-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinarySearchTree.java
218 lines (199 loc) · 4.73 KB
/
BinarySearchTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/** @author Tej Patel
* Binary search tree
**/
package txp172630;
import java.util.Scanner;
public class BinarySearchTree<T extends Comparable<? super T>> {
static class Entry<T> {
T element;
Entry<T> left, right;
public Entry(T x, Entry<T> left, Entry<T> right) {
this.element = x;
this.left = left;
this.right = right;
}
}
Entry<T> root;
int size;
public BinarySearchTree() {
root = null;
size = 0;
}
// Returns true if BST contains element x.
public boolean contains(T x) {
return get(x) != null;
}
// Returns element is it is present in BST else null.
public T get(T x) {
Entry<T> node = root;
while (node != null) {
int compare = node.element.compareTo(x);
if (compare == 0) {
return node.element;
} else if (compare < 0) {
node = node.right;
} else {
node = node.left;
}
}
return null;
}
// Adds new element at leaf and returns true if element was not already
// present else replaces the element and returns false.
public boolean add(T x) {
if (root == null) {
root = new Entry<>(x, null, null);
size++;
}
Entry<T> node = root;
Entry<T> parent = null;
while (node != null) {
parent = node;
int compare = node.element.compareTo(x);
if (compare == 0) {
node.element = x;
return false;
} else if (compare < 0) {
node = node.right;
} else {
node = node.left;
}
}
if (parent.element.compareTo(x) > 0) {
parent.left = new Entry<>(x, null, null);
} else {
parent.right = new Entry<>(x, null, null);
}
size++;
return true;
}
// Removes and returns the element if present else returns null.
public T remove(T x) {
Entry<T> node = root;
Entry<T> parent = null;
while (node != null) {
int compare = node.element.compareTo(x);
if (compare == 0) {
T result = node.element;
// At least one child is null
if (node.left == null || node.right == null) {
bypass(parent, node);
} else {
// Replace element of node by minimum value in right subtree
Entry<T> minRight = node.right;
Entry<T> minRightParent = node;
while (minRight.left != null) {
minRightParent = minRight;
minRight = minRight.left;
}
node.element = minRight.element;
if (minRightParent.left == minRight) {
minRightParent.left = null;
} else {
minRightParent.right = null;
}
}
size--;
return result;
} else {
parent = node;
if (compare < 0) {
node = node.right;
} else {
node = node.left;
}
}
}
return null;
}
// Precondition: node has at-least one child null
private void bypass(Entry<T> parent, Entry<T> node) {
Entry<T> child = node.left != null ? node.left : node.right;
if (parent == null) {
root = child;
} else {
if (parent.left == node) {
parent.left = child;
} else {
parent.right = child;
}
}
}
// Get the minimum value in BST
public T min() {
Entry<T> node = root;
if (node == null) {
return null;
}
while (node.left != null) {
node = node.left;
}
return node.element;
}
// Get the maximum value in BST
public T max() {
Entry<T> node = root;
if (node == null) {
return null;
}
while (node.right != null) {
node = node.right;
}
return node.element;
}
private Object[] arr;
private int index;
@SuppressWarnings("unchecked")
public Comparable<T>[] toArray() {
this.arr = new Comparable[size];
index = 0;
inorder(root);
return (Comparable<T>[]) this.arr;
}
// Inorder traversal to fill the array
public void inorder(Entry<T> root) {
if (root != null) {
inorder(root.left);
arr[index++] = root.element;
inorder(root.right);
}
}
public static void main(String[] args) {
BinarySearchTree<Integer> t = new BinarySearchTree<>();
@SuppressWarnings("resource")
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
int x = in.nextInt();
if (x > 0) {
System.out.print("Add " + x + " : ");
t.add(x);
t.printTree();
} else if (x < 0) {
System.out.print("Remove " + x + " : ");
t.remove(-x);
t.printTree();
} else {
Object[] arr = t.toArray();
System.out.print("Final: ");
for (int i = 0; i < t.size; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
}
}
public void printTree() {
System.out.print("[" + size + "]");
printTree(root);
System.out.println();
}
// Inorder traversal of tree
void printTree(Entry<T> node) {
if (node != null) {
printTree(node.left);
System.out.print(" " + node.element);
printTree(node.right);
}
}
}