forked from brucechou1983/CheXNet-Keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_config.ini
80 lines (61 loc) · 2.31 KB
/
sample_config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
[DEFAULT]
; working directory, one working directory can only have one running job at a time
output_dir=./experiments/1
; all images should be placed under this dir
image_source_dir=./data/images/
; base model name
; one of: VGG16, VGG19, DenseNet121, ResNet50, InceptionV3, InceptionResNetV2,
; NASNetMobile, NASNetLarge
base_model_name=DenseNet121
; class names, you should not modify this
class_names=Atelectasis,Cardiomegaly,Effusion,Infiltration,Mass,Nodule,Pneumonia,Pneumothorax,Consolidation,Edema,Emphysema,Fibrosis,Pleural_Thickening,Hernia
[TRAIN]
; use base model weights or not. If true, imagenet pretrained weights will be used.
use_base_model_weights=true
; if true, load trained model weights saved in output_dir
; this is typically used for resuming your previous training tasks
; so the use_split_dataset will be automatically set to false
; also, make sure you use the reasonable initial_learning_rate
use_trained_model_weights=false
; if true, use best weights, else use last weights
use_best_weights=false
; note that the best weighting will be saved as best_weights.h5
output_weights_name=weights.h5
; basic training parameters
epochs=100
batch_size=32
; learning rate options
initial_learning_rate=0.001
; worker number of the image generators
generator_workers=8
; target width/height of the input image (resized)
image_dimension=224
; steps per epoch for training
; auto or int
; if auto is set, (total samples / batch_size / 10) is used by default.
train_steps=auto
; steps per epoch for validation
; auto or int
; if auto is set, (total samples / batch_size / 5) is used by default.
validation_steps=auto
; patience parameter used for ReduceLROnPlateau callback
; If val_loss doesn't decrease for x epochs, learning rate will be reduced by factor of 10.
patience_reduce_lr=1
; minimun learning rate
min_lr=1e-8
; this variable controlls the class_weight ratio between 0 and 1
; higher value means higher weighting of positive samples
positive_weights_multiply=1
; path of the folder that contains train.csv|dev.csv|test.csv
dataset_csv_dir=./data/default_split
; print model summary
show_model_summary=true
[TEST]
batch_size=32
test_steps=auto
test_generator_random_state=1
; if true, use best_weights.h5, else use weights.h5
use_best_weights=true
[CAM]
bbox_list_file=./data/BBox_List_2017.csv
use_best_weights=true