-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
286 lines (238 loc) · 12.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from copy import deepcopy
import numpy as np
import os
import pandas as pd
from spynal.matIO import loadmat
import time
from tqdm.auto import tqdm
def get_data_class(session, all_data_dir):
data_class = None
for (dirpath, dirnames, filenames) in os.walk(all_data_dir):
if f"{session}.mat" in filenames:
data_class = os.path.basename(dirpath)
break
if data_class is None:
raise ValueError(f"Neural data for session {session} could not be found in the provided folder.")
return data_class
def compile_grid_results(session, grid_search_results_dir, areas=None, normed=False):
if normed is False:
norm_folder = 'NOT_NORMED'
else:
norm_folder = 'NORMED'
if areas is None:
areas = os.listdir(os.path.join(grid_search_results_dir, session, norm_folder))
session_results = {}
for area in areas:
df = pd.DataFrame({'window': [], 'matrix_size': [], 'r': [], 'AICs': [], 'time_vals': [], 'file_paths': []}).set_index(['window', 'matrix_size', 'r'])
area_folder = os.path.join(grid_search_results_dir, session, norm_folder, area)
for f in os.listdir(area_folder):
t = float(f.split('_')[0])
file_path = os.path.join(area_folder, f)
df_new = pd.DataFrame(pd.read_pickle(file_path))
if np.isnan(df_new.AIC).sum() > 0:
print(file_path)
df_new = df_new.set_index(['window', 'matrix_size', 'r'])
for i, row in df_new.iterrows():
if i in df.index:
df.loc[i, 'AICs'].append(row.AIC)
df.loc[i, 'time_vals'].append(t)
df.loc[i, 'file_paths'].append(file_path)
else:
df.loc[i] = {'AICs': [row.AIC], 'time_vals': [t], 'file_paths': [file_path]}
df = df.loc[df.index.sortlevel()[0]]
session_results[area] = df
return session_results
def combine_grid_results(results_dict):
all_results = None
for key, results in results_dict.items():
if all_results is None:
all_results = deepcopy(results)
if 'AICs' not in all_results.columns:
all_results['AICs'] = all_results.AIC.apply(lambda x: [x])
all_results = all_results.drop('AIC', axis='columns')
else:
for i, row in results.iterrows():
if i in all_results.index:
if 'AICs' in row:
all_results.loc[i, 'AICs'].extend(row.AICs)
else:
all_results.loc[i, 'AICs'].append(row.AIC)
if 'time_vals' in all_results.columns:
all_results.loc[i, 'time_vals'].extend(row.time_vals)
if 'file_paths' in all_results.columns:
all_results.loc[i, 'file_paths'].extend(row.file_paths)
else:
if 'AICs' in row:
all_results.loc[i] = {'AICs': row.AICs, 'time_vals': row.time_vals, 'file_paths': row.file_paths}
else:
all_results.loc[i] = {'AICs': [row.AIC], 'time_vals': row.time_vals, 'file_paths': row.file_paths}
# full_length_inds = all_results.AICs.apply(lambda x: len(x)) == all_results.AICs.apply(lambda x: len(x)).max()
# window, matrix_size, r = all_results.index[full_length_inds][all_results[full_length_inds].AICs.apply(lambda x: np.mean(x)).argmin()]
# all_results = all_results.drop(all_results[all_results.index.get_level_values('matrix_size') < all_results.index.get_level_values('r')].index, inplace=False)
# window, matrix_size, r = all_results.index[all_results.AICs.apply(lambda x: np.mean(x)).argmin()]
while True:
opt_index = all_results.index[all_results.AICs.apply(lambda x: np.mean(x)).argmin()]
in_all_dfs = True
for key, result in results_dict.items():
if opt_index not in result.index:
in_all_dfs = False
break
if in_all_dfs:
break
else:
all_results = all_results.drop(opt_index, inplace=False)
window, matrix_size, r = opt_index
return window, matrix_size, r, all_results
def get_chosen_params(session, stability_results_dir, grid_search_results_dir, normed=False):
chosen_params_dir = os.path.join(stability_results_dir, 'chosen_params')
os.makedirs(chosen_params_dir, exist_ok=True)
chosen_params_filepath = os.path.join(chosen_params_dir, session)
if os.path.exists(chosen_params_filepath):
chosen_params = pd.read_pickle(chosen_params_filepath)
else:
session_grid_results = compile_grid_results(session, grid_search_results_dir, normed=normed)
chosen_params = {}
for area in session_grid_results.keys():
window, matrix_size, r, all_results = combine_grid_results({area: session_grid_results[area]})
chosen_params[area] = dict(
window=window,
matrix_size=matrix_size,
r=r
)
pd.to_pickle(chosen_params, chosen_params_filepath)
return chosen_params
def get_stability_run_list(session, stability_results_dir, grid_search_results_dir, all_data_dir, normed=False, T_pred=None, stride=None):
stability_run_list_dir = os.path.join(stability_results_dir, 'stability_run_lists')
os.makedirs(stability_run_list_dir, exist_ok=True)
stability_run_list_file = os.path.join(stability_run_list_dir, session)
if os.path.exists(stability_run_list_file):
stability_run_list = pd.read_pickle(stability_run_list_file)
# MAKE THE LIST
else:
chosen_params = get_chosen_params(session, stability_results_dir, grid_search_results_dir, normed=normed)
# GET SESSION INFO
data_class = get_data_class(session, all_data_dir)
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
variables = ['electrodeInfo', 'lfpSchema']
session_vars, T, N, dt = load_session_data(session, all_data_dir, variables, data_class=data_class, verbose=False)
electrode_info, lfp_schema = session_vars['electrodeInfo'], session_vars['lfpSchema']
areas = np.unique(electrode_info['area'])
areas = np.concatenate((areas, ('all',)))
directory_path = os.path.join(all_data_dir, data_class, session + '_lfp_chunked_20s', 'directory')
stability_run_list = {}
for area in areas:
stability_run_list[area] = []
window = chosen_params[area]['window']
if stride is None:
stride = window
if T_pred is None:
T_pred = window
if area == 'all':
unit_indices = np.arange(len(electrode_info['area']))
else:
unit_indices = np.where(electrode_info['area'] == area)[0]
num_windows = int(np.floor((T - (window + T_pred))/stride)) + 1
window_start_times = np.arange(num_windows)*dt*stride
for window_start in window_start_times:
stability_run_list[area].append(dict(
session=session,
area=area,
window_start=window_start,
window_end=window_start + window*dt,
test_window_start=window_start + window*dt,
test_window_end=window_start + (T_pred + window)*dt,
dimension_inds=unit_indices,
directory_path=directory_path
))
stability_run_list[area][-1] = stability_run_list[area][-1] | chosen_params[area]
pd.to_pickle(stability_run_list, stability_run_list_file)
return stability_run_list
def save_lfp_chunks(session, chunk_time_s=4*60):
all_data_dir = f"/om/user/eisenaj/datasets/anesthesia/mat"
data_class = get_data_class(session, all_data_dir)
filename = os.path.join(all_data_dir, data_class, f'{session}.mat')
print("Loading data ...")
start = time.process_time()
lfp, lfp_schema = loadmat(filename, variables=['lfp', 'lfpSchema'], verbose=False)
dt = lfp_schema['smpInterval'][0]
fs = 1/dt
print(f"Data loaded (took {time.process_time() - start:.2f} seconds)")
save_dir = os.path.join(all_data_dir, data_class, f"{session}_lfp_chunked_{chunk_time_s}s")
os.makedirs(save_dir, exist_ok=True)
chunk_width = int(chunk_time_s*fs)
num_chunks = int(np.ceil(lfp.shape[0]/chunk_width))
directory = []
for i in tqdm(range(num_chunks)):
start_ind = i*chunk_width
end_ind = np.min([(i+1)*chunk_width, lfp.shape[0]])
chunk = lfp[start_ind:end_ind]
filepath = os.path.join(save_dir, f"chunk_{i}")
if os.path.exists(filepath):
print(f"Chunk at {filepath} already exists")
else:
pd.to_pickle(chunk, filepath)
directory.append(dict(
start_ind=start_ind,
end_ind=end_ind,
filepath=filepath,
start_time=start_ind*dt,
end_time=end_ind*dt
))
directory = pd.DataFrame(directory)
pd.to_pickle(directory, os.path.join(save_dir, "directory"))
# print(f"Chunk: {start_ind/(1000*60)} min to {end_ind/(1000*60)} ([{start_ind}, {end_ind}])")
def load_window_from_chunks(window_start, window_end, directory, dimension_inds=None):
dt = directory.end_time.iloc[0]/directory.end_ind.iloc[0]
fs = 1/dt
window_start = int(window_start*fs)
window_end = int(window_end*fs)
start_time_bool = directory.start_ind <= window_start
start_row = np.argmin(start_time_bool) - 1 if np.sum(start_time_bool) < len(directory) else len(directory) - 1
end_time_bool = directory.end_ind > window_end
end_row = np.argmax(end_time_bool) if np.sum(end_time_bool) > 0 else len(directory) - 1
window_data = None
pos_in_window = 0
for row_ind in range(start_row, end_row + 1):
row = directory.iloc[row_ind]
chunk = pd.read_pickle(row.filepath)
if dimension_inds is None:
dimension_inds = np.arange(chunk.shape[1])
if window_data is None:
window_data = np.zeros((window_end - window_start, len(dimension_inds)))
if row.start_ind <= window_start:
start_in_chunk = window_start - row.start_ind
else:
start_in_chunk = 0
if row.end_ind <= window_end:
end_in_chunk = chunk.shape[0]
else:
end_in_chunk = window_end - row.start_ind
window_data[pos_in_window:pos_in_window + end_in_chunk - start_in_chunk] = chunk[start_in_chunk:end_in_chunk, dimension_inds]
pos_in_window += end_in_chunk - start_in_chunk
return window_data
def load_session_data(session, all_data_dir, variables, data_class=None, verbose=True):
if data_class is None:
data_class = get_data_class(session, all_data_dir)
filename = os.path.join(all_data_dir, data_class, f'{session}.mat')
start = time.process_time()
if 'lfpSchema' not in variables:
variables.append('lfpSchema')
if verbose:
print(f"Loading data: {variables}...")
start = time.process_time()
session_vars = {}
for arg in variables:
session_vars[arg] = loadmat(filename, variables=[arg], verbose=verbose)
if verbose:
print(f"Data loaded (took {time.process_time() - start:.2f} seconds)")
if 'electrodeInfo' in variables:
if session in ['MrJones-Anesthesia-20160201-01', 'MrJones-Anesthesia-20160206-01', 'MrJones-Anesthesia-20160210-01']:
session_vars['electrodeInfo']['area'] = np.delete(session_vars['electrodeInfo']['area'], np.where(np.arange(len(session_vars['electrodeInfo']['area'])) == 60))
session_vars['electrodeInfo']['channel'] = np.delete(session_vars['electrodeInfo']['channel'], np.where(np.arange(len(session_vars['electrodeInfo']['channel'])) == 60))
session_vars['electrodeInfo']['NSP'] = np.delete(session_vars['electrodeInfo']['NSP'], np.where(np.arange(len(session_vars['electrodeInfo']['NSP'])) == 60))
elif data_class == 'leverOddball':
session_vars['electrodeInfo']['area'] = np.array([f"{area}-{h[0].upper()}" for area, h in zip(session_vars['electrodeInfo']['area'], session_vars['electrodeInfo']['hemisphere'])])
T = len(session_vars['lfpSchema']['index'][0])
N = len(session_vars['lfpSchema']['index'][1])
dt = session_vars['lfpSchema']['smpInterval'][0]
return session_vars, T, N, dt