From e731dce159d67af230eed57264e160fd56fb3242 Mon Sep 17 00:00:00 2001 From: gmatteo Date: Wed, 6 Sep 2023 21:22:41 +0200 Subject: [PATCH] Refactoring --- abipy/ml/aseml.py | 361 ++++++++++++++++++++++++++--------------- abipy/scripts/abiml.py | 8 +- 2 files changed, 233 insertions(+), 136 deletions(-) diff --git a/abipy/ml/aseml.py b/abipy/ml/aseml.py index 613d485f4..eaef855fa 100644 --- a/abipy/ml/aseml.py +++ b/abipy/ml/aseml.py @@ -26,9 +26,9 @@ from multiprocessing import Pool from typing import Type, Any, Optional, Union from enum import IntEnum -from monty.string import marquee, list_strings # is_string, +from monty.string import marquee, list_strings from monty.functools import lazy_property -from monty.collections import AttrDict #, dict2namedtuple +from monty.collections import AttrDict from pymatgen.core import Structure as PmgStructure from pymatgen.io.ase import AseAtomsAdaptor from ase import units @@ -2264,136 +2264,6 @@ def run(self) -> None: # TODO: Post-process self._finalize() - -class MlAsePhonons(_MlBase): - """ - Compute phonons with ASE and ML potential. - """ - - def __init__(self, atoms: Atoms, supercell, kpts, asr, nqpath, - relax_mode, fmax, pressure, steps, optimizer, nn_name, - verbose, workdir, prefix=None): - """ - Args: - atoms: ASE atoms. - supercell: tuple with supercell dimension. - kpts: K-mesh for phonon-DOS - asr: Enforce acoustic sum-rule. - nqpath: Number of q-point along the q-path. - relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation. - fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces. - verbose: whether to print stdout. - optimizer: name of the ASE optimizer to use for relaxation. - nn_name: String defining the NN potential. See also CalcBuilder. - verbose: Verbosity level. - workdir: - prefix: - """ - super().__init__(workdir, prefix) - self.atoms = get_atoms(atoms) - self.supercell = supercell - self.kpts = kpts - self.asr = asr - self.nqpath = nqpath - self.relax_mode = relax_mode - RX_MODE.validate(self.relax_mode) - self.fmax = fmax - self.pressure = pressure - self.steps = steps - self.optimizer = optimizer - self.nn_name = nn_name - self.verbose = verbose - - def to_string(self, verbose=0): - """String representation with verbosity level `verbose`.""" - s = f"""\ - -{self.__class__.__name__} parameters: - - supercell = {self.supercell} - kpts = {self.kpts} - asr = {self.asr} - nqpath = {self.nqpath} - relax_mode = {self.relax_mode} - fmax = {self.fmax} - steps = {self.steps} - optimizer = {self.optimizer} - pressure = {self.pressure} - nn_name = {self.nn_name} - workdir = {self.workdir} - verbose = {self.verbose} - -=== ATOMS === - -{self.atoms} -""" - return s - - def run(self) -> None: - """Run AseMlPhonons.""" - #self.pickle_dump() - workdir = self.workdir - calculator = self.get_calculator() - atoms = self.atoms - - if self.relax != RX_MODE.no: - print(f"Relaxing atoms with relax mode: {self.relax_mode}.") - relax_kws = dict(calculator=calculator, - optimizer=self.optimizer, - relax_mode=self.relax_mode, - fmax=self.fmax, - pressure=self.pressure, - steps=self.steps, - traj_path=self.get_path("relax.traj", "ASE relax trajectory"), - verbose=self.verbose, - ) - - relax = relax_atoms(atoms, **relax_kws) - #self.write_traj("relax.traj", traj, info="") - - r0, r1 = AseResults.from_traj_inds(relax.traj, 0, -1) - df = dataframe_from_results_list(["initial_unrelaxed", "initial_relaxed"], [r0, r1]) - print(df, end=2*"\n") - - # Phonon calculator - from ase.phonons import Phonons - ph = Phonons(atoms, calculator, supercell=self.supercell, delta=0.05) - #ph.read_born_charges(name=, neutrality=True) - ph.run() - #print("Phonons Done") - - # Read forces and assemble the dynamical matrix - ph.read(acoustic=self.asr, born=False) - ph.clean() - - # Calculate phonon dispersion along a path in the Brillouin zone. - path = atoms.cell.bandpath(npoints=self.nqpath) - bs = ph.get_band_structure(path, born=False) - dos = ph.get_dos(kpts=self.kpts).sample_grid(npts=100, width=1e-3) - - # Plot the band structure and DOS - import matplotlib.pyplot as plt - plt.rc("figure", dpi=150) - fig = plt.figure(1, figsize=(7, 4)) - bs_ax = fig.add_axes([0.12, 0.07, 0.67, 0.85]) - emax = 0.035 - bs.plot(ax=bs_ax, emin=0.0, emax=emax) - dos_ax = fig.add_axes([0.8, 0.07, 0.17, 0.85]) - dos_ax.fill_between(dos.get_weights(), dos.get_energies(), y2=0, color="grey", edgecolor="black", lw=1) - dos_ax.set_ylim(0, emax) - dos_ax.set_yticks([]) - dos_ax.set_xticks([]) - dos_ax.set_xlabel("PH DOS", fontsize=14) - - #title = f"Phonon band structure and DOS of {atoms.symbols} with supercell: {self.supercell}", - title = f"Phonon band structure and DOS with supercell: {self.supercell}", - fig.suptitle(title, fontsize=8, y=1.02) - self.savefig("phonons.png", fig, info=title) - - self._finalize() - - - class MlCompareWithAbinitio(_MlNebBase): """ Compare ab-initio energies, forces and stresses with ML results. @@ -2717,3 +2587,230 @@ def traj_to_qepos(traj_filepath: str, pos_filepath: str) -> None: for j in range(nAtoms): posFile.write(str(posArray[i,j,0]) + ' ' + str(posArray[i,j,1]) + ' ' + str(posArray[i,j,2]) + '\n') + + +class MlAsePhonons(_MlBase): + """ + Compute phonons with ASE and ML potential. + """ + + def __init__(self, atoms: Atoms, supercell, kpts, asr, nqpath, + relax_mode, fmax, pressure, steps, optimizer, nn_name, + verbose, workdir, prefix=None): + """ + Args: + atoms: ASE atoms. + supercell: tuple with supercell dimension. + kpts: K-mesh for phonon-DOS + asr: Enforce acoustic sum-rule. + nqpath: Number of q-point along the q-path. + relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation. + fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces. + verbose: whether to print stdout. + optimizer: name of the ASE optimizer to use for relaxation. + nn_name: String defining the NN potential. See also CalcBuilder. + verbose: Verbosity level. + workdir: + prefix: + """ + super().__init__(workdir, prefix) + self.atoms = get_atoms(atoms) + self.supercell = supercell + self.kpts = kpts + self.asr = asr + self.nqpath = nqpath + self.relax_mode = relax_mode + RX_MODE.validate(self.relax_mode) + self.fmax = fmax + self.pressure = pressure + self.steps = steps + self.optimizer = optimizer + self.nn_name = nn_name + self.verbose = verbose + + def to_string(self, verbose=0): + """String representation with verbosity level `verbose`.""" + s = f"""\ + +{self.__class__.__name__} parameters: + + supercell = {self.supercell} + kpts = {self.kpts} + asr = {self.asr} + nqpath = {self.nqpath} + relax_mode = {self.relax_mode} + fmax = {self.fmax} + steps = {self.steps} + optimizer = {self.optimizer} + pressure = {self.pressure} + nn_name = {self.nn_name} + workdir = {self.workdir} + verbose = {self.verbose} + +=== ATOMS === + +{self.atoms} +""" + return s + + def run(self) -> None: + """Run AseMlPhonons.""" + #self.pickle_dump() + workdir = self.workdir + calculator = self.get_calculator() + self.atoms.calc = calculator + + if self.relax != RX_MODE.no: + print(f"Relaxing atoms with relax mode: {self.relax_mode}.") + relax_kws = dict(optimizer=self.optimizer, + relax_mode=self.relax_mode, + fmax=self.fmax, + pressure=self.pressure, + steps=self.steps, + traj_path=self.get_path("relax.traj", "ASE relax trajectory"), + verbose=self.verbose, + ) + + relax = relax_atoms(self.atoms, **relax_kws) + r0, r1 = AseResults.from_traj_inds(relax.traj, 0, -1) + df = dataframe_from_results_list(["initial_unrelaxed", "initial_relaxed"], [r0, r1]) + print(df, end=2*"\n") + + # Phonon calculator + from ase.phonons import Phonons + ph = Phonons(self.atoms, calculator, supercell=self.supercell, delta=0.05) + #ph.read_born_charges(name=, neutrality=True) + ph.run() + #print("Phonons Done") + + # Read forces and assemble the dynamical matrix + ph.read(acoustic=self.asr, born=False) + ph.clean() + + # Calculate phonon dispersion along a path in the Brillouin zone. + path = self.atoms.cell.bandpath(npoints=self.nqpath) + bs = ph.get_band_structure(path, born=False) + dos = ph.get_dos(kpts=self.kpts).sample_grid(npts=100, width=1e-3) + + # Plot the band structure and DOS + import matplotlib.pyplot as plt + plt.rc("figure", dpi=150) + fig = plt.figure(1, figsize=(7, 4)) + bs_ax = fig.add_axes([0.12, 0.07, 0.67, 0.85]) + emax = 0.035 + bs.plot(ax=bs_ax, emin=0.0, emax=emax) + dos_ax = fig.add_axes([0.8, 0.07, 0.17, 0.85]) + dos_ax.fill_between(dos.get_weights(), dos.get_energies(), y2=0, color="grey", edgecolor="black", lw=1) + dos_ax.set_ylim(0, emax) + dos_ax.set_yticks([]) + dos_ax.set_xticks([]) + dos_ax.set_xlabel("PH DOS", fontsize=14) + + #title = f"Phonon band structure and DOS of {self.atoms.symbols} with supercell: {self.supercell}", + title = f"Phonon band structure and DOS with supercell: {self.supercell}", + fig.suptitle(title, fontsize=8, y=1.02) + self.savefig("phonons.png", fig, info=title) + + self._finalize() + + +class MlPhononsWithDDB(_MlBase): + """ + Compute phonons with phonopy and ML potential starting from a DDB file. + """ + + def __init__(self, ddb_filepath: str, supercell, kpts, asr, nqpath, + relax_mode, fmax, pressure, steps, optimizer, nn_name, + verbose, workdir, prefix=None): + """ + Args: + ddb_filepath: DDB filename. + supercell: tuple with supercell dimension. + kpts: K-mesh for phonon-DOS + asr: Enforce acoustic sum-rule. + nqpath: Number of q-point along the q-path. + relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation. + fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces. + verbose: whether to print stdout. + optimizer: name of the ASE optimizer to use for relaxation. + nn_name: String defining the NN potential. See also CalcBuilder. + verbose: Verbosity level. + workdir: + prefix: + """ + super().__init__(workdir, prefix) + from abipy.dfpt.ddb import DdbFile + self.ddb = DdbFile(ddb_file) + self.atoms = get_atoms(ddb.structure) + self.supercell = supercell + self.kpts = kpts + self.asr = asr + self.nqpath = nqpath + self.relax_mode = relax_mode + RX_MODE.validate(self.relax_mode) + self.fmax = fmax + self.pressure = pressure + self.steps = steps + self.optimizer = optimizer + self.nn_name = nn_name + self.verbose = verbose + + def to_string(self, verbose=0): + """String representation with verbosity level `verbose`.""" + s = f"""\ + +{self.__class__.__name__} parameters: + + ddb_path = {self.ddb.filepath} + supercell = {self.supercell} + kpts = {self.kpts} + asr = {self.asr} + nqpath = {self.nqpath} + relax_mode = {self.relax_mode} + fmax = {self.fmax} + steps = {self.steps} + optimizer = {self.optimizer} + pressure = {self.pressure} + nn_name = {self.nn_name} + workdir = {self.workdir} + verbose = {self.verbose} + +=== ATOMS === + +{self.atoms} +""" + return s + + def run(self) -> None: + """Run MlPhononsWithDDB.""" + workdir = self.workdir + calculator = self.get_calculator() + self.atoms.calc = calculator + + if self.relax != RX_MODE.no: + print(f"Relaxing DDB atoms with relax mode: {self.relax_mode}.") + relax_kws = dict(optimizer=self.optimizer, + relax_mode=self.relax_mode, + fmax=self.fmax, + pressure=self.pressure, + steps=self.steps, + traj_path=self.get_path("relax.traj", "ASE relax trajectory"), + verbose=self.verbose, + ) + + relax = relax_atoms(self.atoms, **relax_kws) + r0, r1 = AseResults.from_traj_inds(relax.traj, 0, -1) + df = dataframe_from_results_list(["DDB_initial", "DDB_relaxed"], [r0, r1]) + print(df, end=2*"\n") + + # Call phonopy to compute phonons with finite difference and ML potential. + # Include non-analytical term if dipoles are available in the DDB file. + if self.dbb.has_lo_to_data: + print("Activating dipolar term in phonopy calculation using BECS and Zeff from DDB") + + # Call anaddb to compute ab-initio phonon frequencies from the DDB. + #self.ddb.anaget_phmodes_at_qpoints( + # qpoints=None, asr=2, chneut=1, dipdip=1, dipquad=1, quadquad=1, + # ifcflag=0, ngqpt=None, workdir=None, mpi_procs=1, manager=None, verbose=0, + # lo_to_splitting=False, + # spell_check=True, directions=None, anaddb_kwargs=None, return_input=False) diff --git a/abipy/scripts/abiml.py b/abipy/scripts/abiml.py index a81487726..2e3bb9007 100755 --- a/abipy/scripts/abiml.py +++ b/abipy/scripts/abiml.py @@ -330,7 +330,7 @@ def mneb(ctx, filepaths, nn_name, def aseph(ctx, filepath, nn_name, supercell, kpts, asr, nqpath, relax_mode, fmax, pressure, steps, optimizer, workdir, verbose): """ - Compute phonon band structure and DOS with ML potential. + Use ASE finite-displacement method to compute phonon band structure and DOS with ML potential. Based on: @@ -390,7 +390,7 @@ def order(ctx, filepath, nn_name, @click.argument("filepath", type=str) @add_nn_name_opt @click.option("-isite", "--isite", required=True, - help='Index of atom to displace or string with chemical element to be added to input structure.') + help='Index of atom to displace or string with the chemical element to be added to input structure.') @click.option("--mesh", type=int, default=4, show_default=True, help='Mesh size along the smallest cell size.') @add_relax_opts @add_nprocs_opt @@ -403,7 +403,7 @@ def scan_relax(ctx, filepath, nn_name, ): """ Generate 3D mesh of (nx,ny,nz) initial positions and perform multiple relaxations - in which all atoms are fixed except the one added to the mesh point. + in which all atoms are fixed except the one initially placed at the mesh point. Usage example: @@ -459,7 +459,7 @@ def compare(ctx, filepaths, \b abiml.py.py compare FILE --nn-names matgl --nn-names chgnet - where `FILE` can be either a _HIST.nc or a VASPRUN file. + where `FILE` can be either a _HIST.nc or a VASPRUN.xml file. """ traj_range = cli.range_from_str(traj_range) ml_comp = aseml.MlCompareWithAbinitio(filepaths, nn_names, traj_range, verbose, workdir, prefix="_compare_")