diff --git a/asthmadetectionusingdeeplearning.ipynb b/asthmadetectionusingdeeplearning.ipynb
new file mode 100644
index 000000000..ef819085b
--- /dev/null
+++ b/asthmadetectionusingdeeplearning.ipynb
@@ -0,0 +1,1050 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "authorship_tag": "ABX9TyNfKS+pLwcGI2Smrpapqizb",
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# **ASTHMA DETECTION USING DEEP LEARNING**"
+ ],
+ "metadata": {
+ "id": "jCx8TrMKs5Ue"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## **Exploratory Data Analysis**"
+ ],
+ "metadata": {
+ "id": "BYkzmdqks_ob"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Data Loading"
+ ],
+ "metadata": {
+ "id": "EGEkJghBrRBg"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "# Load the dataset\n",
+ "df = pd.read_csv('asthma_disease_data.csv')\n",
+ "\n",
+ "# Display the first few rows of the dataset\n",
+ "print(df.head())\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "oZqCJlcQrXEE",
+ "outputId": "2fbda9cd-b365-46ac-ebca-1840c415271b"
+ },
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " PatientID Age Gender Ethnicity EducationLevel BMI Smoking \\\n",
+ "0 5034 63 0 1 0 15.848744 0 \n",
+ "1 5035 26 1 2 2 22.757042 0 \n",
+ "2 5036 57 0 2 1 18.395396 0 \n",
+ "3 5037 40 1 2 1 38.515278 0 \n",
+ "4 5038 61 0 0 3 19.283802 0 \n",
+ "\n",
+ " PhysicalActivity DietQuality SleepQuality ... LungFunctionFEV1 \\\n",
+ "0 0.894448 5.488696 8.701003 ... 1.369051 \n",
+ "1 5.897329 6.341014 5.153966 ... 2.197767 \n",
+ "2 6.739367 9.196237 6.840647 ... 1.698011 \n",
+ "3 1.404503 5.826532 4.253036 ... 3.032037 \n",
+ "4 4.604493 3.127048 9.625799 ... 3.470589 \n",
+ "\n",
+ " LungFunctionFVC Wheezing ShortnessOfBreath ChestTightness Coughing \\\n",
+ "0 4.941206 0 0 1 0 \n",
+ "1 1.702393 1 0 0 1 \n",
+ "2 5.022553 1 1 1 0 \n",
+ "3 2.300159 1 0 1 1 \n",
+ "4 3.067944 1 1 1 0 \n",
+ "\n",
+ " NighttimeSymptoms ExerciseInduced Diagnosis DoctorInCharge \n",
+ "0 0 1 0 Dr_Confid \n",
+ "1 1 1 0 Dr_Confid \n",
+ "2 1 1 0 Dr_Confid \n",
+ "3 1 0 0 Dr_Confid \n",
+ "4 0 1 0 Dr_Confid \n",
+ "\n",
+ "[5 rows x 29 columns]\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [],
+ "metadata": {
+ "id": "2_9fn4qquSmq"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "# Basic statistics of the dataset\n",
+ "print(\"\\nBasic statistics of the dataset:\")\n",
+ "print(df.describe())\n",
+ "\n",
+ "# Checking for missing values\n",
+ "print(\"\\nMissing values in each column:\")\n",
+ "print(df.isnull().sum())\n",
+ "\n",
+ "# Exploratory Data Analysis (EDA)\n",
+ "# Plotting the distribution of target variable\n",
+ "plt.figure(figsize=(8, 6))\n",
+ "sns.countplot(df['Diagnosis'])\n",
+ "plt.title('Distribution of Target Variable')\n",
+ "plt.show()\n",
+ "\n",
+ "# Correlation heatmap\n",
+ "plt.figure(figsize=(12, 10))\n",
+ "numeric_cols = df.select_dtypes(include=[np.number]).columns\n",
+ "sns.heatmap(df[numeric_cols].corr(), annot=True, fmt='.2f', cmap='coolwarm')\n",
+ "plt.title('Correlation Heatmap')\n",
+ "plt.show()\n",
+ "\n",
+ "# Histograms for each feature\n",
+ "df[numeric_cols].hist(figsize=(20, 20), bins=20, edgecolor='black')\n",
+ "plt.suptitle('Histograms of All Features')\n",
+ "plt.show()\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "A-IeTOFfuRqn",
+ "outputId": "5c8f25c7-cd8f-4f21-f693-c3eac6684e16"
+ },
+ "execution_count": 26,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "Basic statistics of the dataset:\n",
+ " PatientID Age Gender Ethnicity EducationLevel \\\n",
+ "count 2392.000000 2392.000000 2392.000000 2392.000000 2392.000000 \n",
+ "mean 6229.500000 42.137960 0.493311 0.669732 1.307274 \n",
+ "std 690.655244 21.606655 0.500060 0.986120 0.898242 \n",
+ "min 5034.000000 5.000000 0.000000 0.000000 0.000000 \n",
+ "25% 5631.750000 23.000000 0.000000 0.000000 1.000000 \n",
+ "50% 6229.500000 42.000000 0.000000 0.000000 1.000000 \n",
+ "75% 6827.250000 61.000000 1.000000 1.000000 2.000000 \n",
+ "max 7425.000000 79.000000 1.000000 3.000000 3.000000 \n",
+ "\n",
+ " BMI Smoking PhysicalActivity DietQuality SleepQuality \\\n",
+ "count 2392.000000 2392.000000 2392.000000 2392.000000 2392.000000 \n",
+ "mean 27.244877 0.141722 5.051786 5.022867 7.019012 \n",
+ "std 7.201628 0.348838 2.903574 2.909980 1.732475 \n",
+ "min 15.031803 0.000000 0.001740 0.003031 4.001437 \n",
+ "25% 20.968313 0.000000 2.578333 2.432043 5.498500 \n",
+ "50% 27.052202 0.000000 5.016881 5.115383 6.975839 \n",
+ "75% 33.555903 0.000000 7.540234 7.544216 8.526950 \n",
+ "max 39.985611 1.000000 9.995809 9.999904 9.996235 \n",
+ "\n",
+ " ... GastroesophagealReflux LungFunctionFEV1 LungFunctionFVC \\\n",
+ "count ... 2392.000000 2392.000000 2392.000000 \n",
+ "mean ... 0.158027 2.548564 3.741270 \n",
+ "std ... 0.364842 0.861809 1.303689 \n",
+ "min ... 0.000000 1.000459 1.500045 \n",
+ "25% ... 0.000000 1.824113 2.607489 \n",
+ "50% ... 0.000000 2.553244 3.734982 \n",
+ "75% ... 0.000000 3.292897 4.864121 \n",
+ "max ... 1.000000 3.999719 5.999421 \n",
+ "\n",
+ " Wheezing ShortnessOfBreath ChestTightness Coughing \\\n",
+ "count 2392.000000 2392.000000 2392.000000 2392.000000 \n",
+ "mean 0.596154 0.500418 0.503344 0.503344 \n",
+ "std 0.490770 0.500104 0.500093 0.500093 \n",
+ "min 0.000000 0.000000 0.000000 0.000000 \n",
+ "25% 0.000000 0.000000 0.000000 0.000000 \n",
+ "50% 1.000000 1.000000 1.000000 1.000000 \n",
+ "75% 1.000000 1.000000 1.000000 1.000000 \n",
+ "max 1.000000 1.000000 1.000000 1.000000 \n",
+ "\n",
+ " NighttimeSymptoms ExerciseInduced Diagnosis \n",
+ "count 2392.000000 2392.000000 2392.000000 \n",
+ "mean 0.602425 0.604933 0.051839 \n",
+ "std 0.489499 0.488967 0.221749 \n",
+ "min 0.000000 0.000000 0.000000 \n",
+ "25% 0.000000 0.000000 0.000000 \n",
+ "50% 1.000000 1.000000 0.000000 \n",
+ "75% 1.000000 1.000000 0.000000 \n",
+ "max 1.000000 1.000000 1.000000 \n",
+ "\n",
+ "[8 rows x 28 columns]\n",
+ "\n",
+ "Missing values in each column:\n",
+ "PatientID 0\n",
+ "Age 0\n",
+ "Gender 0\n",
+ "Ethnicity 0\n",
+ "EducationLevel 0\n",
+ "BMI 0\n",
+ "Smoking 0\n",
+ "PhysicalActivity 0\n",
+ "DietQuality 0\n",
+ "SleepQuality 0\n",
+ "PollutionExposure 0\n",
+ "PollenExposure 0\n",
+ "DustExposure 0\n",
+ "PetAllergy 0\n",
+ "FamilyHistoryAsthma 0\n",
+ "HistoryOfAllergies 0\n",
+ "Eczema 0\n",
+ "HayFever 0\n",
+ "GastroesophagealReflux 0\n",
+ "LungFunctionFEV1 0\n",
+ "LungFunctionFVC 0\n",
+ "Wheezing 0\n",
+ "ShortnessOfBreath 0\n",
+ "ChestTightness 0\n",
+ "Coughing 0\n",
+ "NighttimeSymptoms 0\n",
+ "ExerciseInduced 0\n",
+ "Diagnosis 0\n",
+ "DoctorInCharge 0\n",
+ "dtype: int64\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "