnebR02dU6+z97FkvNlCSQpIGFWZp+cTeUV8YyMvw6rDRsU+SB2ZVrqXRNJJYy+9wMhlVGnkz3fYm4aR4XJo1uHubfjwOh8PwRrjBOJ0OZRhQXqojT6yZEtPtx5t9zmrN1d5FHTuYXB7+ioPKki4qzrXWRYaWHj5lkpaM66VNa6foZwsG67ojKuMeg9mTEX1ul65cXKH9IizHg/jhrBOGM6IbeTwEm/UQjQXDi/THn4wzdJuJZN8l+H84dmzQ+5mdSL9jRfCE5dqZ/TQvTge13nnpuvygobp1SfQzvTs7mfx1CE25zBA4aQqnMVksBRtXuZyOiAZcRq9GiJY7xrMA7z/B+O7yyXaSeGRVifYb2l19u0WfHDL7JMFq/vnTGeoSh4uKFywYorcumK2qEGZpmb6MPkElwmd/tD9Rate+ELnpXj15+lT986fWOg7GWhplCCJil7JPeRnhH0MSYX8UrkTuk3HuvEFaVFmk+RWRr9YIxxUHx6/v1MDCLF2wYIj6dsvQ0eNK1SUtcSZiRYIxmrWR4EZQVb0jn2lgF7GYJdurq/HJ/XuOC54IjqdZg4PPOD54ZPD6f8FcumhoqyYk44IkLsf37aqz9x8YfoAG8bicKminju/J08vbXQ48Y6DxMw0OHV2i6QM7nukdikB9zmCyUtzKsegM64dPmaTz5g/SmXMTr+5/KLXYT54W21nVLYXb3DZc+57DhTMwbG+2e7K5+MCh+vWRIyM6IY71+2tFLWcVul0OXbqo/fqi8SzzkB7j2Y5G4vStidVSUD1yUvXsWdP02nmdN4ONtu+H0fm3wEzj0rz0uPdM8Lpin2A+oqqp9NN+Q7u3+d38ih6q7t9N69sZ01jtcxZMsGaPaJKZYs2xtNU8c6a5JUljacXE3rr60OEqzUvXhnmDdPUhFbF9wggO0mnejveD6Z38Ph7uXFlldgiwueQ760FIDhoReuKyIz27pGpCWVfNMCBRl6zam+01e3DbAXSsGFETPMXj0pT+HS/buuvYscrPNKdR3NT+3SJurnbdESPazEiP1cSMlktR7dYMLhzFuWlaNqG30rzxSQhZbSLN2ln9Y7btff9UOyXd7MQqyflrDhuunl1SY3+yZSHZqR7dfPRI3bZ0lHxulw4fU9Jh40HYT4rX3FMYM2dwFeWkhlQa4q8nT9RRY0ssM2sylvvEjsZDswcXdLoa7PAxbcsUhfoOB8opXrxwiJ5fP12/PrLtClGv26nbl43R8VP6hrhVa5lQ1lWzBnEuB4Ri+cTeWtROLiUe5YPa4+rkZOfyOM0K7yiM4i72qAQA6yLBjaDmVRTqgVXBl5VntNgxjyjJ6XA7DodDd64cq1v2KbUQy2RSMsw6evqMag0pyg7rMR1dZLi7g1nikS6Jj+fSKSNEM1s6xeMKOiO9Iz0jPIDPGdJd62b3150rq3TxgUPVOy89aWtaJqtY17wM+NnCIXF5nlgys43DkCJrNL4b0D1Lz5w5rdXJlrtFr4ysKGaeHTe5T1SxnR7DetSzBnfvtN9BqKwwrrDYNbh2xaO55sSyvIguhtvlNTRKeUGmLlo4VHcsH6PcdG9C7NPbc82hw9UnL13XHt62NuxNR4/qdKXGxQuHavO69meXPnn61E5fP4fDoe5hNEw22+IQV2FuXlet36+oMrSkRjiNpSO1bnbsJgpEykatpaIWj791Ypkxjd7D0b8gU788bHjEj7/3hPHGBWOwaPu8JDMjPu9z4jh5MZGR4EZQDjk0vDgn6O+KclK1fu4AXXLg0KSsHxZMVopb84dFV3Pr9ytCX5ITSZ3zbpntz5yJpHZcZ3xRLo1NdGfNab/0RkfNVR0Oh1ZVl2lCWZ5656XrH6dP1eJRxqy4gD2cPru/Rvbqop/H+CJSfqY1Zv3tq6PaswO6t98k1kgrJvaOy/PEisfl1B3Lx+jWJaOUHUWZolAaY3YkXis0kFjs/v2Lt0E9svTyOTN09NheZofShlEz4ft3z9TfT5+qA/z1b8Mtv+Z0OlTSQZnB0rx0S75+8VDSNc3y53tFOT826BtSlKXN66p14lRzZstb+5Xq2OR+4TdINMugwqyIm6tH49HTJmvB8KLO79iOfgXxGaea6TJ/Wbi5Q0jYhsOuK3yshgwUInL8lL7NteaMZb9L2xPKuuqVc2dGlSSQpInl8b8KHUvxuHI/uEeWbWckZad5VN1JyZZ4MKskTKwEZpSGOjPJbtxOh7pl+nTfCeO1eFTbJdWh8LldzY2bplrgM7ivQN3YYDMZlk0o7bCu/G1LR2vJuNgkISp65jT/fzxmn8Xa5H7dDKnz3563Lpgds23bgcXzQa3s2wS6M8k0CzFRWD1BabQjqko0b1ihrlxsbGmmSw5sv56/ka4yOO6OdI9zPXSjVRTntKrt7JDDFkl5K7rxqBG6Y/kYU85POprcE8wRVSVBz71518132JgS/fuiubrhqLblmtC+ZOyZEwu8irCtWDT2i4RDDrktukOy4vI8I/119aSknVFjlLL8DF1x0DDdvmy02aEY4sw5A/TAqgm6pIOmclYSbomHYT3DK00UTGaKW3eurNJP9xugaw4dHvX2OpOVGt7FvxElOXp1w0zdcFTbmTnzOlkp0yMnVev3i02j2nWz++u0Gf302GmTQ7p/y3O1XwVZNm9HmWHUjmSgHjsnVYfXhLZ/JzPG8jK82rR2iv7fWdOiCSsi8/0zbo1cmutyJt5nr6hLaud3QjOf26XrjhgRVjP0UBxRVZIQFzhb2rdM4c1HG5OUqiiObLxypH8C1ejSLiE/xmrJ7I5WmoUqsJI6HuO0gDSvW5P7deP4vY9g72ZgPxDPnlh2EmqT4wHdM3XO/rEZtyM52WbvdfHFF2v8+PFKS0tTTk6O2eHAAs7ef5DZIVjeqjBPgqXWy/zs7p4OaovjR4eMLlZ1/9heMDIiMRsKl7OpvFI8BuctZ/RGqlsYzb+uOGhYpydxoTYTK8hK0XGT+yonrf3yRGN7h1dXfl/XHVGpSxcNVVFOatiz3nLSvHI4HJaaBZvuc+uUGeURLS+dN6wwBhHF35Tybjp0VLEuOGCw2aEktT5h9sY4MoQVd327ZaiHCcf/Kw4appuOHqmrDzVuxmoiNlStbKdsIBCt0hZ9XPrkpWtEr9ATyx0ZFuEYafbg7vr72im6c2V8x/CLwlzJ0hEjmhovGN5D/75orhYaGJeVZMawn0yvDsoNGeWvqyfp9qWjdZRBE63MLtnmdjk0bUC++uSlh72qqyNdgs2ybzG2f+TUyTqyislqMI5tEty1tbVavHixTjjhBLNDQScCO6mxfXIN3/bEsjwdNbZEFx9o/bIUY3ob//fHw8LKHnpizRSzw5AU/QClqk90CTor8LRoBpcep+aCsWDGbJAKf0Jg5qDWZRi6RVlbuiDLp7P3G6jjpkTXYM9oKV6Xro2i8c2+stM8UZ2kzRvWQ4ePaUqshVPSiiY31uV0OnT5wcO0ZHypodudNYgZULFk1VVmkpTqdWn24O6tTu4vi3IFzsBCazR4RXgOHtlTf/zJOLPDMN3yCdSY79MtI+QZoOE4dHSJumel6KixbcckPQ1cJeFwOPTrI6OvDx2L18AqIkncP3zKpJDuV5gd+4u1ueleVQ/Ij3q2fqAx8+rp5aosyYlpjsPnCf55SvW4dEBFD6V4XNq0dop+YeCqgX+cPjXsWumHj4msBKOZKN1mHbbZa15wwQU67bTTNHSoPZad20Xg4NvZzjScWT3Lxpfq/hPHa+OyMVHFFozDIV20cKiOrOrVaomgyyIJka7pPybOssNclm8MY/augfq8LfWPU/M2qWnm9bnzBmnaAGuUoTGTz+3S7UtH6+ajR5r0mbKvP50wXm9fOLtNQntkr1ytm91fN3Ry8nFvOyfa/QoydezkPh3Wgo6n9XMH6ICKHppS3k1OA5bFtvTHn4zXjXGuoXfhAutfwIwFo5qt2dHswaHVAk/xRP6dc3RSmTPQKLo0DjO/klFg8sOMEOq+VxTnGDIDcl8WGSpKkoYUxWdVk51cubhCo0vtOTkkEqPamSl9toWW6ydKea2A7FSP/t9Z03TRwrb5hCXjS5WX4dXSIBdww60PjeCi3Qcn0sXLixYOUV6GV1f4G8bnpnv1pxMnxHQ2c3s9CR46aULz+Mrocj85aV6N6JUT1mMyUzjfReTsOx0QhthvaKH+fdFced1Ofbp1V5vf/35Flf7z9XaN6xv6TFin06ERJcYsb+tIiselV86dKZfTYXhSJ1Itr+IaGVJ2qkc/7K4zboMROHlamW548gNDt3nO/gP159e+0Guf/dDq9qo+XRNi9rVRqjtJ9CfTCWE4nE5H0CV/Doe0amrH5XvmV/TQqBava6fJsYoe+vNrX0QWaJRi2XU7O9WjOXHugh7sAhsSR7BEQagnVBctHKyDbnjO6JAkSdMH5uuvqyeqtGvTcv3lE3rrtmc/jMlzJaPSvHS9feFspYZ4kSLRV3KcNXeActO9nfYVQOKKZFXekVUleui1L3R0jJop7yuc8z+7aO+csWuGT//86QzLnFMiPsy6dnHU2F46sqok5vXjW04C5MIqkoFtZnBHoqamRtu2bWv1D211tPxpYnmelpm4VK6zY05uuteQWa35UZYsCMbIA+bTLbqDG2FESU7YSaQ0r1vp3tYnpqGeqLZn5aQ+hne4t5PxffMM2c7o0lzdubLKEvXTb10ySpcGWV5u99kvna1gMLI0SDIqzo3NrNmWs6L/fNJELRnXyxLfk0SRl9F+DXejnTi1r4q7xG52tcPh0OAe2c1Jp3PnWWcWZaSsttdN87ot1wyuMyN7dZHTIZUbfOEtM8WjtbP6x3V1HIwRi09wqN+Liw8cqlc3zFJ+ZmI1uoyGke9HrJPbVlqpleY/pwu1R0574/gK+gN0qr1TIKOPh8HqXad6XTpjTn+dOqM85D49sdbZpCG7uuTAoXEdFyM4UxPcZ511lr+JVPv/3n333Yi3f+mllyo7O7v5X3Gx/er5WN2KiU3J76n9u5kcSWhazghqeUw5ZUa5CdGELivFo9554TWV6kh+ZooePXVyVNuo6JmtUy38ulWFWAM+xz8YmFxuTLI5HEsnlBqW4J9QlqciA+sHRmr6wAIdPqZEGf4k0aR+9tg3dKazGnsOh8P2dTPvXFkV9mPWze4vn9upc+f92PQ3kgH7T6b01THjeun3KzqOoTyKsgVDe2brggVDmr/zVmPHa0CHV5Vo0YgiXbvPMnYjGxSZxW6JWMRGus+tty+co0eiHDMhei1LEyaKc+cNUl6GT+eH0bg3pJq/Ft99HT+5qYfJ3DivELOSWL1FBVm+oGVW9vXQSRO1dHypfnV45LXCf7+iKuarttt7nThEt/XTdsobnTi1TKfO6BfnaJLPEVUlevHsGWaHkfRMLVGydu1aLV26tMP79OkTeROv9evXa82aNc0/b9u2jSS3wfYbWqjN66rVI8d6g84HVk3QT+9/Q29v+XHmfrrPrQXDe2hPXb3K8n+cNZObnhhX2+KZIHnwpInxe7IwPH1GtV7/7IeQB83PnTVd3++ujUtDkn15XE4dPLKnTv/ja4Zsz0pjved/Ol3/21kbs5m5VmSFPm7RfAYmlOXpl4cN1yl3vxryY8b2ydVPpszRnrp6/ewvb0f83KleV6e1t/917kxl+evyJWKiw458bpeuPmR4m9tPmBq7sjlov4FWTppH5+4/SGvDPKYEW7ZsxwsusRJN7fdE5nY6NG1Avsb0ztVFf32n0/vPGtx2XLZweJGeff87DQhhJnvPLqna8sOeoL+z6zh+xcTeWj6hVP/9dqfZocTVkvGlGtc3T327GTd5J9FEOp57fv30kC7QluVnhHVhJZiJJkwOQvusurIjzfNjytETp5OlUb266K0vIqvecGRVie584RPNCXLMkjoeHzE5wnymJri7deumbt1iN7vP5/PJ57PGUgw76O5PGHjdTvnC6NpcYtGGTMOLc3TJoqFaeP2zrW7/5WE/zjS7felouZwOyzSLi6WMCGr92VFxblpYSdVUr0up3o6T2+EuN5o2IF//+Xp7WI8xw+rpkc/Anz24QF9tq9Grn34f9PcZPretP3N2L6kST9F2kA9VlxYJjFXVZfp6e43uffmzsLezfu5AHXXrC1o50d4z7q3O3eJzMbQoW4eNYYJBtO5YPkb//mq7xrazQsnjcuqgkT07TXDfd8K45lrmlx80VAdUUAc6mVT1ztULH25V/4LoyqO4XQ7dfMwoSeo0wf30GdVBx2YHj+ypvvkZUcXy8CmTDGtK9vz66Rp76SZDthWqYAmRUMtGSE0roH76pzeMDMkwHZVmCKc8z2OnTdbf3tiia574j0GRJa5YJ9iKc1P16dbdMX0OmO+WY0Zp7R9f09WHRL/SODvNo6sPqZDL6YjbBeMz5gxQflaKfv7oe2E/dsP8QZo1uLvG0OPKlmyTffjkk0+0detWffLJJ6qvr9err74qSSorK1NGBg2pjOBxOfXOhXPkcMS+BplVdNa8z0oifUcuP2io7n/lc51UXa7fPN15wyzyeq2tnNhbR40Nr5nPkB5Ztkhwr4giwbd4ZLFmDCpQ6Vl/NTAiIDTpPreuXFyhh177QrV7G1r9rrNzu4nleXrrgtkRNfgKmDYgvzmhk5vu1cnTOm5aakfV/bvpH+99E/HjnU6HXjl3pvY2NFh2VlGkgs1EjYfJ/bppsgFln1zOHycxHDq6JOrt2V28LtJ1ZtqAfD39n29j/jy/PnKE7n7xUx08smfYj91/aKGyUt36wz8/1YUHdLzqpqX2Jh44HNE3ph9YmBXV41vqbtDqoNmDC/ToW1/puEmRrUQuL8jUfSeMD6lH0OFjirXpna+06d2vI3qujoT7zWhZCrKjHk/h6leQqX4FmWEnuBPt2GMFbmdo72usV3Ilah3nULldsf37Zwwq0KsbZhp2wWTRiPCPN9FI97m1qrosogS3z+3SlAQpsZmMbJPg3rBhg3772982/1xZ2TQL9x//+IemTp1qUlSJJ9Wb+DOZk82ho0uS+gR25qACPf72V6rqHdlV2HNa1BaOlb+tnqTvd9Vq4//7SI+9/ZWOjfCEKFwso2opeV6LxaOYSRtNcluS+nTL0P87a5q6pHmV4nEm5HfpliWj9e2OGlVdEvlsxs7KBtjxeuoFBwzWhLLkXpYd7/fthZ9O17bddZr5i82GbvfEqX3193e/1mFjSvTn174wdNuROGZcqQqzU/TrJz/Q65/9ELPn6Zrh06rqyC7KXX9kU73edbMH2LYsSGfyMrz6dketRvWKPPH+6yNHassPu9Uzisa4I0N8fofDob75GTFJcIfL43LqtBn9tKt2ryUaOg8pytbPFg5RTwvEIoWeHLa7v6+dYmjvKJgjEce2SHy2SXBv3LhRGzduNDsMoI1oG5YV56aqd571ViEM6J6pd7/crgMq7N0s7OpDKvTwm19q9iDrNrIZ1KNp9lFVn65RnxAhMkaM4ewyEDxohL2/01bRwyInzLHicjpUkJWi3HSvtu6sjclzLB4V3xk9kWr5zR7cw7jZoghNQVaKCrKin4m57y76jDkDdMacAVFv1ygup0NzhhRGVHop3sxKbvftlq4PvtmpwuyUdutxR+vZs6ZpT22DsqMY37ucDtuO5aJdyXmKxRrQHx3mKkyjBHsds1Ot2eQ6HKGU8OvTzTrntbMGFeixt78yOwzDJdKKa5ucPsEmkuMyIhADNxw5QhPKumpDlDN8nzy9Wr9dNtqgqIxzz/HjdNvSUTqx+sclZlP7N5V0scKsjGMnhVZeIzPFo0NGFUd1ohKJSJbO2fmECPZhdiI+nEH5dUeMkNft1CUHDo1dQOjQI6dO0olT++rpM6oN33aWQXVzEVzLRMSdK6uUleLWdUdUdvAI65jmLyEXbg8MJLY/HDtW588fpEdPm6zbl47WprVTDH8On9sVlzEjSR17mx5BmctGW65bsqfA92vGoIIO7xfKO2L2uDmZtPcdufnokXGOBHZlmxncgNXMHVqouUMLo96OVWo/7is71aNpA1oPCi49aKgqS3I0b1hkDami/Uu7pHn0v111kqTKKGs2RurOlVX66xtbdNcLn5jy/FZV1MX8ix7xwkA3fsb26ap3Lpxj2f1kMsjPTLHULFdEZkJZnl47b5YcDke7zYGt5JQZ5eqdl25IzXEkjvysFC2d0DTBwU59dDrT0z+G8rgc4nBnfVP7d9P4sryoysIk2lDy4JE9de/Ln2lRpTVWCT575jS99un3mj24u86493Wzw4lIisepPXUNpq1CiJVIVr+PCqPh46/9pbQkqbIkR//65HuVtNMHwmoGFmbpnS3bzA7D1khwI6El2NihQ/FYLpqV4tHKKOpDzxvWQzc8+YGq+nSN6PGPnTZFVzzyrnLSPJpjUpOvCWV5mlCWF1aCO9EGsS298NPpqqlrSIhll2jfCz+dHrQWczyWSEaT3E6kJZxo3SfE57H2IsTuBpTUMJqdLs753C76BcAWphmQaPe5XXrrgtlyOR22+p5ayYiSHL3yyfc6ZDT7jWitqi7TY29/1Zy0DsXFBw7RwuFFGlVqzgSkffXISbV9Kbk7llepa4ZXfS1U8sUIw4tzdPK0spglnfdrMQHxpqNG6o7nPtZhY2KzXwiU8TOqNNODqyZo685a7azdq+lXPWXINpMNCW4gQUwuz7PUwrey/LYH41SvS5vWTol48N4t06efL66INjQYyIi6qAiNmUtbrfo+//zgYTrl7le1bnb/5tsiKQ8EY7kNnIK4dHyp/vrGFi2f2FuZKR7dfPRIORwOpXmtOYR9/LTJ2l1Xry4J2oDPbgYVZultZkMhRq49vFJzhxgz4SLa5sdm8bqcqq1v0NgIJ68Y5c6VY/XOl9s0vGeOqXEkgoriHL15wWyle10hJ7h9bpcmlofegJnrOJ1zuxwRJ7fDeX3jfSHA4XBo7az+nd/RAPlZKTp9duye6/KDhmlgYaZhJUa9bqe6Zzedc+Vn+vT19hrNMegYkyzseSQFbK6iOEevffp91A0qreiRUyfp8//t1pCi7KC/Z2YKAKMsGF6k6QMLlGHTxECiOX5KH32/s87QBlNn7z9QG+YNktOfNJ9l0uqdUJUXZJodAoA4OaAispJ9iWTT2ina9M5XOmxMialxpHpdGmFS+cJExLgq8b26Yabq6hstd3Ft+YTe+t1zH2vRiNblbo6sKtGdFisR6nQoZv2z/n76VH26dZcGFtLcPBzW+jQD+0hrsRw5kdx41Ajd9NR/dcy44DW17FzPeED3LA3oHvqOOBHz3aN75+qBV78wOwxYwOR+3bT539+YHUZC4yTMOtbPHRjR4zo7DDgtVJQ2k8aYpkn1uLS7rl7Dega/gJ4oygsy9cQ7kdf2TVQ5aayKiLVI1okV56Y110U3QzzOI5icYx9pjAlDZtV9avfsFL1x/iy5Xa1L0Z03f7DlEtyxlOFzk9yOAHsAmCLUYcKEvnlaNKJI97/yeUzjibfC7FSdf8Dgdn9flJOq36+oSoq6xn3yMlTVOzcuNcRj7dmzpumDr3doUjlNsdCxbpk+fbO9JqGaZAGJ7NJFQ/XVtj3q393+M7T7dEs3ZDvBkmGxPJa/cu5M7ardq64Zvpg9R6hiWd9/9bRyOSTNHtxdC65/NnZPZBM3HjVSG//fh7pwQfvjZnQsL8Onb3fUmB2G7Vy5uEKXPfxOq6Z1sKZz5w3S219s06Sy0MukwLr2TW5LTeU7gM6Q4IalOZ0OXX3I8IRLcIcinDpmduZ0OnTP8ePMDsMQRTmpKrJ5QxM0iXW166fPqNbWnbW2b4ADJIvDTV5+b2RJs6wUj146Z4Z8HZwshrsPPHlamXbW1BvScK89qV5Xq0aj4fK6QnvsWXMHRPwcRkj1unTGHHNjCFeXNI/+t6tO5UH6r0RrzpDu1CCFKQ4e2VMHjSgyZQZ39+zkGh+W5WfoH+9FvuJxxUTzVhEAsA4S3LCUzmbElOfbf+YUAKR4XCS3E5yVmv7CXlLcLrmcDtU3NOrqQyp0/yuf60yDE555Bs+CXjC8h8osOkZbPb1cr3z8P80aXBDS/X8ypW+MI7KHgYVZerJFwunkaWXt3vfeE8brlqc/1IlTee2QWIIlt3MjLO0QysqP25eO1muffa/ZIe6v4q17doo++m6X4ds9dUY/NTRK+w0tNHzbAJIHCW7YwoOrJuhvb2zR6unlZodiOUvHl2rj//tIJ00r1/921Yb8OKdDyvS5tb1mr4pzY9McAYC9UGcyNnhdEQ6n06G3LpithsZGpXndWjSiZ4f3r+qdqxc+3KrDRhfHKUJ7WTOzn9khRM+EfcjqaeVyOx2aNai7yvIzOpw937dbhi5dNDSO0UUn8J2ZT5PIVjhSdeymo0fqD//8RD/df6AejLLXjqOdV7t6QL6ly9ddubhCGx58SysNnjGd7nPr3HmDOr1fhs+tHTV7NZFSJEnpoBE9dd8rn5kaw+Aeid0HxO5IcMMWKopzVFGcY3YYlnT+AYN19v4D5XE59eJHW0N+nMPh0EvnzlBDg+RzJ2YzTyAWyrpFvgR7cI/YNguxQm1awIq6Zfr03lfbzQ4jZCme0I/Lty0drX998r3G9sltdbvRqwgqS3L0r0++1+KRHSfcrWRAoTVnlYctlkW/25HqdWntrP5xf954uPnoUdr07leaPZjSJwjd7MHdLfuZ+el+AzS6NLfzO0apZ5c03bZ0dMyfJ2DZhN469Z5XNclfuvOfZ0/X97vqwloFObEsT8+8/22sQuxUIq/o87gcqquP31/YxcBybZHqnp1idgjoAJXagQTgCdKIoSNFXZoGBT53dPUsgWRy/4njtWJib62ZFflswNtjfFJQlp+hixYO0U1Hj4zp8wB2c/nBw8wOIWbSfW5NLM8L2pTJSHeurNIffzJOS8eXxvR5jPDX1RN17KTeOm8ejQnNEpjhecgo610QyU7zaNGInkr3hT/Xa2zfrpKaVkEivk6dUS6v26n1+9mrRn08HDe5rypLupgdRofczvCPUQsri7Rp7ZTmpHqa1x12ib9blozSnSurmn/OTffql4cNDzuWeMtLbz1p5fcrqlSUk6rfrRjT7mOyUpr2S8OZGIgkxZEZSCK/X1Glv7z+hU6dQamXRORysrg0Um1euSCTEUaUdNGIKE8e8rNif9X/qLG9Yv4cQKSyUzueffP0GdX691fbteK3Lxn6vEU5qZoxMF9PvPO1odtNJmled1xmCBphcI9slhGbbP1+AzWvokfMVy7F2/kHDFZZfobmDaW8SbydOqOfTp5WznjXhvYfVhjx+9Y3ipWTUtOKqAlleXrzgtnyuZ1yOx1hlY6Ld4Wo25eN1g+76lTStXUJ0YnleXr2rGmSpPteDl6m44FVE/S75z/W8ZPj0w8h1eNSXf3euDyXFQVbbTekKEtvfr7NhGggMYMbJqEcqTkmlufpsoOGKTOl/QRDZ8kHWNeFC4aoWyYlKgBYV59uGTpn/4H6xaEVQX9fnJumPlGezAIwn8vp0PDinLBXGVpdVopHJ04ta5N8ClWfvHRJ0gEG1v8e559VHmCd0yzjSxeQ3Lan8nzzj+sZPrc8Lqfl+6JU98/XwsqiiB7bp1uGzps/OG5lNO5YUdX5nRLQmpn9NG9Yocb16drmd/f+ZLwJESGAGdyATQwvztF/v90Zs+1fubhCT7z9lZbYYOlxrKV5XdpVWy+vO/KTsnF9uuqTrcZ3Ge9IWX6G/vnT6aq+8smYdDgH7CaR6x7a2cpJfTr8faMJ9YYBIB4ePGmC/v3V9qhXhLU0tV83/W7FGJXnd15zfkRJjl755HsdQlNaW5s5qECPv/2V2WEgySVrKZTV09tfDZ/icaksP0Pvf70jjhEhgAQ34mZCWVc9+/53GtUrNvXBslLc2rZnr6ZZuPN0NM47YLCKuqRqwfDYLIk8eGRPHWyjxlGx9H/Hj9NlD7+rM+dEXuPv3PmDdM9LnxoYVWisPisBADpDehtAospM8WhkL2NL/TgcDk0q7xbSfe85fpy+3VGjwuzw6hhbVXGXyGbS2901hw7X4PMeNTsMmGRoT0pwAcGQ4EbcXH/ECD302heaN6yH1t//uuHb/8fpU/XOlu2aUNZ2qUgiyE71dNrNPtoaZWgypChbv18Z3ZKrDJoPAaawwzWek6eVmR2Cbdjg7QQA2/C4nAmR3L7nuLG658VPdfb+A80OxRSRNEhF4uhXkKn7ThivgixKUwItsWdE3OSkeXXMuNKYbb9rhk8Ty1vv5Iu62H8AF47cdK82r6tWqrdtwwMAyalHdoq++GGP2WE0K8lN0wsfbjU7DFPlpnvb3Mas5eBYlYJ46Jlk40Ukl7QEPC+o6tNVVUHq38aLL4oyhoARRsZoVXy8McyDkdgzI6HlZfj00EkT9MSaKWaHEjclXdNoNBgHeRm8xoms0cB042WLhkpqakhihr+fPtWU593XPceN1eKRPeM624pazoilLmk/Xqjg/MzeJpbl6dx5g3RnlKu3ACu64agR6tstXTceNdLsUBLGwSN7akxprk6fZc7YDjBLoO52rwgb7XaEYTuixQxuJLxhPXPMDgEJaL+h3XXHcx+bHQYsbnSvLjpsTIlmD+6uLkFm7cZDisclj8uhunpzR43xmm1FohHtGdkrV0+887Vh2+ua4dNvl49RitsppzOxPnnJdnHI4XBoxcTeZocBxMTgHtnatHaq2WEklBSPS//3k3Fmh2EbSXZISWjpPrfeuXCOPC7jxz18TBAtEtwAABjsydOn6un3v9Uho5oat5qV3IY1jShJjGWldrNiYm9l+FxK8bi07t7Qe4FUdvB+TekXWmM3AAACKMsAO6McKqyKEiWAwbpnpUiS5gzpbnIkAOJpv6GFkppquZbmpevosb3kc9trAFgW50a1rgSb9RqqCv/yTsSX1+3U0eNK1adbekj3f2LNZJ03fxAzexGxqxZXSJKuO6LS5EgAxFMs+kCV58d3jAaEgos1sBJmcAMGe+TUSXpny3aN7ZNrdigA4mh4cY6eWjdVBf6LXHY0qEeWbjlmlApzOv8bvG6nBvfIjuh5bls6Suc+8JZ+cejwiB4PxENZfqbK8jPNDgM2dtDInjpgeA95XMwpApLJ8OIcXbpoqNbf/4Zh22zZ9wGwik1rpujoW/+pz7/fbXYoADO4AaPlpHk1rm9XObicCZOUF5CQMUuvrulK8dhr1va+Zgwq6DRxPa5PV71x/qyIlyhOG1CgZ8+apjG9uRAIJAKXk1OK9pDcBqynzD8benK/vJg9x+FjSlr9TB3qHxVmGz/DHebo0y1DJ1b3NTsMQBIzuAEg4Vy6aKjyMnw6fEyx2aEgCn84dqze/XKbLvjz25KslUByOR22K78CwFgup0NLx5fq+121Ku2aZnY4ABCyR06ZpF119cpK8cT0ecb0ztU/P9yqgixfTJ/HLm5fNlpPvP2Vlk0oNTuUkPXvzsShznDxBlZBghsAEkxehk+XLhpqdhiI0ri+XTWub1d9uW2Pnv/vVs0bVmh2SIiC1+1U7d4Gs8MADHX+AYPNDgHAPjJinLRNBG6XU1lxWF1x3RGV2vjsR21mcyer6v75qu6fb3YYYclK8eiVc2fK57bORBMAwfEtBQAkraPH9pIknTFngMmRtG/93IF6cNUES5c+YeIGAADWMLQoy+wQkpZ3nyRofmaKzpgzQMW59l7lkqgzdLtlhDazPjfdq3RfZHNDT5zaVL7jwMqiiB4P+/nJFEq2mIUZ3ACApHXhgsE6eVqZ8m3cGNJq6D7QJNbLnoH25KR59P2uOo3s1cXsUACYwMGROO5WTy/Xu1u2aUJZ7Gp6w3hj++Tq9Fn9YtpQevW0cs0YWKABlDpJGgeP7KnRpV005edPmh1K0iHBDUtxOhmQAYgfh8NBchsx0T07RZcfNDTiGT9ApB5cNUH/99KnWjaht9mhAEBSWDOzn9khIAIOh0MnTSuP6XM4nQ4NKeq4eTuiM7hHlt76YptmDLRO+ZteXdPNDiEpcdYFS6nomaOq3rnq2cXey7iAlkb1yjU7BIQp0ZZiJtrfYxeHjqbmZiT4vEanV9d0rZtt3bJLiWBKv276+aPvxa8mq4MJIACCY/eAZLFsYm/99rmPtKiyZ6vbf7t8jP76+hYtpAxM0iPBDUtxOR265/hxZocBGOLpM6r1wTc7NLGc5YoA0J4u6d52f8d5O6xoSFG2Hj11srqzAghoFxcrARipKCdVb184R559GsTmZfi0ZHypOUHBUkhwA0CMFOem2b6pDADE2oiSHJ02o59K89hfwj76U08VCeL4yX100+b/6px5A5WV+mN6IJNeEgAsZt/kNtASCW4AAACYxuFw6JQZsa2B2RINQAEkslmDC/S75z9WbgerY1pav99AnTy9XBn+nhHPr58uSfLGqwQPAFtjsQasggQ3AAAAkkZ5QabWzuyn/Cyf2aEAgOEmlXfTn0+aqJKuoa+KyWjRELl7NqV3rOj02f11yE3PaSmlGAAgKBLcAICkUsiJG5D0Tp4evxnjABBvQ3tmmx0CDDamd67evnC20rykcAAgGNYdAQCSwm+Xj9HqaWWaP6yH2aEghpyOH9sSZqRwEggAABJDy+T2rw6vVFaKW79fUWViRABgHZz5AQBiriDL/FnTU/p105R+3cwOw7auO6JSJ931L7PD6JTT6dB1R1RqV2298jPN/9wBAAAYbX5FD80bVihHiwv7gN049OPnt7GRat6IDjO4AQAxd8EBgzVjYL42LhttdiiI0DwbzXyfN6yHDhlVbHYYAAAAMUNyG5ZAYjqoCw4YLEm6/KChJkeSPJjBDQCIufysFN2yhOQ2AAAAko/H9WMyOjfda2Ik8Uf6E8loyfhSHTyyp9J9pF3jhVcaAIB9dEmyEw8AAADEjtvl1BNrJquuvjH5El7M8EWSSrrvuskoUQIAgN8NR47Q9AH5Wjerv9mhIMkU5aSaHQIAAIihsvxMDSzMMjsMAEhIJLhhimE9c8wOAQDamDu0ULcuHc0M7nbMHlwgSVo5qbfJkSSe3xwzSlP7d9N9J4w3OxQAAAAAsBXmy8MUKyf1lsfl0OR+3cwOBQAQohuOHKlvd9QoPyvF7FASTll+hjYuG2N2GIAkVpMDAH6U4mFeJADrY08FU/jcLh03ua8GdGeJFgDYhdPpILmNmPO6GJ4CAGC2Xx42XH27peuqQyrMDgUAOsUMbgAAAFhGSdc0HT6mWFkpHjmdDrPDAQAgKS0YXqQFw4vMDgMAQkKCGwAAAJZy6aJhZocAAAAAwCZYAwoASWRq/26t/gsAAAAAAGBnzOAGgCRy7eGVeuytrzRrcEFU2ynMoQ4zAAAAgivOTTM7BABAEiHBDQBJJCvFo4NH9oz48XetrNJn3+/W4B7ZBkYFAADaU0KiEDa0YmJvfbO9RjMGRjepAgCAUJDgBgCEbHxZntkhIALXHTFCP/n9y7rggMFmhwIACNFdx1bpnx9u1YGVNHmD/aR4XDqfcQeQ+Bw0BIc1kOAGACDBzRnSXe9dNEc+t8vsUAAAIRrfN0/j+3JhGQBgXQdWFuk3m/+rKf3o8QRzkeAGACAJkNw2l9vpUK3ZQQAAAAAGyvC59dS6qXIwkxsmc5odAAAAQKL77fIxysvw6fojRpgdCgAAAGAYktuwAmZwAwAAxNjo0ly9ePZ0TgAAAAAAtS7f3WheGEgQJLgBAADigOQ2rC4rxa1te/ZqSn/qaAIAgNhyOx2a3K+btu2uU++u6WaHA5sjwQ0AAABAz62frm931KgXJ5kAACDGHA6HfrtsdPP/A9EgwQ0AAABA6T630n2cHgAAgPggsQ2j0GQSACKQ6nGZHQIAAAAAAEDSY4oGAETgxKll+udHW3VgZZHZoQAAAACAJdE8EEA8kOAGgAhkp3n0pxMnmB0GAAAAAABAUqNECQAAiIrP/eNwIivVY2IkAAAAAIBkwwxuAAAQFY/LqT+fNFF7GxqUQYM6AAAAAEAccRYKAACiNrRnttkhAAAAAACSECVKAAAAAAAAAAC2RIIbAAAAAAAAAGBLJLgBAAAAAAAAALZEghsAAAAAAAAAYEskuAEAAAAAAAAAtkSCGwAAAAAAAABgSyS4AQAAAAAAAAC2RIIbAAAAAAAAAGBLJLgBAAAAAAAAALZEghsAAAAAAAAAYEskuAEAAAAAAAAAtkSCGwAAAAAAAABgSyS4AQAAAAAAAAC2RIIbAAAAAAAAAGBLJLgBAAAAAABguMZGsyMAkAxIcAMAAAAAAAAAbIkENwAAAAAAAADAlkhwAwAAAAAAAABsiQQ3AAAAAAAAAMCWSHADAAAAAAAAAGyJBDcAAAAAAAAAwJZIcAMAAAAAAAAAbIkENwAAAAAAAADAlkhwAwAAAAAAAABsiQQ3AAAAAAAAAMCWSHADAAAAAAAAAGyJBDcAAAAAAAAAwJZIcAMAAAAAAAAAbMkWCe6PPvpIK1asUO/evZWamqq+ffvqvPPOU21trdmhAQAAAAAAAABM4jY7gFC8++67amho0E033aSysjK9+eabOvbYY7Vz505deeWVZocHAAAAAAAAADCBLRLcc+bM0Zw5c5p/7tOnj9577z3dcMMNJLgBAAAAAAAAIEnZIsEdzA8//KDc3NwO71NTU6Oamprmn7dt2xbrsAAAAAAAAAAAcWKLGtz7ev/99/WrX/1Kxx9/fIf3u/TSS5Wdnd38r7i4OE4RAgAAAAAAAABizdQE91lnnSWHw9Hhv3fffbfVYz7//HPNmTNHixcv1rHHHtvh9tevX68ffvih+d+nn34ayz8HAAAAAAAAABBHppYoWbt2rZYuXdrhffr06dP8/1988YWqq6s1fvx43XzzzZ1u3+fzyefzRRsmAAAAAAAAQjSpPE9P/+dbHTyyp9mhAEgCqH0shgAACuJJREFUjsbGxkazgwjF559/rurqao0cOVK///3v5XK5wt7Gtm3blJ2drR9++EFZWVkxiBIAAAAAACC5NTQ0amftXmWmeMwOBYCNhZrLtUWTyc8//1xTp05Vr169dOWVV+qbb75p/l337t1NjAwAAAAAAAAtOZ0OktsA4sYWCe7HH39c77//vt5//3317Nl6eYtNJqADAAAAAAAAAAxmapPJUC1dulSNjY1B/wEAAAAAAAAAkpMtEtwAAAAAAAAAAOyLBDcAAAAAAAAAwJZIcAMAAAAAAAAAbIkENwAAAAAAAADAlkhwAwAAAAAAAABsiQQ3AAAAAAAAAMCWSHADAAAAAAAAAGyJBDcAAAAAAAAAwJZIcAMAAAAAAAAAbIkENwAAAAAAAADAlkhwAwAAAAAAAABsiQQ3AAAAAAAAAMCWSHADAAAAAAAAAGyJBDcAAAAAAAAAwJZIcAMAAAAAAAAAbIkENwAAAAAAAADAlkhwAwAAAAAAAABsiQQ3AAAAAAAAAMCWSHADAAAAAAAAAGyJBDcAAAAAAAAAwJZIcAMAAAAAAAAAbIkENwAAAAAAAADAltxmBxBPjY2NkqRt27aZHAkAAAAAAAAAoD2BHG4gp9uepEpwb9++XZJUXFxsciQAAAAAAAAAgM5s375d2dnZ7f7e0dhZCjyBNDQ06IsvvlBmZqYcDofZ4cTVtm3bVFxcrE8//VRZWVlmhwPAxtifADAC+xIARmF/AsAI7EsA62lsbNT27dvVo0cPOZ3tV9pOqhncTqdTPXv2NDsMU2VlZbGjBmAI9icAjMC+BIBR2J8AMAL7EsBaOpq5HUCTSQAAAAAAAACALZHgBgAAAAAAAADYEgnuJOHz+XTeeefJ5/OZHQoAm2N/AsAI7EsAGIX9CQAjsC8B7CupmkwCAAAAAAAAABIHM7gBAAAAAAAAALZEghsAAAAAAAAAYEskuAEAAAAAAAAAtkSCGwAAAAAAAABgSyS4k8T111+v0tJSpaSkqKqqSv/85z/NDgmAzWzevFnz589Xjx495HA49MADD5gdEgAbuvTSSzV69GhlZmYqPz9fCxcu1HvvvWd2WABs5oYbbtCwYcOUlZWlrKwsjRs3Tg8//LDZYQGwucsuu0wOh0Onnnqq2aEACAMJ7iRwzz33aM2aNTrvvPP0yiuvqKKiQrNnz9bXX39tdmgAbGTnzp2qqKjQ9ddfb3YoAGzsqaee0qpVq/T888/r8ccfV11dnWbNmqWdO3eaHRoAG+nZs6cuu+wyvfzyy3rppZc0bdo0LViwQG+99ZbZoQGwqRdffFE33XSThg0bZnYoAMLkaGxsbDQ7CMRWVVWVRo8ereuuu06S1NDQoOLiYp188sk666yzTI4OgB05HA796U9/0sKFC80OBYDNffPNN8rPz9dTTz2lyZMnmx0OABvLzc3Vz3/+c61YscLsUADYzI4dOzRixAj9+te/1kUXXaThw4frmmuuMTssACFiBneCq62t1csvv6wZM2Y03+Z0OjVjxgw999xzJkYGAAAg/fDDD5KaElMAEIn6+nrdfffd2rlzp8aNG2d2OABsaNWqVdp///1b5U4A2Ifb7AAQW99++63q6+tVUFDQ6vaCggK9++67JkUFAADQtKrs1FNP1YQJEzRkyBCzwwFgM2+88YbGjRunPXv2KCMjQ3/60580aNAgs8MCYDN33323XnnlFb344otmhwIgQiS4AQAAYIpVq1bpzTff1DPPPGN2KABsqH///nr11Vf1ww8/6N5779WSJUv01FNPkeQGELJPP/1Up5xyih5//HGlpKSYHQ6ACJHgTnB5eXlyuVz66quvWt3+1VdfqXv37iZFBQAAkt1JJ52kv/zlL9q8ebN69uxpdjgAbMjr9aqsrEySNHLkSL344ov65S9/qZtuusnkyADYxcsvv6yvv/5aI0aMaL6tvr5emzdv1nXXXaeamhq5XC4TIwQQCmpwJziv16uRI0dq06ZNzbc1NDRo06ZN1KcDAABx19jYqJNOOkl/+tOf9Pe//129e/c2OyQACaKhoUE1NTVmhwHARqZPn6433nhDr776avO/UaNG6cgjj9Srr75KchuwCWZwJ4E1a9ZoyZIlGjVqlMaMGaNrrrlGO3fu1LJly8wODYCN7NixQ++//37zzx9++KFeffVV5ebmqqSkxMTIANjJqlWrdNddd+nBBx9UZmamvvzyS0lSdna2UlNTTY4OgF2sX79ec+fOVUlJibZv36677rpLTz75pB599FGzQwNgI5mZmW36gKSnp6tr1670BwFshAR3Ejj00EP1zTffaMOGDfryyy81fPhwPfLII20aTwJAR1566SVVV1c3/7xmzRpJ0pIlS7Rx40aTogJgNzfccIMkaerUqa1uv/3227V06dL4BwTAlr7++msdc8wx2rJli7KzszVs2DA9+uijmjlzptmhAQCAOHM0NjY2mh0EAAAAAAAAAADhogY3AAAAAAAAAMCWSHADAAAAAAAAAGyJBDcAAAAAAAAAwJZIcAMAAAAAAAAAbIkENwAAAAAAAADAlkhwAwAAAAAAAABsiQQ3AAAAAAAAAMCWSHADAAAAAAAAAMKyefNmzZ8/Xz169JDD4dADDzwQ9jYaGxt15ZVXql+/fvL5fCoqKtLFF18c1jbcYT8rAAAAAAAAACCp7dy5UxUVFVq+fLkWLVoU0TZOOeUUPfbYY7ryyis1dOhQbd26VVu3bg1rG47GxsbGiJ4dAAAAAAAAAJD0HA6H/vSnP2nhwoXNt9XU1Ojss8/WH/7wB33//fcaMmSILr/8ck2dOlWS9M4772jYsGF688031b9//4ifmxIlAAAAAAAAAABDnXTSSXruued099136/XXX9fixYs1Z84c/ec//5Ek/fnPf1afPn30l7/8Rb1791ZpaalWrlwZ9gxuEtwAAAAAAAAAAMN88sknuv322/XHP/5RkyZNUt++fXX66adr4sSJuv322yVJ//3vf/Xxxx/rj3/8o+644w5t3LhRL7/8sg4++OCwnosa3AAAAAAAAAAAw7zxxhuqr69Xv379Wt1eU1Ojrl27SpIaGhpUU1OjO+64o/l+t956q0aOHKn33nsv5LIlJLgBAAAAAAAAAIbZsWOHXC6XXn75Zblcrla/y8jIkCQVFhbK7Xa3SoIPHDhQUtMMcBLcAAAAAAAAAIC4q6ysVH19vb7++mtNmjQp6H0mTJigvXv36oMPPlDfvn0lSf/+978lSb169Qr5uRyNjY2N0YcMAAAAAAAAAEgWO3bs0Pvvvy+pKaF99dVXq7q6Wrm5uSopKdFRRx2lZ599VldddZUqKyv1zTffaNOmTRo2bJj2339/NTQ0aPTo0crIyNA111yjhoYGrVq1SllZWXrsscdCjoMENwAAAAAAAAAgLE8++aSqq6vb3L5kyRJt3LhRdXV1uuiii3THHXfo888/V15ensaOHasLLrhAQ4cOlSR98cUXOvnkk/XYY48pPT1dc+fO1VVXXaXc3NyQ4yDBDQAAAAAAAACwJafZAQAAAAAAAAAAEAkS3AAAAAAAAAAAWyLBDQAAAAAAAACwJRLcAAAAAAAAAABbIsENAAAAAAAAALAlEtwAAAAAAAAAAFsiwQ0AAAAAAAAAsCUS3AAAAAAAAAAAWyLBDQAAAAAAAACwJRLcAAAAAAAAAABbIsENAAAAAAAAALAlEtwAAAAAAAAAAFv6/xkc7eBziGnIAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plot_df = pd.DataFrame({'pred':ypred.flatten(), 'actual':ytest})\n", + "\n", + "# Creating plot for actual vs Predicted values\n", + "plt.figure(figsize=(18,8))\n", + "\n", + "plt.plot(plot_df['pred'].tolist(), label='Actual Values')\n", + "plt.plot(plot_df['actual'].tolist(), label='Predicted Values')\n", + "\n", + "plt.ylabel('Actual values vs Predicted Values')\n", + "plt.title('Nurse Stress Prediction Model', fontsize=18)\n", + "\n", + "plt.legend()\n", + "plt.savefig('actual_vs_prediction.png', bbox_inches='tight')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Nurse Stress Prediction Model Completed with best fits for XG Boost and DNN Model." + ], + "metadata": { + "id": "BFm5WvJkcHXa" + } + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "Qx8Q0U4bI6_G", + "28K6YAsX00hu", + "aPcZEeM51DQI", + "tvCxTsOykJNN" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Nurse Stress Prediction/README.md b/Nurse Stress Prediction/README.md new file mode 100644 index 000000000..2836544a6 --- /dev/null +++ b/Nurse Stress Prediction/README.md @@ -0,0 +1,92 @@ +

Nurse Stress Prediction

+ +**GOAL** + +The aim of this project is to predict the stress on nurse based on the given dataset. + +**DATASET** + +https://www.kaggle.com/datasets/priyankraval/nurse-stress-prediction-wearable-sensors + +**DESCRIPTION** + +- To analyze the dataset of Nurse stress prediction wearable sensors and build and train the model by understanding the different features and connections between the features. + +- There are 9 different types of features in the datasets which are explained in the kaggle or you can read about them in [README](./Dataset/README.md) of the Dataset folder. + + +**Visualization and EDA of different attributes** + +heatmap + +graph + +graph + +graph + +graph + +graph + +graph + +graph + +graph + +graph + + +**MODELS USED** + +| Model | MSE_train | R2_train | MSE_val | R2_val | MSE_test | R2_test | +|---------------------------|-----------|----------|----------|----------------------|----------|----------------------| +| XG Boost Regression | 0.204959 | 0.670992 | 0.359257 | 4.233017e-01 | 0.355257 | 4.293855e-01 | +| Deep NN | 0.305992 | 0.508809 | 0.438734 | 2.957209e-01 | 0.434882 | 3.014910e-01 | +| XG Boost Classifier | 0.244597 | 0.607362 | 0.491024 | 2.117828e-01 | 0.484412 | 2.219365e-01 | +| LGBM Classifier | 0.323493 | 0.480715 | 0.490993 | 2.118316e-01 | 0.485734 | 2.198123e-01 | +| Linear Regression | 0.549359 | 0.118145 | 0.551217 | 1.151569e-01 | 0.550664 | 1.155217e-01 | +| SGD Regression | 0.549366 | 0.118134 | 0.551315 | 1.150005e-01 | 0.550770 | 1.153516e-01 | +| Elastic Net Regression | 0.622959 | 0.000000 | 0.622955 | -2.460906e-07 | 0.622586 | -9.965216e-09 | +| Decision Tree Regression | 0.000000 | 1.000000 | 0.747171 | -1.993990e-01 | 0.741888 | -1.916233e-01 | + + +**WHAT I HAD DONE** + +* Load the dataset which contains 11509051 entries in it and having 9 columns in it. +* Checked for missing values and cleaned the data accordingly. +* Analyzed the data, found insights and visualized them accordingly. +* Plotting heatmap using correlation and checking the relation between different features. +* Performing PCA to reduce the number of features and normalize the data to remove the effect of outliers. +* Found detailed insights of different columns with target variable using plotting libraries. +* Train the datasets by different models and saves their accuracies into a dataframe. +* Visualize the accuracy and finalize the best fitted model. + + +**LIBRARIES NEEDED** + +1. Pandas +2. Matplotlib +3. Sklearn +4. NumPy +5. XGBoost +6. Tensorflow +7. Keras +8. Sci-py +9. Seaborn +10. LightGBM + +**CONCLUSION** + +- XG Boost Regressor and DNN models show promising performance with lower MSE and higher R2 values. +- Decision Tree Regression achieved perfect R2 on the training set but performed poorly on the test set, indicating overfitting. +- Among the classifier models, XG Boost Classifier and LGBM Classifier showcased similar performances in terms of MSE and R-squared on both validation and test datasets. These models present viable options for classification tasks, with comparable accuracy. + + +**YOUR NAME** + +*Avdhesh Varshney* + +[![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/avdhesh-varshney-5314a4233/) [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/Avdhesh-Varshney) + diff --git a/Nurse Stress Prediction/requirements.txt b/Nurse Stress Prediction/requirements.txt new file mode 100644 index 000000000..ec632f8bf --- /dev/null +++ b/Nurse Stress Prediction/requirements.txt @@ -0,0 +1,10 @@ +numpy==1.19.2 +pandas==1.4.3 +matplotlib==3.7.1 +scikit-learn~=1.0.2 +scipy==1.5.0 +seaborn==0.10.1 +xgboost~=1.5.2 +tensorflow==2.4.1 +keras==2.4.0 +lightgbm=4.2.0