forked from autonomousvision/carla_garage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sensor_agent.py
841 lines (682 loc) · 32.2 KB
/
sensor_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
"""
Agent file that runs the evaluations for all models supported by this repo.
Run it by giving it as the agent option to the
leaderboard/leaderboard/leaderboard_evaluator.py file
"""
import os
from copy import deepcopy
import cv2
import carla
from collections import deque
import torch
import torch.nn.functional as F
import numpy as np
import math
from leaderboard.autoagents import autonomous_agent
from model import LidarCenterNet
from team_code.config import GlobalConfig
from data import CARLA_Data
from nav_planner import RoutePlanner
from nav_planner import extrapolate_waypoint_route
from filterpy.kalman import MerweScaledSigmaPoints
from filterpy.kalman import UnscentedKalmanFilter as UKF
from scenario_logger import ScenarioLogger
import transfuser_utils as t_u
import pathlib
import jsonpickle
import ujson # Like json but faster
import gzip
# Configure pytorch for maximum performance
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.allow_tf32 = True
# Leaderboard function that selects the class used as agent.
def get_entry_point():
return 'SensorAgent'
class SensorAgent(autonomous_agent.AutonomousAgent):
"""
Main class that runs the agents with the run_step function
"""
def setup(self, path_to_conf_file, route_index=None):
"""Sets up the agent. route_index is for logging purposes"""
torch.cuda.empty_cache()
self.track = autonomous_agent.Track.SENSORS
self.config_path = path_to_conf_file
self.step = -1
self.initialized = False
self.device = torch.device('cuda:0')
# Load the config saved during training
with open(os.path.join(path_to_conf_file, 'config.json'), 'r') as args_file:
loaded_config = jsonpickle.decode(args_file.read())
# Generate new config for the case that it has new variables.
self.config = GlobalConfig()
# Overwrite all properties that were set in the saved config.
self.config.__dict__.update(loaded_config.__dict__)
# For models supporting different output modalities we select which one to use here.
# 0: Waypoints
# 1: Path + Target Speed
direct = os.environ.get('DIRECT', 1)
self.uncertainty_weight = int(os.environ.get('UNCERTAINTY_WEIGHT', 1))
print('Uncertainty weighting?: ', self.uncertainty_weight)
if direct is not None:
self.config.inference_direct_controller = int(direct)
print('Direct control prediction?: ', direct)
# If set to true, will generate visualizations at SAVE_PATH
self.config.debug = int(os.environ.get('DEBUG_CHALLENGE', 0)) == 1
self.config.brake_uncertainty_threshold = float(
os.environ.get('UNCERTAINTY_THRESHOLD', self.config.brake_uncertainty_threshold))
# Classification networks are known to be overconfident which leads to them braking a bit too late in our case.
# Reducing the driving speed slightly counteracts that.
if int(os.environ.get('SLOWER', 1)):
print('Reduce target speed value by two m/s.')
self.config.target_speeds[2] = self.config.target_speeds[2] - 2.0
self.config.target_speeds[3] = self.config.target_speeds[3] - 2.0
# Collects some statistics about the target point. Not needed usually.
self.tp_stats = False
self.tp_sign_agrees_with_angle = []
if int(os.environ.get('TP_STATS', 0)):
self.tp_stats = True
if self.config.tp_attention:
self.tp_attention_buffer = []
# Stop signs can be occluded with our camera setup. This buffer remembers them until cleared.
# Very useful on the LAV benchmark
self.stop_sign_controller = int(os.environ.get('STOP_CONTROL', 0))
print('Use stop sign controller:', self.stop_sign_controller)
if self.stop_sign_controller:
# There can be max 1 stop sign affecting the ego
self.stop_sign_buffer = deque(maxlen=1)
self.clear_stop_sign = 0 # Counter if we recently cleared a stop sign
# Load model files
self.nets = []
self.model_count = 0 # Counts how many models are in our ensemble
for file in os.listdir(path_to_conf_file):
if file.endswith('.pth'):
self.model_count += 1
print(os.path.join(path_to_conf_file, file))
net = LidarCenterNet(self.config)
if self.config.sync_batch_norm:
# Model was trained with Sync. Batch Norm.
# Need to convert it otherwise parameters will load wrong.
net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)
state_dict = torch.load(os.path.join(path_to_conf_file, file), map_location=self.device)
net.load_state_dict(state_dict, strict=False)
net.cuda(device=self.device)
net.eval()
self.nets.append(net)
self.stuck_detector = 0
self.force_move = 0
self.bb_buffer = deque(maxlen=1)
self.commands = deque(maxlen=2)
self.commands.append(4)
self.commands.append(4)
self.target_point_prev = [1e5, 1e5]
# Filtering
self.points = MerweScaledSigmaPoints(n=4, alpha=0.00001, beta=2, kappa=0, subtract=residual_state_x)
self.ukf = UKF(dim_x=4,
dim_z=4,
fx=bicycle_model_forward,
hx=measurement_function_hx,
dt=self.config.carla_frame_rate,
points=self.points,
x_mean_fn=state_mean,
z_mean_fn=measurement_mean,
residual_x=residual_state_x,
residual_z=residual_measurement_h)
# State noise, same as measurement because we
# initialize with the first measurement later
self.ukf.P = np.diag([0.5, 0.5, 0.000001, 0.000001])
# Measurement noise
self.ukf.R = np.diag([0.5, 0.5, 0.000000000000001, 0.000000000000001])
self.ukf.Q = np.diag([0.0001, 0.0001, 0.001, 0.001]) # Model noise
# Used to set the filter state equal the first measurement
self.filter_initialized = False
# Stores the last filtered positions of the ego vehicle. Need at least 2 for LiDAR 10 Hz realignment
self.state_log = deque(maxlen=max((self.config.lidar_seq_len * self.config.data_save_freq), 2))
#Temporal LiDAR
self.lidar_buffer = deque(maxlen=self.config.lidar_seq_len * self.config.data_save_freq)
self.lidar_last = None
self.data = CARLA_Data(root=[], config=self.config, shared_dict=None)
# Path to where visualizations and other debug output gets stored
self.save_path = os.environ.get('SAVE_PATH')
# Logger that generates logs used for infraction replay in the results_parser.
if self.save_path is not None and route_index is not None:
self.save_path = pathlib.Path(self.save_path) / route_index
pathlib.Path(self.save_path).mkdir(parents=True, exist_ok=True)
self.lon_logger = ScenarioLogger(
save_path=self.save_path,
route_index=route_index,
logging_freq=self.config.logging_freq,
log_only=True,
route_only=False, # with vehicles
roi=self.config.logger_region_of_interest,
)
else:
self.save_path = None
def _init(self):
# During setup() not everything is available yet, so this _init is a second setup in run_step()
# Privileged map access for logging and visualizations. Turned off during normal evaluation.
if self.save_path is not None:
from srunner.scenariomanager.carla_data_provider import CarlaDataProvider # pylint: disable=locally-disabled, import-outside-toplevel
from nav_planner import interpolate_trajectory # pylint: disable=locally-disabled, import-outside-toplevel
self.world_map = CarlaDataProvider.get_map()
trajectory = [item[0].location for item in self._global_plan_world_coord]
self.dense_route, _ = interpolate_trajectory(self.world_map, trajectory) # privileged
self._waypoint_planner = RoutePlanner(self.config.log_route_planner_min_distance,
self.config.route_planner_max_distance)
self._waypoint_planner.set_route(self.dense_route, True)
vehicle = CarlaDataProvider.get_hero_actor()
self.lon_logger.ego_vehicle = vehicle
self.lon_logger.world = vehicle.get_world()
self.nets[0].init_visualization()
self._route_planner = RoutePlanner(self.config.route_planner_min_distance, self.config.route_planner_max_distance)
self._route_planner.set_route(self._global_plan, True)
self.initialized = True
def sensors(self):
sensors = [{
'type': 'sensor.camera.rgb',
'x': self.config.camera_pos[0],
'y': self.config.camera_pos[1],
'z': self.config.camera_pos[2],
'roll': self.config.camera_rot_0[0],
'pitch': self.config.camera_rot_0[1],
'yaw': self.config.camera_rot_0[2],
'width': self.config.camera_width,
'height': self.config.camera_height,
'fov': self.config.camera_fov,
'id': 'rgb_front'
}, {
'type': 'sensor.other.imu',
'x': 0.0,
'y': 0.0,
'z': 0.0,
'roll': 0.0,
'pitch': 0.0,
'yaw': 0.0,
'sensor_tick': self.config.carla_frame_rate,
'id': 'imu'
}, {
'type': 'sensor.other.gnss',
'x': 0.0,
'y': 0.0,
'z': 0.0,
'roll': 0.0,
'pitch': 0.0,
'yaw': 0.0,
'sensor_tick': 0.01,
'id': 'gps'
}, {
'type': 'sensor.speedometer',
'reading_frequency': self.config.carla_fps,
'id': 'speed'
}]
# Don't set up LiDAR for camera only approaches
if self.config.backbone not in ('aim'):
sensors.append({
'type': 'sensor.lidar.ray_cast',
'x': self.config.lidar_pos[0],
'y': self.config.lidar_pos[1],
'z': self.config.lidar_pos[2],
'roll': self.config.lidar_rot[0],
'pitch': self.config.lidar_rot[1],
'yaw': self.config.lidar_rot[2],
'id': 'lidar'
})
return sensors
@torch.inference_mode() # Turns off gradient computation
def tick(self, input_data):
"""Pre-processes sensor data and runs the Unscented Kalman Filter"""
rgb = []
for camera_pos in ['front']:
rgb_cam = 'rgb_' + camera_pos
camera = input_data[rgb_cam][1][:, :, :3]
# Also add jpg artifacts at test time, because the training data was saved as jpg.
_, compressed_image_i = cv2.imencode('.jpg', camera)
camera = cv2.imdecode(compressed_image_i, cv2.IMREAD_UNCHANGED)
rgb_pos = cv2.cvtColor(camera, cv2.COLOR_BGR2RGB)
# Switch to pytorch channel first order
rgb_pos = np.transpose(rgb_pos, (2, 0, 1))
rgb.append(rgb_pos)
rgb = np.concatenate(rgb, axis=1)
rgb = torch.from_numpy(rgb).to(self.device, dtype=torch.float32).unsqueeze(0)
gps_pos = self._route_planner.convert_gps_to_carla(input_data['gps'][1][:2])
speed = input_data['speed'][1]['speed']
compass = t_u.preprocess_compass(input_data['imu'][1][-1])
result = {
'rgb': rgb,
'compass': compass,
}
if self.config.backbone not in ('aim'):
result['lidar'] = t_u.lidar_to_ego_coordinate(self.config, input_data['lidar'])
if not self.filter_initialized:
self.ukf.x = np.array([gps_pos[0], gps_pos[1], t_u.normalize_angle(compass), speed])
self.filter_initialized = True
self.ukf.predict(steer=self.control.steer, throttle=self.control.throttle, brake=self.control.brake)
self.ukf.update(np.array([gps_pos[0], gps_pos[1], t_u.normalize_angle(compass), speed]))
filtered_state = self.ukf.x
self.state_log.append(filtered_state)
result['gps'] = filtered_state[0:2]
waypoint_route = self._route_planner.run_step(filtered_state[0:2])
if len(waypoint_route) > 2:
target_point, far_command = waypoint_route[1]
elif len(waypoint_route) > 1:
target_point, far_command = waypoint_route[1]
else:
target_point, far_command = waypoint_route[0]
if (target_point != self.target_point_prev).all():
self.target_point_prev = target_point
self.commands.append(far_command.value)
one_hot_command = t_u.command_to_one_hot(self.commands[-2])
result['command'] = torch.from_numpy(one_hot_command[np.newaxis]).to(self.device, dtype=torch.float32)
ego_target_point = t_u.inverse_conversion_2d(target_point, result['gps'], result['compass'])
ego_target_point = torch.from_numpy(ego_target_point[np.newaxis]).to(self.device, dtype=torch.float32)
result['target_point'] = ego_target_point
result['speed'] = torch.FloatTensor([speed]).to(self.device, dtype=torch.float32)
if self.save_path is not None:
waypoint_route = self._waypoint_planner.run_step(result['gps'])
waypoint_route = extrapolate_waypoint_route(waypoint_route, self.config.route_points)
route = np.array([[node[0][0], node[0][1]] for node in waypoint_route])[:self.config.route_points]
self.lon_logger.log_step(route)
return result
@torch.inference_mode() # Turns off gradient computation
def run_step(self, input_data, timestamp, sensors=None): # pylint: disable=locally-disabled, unused-argument
self.step += 1
if not self.initialized:
self._init()
control = carla.VehicleControl(steer=0.0, throttle=0.0, brake=1.0)
self.control = control
tick_data = self.tick(input_data)
if self.config.backbone not in ('aim'):
self.lidar_last = deepcopy(tick_data['lidar'])
return control
# Need to run this every step for GPS filtering
tick_data = self.tick(input_data)
lidar_indices = []
for i in range(self.config.lidar_seq_len):
lidar_indices.append(i * self.config.data_save_freq)
#Current position of the car
ego_x = self.state_log[-1][0]
ego_y = self.state_log[-1][1]
ego_theta = self.state_log[-1][2]
ego_x_last = self.state_log[-2][0]
ego_y_last = self.state_log[-2][1]
ego_theta_last = self.state_log[-2][2]
# We only get half a LiDAR at every time step. Aligns the last half into the current coordinate frame.
if self.config.backbone not in ('aim'):
lidar_last = self.align_lidar(self.lidar_last, ego_x_last, ego_y_last, ego_theta_last, ego_x, ego_y, ego_theta)
# Updates stop boxes by vehicle movement converting past predictions into the current frame.
if self.stop_sign_controller:
self.update_stop_box(self.stop_sign_buffer, ego_x_last, ego_y_last, ego_theta_last, ego_x, ego_y, ego_theta)
if self.config.backbone not in ('aim'):
lidar_current = deepcopy(tick_data['lidar'])
lidar_full = np.concatenate((lidar_current, lidar_last), axis=0)
self.lidar_buffer.append(lidar_full)
if self.config.backbone not in ('aim'):
# We wait until we have sufficient LiDARs
if len(self.lidar_buffer) < (self.config.lidar_seq_len * self.config.data_save_freq):
self.lidar_last = deepcopy(tick_data['lidar'])
tmp_control = carla.VehicleControl(0.0, 0.0, 1.0)
self.control = tmp_control
return tmp_control
# Possible action repeat configuration
if self.step % self.config.action_repeat == 1:
self.lidar_last = deepcopy(tick_data['lidar'])
return self.control
if self.config.backbone in ('aim'): # Image only method
# Dummy data
lidar_bev = torch.zeros((1, 1 + int(self.config.use_ground_plane), self.config.lidar_resolution_height,
self.config.lidar_resolution_width)).to(self.device, dtype=torch.float32)
else:
# Voxelize LiDAR and stack temporal frames
lidar_bev = []
# prepare LiDAR input
for i in lidar_indices:
lidar_point_cloud = deepcopy(self.lidar_buffer[i])
# For single frame there is no point in realignment. The state_log index will also differ.
if self.config.realign_lidar and self.config.lidar_seq_len > 1:
# Position of the car when the LiDAR was collected
curr_x = self.state_log[i][0]
curr_y = self.state_log[i][1]
curr_theta = self.state_log[i][2]
# Voxelize to BEV for NN to process
lidar_point_cloud = self.align_lidar(lidar_point_cloud, curr_x, curr_y, curr_theta, ego_x, ego_y, ego_theta)
lidar_histogram = torch.from_numpy(
self.data.lidar_to_histogram_features(lidar_point_cloud,
use_ground_plane=self.config.use_ground_plane)).unsqueeze(0)
lidar_histogram = lidar_histogram.to(self.device, dtype=torch.float32)
lidar_bev.append(lidar_histogram)
lidar_bev = torch.cat(lidar_bev, dim=1)
if self.config.backbone not in ('aim'):
self.lidar_last = deepcopy(tick_data['lidar'])
# prepare velocity input
gt_velocity = tick_data['speed']
velocity = gt_velocity.reshape(1, 1) # used by transfuser
compute_debug_output = self.config.debug and (not self.save_path is None)
# forward pass
pred_wps = []
pred_target_speeds = []
pred_checkpoints = []
bounding_boxes = []
wp_selected = None
for i in range(self.model_count):
if self.config.backbone in ('transFuser', 'aim', 'bev_encoder'):
pred_wp, \
pred_target_speed, \
pred_checkpoint, \
pred_semantic, \
pred_bev_semantic, \
pred_depth, \
pred_bb_features,\
attention_weights,\
pred_wp_1,\
selected_path = self.nets[i].forward(
rgb=tick_data['rgb'],
lidar_bev=lidar_bev,
target_point=tick_data['target_point'],
ego_vel=velocity,
command=tick_data['command'])
# Only convert bounding boxes when they are used.
if self.config.detect_boxes and (compute_debug_output or self.config.backbone in ('aim') or
self.stop_sign_controller):
pred_bounding_box = self.nets[i].convert_features_to_bb_metric(pred_bb_features)
else:
pred_bounding_box = None
else:
raise ValueError('The chosen vision backbone does not exist. The options are: transFuser, aim, bev_encoder')
if self.config.use_wp_gru:
if self.config.multi_wp_output:
wp_selected = 0
if F.sigmoid(selected_path)[0].item() > 0.5:
wp_selected = 1
pred_wps.append(pred_wp_1)
else:
pred_wps.append(pred_wp)
else:
pred_wps.append(pred_wp)
if self.config.use_controller_input_prediction:
pred_target_speeds.append(F.softmax(pred_target_speed[0], dim=0))
pred_checkpoints.append(pred_checkpoint[0][1])
bounding_boxes.append(pred_bounding_box)
# Average the predictions from ensembles
if self.config.detect_boxes and (compute_debug_output or self.config.backbone in ('aim') or
self.stop_sign_controller):
# We average bounding boxes by using non-maximum suppression on the set of all detected boxes.
bbs_vehicle_coordinate_system = t_u.non_maximum_suppression(bounding_boxes, self.config.iou_treshold_nms)
self.bb_buffer.append(bbs_vehicle_coordinate_system)
else:
bbs_vehicle_coordinate_system = None
if self.stop_sign_controller:
stop_for_stop_sign = self.stop_sign_controller_step(gt_velocity.item())
if self.config.tp_attention:
self.tp_attention_buffer.append(attention_weights[2])
# Visualize the output of the last model
if compute_debug_output:
if self.config.use_controller_input_prediction:
prob_target_speed = F.softmax(pred_target_speed, dim=1)
else:
prob_target_speed = pred_target_speed
self.nets[0].visualize_model(self.save_path,
self.step,
tick_data['rgb'],
lidar_bev,
tick_data['target_point'],
pred_wp,
pred_semantic=pred_semantic,
pred_bev_semantic=pred_bev_semantic,
pred_depth=pred_depth,
pred_checkpoint=pred_checkpoint,
pred_speed=prob_target_speed,
pred_bb=bbs_vehicle_coordinate_system,
gt_speed=gt_velocity,
gt_wp=pred_wp_1,
wp_selected=wp_selected)
if self.config.use_wp_gru:
self.pred_wp = torch.stack(pred_wps, dim=0).mean(dim=0)
if self.config.use_controller_input_prediction:
pred_target_speed = torch.stack(pred_target_speeds, dim=0).mean(dim=0)
pred_aim_wp = torch.stack(pred_checkpoints, dim=0).mean(dim=0)
pred_aim_wp = pred_aim_wp.detach().cpu().numpy()
pred_angle = -math.degrees(math.atan2(-pred_aim_wp[1], pred_aim_wp[0])) / 90.0
if self.tp_stats:
loc_tp = tick_data['target_point'].detach().cpu().numpy()[0]
deg_pred_angle = pred_angle * 90.0
tp_angle = -math.degrees(math.atan2(-loc_tp[1], loc_tp[0]))
if abs(tp_angle) > 1.0 and abs(deg_pred_angle) > 1.0:
same_direction = float(tp_angle * deg_pred_angle >= 0.0)
self.tp_sign_agrees_with_angle.append(same_direction)
if self.uncertainty_weight:
uncertainty = pred_target_speed.detach().cpu().numpy()
if uncertainty[0] > self.config.brake_uncertainty_threshold:
pred_target_speed = self.config.target_speeds[0]
else:
pred_target_speed = sum(uncertainty * self.config.target_speeds)
else:
pred_target_speed_index = torch.argmax(pred_target_speed)
pred_target_speed = self.config.target_speeds[pred_target_speed_index]
if self.config.inference_direct_controller and self.config.use_controller_input_prediction:
steer, throttle, brake = self.nets[0].control_pid_direct(pred_target_speed, pred_angle, gt_velocity)
elif self.config.use_wp_gru and not (hasattr(self.config, 'inference_direct_controller') and self.config.inference_direct_controller):
steer, throttle, brake = self.nets[0].control_pid(self.pred_wp, gt_velocity)
else:
raise ValueError('An output representation was chosen that was not trained.')
# 0.1 is just an arbitrary low number to threshold when the car is stopped
if gt_velocity < 0.1:
self.stuck_detector += 1
else:
self.stuck_detector = 0
# Restart mechanism in case the car got stuck. Not used a lot anymore but doesn't hurt to keep it.
if self.stuck_detector > self.config.stuck_threshold:
self.force_move = self.config.creep_duration
if self.force_move > 0:
emergency_stop = False
if self.config.backbone not in ('aim'):
# safety check
safety_box = deepcopy(self.lidar_buffer[-1])
# z-axis
safety_box = safety_box[safety_box[..., 2] > self.config.safety_box_z_min]
safety_box = safety_box[safety_box[..., 2] < self.config.safety_box_z_max]
# y-axis
safety_box = safety_box[safety_box[..., 1] > self.config.safety_box_y_min]
safety_box = safety_box[safety_box[..., 1] < self.config.safety_box_y_max]
# x-axis
safety_box = safety_box[safety_box[..., 0] > self.config.safety_box_x_min]
safety_box = safety_box[safety_box[..., 0] < self.config.safety_box_x_max]
emergency_stop = (len(safety_box) > 0) # Checks if the List is empty
if not emergency_stop:
print('Detected agent being stuck. Step: ', self.step)
throttle = max(self.config.creep_throttle, throttle)
brake = False
self.force_move -= 1
else:
print('Creeping stopped by safety box. Step: ', self.step)
throttle = 0.0
brake = True
self.force_move = self.config.creep_duration
if self.stop_sign_controller:
if stop_for_stop_sign:
throttle = 0.0
brake = True
control = carla.VehicleControl(steer=float(steer), throttle=float(throttle), brake=float(brake))
# CARLA will not let the car drive in the initial frames.
# We set the action to brake so that the filter does not get confused.
if self.step < self.config.inital_frames_delay:
self.control = carla.VehicleControl(0.0, 0.0, 1.0)
else:
self.control = control
return control
def stop_sign_controller_step(self, ego_speed):
"""Checks whether the car is intersecting with one of the detected stop signs"""
if self.clear_stop_sign > 0:
self.clear_stop_sign -= 1
if len(self.bb_buffer) < 1:
return False
stop_sign_stop_predicted = False
extent = carla.Vector3D(self.config.ego_extent_x, self.config.ego_extent_y, self.config.ego_extent_z)
origin = carla.Location(x=0.0, y=0.0, z=0.0)
car_box = carla.BoundingBox(origin, extent)
for bb in self.bb_buffer[-1]:
if bb[7] == 3: # Stop sign detected
self.stop_sign_buffer.append(bb)
if len(self.stop_sign_buffer) > 0:
# Check if we need to stop
stop_box = self.stop_sign_buffer[0]
stop_origin = carla.Location(x=stop_box[0], y=stop_box[1], z=0.0)
stop_extent = carla.Vector3D(stop_box[2], stop_box[3], 1.0)
stop_carla_box = carla.BoundingBox(stop_origin, stop_extent)
stop_carla_box.rotation = carla.Rotation(0.0, np.rad2deg(stop_box[4]), 0.0)
if t_u.check_obb_intersection(stop_carla_box, car_box) and self.clear_stop_sign <= 0:
if ego_speed > 0.01:
stop_sign_stop_predicted = True
else:
# We have cleared the stop sign
stop_sign_stop_predicted = False
self.stop_sign_buffer.pop()
# Stop signs don't come in herds, so we know we don't need to clear one for a while.
self.clear_stop_sign = 100
if len(self.stop_sign_buffer) > 0:
# Remove boxes that are too far away
if np.linalg.norm(self.stop_sign_buffer[0][:2]) > abs(self.config.max_x):
self.stop_sign_buffer.pop()
return stop_sign_stop_predicted
def bb_detected_in_front_of_vehicle(self, ego_speed):
if len(self.bb_buffer) < 1: # We only start after we have 4 time steps.
return False
collision_predicted = False
extent = carla.Vector3D(self.config.ego_extent_x, self.config.ego_extent_y, self.config.ego_extent_z)
# Safety box
bremsweg = ((ego_speed.cpu().numpy().item() * 3.6) / 10.0)**2 / 2.0 # Bremsweg formula for emergency break
safety_x = np.clip(bremsweg + 1.0, a_min=2.0, a_max=4.0) # plus one meter is the car.
center_safety_box = carla.Location(x=safety_x, y=0.0, z=1.0)
safety_bounding_box = carla.BoundingBox(center_safety_box, extent)
safety_bounding_box.rotation = carla.Rotation(0.0, 0.0, 0.0)
for bb in self.bb_buffer[-1]:
# We just give them some arbitrary height. Does not matter
bb_extent_z = 1.0
loc_local = carla.Location(bb[0], bb[1], 0.0)
extent_det = carla.Vector3D(bb[2], bb[3], bb_extent_z)
bb_local = carla.BoundingBox(loc_local, extent_det)
bb_local.rotation = carla.Rotation(0.0, np.rad2deg(bb[4]).item(), 0.0)
if t_u.check_obb_intersection(safety_bounding_box, bb_local):
collision_predicted = True
return collision_predicted
def align_lidar(self, lidar, x, y, orientation, x_target, y_target, orientation_target):
pos_diff = np.array([x_target, y_target, 0.0]) - np.array([x, y, 0.0])
rot_diff = t_u.normalize_angle(orientation_target - orientation)
# Rotate difference vector from global to local coordinate system.
rotation_matrix = np.array([[np.cos(orientation_target), -np.sin(orientation_target), 0.0],
[np.sin(orientation_target),
np.cos(orientation_target), 0.0], [0.0, 0.0, 1.0]])
pos_diff = rotation_matrix.T @ pos_diff
return t_u.algin_lidar(lidar, pos_diff, rot_diff)
def update_stop_box(self, boxes, x, y, orientation, x_target, y_target, orientation_target):
pos_diff = np.array([x_target, y_target]) - np.array([x, y])
rot_diff = t_u.normalize_angle(orientation_target - orientation)
# Rotate difference vector from global to local coordinate system.
rotation_matrix = np.array([[np.cos(orientation_target), -np.sin(orientation_target)],
[np.sin(orientation_target), np.cos(orientation_target)]])
pos_diff = rotation_matrix.T @ pos_diff
# Rotation matrix in local coordinate system
local_rot_matrix = np.array([[np.cos(rot_diff), -np.sin(rot_diff)], [np.sin(rot_diff), np.cos(rot_diff)]])
for _, box_pred in enumerate(boxes):
box_pred[:2] = (local_rot_matrix.T @ (box_pred[:2] - pos_diff).T).T
box_pred[4] = t_u.normalize_angle(box_pred[4] - rot_diff)
def destroy(self, results=None): # pylint: disable=locally-disabled, unused-argument
"""
Gets called after a route finished.
The leaderboard client doesn't properly clear up the agent after the route finishes so we need to do it here.
Also writes logging files to disk.
"""
if self.save_path is not None:
self.lon_logger.dump_to_json()
if len(self.nets[0].speed_histogram) > 0:
with gzip.open(self.save_path / 'target_speeds.json.gz', 'wt', encoding='utf-8') as f:
ujson.dump(self.nets[0].speed_histogram, f, indent=4)
if self.tp_stats:
if len(self.tp_sign_agrees_with_angle) > 0:
print('Agreement between TP and steering: ',
sum(self.tp_sign_agrees_with_angle) / len(self.tp_sign_agrees_with_angle))
with gzip.open(self.save_path / 'tp_agreements.json.gz', 'wt', encoding='utf-8') as f:
ujson.dump(self.tp_sign_agrees_with_angle, f, indent=4)
if self.config.tp_attention:
if len(self.tp_attention_buffer) > 0:
print('Average TP attention: ', sum(self.tp_attention_buffer) / len(self.tp_attention_buffer))
with gzip.open(self.save_path / 'tp_attention.json.gz', 'wt', encoding='utf-8') as f:
ujson.dump(self.tp_attention_buffer, f, indent=4)
del self.tp_attention_buffer
del self.tp_sign_agrees_with_angle
del self.nets
del self.config
# Filter Functions
def bicycle_model_forward(x, dt, steer, throttle, brake):
# Kinematic bicycle model.
# Numbers are the tuned parameters from World on Rails
front_wb = -0.090769015
rear_wb = 1.4178275
steer_gain = 0.36848336
brake_accel = -4.952399
throt_accel = 0.5633837
locs_0 = x[0]
locs_1 = x[1]
yaw = x[2]
speed = x[3]
if brake:
accel = brake_accel
else:
accel = throt_accel * throttle
wheel = steer_gain * steer
beta = math.atan(rear_wb / (front_wb + rear_wb) * math.tan(wheel))
next_locs_0 = locs_0.item() + speed * math.cos(yaw + beta) * dt
next_locs_1 = locs_1.item() + speed * math.sin(yaw + beta) * dt
next_yaws = yaw + speed / rear_wb * math.sin(beta) * dt
next_speed = speed + accel * dt
next_speed = next_speed * (next_speed > 0.0) # Fast ReLU
next_state_x = np.array([next_locs_0, next_locs_1, next_yaws, next_speed])
return next_state_x
def measurement_function_hx(vehicle_state):
'''
For now we use the same internal state as the measurement state
:param vehicle_state: VehicleState vehicle state variable containing
an internal state of the vehicle from the filter
:return: np array: describes the vehicle state as numpy array.
0: pos_x, 1: pos_y, 2: rotatoion, 3: speed
'''
return vehicle_state
def state_mean(state, wm):
'''
We use the arctan of the average of sin and cos of the angle to calculate
the average of orientations.
:param state: array of states to be averaged. First index is the timestep.
:param wm:
:return:
'''
x = np.zeros(4)
sum_sin = np.sum(np.dot(np.sin(state[:, 2]), wm))
sum_cos = np.sum(np.dot(np.cos(state[:, 2]), wm))
x[0] = np.sum(np.dot(state[:, 0], wm))
x[1] = np.sum(np.dot(state[:, 1], wm))
x[2] = math.atan2(sum_sin, sum_cos)
x[3] = np.sum(np.dot(state[:, 3], wm))
return x
def measurement_mean(state, wm):
'''
We use the arctan of the average of sin and cos of the angle to
calculate the average of orientations.
:param state: array of states to be averaged. First index is the
timestep.
'''
x = np.zeros(4)
sum_sin = np.sum(np.dot(np.sin(state[:, 2]), wm))
sum_cos = np.sum(np.dot(np.cos(state[:, 2]), wm))
x[0] = np.sum(np.dot(state[:, 0], wm))
x[1] = np.sum(np.dot(state[:, 1], wm))
x[2] = math.atan2(sum_sin, sum_cos)
x[3] = np.sum(np.dot(state[:, 3], wm))
return x
def residual_state_x(a, b):
y = a - b
y[2] = t_u.normalize_angle(y[2])
return y
def residual_measurement_h(a, b):
y = a - b
y[2] = t_u.normalize_angle(y[2])
return y