-
Notifications
You must be signed in to change notification settings - Fork 3
/
ibs_example.m
217 lines (158 loc) · 8.12 KB
/
ibs_example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
% IBS_EXAMPLE Example script for running inverse binomial sampling (IBS)
% In this example, we fit some simple orientation discrimination data using
% IBS and BADS. The model is described in the "Orientation discrimination"
% section of the Results in the published paper.
% Note that this model is very simple and used only for didactic purposes;
% one should use the analytical log-likelihood whenever available.
%
% Reference:
% van Opheusden*, B., Acerbi*, L. & Ma, W. J. (2020), "Unbiased and
% efficient log-likelihood estimation with inverse binomial sampling".
% (* equal contribution), PLoS Computational Biology 16(12): e1008483.
% Link: https://doi.org/10.1371/journal.pcbi.1008483
%% Generate simulated dataset
% First, we simulate a synthetic dataset to fit.
% Normally, you would have your own (real or simulated) data here.
fprintf('Generating synthetic data set...\n');
Ntrials = 600;
eta = log(1); % Fake subject (log) sensory noise
bias = 0.2; % Fake subject bias
lapse = 0.03; % Fake subject lapse rate
theta_true = [eta,bias,lapse]; % Generating parameter vector
S = 3*randn(Ntrials,1); % Generate stimulus orientation per trial
R = psycho_gen(theta_true,S); % Generate fake subject responses
% We set the lower/upper bounds for the parameters (in particular, note that
% we set a nonzero lower bound for the lapse rate)
LB = [log(0.1) -2 0.01];
UB = [log(10) 2 1];
% We also set the "plausible" lower/upper bounds representing where we
% would expect to find most parameters (this is not a prior, it just
% identifies a region e.g. for the starting points)
PLB = [log(0.2) -1 0.02];
PUB = [log(5) 1 0.2];
%% Maximum-likelihood estimation (MLE)
% We fit the data via maximum-likelihood estimation using Bayesian Adaptive
% Direct Search (BADS), a particularly effective optimization algorithm for
% noisy target functions.
% If you do not have the BADS toolbox installed, you can freely download it
% from here: https://github.com/acerbilab/bads
% Please ensure you have the latest version of BADS installed (v1.1.1 or
% more), as it incorporates tweaks that improve performance with IBS.
fprintf('Maximum-likelihood estimation with BADS using IBS...\n');
if isempty(which('bads.m')) % Check that you have BADS
error('BADS not found. You can install it from here: https://github.com/acerbilab/bads');
end
old_bads = false;
try
bads_version = bads('version');
fprintf('BADS found (version %s).\n', bads_version);
bads_version(bads_version == '.') = ' ';
bads_version = str2num(bads_version);
if bads_version(2) < 1
old_bads = true;
end
catch
old_bads = true;
end
if old_bads
error('You have installed an older version of BADS. You can find the latest version here: https://github.com/acerbilab/bads');
end
fprintf('(press a key to continue)\n');
pause;
% We define the negative log-likelihood function via a call to IBSLIKE
% (IBSLIKE provides a vectorized implementation of IBS for MATLAB; check
% out IBS_BASIC for a bare bone implementation)
% We set 10 reps for the IBS estimator (see "Iterative multi-fidelity"
% section in the Methods of the paper). Note that this is also the default
% for IBSLIKE
% We also tell IBSLIKE to return as a second output the standard deviation
% of the estimate (as opposed to the variance). This is very important!
options_ibs = ibslike('defaults');
options_ibs.Nreps = 10;
options_ibs.ReturnStd = true;
nllfun_ibs = @(theta) ibslike(@psycho_gen,theta,R,S,options_ibs);
% As a starting point for the optimization, we draw a sample inside the
% plausible box (in practice you should use multiple restarts!)
theta0 = rand(size(LB)).*(PUB-PLB) + PLB;
% We inform BADS that IBSLIKE returns noise estimate (SD) as second output
options = bads('defaults');
options.SpecifyTargetNoise = true;
theta_ibs = bads(nllfun_ibs,theta0,LB,UB,PLB,PUB,[],options);
% Compare with MLE obtained using the analytical log-likelihood expression
fprintf('Maximum-likelihood estimation with BADS using the exact log-likelihood...\n');
fprintf('(press a key to continue)\n');
pause;
options = bads('defaults');
theta_exact = bads(@(x) psycho_nll(x,S,R),theta0,LB,UB,PLB,PUB,[],options);
%% Analysis of results
fprintf('Returned maximum-likelihood solutions with different methods:\n');
theta_ibs
theta_exact
fprintf('True data-generating parameter value:\n');
theta_true
% We compute now the log-likelihood at the returned solution with higher
% precision (100 repeats), and estimate its uncertainty
options_ibs = ibslike('defaults');
options_ibs.Nreps = 100;
options_ibs.ReturnStd = true;
% IBSLIKE returns as second output the variance of the IBS estimate
% (please note that this might change in future versions)
[nll_ibs,nll_std] = ibslike(@psycho_gen,theta_ibs,R,S,options_ibs);
nll_exact = psycho_nll(theta_exact,S,R);
fprintf('Estimated log-likelihood at the IBS-found solution: %.2f +/- %.2f (exact value: %.2f).\n', ...
-nll_ibs,nll_std,-psycho_nll(theta_ibs,S,R));
% We also evaluate the MLE found exactly
fprintf('Log-likelihood at the exact-found solution: %.2f.\n',-nll_exact);
% Note that even the exact MLE will differ from the true data-generating
% parameters due to finiteness of the dataset (we expect to recover the
% true data generating parameters in the limit NTRIALS -> infinity)
%% Bayesian posterior estimation
close all;
% We now fit the same data via a method that computes the Bayesian posterior
% over model parameters, called Variational Bayesian Monte Carlo (VBMC).
% If you do not have the VBMC toolbox installed, you can freely download it
% from here: https://github.com/acerbilab/vbmc
fprintf('Bayesian posterior estimation with Variational Bayesian Monte Carlo (VBMC) using IBS...\n');
fprintf('(press a key to continue)\n');
pause;
if isempty(which('vbmc.m')) % Check that you have VBMC
error('VBMC not found. You can install it from here: https://github.com/acerbilab/vbmc');
end
folder = fileparts(which('vbmc.m'));
addpath([folder filesep 'utils']); % Ensure that UTILS is on the path
% For VBMC, we need to return the POSITIVE log-likelihood as first output,
% and the standard deviation (not variance!) of the estimate as second
% output.
% Options for IBSLIKE
options_ibs = ibslike('defaults');
options_ibs.Nreps = 100; % Try and have a SD ~ 1 (and below 3)
options_ibs.ReturnPositive = true; % Return *positive* log-likelihood
options_ibs.ReturnStd = true; % 2nd output is SD (not variance!)
llfun = @(theta) ibslike(@psycho_gen,theta,R,S,options_ibs);
% We add a trapezoidal or "tent" prior over the parameters (flat between
% PLB and PUB, and linearly decreasing to 0 towards LB and UB).
lpriorfun = @(x) log(mtrapezpdf(x,LB,PLB,PUB,UB));
% Since LLFUN has now two outputs (the log likelihood at X, and the
% estimated SD of the log likelihood at X), we cannot directly sum the log
% prior from LPRIORFUN and the log likelihood from LLFUN.
% Thus, we use an auxiliary function LPOSTFUN that does exactly this.
fun = @(x) lpostfun(x,llfun,lpriorfun); % Log joint
% FUN will have two outputs: the first output is the sum of LLFUN and
% LPRIORFUN (the log joint), and the second output is the variability of
% LLFUN (that is, the second output of LLFUN). It is assumed that the prior
% can be computed analytically and adds no noise.
% Here we could use as starting point the result of a run of BADS
theta0 = 0.5*(PLB+PUB);
options = vbmc('defaults');
options.Plot = true; % Plot iterations
options.SpecifyTargetNoise = true; % Noisy function evaluations
% Run VBMC
[vp,elbo,elbo_sd] = vbmc(fun,theta0,LB,UB,PLB,PUB,options);
close all;
Xs = vbmc_rnd(vp,3e5); % Generate samples from the variational posterior
close all;
cornerplot(Xs,{'\eta (log noise)','bias','lapse'},[eta,bias,lapse]);
fprintf(' Have a look at the triangle-plot visualization of the approximate posterior.\n')
fprintf(' The black line represents the true generating parameters for the fake dataset.\n')
fprintf(' For more information, see tutorials and FAQ at <a href="https://github.com/acerbilab/vbmc">https://github.com/acerbilab/vbmc</a>.\n')
% Luigi Acerbi, 2021-2022