\n",
@@ -905,19 +901,23 @@
" \n",
" \n",
"
"
+ ],
+ "text/plain": [
+ ""
]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"TrainOutput(global_step=128, training_loss=0.6968793570995331, metrics={'train_runtime': 55.5306, 'train_samples_per_second': 72.032, 'train_steps_per_second': 2.305, 'total_flos': 293495135040000.0, 'train_loss': 0.6968793570995331, 'epoch': 8.0})"
]
},
+ "execution_count": 10,
"metadata": {},
- "execution_count": 10
+ "output_type": "execute_result"
}
],
"source": [
@@ -940,6 +940,10 @@
"cell_type": "code",
"execution_count": 11,
"metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-08-17T09:34:08.620963600Z",
+ "start_time": "2023-08-17T09:34:04.407241200Z"
+ },
"colab": {
"base_uri": "https://localhost:8080/",
"height": 426,
@@ -1057,16 +1061,12 @@
]
},
"id": "cMgM1supdxpw",
- "outputId": "e7dbf1f2-60f8-480d-8cd6-b601cecd697c",
- "ExecuteTime": {
- "end_time": "2023-08-17T09:34:08.620963600Z",
- "start_time": "2023-08-17T09:34:04.407241200Z"
- }
+ "outputId": "e7dbf1f2-60f8-480d-8cd6-b601cecd697c"
},
"outputs": [
{
- "output_type": "stream",
"name": "stderr",
+ "output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/datasets/load.py:2080: FutureWarning: 'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.\n",
"You can remove this warning by passing 'verification_mode=no_checks' instead.\n",
@@ -1074,148 +1074,148 @@
]
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Downloading builder script: 0%| | 0.00/3.90k [00:00, ?B/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "216fc1dd69b840788de0425040d646a3",
"version_major": 2,
- "version_minor": 0,
- "model_id": "216fc1dd69b840788de0425040d646a3"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading builder script: 0%| | 0.00/3.90k [00:00, ?B/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Downloading metadata: 0%| | 0.00/60.6k [00:00, ?B/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "1937074f179040e2b96d7972dc1a6998",
"version_major": 2,
- "version_minor": 0,
- "model_id": "1937074f179040e2b96d7972dc1a6998"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading metadata: 0%| | 0.00/60.6k [00:00, ?B/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Downloading readme: 0%| | 0.00/19.0k [00:00, ?B/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "8b2b2f05acac4711a1e31018247dda4b",
"version_major": 2,
- "version_minor": 0,
- "model_id": "8b2b2f05acac4711a1e31018247dda4b"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading readme: 0%| | 0.00/19.0k [00:00, ?B/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Downloading data files: 0%| | 0/2 [00:00, ?it/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "1759469306854432b2d4d6618fc45776",
"version_major": 2,
- "version_minor": 0,
- "model_id": "1759469306854432b2d4d6618fc45776"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading data files: 0%| | 0/2 [00:00, ?it/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Downloading data: 0%| | 0.00/5.32k [00:00, ?B/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "40c2e934eb384c8c8d3f19a9779b28d9",
"version_major": 2,
- "version_minor": 0,
- "model_id": "40c2e934eb384c8c8d3f19a9779b28d9"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading data: 0%| | 0.00/5.32k [00:00, ?B/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Downloading data: 0%| | 0.00/23.3k [00:00, ?B/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "650cc1472a394fdc854f7fcac4594317",
"version_major": 2,
- "version_minor": 0,
- "model_id": "650cc1472a394fdc854f7fcac4594317"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading data: 0%| | 0.00/23.3k [00:00, ?B/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Generating validation split: 0%| | 0/100 [00:00, ? examples/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "7f9ef06955b74b1d95011fe7c38c4cb2",
"version_major": 2,
- "version_minor": 0,
- "model_id": "7f9ef06955b74b1d95011fe7c38c4cb2"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating validation split: 0%| | 0/100 [00:00, ? examples/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Generating test split: 0%| | 0/500 [00:00, ? examples/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "66881711810a4ad28f08bff9bd15e6fd",
"version_major": 2,
- "version_minor": 0,
- "model_id": "66881711810a4ad28f08bff9bd15e6fd"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating test split: 0%| | 0/500 [00:00, ? examples/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Map: 0%| | 0/100 [00:00, ? examples/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "6e64c9f038fa4e57a374802726b5db3d",
"version_major": 2,
- "version_minor": 0,
- "model_id": "6e64c9f038fa4e57a374802726b5db3d"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/100 [00:00, ? examples/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Map: 0%| | 0/500 [00:00, ? examples/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "3bf4f93b8e7e4b4aa8d4af2fd8683a56",
"version_major": 2,
- "version_minor": 0,
- "model_id": "3bf4f93b8e7e4b4aa8d4af2fd8683a56"
- }
- },
- "metadata": {}
- },
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/500 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"{'labels': 0, 'input_ids': [[0, 6, 4941, 55359, 1173, 7825, 30638, 90132, 44507, 5702, 1562, 30, 22304, 2, 2, 6, 3800, 2165, 15068, 69175, 30, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 6, 4941, 55359, 1173, 7825, 30638, 90132, 44507, 5702, 1562, 30, 22304, 2, 2, 6, 3800, 2165, 1128, 30, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}\n"
]
@@ -1240,11 +1240,11 @@
"cell_type": "code",
"execution_count": 12,
"metadata": {
- "id": "V04UntKfeK_z",
"ExecuteTime": {
"end_time": "2023-08-17T09:34:44.463042Z",
"start_time": "2023-08-17T09:34:44.446088100Z"
- }
+ },
+ "id": "V04UntKfeK_z"
},
"outputs": [],
"source": [
@@ -1264,24 +1264,20 @@
"cell_type": "code",
"execution_count": 13,
"metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-08-17T09:35:01.032697600Z",
+ "start_time": "2023-08-17T09:34:47.053111900Z"
+ },
"colab": {
"base_uri": "https://localhost:8080/",
"height": 124
},
"id": "CrW1cJyaeMox",
- "outputId": "2a548b3f-93e8-46b2-eb09-60ff63ba63b9",
- "ExecuteTime": {
- "end_time": "2023-08-17T09:35:01.032697600Z",
- "start_time": "2023-08-17T09:34:47.053111900Z"
- }
+ "outputId": "2a548b3f-93e8-46b2-eb09-60ff63ba63b9"
},
"outputs": [
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- ""
- ],
"text/html": [
"\n",
" \n",
@@ -1290,12 +1286,15 @@
" [63/63 00:04]\n",
"
\n",
" "
+ ],
+ "text/plain": [
+ ""
]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"{'eval_loss': 0.6925755739212036,\n",
@@ -1305,8 +1304,9 @@
" 'eval_steps_per_second': 12.682}"
]
},
+ "execution_count": 13,
"metadata": {},
- "execution_count": 13
+ "output_type": "execute_result"
}
],
"source": [
@@ -1338,10 +1338,11 @@
}
],
"metadata": {
+ "accelerator": "GPU",
"colab": {
+ "gpuType": "T4",
"provenance": [],
- "toc_visible": true,
- "gpuType": "T4"
+ "toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
@@ -1370,98 +1371,47 @@
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
- "660b81766f7044b6a1ce2f8c2c45f461": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_1250b158a5b945da8d19b0ecdfefde34",
- "IPY_MODEL_6b2003198e274ef7a474ec222624be1c",
- "IPY_MODEL_8ee881038ff4488382ca006a07c9ed6d"
- ],
- "layout": "IPY_MODEL_4fa6d2b22bbe4c1a87cb436dfecefe0c"
- }
- },
- "1250b158a5b945da8d19b0ecdfefde34": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0ac38ac59979437196a82149dab2fb14",
- "placeholder": "",
- "style": "IPY_MODEL_7815c3cab73740b29687228f3e0d1fa7",
- "value": "Downloading builder script: 100%"
- }
- },
- "6b2003198e274ef7a474ec222624be1c": {
+ "006b4341bbea4f29a9f5c053045df606": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_38411915569f487c9bc36f29c292935e",
- "max": 30733,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c601dba9e79840aeb7f832732564128c",
- "value": 30733
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "8ee881038ff4488382ca006a07c9ed6d": {
+ "017e9f5721174b169f12cff28faee34d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0781ed37deef4341a2c37fa0bbb3bac1",
- "placeholder": "",
- "style": "IPY_MODEL_a7e4a4dfb7054ca8bfcf7358999ae34c",
- "value": " 30.7k/30.7k [00:00<00:00, 1.37MB/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9be4c5e49284455fbc1afb8a360de1b0",
+ "IPY_MODEL_e4fc0ef10700445ba9a49390c45a5716",
+ "IPY_MODEL_5abb6e6728184cdb9450ed543aea8936"
+ ],
+ "layout": "IPY_MODEL_4d231168533a4bf4a63ffbc0d53271cc"
}
},
- "4fa6d2b22bbe4c1a87cb436dfecefe0c": {
+ "0243ae5e50fb4186989be9966c9962c4": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1510,10 +1460,10 @@
"width": null
}
},
- "0ac38ac59979437196a82149dab2fb14": {
+ "0280590b0bfe4e8390f172a0f7ea3f12": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1562,25 +1512,34 @@
"width": null
}
},
- "7815c3cab73740b29687228f3e0d1fa7": {
+ "03cb547ad56b4c1db3fb373969eacf85": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b2c3e773ab524ad381102340a59c7e9f",
+ "max": 2,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_11e1cbaec2fb4276b7e0f53465f214ee",
+ "value": 2
}
},
- "38411915569f487c9bc36f29c292935e": {
+ "053917bbf7fc43a0887752403a972737": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1629,26 +1588,31 @@
"width": null
}
},
- "c601dba9e79840aeb7f832732564128c": {
+ "060c7ff1420142b09b701ea4d9010e55": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bf728e3f4516450aa5bf3c928d188d88",
+ "placeholder": "",
+ "style": "IPY_MODEL_7768ac1f0f97461bafe3db188fe0c2a7",
+ "value": " 100/100 [00:00<00:00, 1931.92 examples/s]"
}
},
- "0781ed37deef4341a2c37fa0bbb3bac1": {
+ "06db73f59d764ac2b52cec52fdcd1d04": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1697,117 +1661,66 @@
"width": null
}
},
- "a7e4a4dfb7054ca8bfcf7358999ae34c": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
+ "0781ed37deef4341a2c37fa0bbb3bac1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "017e9f5721174b169f12cff28faee34d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
+ "07ff9bc229874e51b085d015bb1c433e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9be4c5e49284455fbc1afb8a360de1b0",
- "IPY_MODEL_e4fc0ef10700445ba9a49390c45a5716",
- "IPY_MODEL_5abb6e6728184cdb9450ed543aea8936"
- ],
- "layout": "IPY_MODEL_4d231168533a4bf4a63ffbc0d53271cc"
- }
- },
- "9be4c5e49284455fbc1afb8a360de1b0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_920ccb52e17a4a18a329bb756c9c35b3",
- "placeholder": "",
- "style": "IPY_MODEL_1e62c62899b8448f8969500f0db73d92",
- "value": "Downloading metadata: 100%"
- }
- },
- "e4fc0ef10700445ba9a49390c45a5716": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_eaeb678c01ef4c89b31db675a724d377",
- "max": 38726,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_516d0dc1bfc34d0392930e884fac47ae",
- "value": 38726
- }
- },
- "5abb6e6728184cdb9450ed543aea8936": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2973c0914c2c409585aa45ac477d8f5c",
- "placeholder": "",
- "style": "IPY_MODEL_27654c501e7a4484805ecffdafdcd185",
- "value": " 38.7k/38.7k [00:00<00:00, 2.15MB/s]"
- }
- },
- "4d231168533a4bf4a63ffbc0d53271cc": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
@@ -1852,10 +1765,34 @@
"width": null
}
},
- "920ccb52e17a4a18a329bb756c9c35b3": {
+ "0aa649b5e9b2461093c9958fc03f0af8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ab991f7fb1504bd5b6fca2c8357e4c83",
+ "max": 43986,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2e4d7e53bea847819dd5b72b49a80e9e",
+ "value": 43986
+ }
+ },
+ "0ac38ac59979437196a82149dab2fb14": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1904,10 +1841,10 @@
"width": null
}
},
- "1e62c62899b8448f8969500f0db73d92": {
+ "0b8adcc5ad1148ba847f3a0eb07ff354": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -1919,10 +1856,31 @@
"description_width": ""
}
},
- "eaeb678c01ef4c89b31db675a724d377": {
+ "0c622cfb456f4317a2952fb781738e80": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b901332db22e401e905cdef9f9083a7f",
+ "placeholder": "",
+ "style": "IPY_MODEL_2fd02c7a887e40829d1bb16304a14b22",
+ "value": " 500/500 [00:00<00:00, 5114.24 examples/s]"
+ }
+ },
+ "0cb39e011e5b4373a25d2e4d0f158b30": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1971,26 +1929,10 @@
"width": null
}
},
- "516d0dc1bfc34d0392930e884fac47ae": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "2973c0914c2c409585aa45ac477d8f5c": {
+ "0efe23c68b3d4b9b92c5f89648656910": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2039,47 +1981,31 @@
"width": null
}
},
- "27654c501e7a4484805ecffdafdcd185": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "79ddbccc453643689f129740e5148e24": {
+ "0f07f12c5f8a4e158aed6db3b6a5c719": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_22e8d2d6a5f1402fa49a849521d137b1",
- "IPY_MODEL_7060341f58854fbf8621a0aef79b4f0c",
- "IPY_MODEL_f481c31c5e0d493c943d489409178d11"
- ],
- "layout": "IPY_MODEL_3945de5d21e24d8d8f1e9f02d596b46c"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ef81ac8f601d43dc8dc9f63e86ce6d5e",
+ "placeholder": "",
+ "style": "IPY_MODEL_761012fd1a874580b2292b344e90aa36",
+ "value": " 9.10M/9.10M [00:00<00:00, 18.9MB/s]"
}
},
- "22e8d2d6a5f1402fa49a849521d137b1": {
+ "0f4c24c2eaa84981a51ca8043e881218": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -2091,61 +2017,56 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_117ee29d11ff46d3a77d07d1676e64a1",
+ "layout": "IPY_MODEL_99360f3c8571451f958c1dd73283674e",
"placeholder": "",
- "style": "IPY_MODEL_6ba212cc0c384d3b88498ebc5fe7b60d",
- "value": "Downloading readme: 100%"
+ "style": "IPY_MODEL_1cc3cec507844485850a5b95d3db6e9d",
+ "value": " 100/100 [00:00<00:00, 2548.99 examples/s]"
}
},
- "7060341f58854fbf8621a0aef79b4f0c": {
+ "1014511855324a61a1c90e299470f4b9": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_efefa88ed4c64045b05db81984e8a3e7",
- "max": 14813,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c22dbe3bce3d44f397ab8a427609c1e0",
- "value": 14813
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "f481c31c5e0d493c943d489409178d11": {
+ "11717755bc314c7fa47765a8042a5bc5": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_78ce2352d3e14733bb5459a59d94f2bb",
- "placeholder": "",
- "style": "IPY_MODEL_7ded086d37894a9e94142d6775d78b91",
- "value": " 14.8k/14.8k [00:00<00:00, 921kB/s]"
+ "layout": "IPY_MODEL_0cb39e011e5b4373a25d2e4d0f158b30",
+ "max": 9096718,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a6e4ccabfd9f42d99d66848938467f2d",
+ "value": 9096718
}
},
- "3945de5d21e24d8d8f1e9f02d596b46c": {
+ "117ee29d11ff46d3a77d07d1676e64a1": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2194,77 +2115,68 @@
"width": null
}
},
- "117ee29d11ff46d3a77d07d1676e64a1": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
+ "11b11def7bff484191999b63753e780b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ee1a05c0abb94b3fabbbbcbbc44833b8",
+ "placeholder": "",
+ "style": "IPY_MODEL_740f9bd6524f4af0bc79be53039a7961",
+ "value": " 60.6k/60.6k [00:00<00:00, 3.29MB/s]"
}
},
- "6ba212cc0c384d3b88498ebc5fe7b60d": {
+ "11e1cbaec2fb4276b7e0f53465f214ee": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "efefa88ed4c64045b05db81984e8a3e7": {
+ "1250b158a5b945da8d19b0ecdfefde34": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0ac38ac59979437196a82149dab2fb14",
+ "placeholder": "",
+ "style": "IPY_MODEL_7815c3cab73740b29687228f3e0d1fa7",
+ "value": "Downloading builder script: 100%"
+ }
+ },
+ "145203b1303a40f6beb445c853de4a7d": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2313,26 +2225,54 @@
"width": null
}
},
- "c22dbe3bce3d44f397ab8a427609c1e0": {
+ "15c65deba3fa46ea914c95f86dbc01eb": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_afc89fd0f8f2469a8e787389fb8896b0",
+ "IPY_MODEL_0aa649b5e9b2461093c9958fc03f0af8",
+ "IPY_MODEL_45dd2cc789e24b958c9055248889db41"
+ ],
+ "layout": "IPY_MODEL_f3827cc78cd149408fcb4a38eb7794f6"
}
},
- "78ce2352d3e14733bb5459a59d94f2bb": {
+ "1759469306854432b2d4d6618fc45776": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_cf257fbfb5824f99af08146161fb0f67",
+ "IPY_MODEL_03cb547ad56b4c1db3fb373969eacf85",
+ "IPY_MODEL_f2619549195c4090a453c551710cdb65"
+ ],
+ "layout": "IPY_MODEL_988ea2ed503f44b5bc8ff16844967d48"
+ }
+ },
+ "17b4e1697bb848ad9b1c74993a05b64d": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2381,10 +2321,10 @@
"width": null
}
},
- "7ded086d37894a9e94142d6775d78b91": {
+ "1883a118e9ab4e8b96e0941113d9c240": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -2396,10 +2336,10 @@
"description_width": ""
}
},
- "15c65deba3fa46ea914c95f86dbc01eb": {
+ "1937074f179040e2b96d7972dc1a6998": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -2411,17 +2351,17 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_afc89fd0f8f2469a8e787389fb8896b0",
- "IPY_MODEL_0aa649b5e9b2461093c9958fc03f0af8",
- "IPY_MODEL_45dd2cc789e24b958c9055248889db41"
+ "IPY_MODEL_cb4f9dccc08c4caab16774ea9a133b2b",
+ "IPY_MODEL_7917c44d3ec94fc7ad80e1657fc1627b",
+ "IPY_MODEL_11b11def7bff484191999b63753e780b"
],
- "layout": "IPY_MODEL_f3827cc78cd149408fcb4a38eb7794f6"
+ "layout": "IPY_MODEL_7e23d208fd96406186ea49ddc340eaa0"
}
},
- "afc89fd0f8f2469a8e787389fb8896b0": {
+ "19a6a0e0d1af471b8066ad37f12475e7": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -2433,61 +2373,47 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0280590b0bfe4e8390f172a0f7ea3f12",
+ "layout": "IPY_MODEL_87c4fc3dca7f433ca231128105a54666",
"placeholder": "",
- "style": "IPY_MODEL_d4b15a4562e2489c8509f7b45b167575",
- "value": "Downloading data: 100%"
+ "style": "IPY_MODEL_378ee4cd7535482289464c78fdfccff5",
+ "value": " 5.07M/5.07M [00:00<00:00, 13.7MB/s]"
}
},
- "0aa649b5e9b2461093c9958fc03f0af8": {
+ "1a555ff033ce47f389abc112b42475e9": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ab991f7fb1504bd5b6fca2c8357e4c83",
- "max": 43986,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_2e4d7e53bea847819dd5b72b49a80e9e",
- "value": 43986
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "45dd2cc789e24b958c9055248889db41": {
+ "1a5d8044a2254d0881d854c0b01d7141": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f4bcca5b6b7643c99a520db52b769784",
- "placeholder": "",
- "style": "IPY_MODEL_44f12b979f684345995cb8694ac2f30f",
- "value": " 44.0k/44.0k [00:00<00:00, 1.69MB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "f3827cc78cd149408fcb4a38eb7794f6": {
+ "1b1634fa3d4a4faa80555ee6f1672600": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2536,10 +2462,40 @@
"width": null
}
},
- "0280590b0bfe4e8390f172a0f7ea3f12": {
+ "1bb95488e26d4cc9865b91d1af06e792": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1cc3cec507844485850a5b95d3db6e9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1d634f5a0ee34c3f8ca0edb228bc9ed9": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2588,10 +2544,10 @@
"width": null
}
},
- "d4b15a4562e2489c8509f7b45b167575": {
+ "1e62c62899b8448f8969500f0db73d92": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -2603,10 +2559,10 @@
"description_width": ""
}
},
- "ab991f7fb1504bd5b6fca2c8357e4c83": {
+ "1eabfe440e39437190c7a466b0967798": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2655,14 +2611,491 @@
"width": null
}
},
- "2e4d7e53bea847819dd5b72b49a80e9e": {
+ "1f47605b01224bcfa8464c6d498fa1d1": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "216fc1dd69b840788de0425040d646a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9ab974ee666c47b0ac46d5112d5abdf5",
+ "IPY_MODEL_e500b37792734768892e8548250ca1a5",
+ "IPY_MODEL_24e3f9dc7a9742eaafad98f423a550df"
+ ],
+ "layout": "IPY_MODEL_c475cfa85927479b9604bb4a33183957"
+ }
+ },
+ "221597e24fd14a0e8e67321692f615b8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "22e8d2d6a5f1402fa49a849521d137b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_117ee29d11ff46d3a77d07d1676e64a1",
+ "placeholder": "",
+ "style": "IPY_MODEL_6ba212cc0c384d3b88498ebc5fe7b60d",
+ "value": "Downloading readme: 100%"
+ }
+ },
+ "236e4fb59b3e418993ed329310de2457": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5f96be3d44ed4d37b73dcc358a5756be",
+ "placeholder": "",
+ "style": "IPY_MODEL_355075984c274acba555a874dc51f987",
+ "value": "Downloading (…)lm-roberta-base.json: "
+ }
+ },
+ "23e490b5be9d45f682030f7193b740fc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "240b1eb858834defb5f1069f017e859e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "24e3f9dc7a9742eaafad98f423a550df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4af55acfc6274c88b14c8441dd395df2",
+ "placeholder": "",
+ "style": "IPY_MODEL_fcd662335f9447cb87bd66b55fea1f41",
+ "value": " 3.90k/3.90k [00:00<00:00, 264kB/s]"
+ }
+ },
+ "24e6ff03c6b04b94bd729a09a93d4841": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "25962637853646f0a19e320bee136091": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ddd3c45654f4476eb1eb2d30e621f6a3",
+ "placeholder": "",
+ "style": "IPY_MODEL_bae3fdd732764d08a5e417f76a94b17d",
+ "value": "Downloading data: "
+ }
+ },
+ "26b04e0848d74b20988237710bb52aa6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "26b4f219a8ef4d52a4c34ee304e31fd1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "27654c501e7a4484805ecffdafdcd185": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "289f94db4e314211aad1ac6a6be977f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d77b2877257b4b379f74165434212dd4",
+ "placeholder": "",
+ "style": "IPY_MODEL_0b8adcc5ad1148ba847f3a0eb07ff354",
+ "value": "Generating test split: 100%"
+ }
+ },
+ "2973c0914c2c409585aa45ac477d8f5c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2ac898ff598e40a1a28ef7b5350f3f57": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2bc1eb041c624197b006ca3c29e6819d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2da273f7585c4b45a36f55d5f112e581": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2dcbf0d434494c4ca36c74fb97be7df5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_befb2622d31b436f8d8cb25d35243989",
+ "placeholder": "",
+ "style": "IPY_MODEL_26b4f219a8ef4d52a4c34ee304e31fd1",
+ "value": "Generating test split: 100%"
+ }
+ },
+ "2e4d7e53bea847819dd5b72b49a80e9e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
@@ -2671,10 +3104,216 @@
"description_width": ""
}
},
- "f4bcca5b6b7643c99a520db52b769784": {
+ "2e9e85dcb24941468f9a1de54f613ce0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2e9fd37ed5e143fab800eb002c8da795": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_69d1a3bfc69e48a986a1f53ea68ffdd3",
+ "max": 100,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a5b9bfd0475045f885fb0f77accb9952",
+ "value": 100
+ }
+ },
+ "2f5bd7a50398424da94c61c6f8e3a125": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2fbc66f9f17043be8b03fe8cb84ac0d6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2fd02c7a887e40829d1bb16304a14b22": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "30a08ac6bd9445508d6fd68ca162bd49": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_80ebeea5e6ba46a0a228965232996340",
+ "max": 29562325,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_398722250162461dbd886d13a8e93257",
+ "value": 29562325
+ }
+ },
+ "3153dae8974246a8ba3217a47ce8ee7c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6fae67869ca04721bd03f4995c3259d6",
+ "max": 1115567652,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_dfb749a8532d422f87e9c8bd4302a4a0",
+ "value": 1115567652
+ }
+ },
+ "327bfa1cb0e54c95993ce8fe01be7abc": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2723,113 +3362,85 @@
"width": null
}
},
- "44f12b979f684345995cb8694ac2f30f": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "52b2e86553c14b148d37d3dddc3bc464": {
+ "3501ed620e24462ebe622aceabb3bd3d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d282ec102d7340b897516669788ed66a",
- "IPY_MODEL_d58b2c69a73f406d9115f23d302e2ef9",
- "IPY_MODEL_f99308f66ebd4ee38efc60edc7dd2899"
- ],
- "layout": "IPY_MODEL_7c4822defba54fe3954f7dadfe04b000"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_73bcd540ea0242c78f8fdddb348fff3e",
+ "max": 5323,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1014511855324a61a1c90e299470f4b9",
+ "value": 5323
}
},
- "d282ec102d7340b897516669788ed66a": {
+ "355075984c274acba555a874dc51f987": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_145203b1303a40f6beb445c853de4a7d",
- "placeholder": "",
- "style": "IPY_MODEL_8ae31dae07bf40e1914b4fb238d65716",
- "value": "Generating train split: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "d58b2c69a73f406d9115f23d302e2ef9": {
+ "370bb26be7b34dc181ea88756f99afa3": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1b1634fa3d4a4faa80555ee6f1672600",
- "max": 400,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b03b50388e9d4327ba761b26b4bb113d",
- "value": 400
+ "layout": "IPY_MODEL_2fbc66f9f17043be8b03fe8cb84ac0d6",
+ "placeholder": "",
+ "style": "IPY_MODEL_24e6ff03c6b04b94bd729a09a93d4841",
+ "value": " 100/100 [00:00<00:00, 903.57 examples/s]"
}
},
- "f99308f66ebd4ee38efc60edc7dd2899": {
+ "378ee4cd7535482289464c78fdfccff5": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5a22f62bc57c4c78840c1ef51c621996",
- "placeholder": "",
- "style": "IPY_MODEL_adbd936819104e65a5a6e94817f928f0",
- "value": " 400/400 [00:00<00:00, 2500.62 examples/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "7c4822defba54fe3954f7dadfe04b000": {
+ "37b69881a6aa453bb5aca22fa5364c23": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2878,10 +3489,10 @@
"width": null
}
},
- "145203b1303a40f6beb445c853de4a7d": {
+ "38411915569f487c9bc36f29c292935e": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2930,25 +3541,34 @@
"width": null
}
},
- "8ae31dae07bf40e1914b4fb238d65716": {
+ "387711b2140f4b9ebbcb363e1067d6f7": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4f63dba0f0df41748b523ada60679496",
+ "max": 23273,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5994264c53e54ca5b50a06cd8ef2556b",
+ "value": 23273
}
},
- "1b1634fa3d4a4faa80555ee6f1672600": {
+ "3945de5d21e24d8d8f1e9f02d596b46c": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2997,10 +3617,10 @@
"width": null
}
},
- "b03b50388e9d4327ba761b26b4bb113d": {
+ "398722250162461dbd886d13a8e93257": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -3013,10 +3633,10 @@
"description_width": ""
}
},
- "5a22f62bc57c4c78840c1ef51c621996": {
+ "3b26ab59e14a4b4c891c7bcb50cf495a": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3065,25 +3685,10 @@
"width": null
}
},
- "adbd936819104e65a5a6e94817f928f0": {
+ "3bf4f93b8e7e4b4aa8d4af2fd8683a56": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "7501aa4a0a5f43f49d6dc10857e33317": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -3095,83 +3700,32 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_95035ec41d6d4a1489b02a4967d2c398",
- "IPY_MODEL_2e9fd37ed5e143fab800eb002c8da795",
- "IPY_MODEL_060c7ff1420142b09b701ea4d9010e55"
+ "IPY_MODEL_764a4f006ad3411680dc35ab7f77f4d0",
+ "IPY_MODEL_75f861994a384edcba5991e24ec0acb2",
+ "IPY_MODEL_81f029f951bf4dd4bbbc7ee6e4cc4d9e"
],
- "layout": "IPY_MODEL_a916f7891d984a0d9b77cd53f31b7e67"
- }
- },
- "95035ec41d6d4a1489b02a4967d2c398": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ae7b293071124a9abe156fe6067678d3",
- "placeholder": "",
- "style": "IPY_MODEL_c3e2364139bc48379e2089a5c9c475be",
- "value": "Generating validation split: 100%"
- }
- },
- "2e9fd37ed5e143fab800eb002c8da795": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_69d1a3bfc69e48a986a1f53ea68ffdd3",
- "max": 100,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_a5b9bfd0475045f885fb0f77accb9952",
- "value": 100
+ "layout": "IPY_MODEL_e9e86e5e4a1341d592f72110112f276d"
}
},
- "060c7ff1420142b09b701ea4d9010e55": {
+ "3c36d64114264fcb82a159f580585096": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bf728e3f4516450aa5bf3c928d188d88",
- "placeholder": "",
- "style": "IPY_MODEL_7768ac1f0f97461bafe3db188fe0c2a7",
- "value": " 100/100 [00:00<00:00, 1931.92 examples/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "a916f7891d984a0d9b77cd53f31b7e67": {
+ "3d013291a7df403f8c9b30e2beffedb8": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3220,10 +3774,10 @@
"width": null
}
},
- "ae7b293071124a9abe156fe6067678d3": {
+ "3ec325fb22fe42df8d6564ca93a66bc2": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3272,10 +3826,54 @@
"width": null
}
},
- "c3e2364139bc48379e2089a5c9c475be": {
+ "40c2e934eb384c8c8d3f19a9779b28d9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8b3788c01be44040893f782e6aa12e7b",
+ "IPY_MODEL_3501ed620e24462ebe622aceabb3bd3d",
+ "IPY_MODEL_ded200a20be94aea92af5d408156fcca"
+ ],
+ "layout": "IPY_MODEL_06db73f59d764ac2b52cec52fdcd1d04"
+ }
+ },
+ "421306178c18489abcdb27c1265ba6aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f47ee50ce7bd4024b15381bcf4ed0213",
+ "IPY_MODEL_3153dae8974246a8ba3217a47ce8ee7c",
+ "IPY_MODEL_f4fc3e122b954a949448b09630857ec0"
+ ],
+ "layout": "IPY_MODEL_6ae390407899480292d8a0ec2e245bae"
+ }
+ },
+ "44f12b979f684345995cb8694ac2f30f": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -3287,10 +3885,10 @@
"description_width": ""
}
},
- "69d1a3bfc69e48a986a1f53ea68ffdd3": {
+ "452e52e81511403db6036d7f610eaa7f": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3339,26 +3937,31 @@
"width": null
}
},
- "a5b9bfd0475045f885fb0f77accb9952": {
+ "45dd2cc789e24b958c9055248889db41": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f4bcca5b6b7643c99a520db52b769784",
+ "placeholder": "",
+ "style": "IPY_MODEL_44f12b979f684345995cb8694ac2f30f",
+ "value": " 44.0k/44.0k [00:00<00:00, 1.69MB/s]"
}
},
- "bf728e3f4516450aa5bf3c928d188d88": {
+ "495b95595ddd4f15997ea0e6b573fde5": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3407,10 +4010,10 @@
"width": null
}
},
- "7768ac1f0f97461bafe3db188fe0c2a7": {
+ "4aa1ebeecbba4de59fe0104150245fae": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -3422,98 +4025,62 @@
"description_width": ""
}
},
- "c4e3a3c37ff3462ca9251f86efe35fd5": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_289f94db4e314211aad1ac6a6be977f6",
- "IPY_MODEL_b0ed87168a41425ab3e3ce9c19d5f6cd",
- "IPY_MODEL_0c622cfb456f4317a2952fb781738e80"
- ],
- "layout": "IPY_MODEL_e21b6208bbc24dfaa77bbc50637bc2ab"
- }
- },
- "289f94db4e314211aad1ac6a6be977f6": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d77b2877257b4b379f74165434212dd4",
- "placeholder": "",
- "style": "IPY_MODEL_0b8adcc5ad1148ba847f3a0eb07ff354",
- "value": "Generating test split: 100%"
- }
- },
- "b0ed87168a41425ab3e3ce9c19d5f6cd": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8100412933fc4f67a8413b2c7a5f9f9f",
- "max": 500,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_7c115c8d0b0142febe517f91d8b91f16",
- "value": 500
- }
- },
- "0c622cfb456f4317a2952fb781738e80": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
+ "4af55acfc6274c88b14c8441dd395df2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b901332db22e401e905cdef9f9083a7f",
- "placeholder": "",
- "style": "IPY_MODEL_2fd02c7a887e40829d1bb16304a14b22",
- "value": " 500/500 [00:00<00:00, 5114.24 examples/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "e21b6208bbc24dfaa77bbc50637bc2ab": {
+ "4d231168533a4bf4a63ffbc0d53271cc": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3562,10 +4129,52 @@
"width": null
}
},
- "d77b2877257b4b379f74165434212dd4": {
+ "4ee4a536f1ae46529aa5cc6688bc5f2a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_327bfa1cb0e54c95993ce8fe01be7abc",
+ "placeholder": "",
+ "style": "IPY_MODEL_e20cfd11370548d284ae8b6530911e0d",
+ "value": "Downloading readme: 100%"
+ }
+ },
+ "4f144677ebd54a87a6b493a8be5486c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3b26ab59e14a4b4c891c7bcb50cf495a",
+ "placeholder": "",
+ "style": "IPY_MODEL_cda3c917778848c98dbd7752d798989b",
+ "value": " 29.6M/29.6M [00:02<00:00, 12.8MB/s]"
+ }
+ },
+ "4f63dba0f0df41748b523ada60679496": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3614,25 +4223,10 @@
"width": null
}
},
- "0b8adcc5ad1148ba847f3a0eb07ff354": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "8100412933fc4f67a8413b2c7a5f9f9f": {
+ "4fa6d2b22bbe4c1a87cb436dfecefe0c": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3681,26 +4275,10 @@
"width": null
}
},
- "7c115c8d0b0142febe517f91d8b91f16": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "b901332db22e401e905cdef9f9083a7f": {
+ "500d52783fdd4008a5e02b5439bcd5f0": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3749,25 +4327,26 @@
"width": null
}
},
- "2fd02c7a887e40829d1bb16304a14b22": {
+ "516d0dc1bfc34d0392930e884fac47ae": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "9a088b764a214b95a00fac01005eb726": {
+ "5221149fd81940099402d651f8dce8d5": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -3779,62 +4358,60 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_9620833757c54c9fb1b1216c40372459",
- "IPY_MODEL_97392a3c7c244bacb931a81947acca06",
- "IPY_MODEL_57c0e7dd3f644dfa8cbb34e79ee695a3"
+ "IPY_MODEL_b1897978affa4617b5d58c3ce0ef5e44",
+ "IPY_MODEL_ed690821c13c49df9c559d5ae1240fd6",
+ "IPY_MODEL_623a5955ba01446c837cb851465a1c2a"
],
- "layout": "IPY_MODEL_83b01f9793e540e6bcf40f3c65f5359f"
+ "layout": "IPY_MODEL_ac4fe7baf6524bd1902212b1a71cbbdf"
}
},
- "9620833757c54c9fb1b1216c40372459": {
+ "52b2e86553c14b148d37d3dddc3bc464": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_495b95595ddd4f15997ea0e6b573fde5",
- "placeholder": "",
- "style": "IPY_MODEL_faed48642f37415ea41a4f6155311666",
- "value": "Downloading (…)lve/main/config.json: 100%"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d282ec102d7340b897516669788ed66a",
+ "IPY_MODEL_d58b2c69a73f406d9115f23d302e2ef9",
+ "IPY_MODEL_f99308f66ebd4ee38efc60edc7dd2899"
+ ],
+ "layout": "IPY_MODEL_7c4822defba54fe3954f7dadfe04b000"
}
},
- "97392a3c7c244bacb931a81947acca06": {
+ "55350a29295a4e049f8c386412667a1c": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_811085599e73470c9cc3b228f0cf2ce4",
- "max": 615,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6e1f35bea40044e5864d0b14c402bd9e",
- "value": 615
+ "layout": "IPY_MODEL_ffe9e9464031467c93450fb974f9a3b3",
+ "placeholder": "",
+ "style": "IPY_MODEL_97638ea222754090ba4ca37063de36c6",
+ "value": "Downloading (…)/main/tokenizer.json: 100%"
}
},
- "57c0e7dd3f644dfa8cbb34e79ee695a3": {
+ "568e8a9bb41841a99c608485e4a67ec8": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -3846,68 +4423,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_cb44cb18f2904a4a8379b42f4597b591",
+ "layout": "IPY_MODEL_053917bbf7fc43a0887752403a972737",
"placeholder": "",
- "style": "IPY_MODEL_effcf408a606435286f6b74b52d127c7",
- "value": " 615/615 [00:00<00:00, 23.3kB/s]"
+ "style": "IPY_MODEL_221597e24fd14a0e8e67321692f615b8",
+ "value": " 500/500 [00:00<00:00, 5115.13 examples/s]"
}
},
- "83b01f9793e540e6bcf40f3c65f5359f": {
+ "57853bbe0e9942cf8c3e73778f8ff2fc": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "495b95595ddd4f15997ea0e6b573fde5": {
- "model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
- "model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -3956,77 +4481,47 @@
"width": null
}
},
- "faed48642f37415ea41a4f6155311666": {
+ "57c0e7dd3f644dfa8cbb34e79ee695a3": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "811085599e73470c9cc3b228f0cf2ce4": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cb44cb18f2904a4a8379b42f4597b591",
+ "placeholder": "",
+ "style": "IPY_MODEL_effcf408a606435286f6b74b52d127c7",
+ "value": " 615/615 [00:00<00:00, 23.3kB/s]"
}
},
- "6e1f35bea40044e5864d0b14c402bd9e": {
+ "5992e3e857704d62a5ceb8135ed90f78": {
"model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5994264c53e54ca5b50a06cd8ef2556b": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -4039,10 +4534,10 @@
"description_width": ""
}
},
- "cb44cb18f2904a4a8379b42f4597b591": {
+ "5a22f62bc57c4c78840c1ef51c621996": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4091,47 +4586,26 @@
"width": null
}
},
- "effcf408a606435286f6b74b52d127c7": {
+ "5a6333761660446084db896cf8fa3aed": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "bf7d06fbfb7d45c98dde0900cebc16a3": {
+ "5abb6e6728184cdb9450ed543aea8936": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_8d6236259648404b99bd6ea9e19d7c48",
- "IPY_MODEL_cea20d44ab3b408c8b41c2a475d75113",
- "IPY_MODEL_19a6a0e0d1af471b8066ad37f12475e7"
- ],
- "layout": "IPY_MODEL_74accac847e04f60ae59ca1367c59b71"
- }
- },
- "8d6236259648404b99bd6ea9e19d7c48": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -4143,40 +4617,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b29700bab9bc499dbbeba804bccc2cce",
+ "layout": "IPY_MODEL_2973c0914c2c409585aa45ac477d8f5c",
"placeholder": "",
- "style": "IPY_MODEL_3c36d64114264fcb82a159f580585096",
- "value": "Downloading (…)tencepiece.bpe.model: 100%"
+ "style": "IPY_MODEL_27654c501e7a4484805ecffdafdcd185",
+ "value": " 38.7k/38.7k [00:00<00:00, 2.15MB/s]"
}
},
- "cea20d44ab3b408c8b41c2a475d75113": {
+ "5d2e7a7f5e6d43d38e5d9a839bad6618": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1d634f5a0ee34c3f8ca0edb228bc9ed9",
- "max": 5069051,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c96d20da080847cdb20534fbf761b5b6",
- "value": 5069051
- }
- },
- "19a6a0e0d1af471b8066ad37f12475e7": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -4188,16 +4638,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_87c4fc3dca7f433ca231128105a54666",
+ "layout": "IPY_MODEL_a8fb3390bc7e4f489a1eed8855249780",
"placeholder": "",
- "style": "IPY_MODEL_378ee4cd7535482289464c78fdfccff5",
- "value": " 5.07M/5.07M [00:00<00:00, 13.7MB/s]"
+ "style": "IPY_MODEL_b82099eefb964f83bc2a99ecaf6b21d8",
+ "value": "Map: 100%"
}
},
- "74accac847e04f60ae59ca1367c59b71": {
+ "5ecc0a746abb44cdb1566203edb307f4": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4246,10 +4696,10 @@
"width": null
}
},
- "b29700bab9bc499dbbeba804bccc2cce": {
+ "5f4b4f5191754b4eb8aebd5af6c7942d": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4298,25 +4748,10 @@
"width": null
}
},
- "3c36d64114264fcb82a159f580585096": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "1d634f5a0ee34c3f8ca0edb228bc9ed9": {
+ "5f96be3d44ed4d37b73dcc358a5756be": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4365,10 +4800,46 @@
"width": null
}
},
- "c96d20da080847cdb20534fbf761b5b6": {
+ "623a5955ba01446c837cb851465a1c2a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_500d52783fdd4008a5e02b5439bcd5f0",
+ "placeholder": "",
+ "style": "IPY_MODEL_9397f9387c6d4edf8e0296a26da23db7",
+ "value": " 400/400 [00:00<00:00, 2156.01 examples/s]"
+ }
+ },
+ "63aa346b6a1b491183dc78bfd5127ea3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "65090b4bf9a84377adaf0b965a42d254": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -4381,10 +4852,91 @@
"description_width": ""
}
},
- "87c4fc3dca7f433ca231128105a54666": {
+ "650cc1472a394fdc854f7fcac4594317": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_25962637853646f0a19e320bee136091",
+ "IPY_MODEL_387711b2140f4b9ebbcb363e1067d6f7",
+ "IPY_MODEL_cd09018d44c34714aeb6e90b19729303"
+ ],
+ "layout": "IPY_MODEL_b5c42155aeb843b98172b25e79cbc811"
+ }
+ },
+ "6557f70fcb2e475495dc88ebec7e6dd8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "660b81766f7044b6a1ce2f8c2c45f461": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1250b158a5b945da8d19b0ecdfefde34",
+ "IPY_MODEL_6b2003198e274ef7a474ec222624be1c",
+ "IPY_MODEL_8ee881038ff4488382ca006a07c9ed6d"
+ ],
+ "layout": "IPY_MODEL_4fa6d2b22bbe4c1a87cb436dfecefe0c"
+ }
+ },
+ "66881711810a4ad28f08bff9bd15e6fd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2dcbf0d434494c4ca36c74fb97be7df5",
+ "IPY_MODEL_8e6c82700dc74db3bd6d3946f93c956c",
+ "IPY_MODEL_568e8a9bb41841a99c608485e4a67ec8"
+ ],
+ "layout": "IPY_MODEL_af6b21dc6f3f48c7ae5c240b403b3c91"
+ }
+ },
+ "69d1a3bfc69e48a986a1f53ea68ffdd3": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4433,113 +4985,10 @@
"width": null
}
},
- "378ee4cd7535482289464c78fdfccff5": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "785aa76f50cb44cea93bc8d26c8fe117": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_55350a29295a4e049f8c386412667a1c",
- "IPY_MODEL_11717755bc314c7fa47765a8042a5bc5",
- "IPY_MODEL_0f07f12c5f8a4e158aed6db3b6a5c719"
- ],
- "layout": "IPY_MODEL_7d6e7b8946c4475bb45c4b8635eaedb8"
- }
- },
- "55350a29295a4e049f8c386412667a1c": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ffe9e9464031467c93450fb974f9a3b3",
- "placeholder": "",
- "style": "IPY_MODEL_97638ea222754090ba4ca37063de36c6",
- "value": "Downloading (…)/main/tokenizer.json: 100%"
- }
- },
- "11717755bc314c7fa47765a8042a5bc5": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0cb39e011e5b4373a25d2e4d0f158b30",
- "max": 9096718,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_a6e4ccabfd9f42d99d66848938467f2d",
- "value": 9096718
- }
- },
- "0f07f12c5f8a4e158aed6db3b6a5c719": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ef81ac8f601d43dc8dc9f63e86ce6d5e",
- "placeholder": "",
- "style": "IPY_MODEL_761012fd1a874580b2292b344e90aa36",
- "value": " 9.10M/9.10M [00:00<00:00, 18.9MB/s]"
- }
- },
- "7d6e7b8946c4475bb45c4b8635eaedb8": {
+ "6ae390407899480292d8a0ec2e245bae": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4588,10 +5037,34 @@
"width": null
}
},
- "ffe9e9464031467c93450fb974f9a3b3": {
+ "6b2003198e274ef7a474ec222624be1c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_38411915569f487c9bc36f29c292935e",
+ "max": 30733,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c601dba9e79840aeb7f832732564128c",
+ "value": 30733
+ }
+ },
+ "6b303cc91755460190a5ae0466d82d1a": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4640,10 +5113,10 @@
"width": null
}
},
- "97638ea222754090ba4ca37063de36c6": {
+ "6ba212cc0c384d3b88498ebc5fe7b60d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -4655,10 +5128,10 @@
"description_width": ""
}
},
- "0cb39e011e5b4373a25d2e4d0f158b30": {
+ "6c27af5311e247a3976cdf5b03c0b717": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4707,26 +5180,10 @@
"width": null
}
},
- "a6e4ccabfd9f42d99d66848938467f2d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ef81ac8f601d43dc8dc9f63e86ce6d5e": {
+ "6c94041132c241b19e0b0d697b044b58": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4775,113 +5232,96 @@
"width": null
}
},
- "761012fd1a874580b2292b344e90aa36": {
+ "6cfed16922c443988ab647765ebbd801": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "5221149fd81940099402d651f8dce8d5": {
+ "6e1f35bea40044e5864d0b14c402bd9e": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_b1897978affa4617b5d58c3ce0ef5e44",
- "IPY_MODEL_ed690821c13c49df9c559d5ae1240fd6",
- "IPY_MODEL_623a5955ba01446c837cb851465a1c2a"
- ],
- "layout": "IPY_MODEL_ac4fe7baf6524bd1902212b1a71cbbdf"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "b1897978affa4617b5d58c3ce0ef5e44": {
+ "6e64c9f038fa4e57a374802726b5db3d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a1d0d1e41daf4862a5f5f1d681fc009c",
- "placeholder": "",
- "style": "IPY_MODEL_8fa6ba880e6342deb538327b05151f78",
- "value": "Map: 100%"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_af0166beb7444cab8f012a8b4df18475",
+ "IPY_MODEL_dae6332c719c479c91156d8651c3c59f",
+ "IPY_MODEL_370bb26be7b34dc181ea88756f99afa3"
+ ],
+ "layout": "IPY_MODEL_57853bbe0e9942cf8c3e73778f8ff2fc"
}
},
- "ed690821c13c49df9c559d5ae1240fd6": {
+ "6e6e76fa032f4e579653bf46846f885f": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6b303cc91755460190a5ae0466d82d1a",
- "max": 400,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5992e3e857704d62a5ceb8135ed90f78",
- "value": 400
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "623a5955ba01446c837cb851465a1c2a": {
+ "6f88804f321b4e2d81ee387fd7299799": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_500d52783fdd4008a5e02b5439bcd5f0",
- "placeholder": "",
- "style": "IPY_MODEL_9397f9387c6d4edf8e0296a26da23db7",
- "value": " 400/400 [00:00<00:00, 2156.01 examples/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "ac4fe7baf6524bd1902212b1a71cbbdf": {
+ "6fae67869ca04721bd03f4995c3259d6": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4930,10 +5370,85 @@
"width": null
}
},
- "a1d0d1e41daf4862a5f5f1d681fc009c": {
+ "6ff76b8372584d09a7df7bb52fccd176": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7006b0c1017a411e97b8a4d203a4b046": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7060341f58854fbf8621a0aef79b4f0c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_efefa88ed4c64045b05db81984e8a3e7",
+ "max": 14813,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c22dbe3bce3d44f397ab8a427609c1e0",
+ "value": 14813
+ }
+ },
+ "72c0d49772d9407db838009434d8caa6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3ec325fb22fe42df8d6564ca93a66bc2",
+ "placeholder": "",
+ "style": "IPY_MODEL_1a555ff033ce47f389abc112b42475e9",
+ "value": " 10.3k/? [00:00<00:00, 331kB/s]"
+ }
+ },
+ "72d73ed65b4b4f30a80b21cedc8cf3e1": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -4982,25 +5497,10 @@
"width": null
}
},
- "8fa6ba880e6342deb538327b05151f78": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6b303cc91755460190a5ae0466d82d1a": {
+ "73bcd540ea0242c78f8fdddb348fff3e": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5049,26 +5549,25 @@
"width": null
}
},
- "5992e3e857704d62a5ceb8135ed90f78": {
+ "740f9bd6524f4af0bc79be53039a7961": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "500d52783fdd4008a5e02b5439bcd5f0": {
+ "74accac847e04f60ae59ca1367c59b71": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5117,25 +5616,10 @@
"width": null
}
},
- "9397f9387c6d4edf8e0296a26da23db7": {
+ "7501aa4a0a5f43f49d6dc10857e33317": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a1aa441180e7414bbd30b297a9105643": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -5147,62 +5631,56 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_5d2e7a7f5e6d43d38e5d9a839bad6618",
- "IPY_MODEL_b8b21b05ffca4ddba8e0e4256b79e46d",
- "IPY_MODEL_a9fb5ea6bd2f4a4d94a120cd67a952c6"
+ "IPY_MODEL_95035ec41d6d4a1489b02a4967d2c398",
+ "IPY_MODEL_2e9fd37ed5e143fab800eb002c8da795",
+ "IPY_MODEL_060c7ff1420142b09b701ea4d9010e55"
],
- "layout": "IPY_MODEL_452e52e81511403db6036d7f610eaa7f"
+ "layout": "IPY_MODEL_a916f7891d984a0d9b77cd53f31b7e67"
}
},
- "5d2e7a7f5e6d43d38e5d9a839bad6618": {
+ "75f861994a384edcba5991e24ec0acb2": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a8fb3390bc7e4f489a1eed8855249780",
- "placeholder": "",
- "style": "IPY_MODEL_b82099eefb964f83bc2a99ecaf6b21d8",
- "value": "Map: 100%"
+ "layout": "IPY_MODEL_b36a3e769ea946d9b3a2eee4145d858a",
+ "max": 500,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_bbc6b3b9564940098f971fc7c711d61b",
+ "value": 500
}
},
- "b8b21b05ffca4ddba8e0e4256b79e46d": {
+ "761012fd1a874580b2292b344e90aa36": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3d013291a7df403f8c9b30e2beffedb8",
- "max": 100,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5a6333761660446084db896cf8fa3aed",
- "value": 100
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "a9fb5ea6bd2f4a4d94a120cd67a952c6": {
+ "764a4f006ad3411680dc35ab7f77f4d0": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -5214,120 +5692,31 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0efe23c68b3d4b9b92c5f89648656910",
+ "layout": "IPY_MODEL_17b4e1697bb848ad9b1c74993a05b64d",
"placeholder": "",
- "style": "IPY_MODEL_4aa1ebeecbba4de59fe0104150245fae",
- "value": " 100/100 [00:00<00:00, 1272.45 examples/s]"
- }
- },
- "452e52e81511403db6036d7f610eaa7f": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "style": "IPY_MODEL_b68f616e1ec54acbbd6c70f2ee9282cd",
+ "value": "Map: 100%"
}
},
- "a8fb3390bc7e4f489a1eed8855249780": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
+ "7768ac1f0f97461bafe3db188fe0c2a7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "b82099eefb964f83bc2a99ecaf6b21d8": {
+ "7815c3cab73740b29687228f3e0d1fa7": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -5339,10 +5728,32 @@
"description_width": ""
}
},
- "3d013291a7df403f8c9b30e2beffedb8": {
+ "785aa76f50cb44cea93bc8d26c8fe117": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_55350a29295a4e049f8c386412667a1c",
+ "IPY_MODEL_11717755bc314c7fa47765a8042a5bc5",
+ "IPY_MODEL_0f07f12c5f8a4e158aed6db3b6a5c719"
+ ],
+ "layout": "IPY_MODEL_7d6e7b8946c4475bb45c4b8635eaedb8"
+ }
+ },
+ "78ce2352d3e14733bb5459a59d94f2bb": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5391,26 +5802,71 @@
"width": null
}
},
- "5a6333761660446084db896cf8fa3aed": {
+ "7917c44d3ec94fc7ad80e1657fc1627b": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_72d73ed65b4b4f30a80b21cedc8cf3e1",
+ "max": 60610,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_65090b4bf9a84377adaf0b965a42d254",
+ "value": 60610
+ }
+ },
+ "79ddbccc453643689f129740e5148e24": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_22e8d2d6a5f1402fa49a849521d137b1",
+ "IPY_MODEL_7060341f58854fbf8621a0aef79b4f0c",
+ "IPY_MODEL_f481c31c5e0d493c943d489409178d11"
+ ],
+ "layout": "IPY_MODEL_3945de5d21e24d8d8f1e9f02d596b46c"
+ }
+ },
+ "7b0315b98dd74398b562b753b00703da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "0efe23c68b3d4b9b92c5f89648656910": {
+ "7bc54b222b06474196c44e429ffb0f05": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5459,113 +5915,26 @@
"width": null
}
},
- "4aa1ebeecbba4de59fe0104150245fae": {
+ "7c115c8d0b0142febe517f91d8b91f16": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "fe314b1f2e5d4671bb820bfe16c197e6": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_8707b73e0a354d0a965cde671dbd7404",
- "IPY_MODEL_ff1a5195281d45ef80af3773331cef74",
- "IPY_MODEL_fc53327bb651457eaaef2bfd17888253"
- ],
- "layout": "IPY_MODEL_37b69881a6aa453bb5aca22fa5364c23"
- }
- },
- "8707b73e0a354d0a965cde671dbd7404": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ca6f26f9b3dc40309fd6f9ee9ead26bb",
- "placeholder": "",
- "style": "IPY_MODEL_ad10e12012414b5695cc6977ffd6a9be",
- "value": "Map: 100%"
- }
- },
- "ff1a5195281d45ef80af3773331cef74": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5f4b4f5191754b4eb8aebd5af6c7942d",
- "max": 500,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6e6e76fa032f4e579653bf46846f885f",
- "value": 500
- }
- },
- "fc53327bb651457eaaef2bfd17888253": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_95d531c8744d4a71b228cd0177b72568",
- "placeholder": "",
- "style": "IPY_MODEL_2e9e85dcb24941468f9a1de54f613ce0",
- "value": " 500/500 [00:00<00:00, 2543.50 examples/s]"
- }
- },
- "37b69881a6aa453bb5aca22fa5364c23": {
+ "7c4822defba54fe3954f7dadfe04b000": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5614,10 +5983,10 @@
"width": null
}
},
- "ca6f26f9b3dc40309fd6f9ee9ead26bb": {
+ "7d0e3446543f4eb7ac827c94c0947f2a": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5657,34 +6026,19 @@
"object_position": null,
"order": null,
"overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ad10e12012414b5695cc6977ffd6a9be": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "5f4b4f5191754b4eb8aebd5af6c7942d": {
+ "7d6e7b8946c4475bb45c4b8635eaedb8": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5733,26 +6087,25 @@
"width": null
}
},
- "6e6e76fa032f4e579653bf46846f885f": {
+ "7ded086d37894a9e94142d6775d78b91": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "95d531c8744d4a71b228cd0177b72568": {
+ "7e23d208fd96406186ea49ddc340eaa0": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5801,113 +6154,10 @@
"width": null
}
},
- "2e9e85dcb24941468f9a1de54f613ce0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "421306178c18489abcdb27c1265ba6aa": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f47ee50ce7bd4024b15381bcf4ed0213",
- "IPY_MODEL_3153dae8974246a8ba3217a47ce8ee7c",
- "IPY_MODEL_f4fc3e122b954a949448b09630857ec0"
- ],
- "layout": "IPY_MODEL_6ae390407899480292d8a0ec2e245bae"
- }
- },
- "f47ee50ce7bd4024b15381bcf4ed0213": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_807ae90cbea448d5aa02c4e9418acdaf",
- "placeholder": "",
- "style": "IPY_MODEL_9aa53ebe612b42c5a29ca0fc32a28c71",
- "value": "Downloading model.safetensors: 100%"
- }
- },
- "3153dae8974246a8ba3217a47ce8ee7c": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6fae67869ca04721bd03f4995c3259d6",
- "max": 1115567652,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_dfb749a8532d422f87e9c8bd4302a4a0",
- "value": 1115567652
- }
- },
- "f4fc3e122b954a949448b09630857ec0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c713c1586a344d3da06b0d87764b4afb",
- "placeholder": "",
- "style": "IPY_MODEL_6ff76b8372584d09a7df7bb52fccd176",
- "value": " 1.12G/1.12G [00:06<00:00, 96.5MB/s]"
- }
- },
- "6ae390407899480292d8a0ec2e245bae": {
+ "7e550ac5e8c5475e875eb58a9adfac56": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -5956,10 +6206,32 @@
"width": null
}
},
+ "7f9ef06955b74b1d95011fe7c38c4cb2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d429427bc4804c96bf1dab8b52d3fef1",
+ "IPY_MODEL_cf19ebd836b24130b22bb9d2290d59a3",
+ "IPY_MODEL_0f4c24c2eaa84981a51ca8043e881218"
+ ],
+ "layout": "IPY_MODEL_7bc54b222b06474196c44e429ffb0f05"
+ }
+ },
"807ae90cbea448d5aa02c4e9418acdaf": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6008,25 +6280,10 @@
"width": null
}
},
- "9aa53ebe612b42c5a29ca0fc32a28c71": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6fae67869ca04721bd03f4995c3259d6": {
+ "80ebeea5e6ba46a0a228965232996340": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6075,26 +6332,10 @@
"width": null
}
},
- "dfb749a8532d422f87e9c8bd4302a4a0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c713c1586a344d3da06b0d87764b4afb": {
+ "8100412933fc4f67a8413b2c7a5f9f9f": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6135,100 +6376,70 @@
"order": null,
"overflow": null,
"overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6ff76b8372584d09a7df7bb52fccd176": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "d8492798e90e4e1c9d52dad2abfff1a2": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_236e4fb59b3e418993ed329310de2457",
- "IPY_MODEL_868cc846c7684641bc1c25f491c3d2b0",
- "IPY_MODEL_72c0d49772d9407db838009434d8caa6"
- ],
- "layout": "IPY_MODEL_07ff9bc229874e51b085d015bb1c433e"
- }
- },
- "236e4fb59b3e418993ed329310de2457": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5f96be3d44ed4d37b73dcc358a5756be",
- "placeholder": "",
- "style": "IPY_MODEL_355075984c274acba555a874dc51f987",
- "value": "Downloading (…)lm-roberta-base.json: "
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "868cc846c7684641bc1c25f491c3d2b0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
+ "811085599e73470c9cc3b228f0cf2ce4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0243ae5e50fb4186989be9966c9962c4",
- "max": 609,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6cfed16922c443988ab647765ebbd801",
- "value": 609
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "72c0d49772d9407db838009434d8caa6": {
+ "81f029f951bf4dd4bbbc7ee6e4cc4d9e": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -6240,16 +6451,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_3ec325fb22fe42df8d6564ca93a66bc2",
+ "layout": "IPY_MODEL_6c94041132c241b19e0b0d697b044b58",
"placeholder": "",
- "style": "IPY_MODEL_1a555ff033ce47f389abc112b42475e9",
- "value": " 10.3k/? [00:00<00:00, 331kB/s]"
+ "style": "IPY_MODEL_2bc1eb041c624197b006ca3c29e6819d",
+ "value": " 500/500 [00:00<00:00, 1808.74 examples/s]"
}
},
- "07ff9bc229874e51b085d015bb1c433e": {
+ "83b01f9793e540e6bcf40f3c65f5359f": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6298,10 +6509,34 @@
"width": null
}
},
- "5f96be3d44ed4d37b73dcc358a5756be": {
+ "868cc846c7684641bc1c25f491c3d2b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0243ae5e50fb4186989be9966c9962c4",
+ "max": 609,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6cfed16922c443988ab647765ebbd801",
+ "value": 609
+ }
+ },
+ "86e49105023c4ed99f80342f2d48fbc7": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6350,25 +6585,31 @@
"width": null
}
},
- "355075984c274acba555a874dc51f987": {
+ "8707b73e0a354d0a965cde671dbd7404": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ca6f26f9b3dc40309fd6f9ee9ead26bb",
+ "placeholder": "",
+ "style": "IPY_MODEL_ad10e12012414b5695cc6977ffd6a9be",
+ "value": "Map: 100%"
}
},
- "0243ae5e50fb4186989be9966c9962c4": {
+ "87c4fc3dca7f433ca231128105a54666": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6417,26 +6658,68 @@
"width": null
}
},
- "6cfed16922c443988ab647765ebbd801": {
+ "8a3dbcf2432e4473acffdc3cd2d7c287": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_afa0e74f7eb24520863fe56ad5ac4ef3",
+ "placeholder": "",
+ "style": "IPY_MODEL_1883a118e9ab4e8b96e0941113d9c240",
+ "value": " 29.6M/29.6M [00:02<00:00, 13.6MB/s]"
+ }
+ },
+ "8ae31dae07bf40e1914b4fb238d65716": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "3ec325fb22fe42df8d6564ca93a66bc2": {
+ "8b2b2f05acac4711a1e31018247dda4b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4ee4a536f1ae46529aa5cc6688bc5f2a",
+ "IPY_MODEL_cd606aea6d57434398ff3202414c33f0",
+ "IPY_MODEL_9fc643b1837342a18126cacc88b6b46d"
+ ],
+ "layout": "IPY_MODEL_7e550ac5e8c5475e875eb58a9adfac56"
+ }
+ },
+ "8b2ef4dfe5024e339037b0dad137c689": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6485,47 +6768,31 @@
"width": null
}
},
- "1a555ff033ce47f389abc112b42475e9": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ee1dd3ac0e364a9d81211fb48e3a63c2": {
+ "8b3788c01be44040893f782e6aa12e7b": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a6c03bbb26874ef786886e3874b96f45",
- "IPY_MODEL_ed31165ad7b943d8a48a0d82d99627c8",
- "IPY_MODEL_8a3dbcf2432e4473acffdc3cd2d7c287"
- ],
- "layout": "IPY_MODEL_2f5bd7a50398424da94c61c6f8e3a125"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5ecc0a746abb44cdb1566203edb307f4",
+ "placeholder": "",
+ "style": "IPY_MODEL_1bb95488e26d4cc9865b91d1af06e792",
+ "value": "Downloading data: "
}
},
- "a6c03bbb26874ef786886e3874b96f45": {
+ "8d6236259648404b99bd6ea9e19d7c48": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -6537,16 +6804,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6c27af5311e247a3976cdf5b03c0b717",
+ "layout": "IPY_MODEL_b29700bab9bc499dbbeba804bccc2cce",
"placeholder": "",
- "style": "IPY_MODEL_1f47605b01224bcfa8464c6d498fa1d1",
- "value": "Downloading (…)eiffer/en_relu_2.zip: 100%"
+ "style": "IPY_MODEL_3c36d64114264fcb82a159f580585096",
+ "value": "Downloading (…)tencepiece.bpe.model: 100%"
}
},
- "ed31165ad7b943d8a48a0d82d99627c8": {
+ "8e6c82700dc74db3bd6d3946f93c956c": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -6559,18 +6826,18 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f8805f4f95ab43cca5aa05fc81eaba06",
- "max": 29562325,
+ "layout": "IPY_MODEL_907db8b968a64827a2f4783657949128",
+ "max": 500,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_6f88804f321b4e2d81ee387fd7299799",
- "value": 29562325
+ "style": "IPY_MODEL_edeb97603ab34a499516c6589a04a711",
+ "value": 500
}
},
- "8a3dbcf2432e4473acffdc3cd2d7c287": {
+ "8ee881038ff4488382ca006a07c9ed6d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -6582,16 +6849,47 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_afa0e74f7eb24520863fe56ad5ac4ef3",
+ "layout": "IPY_MODEL_0781ed37deef4341a2c37fa0bbb3bac1",
"placeholder": "",
- "style": "IPY_MODEL_1883a118e9ab4e8b96e0941113d9c240",
- "value": " 29.6M/29.6M [00:02<00:00, 13.6MB/s]"
+ "style": "IPY_MODEL_a7e4a4dfb7054ca8bfcf7358999ae34c",
+ "value": " 30.7k/30.7k [00:00<00:00, 1.37MB/s]"
}
},
- "2f5bd7a50398424da94c61c6f8e3a125": {
+ "8fa6ba880e6342deb538327b05151f78": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "901698bb5b8f4a3ea00848f0f2b5046c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "907db8b968a64827a2f4783657949128": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6640,10 +6938,10 @@
"width": null
}
},
- "6c27af5311e247a3976cdf5b03c0b717": {
+ "920ccb52e17a4a18a329bb756c9c35b3": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6692,10 +6990,10 @@
"width": null
}
},
- "1f47605b01224bcfa8464c6d498fa1d1": {
+ "9397f9387c6d4edf8e0296a26da23db7": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -6707,78 +7005,31 @@
"description_width": ""
}
},
- "f8805f4f95ab43cca5aa05fc81eaba06": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6f88804f321b4e2d81ee387fd7299799": {
+ "95035ec41d6d4a1489b02a4967d2c398": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ae7b293071124a9abe156fe6067678d3",
+ "placeholder": "",
+ "style": "IPY_MODEL_c3e2364139bc48379e2089a5c9c475be",
+ "value": "Generating validation split: 100%"
}
},
- "afa0e74f7eb24520863fe56ad5ac4ef3": {
+ "95d531c8744d4a71b228cd0177b72568": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6827,47 +7078,10 @@
"width": null
}
},
- "1883a118e9ab4e8b96e0941113d9c240": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a1c8238ae1e441e9a525141b41997c1c": {
+ "9620833757c54c9fb1b1216c40372459": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d4e33eaaad674df0ac7483d68aa46033",
- "IPY_MODEL_30a08ac6bd9445508d6fd68ca162bd49",
- "IPY_MODEL_4f144677ebd54a87a6b493a8be5486c0"
- ],
- "layout": "IPY_MODEL_9cf949851039440990727c62b9710e6b"
- }
- },
- "d4e33eaaad674df0ac7483d68aa46033": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -6879,16 +7093,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_2ac898ff598e40a1a28ef7b5350f3f57",
+ "layout": "IPY_MODEL_495b95595ddd4f15997ea0e6b573fde5",
"placeholder": "",
- "style": "IPY_MODEL_7b0315b98dd74398b562b753b00703da",
- "value": "Downloading (…)eiffer/zh_relu_2.zip: 100%"
+ "style": "IPY_MODEL_faed48642f37415ea41a4f6155311666",
+ "value": "Downloading (…)lve/main/config.json: 100%"
}
},
- "30a08ac6bd9445508d6fd68ca162bd49": {
+ "97392a3c7c244bacb931a81947acca06": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -6901,39 +7115,33 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_80ebeea5e6ba46a0a228965232996340",
- "max": 29562325,
+ "layout": "IPY_MODEL_811085599e73470c9cc3b228f0cf2ce4",
+ "max": 615,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_398722250162461dbd886d13a8e93257",
- "value": 29562325
+ "style": "IPY_MODEL_6e1f35bea40044e5864d0b14c402bd9e",
+ "value": 615
}
},
- "4f144677ebd54a87a6b493a8be5486c0": {
+ "97638ea222754090ba4ca37063de36c6": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3b26ab59e14a4b4c891c7bcb50cf495a",
- "placeholder": "",
- "style": "IPY_MODEL_cda3c917778848c98dbd7752d798989b",
- "value": " 29.6M/29.6M [00:02<00:00, 12.8MB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "9cf949851039440990727c62b9710e6b": {
+ "988ea2ed503f44b5bc8ff16844967d48": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -6982,10 +7190,10 @@
"width": null
}
},
- "2ac898ff598e40a1a28ef7b5350f3f57": {
+ "99360f3c8571451f958c1dd73283674e": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7034,10 +7242,68 @@
"width": null
}
},
- "7b0315b98dd74398b562b753b00703da": {
+ "9a088b764a214b95a00fac01005eb726": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9620833757c54c9fb1b1216c40372459",
+ "IPY_MODEL_97392a3c7c244bacb931a81947acca06",
+ "IPY_MODEL_57c0e7dd3f644dfa8cbb34e79ee695a3"
+ ],
+ "layout": "IPY_MODEL_83b01f9793e540e6bcf40f3c65f5359f"
+ }
+ },
+ "9aa53ebe612b42c5a29ca0fc32a28c71": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9ab974ee666c47b0ac46d5112d5abdf5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_afe95ec0dfc043f5ab02bb91f224ae4a",
+ "placeholder": "",
+ "style": "IPY_MODEL_006b4341bbea4f29a9f5c053045df606",
+ "value": "Downloading builder script: 100%"
+ }
+ },
+ "9ad5687370ed4164a905809751571663": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -7049,10 +7315,31 @@
"description_width": ""
}
},
- "80ebeea5e6ba46a0a228965232996340": {
+ "9be4c5e49284455fbc1afb8a360de1b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_920ccb52e17a4a18a329bb756c9c35b3",
+ "placeholder": "",
+ "style": "IPY_MODEL_1e62c62899b8448f8969500f0db73d92",
+ "value": "Downloading metadata: 100%"
+ }
+ },
+ "9cf949851039440990727c62b9710e6b": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7101,26 +7388,75 @@
"width": null
}
},
- "398722250162461dbd886d13a8e93257": {
+ "9fc643b1837342a18126cacc88b6b46d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7d0e3446543f4eb7ac827c94c0947f2a",
+ "placeholder": "",
+ "style": "IPY_MODEL_6557f70fcb2e475495dc88ebec7e6dd8",
+ "value": " 19.0k/19.0k [00:00<00:00, 1.03MB/s]"
}
},
- "3b26ab59e14a4b4c891c7bcb50cf495a": {
+ "a1aa441180e7414bbd30b297a9105643": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5d2e7a7f5e6d43d38e5d9a839bad6618",
+ "IPY_MODEL_b8b21b05ffca4ddba8e0e4256b79e46d",
+ "IPY_MODEL_a9fb5ea6bd2f4a4d94a120cd67a952c6"
+ ],
+ "layout": "IPY_MODEL_452e52e81511403db6036d7f610eaa7f"
+ }
+ },
+ "a1c8238ae1e441e9a525141b41997c1c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d4e33eaaad674df0ac7483d68aa46033",
+ "IPY_MODEL_30a08ac6bd9445508d6fd68ca162bd49",
+ "IPY_MODEL_4f144677ebd54a87a6b493a8be5486c0"
+ ],
+ "layout": "IPY_MODEL_9cf949851039440990727c62b9710e6b"
+ }
+ },
+ "a1d0d1e41daf4862a5f5f1d681fc009c": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7169,47 +7505,26 @@
"width": null
}
},
- "cda3c917778848c98dbd7752d798989b": {
+ "a5b9bfd0475045f885fb0f77accb9952": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "216fc1dd69b840788de0425040d646a3": {
+ "a6c03bbb26874ef786886e3874b96f45": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9ab974ee666c47b0ac46d5112d5abdf5",
- "IPY_MODEL_e500b37792734768892e8548250ca1a5",
- "IPY_MODEL_24e3f9dc7a9742eaafad98f423a550df"
- ],
- "layout": "IPY_MODEL_c475cfa85927479b9604bb4a33183957"
- }
- },
- "9ab974ee666c47b0ac46d5112d5abdf5": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -7221,61 +7536,47 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_afe95ec0dfc043f5ab02bb91f224ae4a",
+ "layout": "IPY_MODEL_6c27af5311e247a3976cdf5b03c0b717",
"placeholder": "",
- "style": "IPY_MODEL_006b4341bbea4f29a9f5c053045df606",
- "value": "Downloading builder script: 100%"
+ "style": "IPY_MODEL_1f47605b01224bcfa8464c6d498fa1d1",
+ "value": "Downloading (…)eiffer/en_relu_2.zip: 100%"
}
},
- "e500b37792734768892e8548250ca1a5": {
+ "a6e4ccabfd9f42d99d66848938467f2d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c47290facbb34126bf648a58041b7110",
- "max": 3902,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_2da273f7585c4b45a36f55d5f112e581",
- "value": 3902
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "24e3f9dc7a9742eaafad98f423a550df": {
+ "a7e4a4dfb7054ca8bfcf7358999ae34c": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4af55acfc6274c88b14c8441dd395df2",
- "placeholder": "",
- "style": "IPY_MODEL_fcd662335f9447cb87bd66b55fea1f41",
- "value": " 3.90k/3.90k [00:00<00:00, 264kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "c475cfa85927479b9604bb4a33183957": {
+ "a8fb3390bc7e4f489a1eed8855249780": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7324,10 +7625,10 @@
"width": null
}
},
- "afe95ec0dfc043f5ab02bb91f224ae4a": {
+ "a916f7891d984a0d9b77cd53f31b7e67": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7376,25 +7677,83 @@
"width": null
}
},
- "006b4341bbea4f29a9f5c053045df606": {
+ "a9fb5ea6bd2f4a4d94a120cd67a952c6": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0efe23c68b3d4b9b92c5f89648656910",
+ "placeholder": "",
+ "style": "IPY_MODEL_4aa1ebeecbba4de59fe0104150245fae",
+ "value": " 100/100 [00:00<00:00, 1272.45 examples/s]"
+ }
+ },
+ "ab991f7fb1504bd5b6fca2c8357e4c83": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "c47290facbb34126bf648a58041b7110": {
+ "ac4fe7baf6524bd1902212b1a71cbbdf": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7443,26 +7802,10 @@
"width": null
}
},
- "2da273f7585c4b45a36f55d5f112e581": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "4af55acfc6274c88b14c8441dd395df2": {
+ "ac877b5528c744b7b841c17b7516b879": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7511,10 +7854,10 @@
"width": null
}
},
- "fcd662335f9447cb87bd66b55fea1f41": {
+ "ad10e12012414b5695cc6977ffd6a9be": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -7526,98 +7869,25 @@
"description_width": ""
}
},
- "1937074f179040e2b96d7972dc1a6998": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_cb4f9dccc08c4caab16774ea9a133b2b",
- "IPY_MODEL_7917c44d3ec94fc7ad80e1657fc1627b",
- "IPY_MODEL_11b11def7bff484191999b63753e780b"
- ],
- "layout": "IPY_MODEL_7e23d208fd96406186ea49ddc340eaa0"
- }
- },
- "cb4f9dccc08c4caab16774ea9a133b2b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8b2ef4dfe5024e339037b0dad137c689",
- "placeholder": "",
- "style": "IPY_MODEL_d99b8bb92a4c450caffc46a8a132c986",
- "value": "Downloading metadata: 100%"
- }
- },
- "7917c44d3ec94fc7ad80e1657fc1627b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_72d73ed65b4b4f30a80b21cedc8cf3e1",
- "max": 60610,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_65090b4bf9a84377adaf0b965a42d254",
- "value": 60610
- }
- },
- "11b11def7bff484191999b63753e780b": {
+ "adbd936819104e65a5a6e94817f928f0": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ee1a05c0abb94b3fabbbbcbbc44833b8",
- "placeholder": "",
- "style": "IPY_MODEL_740f9bd6524f4af0bc79be53039a7961",
- "value": " 60.6k/60.6k [00:00<00:00, 3.29MB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "7e23d208fd96406186ea49ddc340eaa0": {
+ "ae7b293071124a9abe156fe6067678d3": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7666,10 +7936,31 @@
"width": null
}
},
- "8b2ef4dfe5024e339037b0dad137c689": {
+ "af0166beb7444cab8f012a8b4df18475": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ac877b5528c744b7b841c17b7516b879",
+ "placeholder": "",
+ "style": "IPY_MODEL_9ad5687370ed4164a905809751571663",
+ "value": "Map: 100%"
+ }
+ },
+ "af6b21dc6f3f48c7ae5c240b403b3c91": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7718,25 +8009,10 @@
"width": null
}
},
- "d99b8bb92a4c450caffc46a8a132c986": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "72d73ed65b4b4f30a80b21cedc8cf3e1": {
+ "afa0e74f7eb24520863fe56ad5ac4ef3": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7785,26 +8061,31 @@
"width": null
}
},
- "65090b4bf9a84377adaf0b965a42d254": {
+ "afc89fd0f8f2469a8e787389fb8896b0": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0280590b0bfe4e8390f172a0f7ea3f12",
+ "placeholder": "",
+ "style": "IPY_MODEL_d4b15a4562e2489c8509f7b45b167575",
+ "value": "Downloading data: 100%"
}
},
- "ee1a05c0abb94b3fabbbbcbbc44833b8": {
+ "afe95ec0dfc043f5ab02bb91f224ae4a": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -7853,68 +8134,26 @@
"width": null
}
},
- "740f9bd6524f4af0bc79be53039a7961": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "8b2b2f05acac4711a1e31018247dda4b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_4ee4a536f1ae46529aa5cc6688bc5f2a",
- "IPY_MODEL_cd606aea6d57434398ff3202414c33f0",
- "IPY_MODEL_9fc643b1837342a18126cacc88b6b46d"
- ],
- "layout": "IPY_MODEL_7e550ac5e8c5475e875eb58a9adfac56"
- }
- },
- "4ee4a536f1ae46529aa5cc6688bc5f2a": {
+ "b03b50388e9d4327ba761b26b4bb113d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_327bfa1cb0e54c95993ce8fe01be7abc",
- "placeholder": "",
- "style": "IPY_MODEL_e20cfd11370548d284ae8b6530911e0d",
- "value": "Downloading readme: 100%"
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "cd606aea6d57434398ff3202414c33f0": {
+ "b0ed87168a41425ab3e3ce9c19d5f6cd": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -7927,18 +8166,18 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d06d4b63f0a84e9d8831d8f6f0d773ee",
- "max": 19045,
+ "layout": "IPY_MODEL_8100412933fc4f67a8413b2c7a5f9f9f",
+ "max": 500,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_1a5d8044a2254d0881d854c0b01d7141",
- "value": 19045
+ "style": "IPY_MODEL_7c115c8d0b0142febe517f91d8b91f16",
+ "value": 500
}
},
- "9fc643b1837342a18126cacc88b6b46d": {
+ "b1897978affa4617b5d58c3ce0ef5e44": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -7950,16 +8189,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_7d0e3446543f4eb7ac827c94c0947f2a",
+ "layout": "IPY_MODEL_a1d0d1e41daf4862a5f5f1d681fc009c",
"placeholder": "",
- "style": "IPY_MODEL_6557f70fcb2e475495dc88ebec7e6dd8",
- "value": " 19.0k/19.0k [00:00<00:00, 1.03MB/s]"
+ "style": "IPY_MODEL_8fa6ba880e6342deb538327b05151f78",
+ "value": "Map: 100%"
}
},
- "7e550ac5e8c5475e875eb58a9adfac56": {
+ "b29700bab9bc499dbbeba804bccc2cce": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8008,10 +8247,10 @@
"width": null
}
},
- "327bfa1cb0e54c95993ce8fe01be7abc": {
+ "b2c3e773ab524ad381102340a59c7e9f": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8060,25 +8299,10 @@
"width": null
}
},
- "e20cfd11370548d284ae8b6530911e0d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "d06d4b63f0a84e9d8831d8f6f0d773ee": {
+ "b36a3e769ea946d9b3a2eee4145d858a": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8127,26 +8351,10 @@
"width": null
}
},
- "1a5d8044a2254d0881d854c0b01d7141": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "7d0e3446543f4eb7ac827c94c0947f2a": {
+ "b5c42155aeb843b98172b25e79cbc811": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8195,10 +8403,10 @@
"width": null
}
},
- "6557f70fcb2e475495dc88ebec7e6dd8": {
+ "b68f616e1ec54acbbd6c70f2ee9282cd": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -8210,53 +8418,25 @@
"description_width": ""
}
},
- "1759469306854432b2d4d6618fc45776": {
+ "b82099eefb964f83bc2a99ecaf6b21d8": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_cf257fbfb5824f99af08146161fb0f67",
- "IPY_MODEL_03cb547ad56b4c1db3fb373969eacf85",
- "IPY_MODEL_f2619549195c4090a453c551710cdb65"
- ],
- "layout": "IPY_MODEL_988ea2ed503f44b5bc8ff16844967d48"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "cf257fbfb5824f99af08146161fb0f67": {
+ "b8b21b05ffca4ddba8e0e4256b79e46d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_23e490b5be9d45f682030f7193b740fc",
- "placeholder": "",
- "style": "IPY_MODEL_7006b0c1017a411e97b8a4d203a4b046",
- "value": "Downloading data files: 100%"
- }
- },
- "03cb547ad56b4c1db3fb373969eacf85": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -8269,39 +8449,18 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b2c3e773ab524ad381102340a59c7e9f",
- "max": 2,
+ "layout": "IPY_MODEL_3d013291a7df403f8c9b30e2beffedb8",
+ "max": 100,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_11e1cbaec2fb4276b7e0f53465f214ee",
- "value": 2
- }
- },
- "f2619549195c4090a453c551710cdb65": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_240b1eb858834defb5f1069f017e859e",
- "placeholder": "",
- "style": "IPY_MODEL_26b04e0848d74b20988237710bb52aa6",
- "value": " 2/2 [00:01<00:00, 1.75it/s]"
+ "style": "IPY_MODEL_5a6333761660446084db896cf8fa3aed",
+ "value": 100
}
},
- "988ea2ed503f44b5bc8ff16844967d48": {
+ "b901332db22e401e905cdef9f9083a7f": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8350,77 +8509,41 @@
"width": null
}
},
- "23e490b5be9d45f682030f7193b740fc": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
+ "bae3fdd732764d08a5e417f76a94b17d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "7006b0c1017a411e97b8a4d203a4b046": {
+ "bbc6b3b9564940098f971fc7c711d61b": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "b2c3e773ab524ad381102340a59c7e9f": {
+ "befb2622d31b436f8d8cb25d35243989": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8453,42 +8576,26 @@
"left": null,
"margin": null,
"max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "11e1cbaec2fb4276b7e0f53465f214ee": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "240b1eb858834defb5f1069f017e859e": {
+ "bf728e3f4516450aa5bf3c928d188d88": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8537,25 +8644,10 @@
"width": null
}
},
- "26b04e0848d74b20988237710bb52aa6": {
+ "bf7d06fbfb7d45c98dde0900cebc16a3": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "40c2e934eb384c8c8d3f19a9779b28d9": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -8567,83 +8659,48 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_8b3788c01be44040893f782e6aa12e7b",
- "IPY_MODEL_3501ed620e24462ebe622aceabb3bd3d",
- "IPY_MODEL_ded200a20be94aea92af5d408156fcca"
+ "IPY_MODEL_8d6236259648404b99bd6ea9e19d7c48",
+ "IPY_MODEL_cea20d44ab3b408c8b41c2a475d75113",
+ "IPY_MODEL_19a6a0e0d1af471b8066ad37f12475e7"
],
- "layout": "IPY_MODEL_06db73f59d764ac2b52cec52fdcd1d04"
- }
- },
- "8b3788c01be44040893f782e6aa12e7b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5ecc0a746abb44cdb1566203edb307f4",
- "placeholder": "",
- "style": "IPY_MODEL_1bb95488e26d4cc9865b91d1af06e792",
- "value": "Downloading data: "
+ "layout": "IPY_MODEL_74accac847e04f60ae59ca1367c59b71"
}
},
- "3501ed620e24462ebe622aceabb3bd3d": {
+ "c22dbe3bce3d44f397ab8a427609c1e0": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_73bcd540ea0242c78f8fdddb348fff3e",
- "max": 5323,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_1014511855324a61a1c90e299470f4b9",
- "value": 5323
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "ded200a20be94aea92af5d408156fcca": {
+ "c3e2364139bc48379e2089a5c9c475be": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1eabfe440e39437190c7a466b0967798",
- "placeholder": "",
- "style": "IPY_MODEL_63aa346b6a1b491183dc78bfd5127ea3",
- "value": " 19.6k/? [00:00<00:00, 913kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "06db73f59d764ac2b52cec52fdcd1d04": {
+ "c47290facbb34126bf648a58041b7110": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8692,10 +8749,10 @@
"width": null
}
},
- "5ecc0a746abb44cdb1566203edb307f4": {
+ "c475cfa85927479b9604bb4a33183957": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8744,77 +8801,32 @@
"width": null
}
},
- "1bb95488e26d4cc9865b91d1af06e792": {
+ "c4e3a3c37ff3462ca9251f86efe35fd5": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "73bcd540ea0242c78f8fdddb348fff3e": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_289f94db4e314211aad1ac6a6be977f6",
+ "IPY_MODEL_b0ed87168a41425ab3e3ce9c19d5f6cd",
+ "IPY_MODEL_0c622cfb456f4317a2952fb781738e80"
+ ],
+ "layout": "IPY_MODEL_e21b6208bbc24dfaa77bbc50637bc2ab"
}
},
- "1014511855324a61a1c90e299470f4b9": {
+ "c601dba9e79840aeb7f832732564128c": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -8827,10 +8839,10 @@
"description_width": ""
}
},
- "1eabfe440e39437190c7a466b0967798": {
+ "c713c1586a344d3da06b0d87764b4afb": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -8879,113 +8891,41 @@
"width": null
}
},
- "63aa346b6a1b491183dc78bfd5127ea3": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "650cc1472a394fdc854f7fcac4594317": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_25962637853646f0a19e320bee136091",
- "IPY_MODEL_387711b2140f4b9ebbcb363e1067d6f7",
- "IPY_MODEL_cd09018d44c34714aeb6e90b19729303"
- ],
- "layout": "IPY_MODEL_b5c42155aeb843b98172b25e79cbc811"
- }
- },
- "25962637853646f0a19e320bee136091": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ddd3c45654f4476eb1eb2d30e621f6a3",
- "placeholder": "",
- "style": "IPY_MODEL_bae3fdd732764d08a5e417f76a94b17d",
- "value": "Downloading data: "
- }
- },
- "387711b2140f4b9ebbcb363e1067d6f7": {
+ "c760f0df4bbd49f9a7dda28bb0ac3482": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4f63dba0f0df41748b523ada60679496",
- "max": 23273,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5994264c53e54ca5b50a06cd8ef2556b",
- "value": 23273
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "cd09018d44c34714aeb6e90b19729303": {
+ "c96d20da080847cdb20534fbf761b5b6": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ed61eabf01c5432a90c3de5c67039746",
- "placeholder": "",
- "style": "IPY_MODEL_c760f0df4bbd49f9a7dda28bb0ac3482",
- "value": " 95.4k/? [00:00<00:00, 3.42MB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "b5c42155aeb843b98172b25e79cbc811": {
+ "ca6f26f9b3dc40309fd6f9ee9ead26bb": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9034,10 +8974,10 @@
"width": null
}
},
- "ddd3c45654f4476eb1eb2d30e621f6a3": {
+ "cb44cb18f2904a4a8379b42f4597b591": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9086,10 +9026,76 @@
"width": null
}
},
- "bae3fdd732764d08a5e417f76a94b17d": {
+ "cb4f9dccc08c4caab16774ea9a133b2b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8b2ef4dfe5024e339037b0dad137c689",
+ "placeholder": "",
+ "style": "IPY_MODEL_d99b8bb92a4c450caffc46a8a132c986",
+ "value": "Downloading metadata: 100%"
+ }
+ },
+ "cd09018d44c34714aeb6e90b19729303": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ed61eabf01c5432a90c3de5c67039746",
+ "placeholder": "",
+ "style": "IPY_MODEL_c760f0df4bbd49f9a7dda28bb0ac3482",
+ "value": " 95.4k/? [00:00<00:00, 3.42MB/s]"
+ }
+ },
+ "cd606aea6d57434398ff3202414c33f0": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d06d4b63f0a84e9d8831d8f6f0d773ee",
+ "max": 19045,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1a5d8044a2254d0881d854c0b01d7141",
+ "value": 19045
+ }
+ },
+ "cda3c917778848c98dbd7752d798989b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -9101,10 +9107,34 @@
"description_width": ""
}
},
- "4f63dba0f0df41748b523ada60679496": {
+ "cea20d44ab3b408c8b41c2a475d75113": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1d634f5a0ee34c3f8ca0edb228bc9ed9",
+ "max": 5069051,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c96d20da080847cdb20534fbf761b5b6",
+ "value": 5069051
+ }
+ },
+ "ceaa596549fd423189786aff7d865a99": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9153,26 +9183,55 @@
"width": null
}
},
- "5994264c53e54ca5b50a06cd8ef2556b": {
+ "cf19ebd836b24130b22bb9d2290d59a3": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f9b6e4363f1b4e3392d1da9f3814f9cc",
+ "max": 100,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_901698bb5b8f4a3ea00848f0f2b5046c",
+ "value": 100
}
},
- "ed61eabf01c5432a90c3de5c67039746": {
+ "cf257fbfb5824f99af08146161fb0f67": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_23e490b5be9d45f682030f7193b740fc",
+ "placeholder": "",
+ "style": "IPY_MODEL_7006b0c1017a411e97b8a4d203a4b046",
+ "value": "Downloading data files: 100%"
+ }
+ },
+ "d06d4b63f0a84e9d8831d8f6f0d773ee": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9221,10 +9280,10 @@
"width": null
}
},
- "c760f0df4bbd49f9a7dda28bb0ac3482": {
+ "d0ea922e12434bdfbb500d6c883589bf": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -9236,32 +9295,67 @@
"description_width": ""
}
},
- "7f9ef06955b74b1d95011fe7c38c4cb2": {
+ "d282ec102d7340b897516669788ed66a": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d429427bc4804c96bf1dab8b52d3fef1",
- "IPY_MODEL_cf19ebd836b24130b22bb9d2290d59a3",
- "IPY_MODEL_0f4c24c2eaa84981a51ca8043e881218"
- ],
- "layout": "IPY_MODEL_7bc54b222b06474196c44e429ffb0f05"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_145203b1303a40f6beb445c853de4a7d",
+ "placeholder": "",
+ "style": "IPY_MODEL_8ae31dae07bf40e1914b4fb238d65716",
+ "value": "Generating train split: 100%"
+ }
+ },
+ "d429427bc4804c96bf1dab8b52d3fef1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_86e49105023c4ed99f80342f2d48fbc7",
+ "placeholder": "",
+ "style": "IPY_MODEL_d0ea922e12434bdfbb500d6c883589bf",
+ "value": "Generating validation split: 100%"
+ }
+ },
+ "d4b15a4562e2489c8509f7b45b167575": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "d429427bc4804c96bf1dab8b52d3fef1": {
+ "d4e33eaaad674df0ac7483d68aa46033": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -9273,16 +9367,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_86e49105023c4ed99f80342f2d48fbc7",
+ "layout": "IPY_MODEL_2ac898ff598e40a1a28ef7b5350f3f57",
"placeholder": "",
- "style": "IPY_MODEL_d0ea922e12434bdfbb500d6c883589bf",
- "value": "Generating validation split: 100%"
+ "style": "IPY_MODEL_7b0315b98dd74398b562b753b00703da",
+ "value": "Downloading (…)eiffer/zh_relu_2.zip: 100%"
}
},
- "cf19ebd836b24130b22bb9d2290d59a3": {
+ "d58b2c69a73f406d9115f23d302e2ef9": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -9295,39 +9389,18 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f9b6e4363f1b4e3392d1da9f3814f9cc",
- "max": 100,
+ "layout": "IPY_MODEL_1b1634fa3d4a4faa80555ee6f1672600",
+ "max": 400,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_901698bb5b8f4a3ea00848f0f2b5046c",
- "value": 100
- }
- },
- "0f4c24c2eaa84981a51ca8043e881218": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_99360f3c8571451f958c1dd73283674e",
- "placeholder": "",
- "style": "IPY_MODEL_1cc3cec507844485850a5b95d3db6e9d",
- "value": " 100/100 [00:00<00:00, 2548.99 examples/s]"
+ "style": "IPY_MODEL_b03b50388e9d4327ba761b26b4bb113d",
+ "value": 400
}
},
- "7bc54b222b06474196c44e429ffb0f05": {
+ "d77b2877257b4b379f74165434212dd4": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9376,62 +9449,32 @@
"width": null
}
},
- "86e49105023c4ed99f80342f2d48fbc7": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
+ "d8492798e90e4e1c9d52dad2abfff1a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_236e4fb59b3e418993ed329310de2457",
+ "IPY_MODEL_868cc846c7684641bc1c25f491c3d2b0",
+ "IPY_MODEL_72c0d49772d9407db838009434d8caa6"
+ ],
+ "layout": "IPY_MODEL_07ff9bc229874e51b085d015bb1c433e"
}
},
- "d0ea922e12434bdfbb500d6c883589bf": {
+ "d99b8bb92a4c450caffc46a8a132c986": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -9443,10 +9486,34 @@
"description_width": ""
}
},
- "f9b6e4363f1b4e3392d1da9f3814f9cc": {
+ "dae6332c719c479c91156d8651c3c59f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ceaa596549fd423189786aff7d865a99",
+ "max": 100,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ee67317d933c47d48d3e46cb52e02324",
+ "value": 100
+ }
+ },
+ "ddd3c45654f4476eb1eb2d30e621f6a3": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9495,10 +9562,31 @@
"width": null
}
},
- "901698bb5b8f4a3ea00848f0f2b5046c": {
+ "ded200a20be94aea92af5d408156fcca": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1eabfe440e39437190c7a466b0967798",
+ "placeholder": "",
+ "style": "IPY_MODEL_63aa346b6a1b491183dc78bfd5127ea3",
+ "value": " 19.6k/? [00:00<00:00, 913kB/s]"
+ }
+ },
+ "dfb749a8532d422f87e9c8bd4302a4a0": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -9511,10 +9599,25 @@
"description_width": ""
}
},
- "99360f3c8571451f958c1dd73283674e": {
+ "e20cfd11370548d284ae8b6530911e0d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e21b6208bbc24dfaa77bbc50637bc2ab": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9563,68 +9666,10 @@
"width": null
}
},
- "1cc3cec507844485850a5b95d3db6e9d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "66881711810a4ad28f08bff9bd15e6fd": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_2dcbf0d434494c4ca36c74fb97be7df5",
- "IPY_MODEL_8e6c82700dc74db3bd6d3946f93c956c",
- "IPY_MODEL_568e8a9bb41841a99c608485e4a67ec8"
- ],
- "layout": "IPY_MODEL_af6b21dc6f3f48c7ae5c240b403b3c91"
- }
- },
- "2dcbf0d434494c4ca36c74fb97be7df5": {
+ "e4fc0ef10700445ba9a49390c45a5716": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_befb2622d31b436f8d8cb25d35243989",
- "placeholder": "",
- "style": "IPY_MODEL_26b4f219a8ef4d52a4c34ee304e31fd1",
- "value": "Generating test split: 100%"
- }
- },
- "8e6c82700dc74db3bd6d3946f93c956c": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -9637,39 +9682,42 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_907db8b968a64827a2f4783657949128",
- "max": 500,
+ "layout": "IPY_MODEL_eaeb678c01ef4c89b31db675a724d377",
+ "max": 38726,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_edeb97603ab34a499516c6589a04a711",
- "value": 500
+ "style": "IPY_MODEL_516d0dc1bfc34d0392930e884fac47ae",
+ "value": 38726
}
},
- "568e8a9bb41841a99c608485e4a67ec8": {
+ "e500b37792734768892e8548250ca1a5": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_053917bbf7fc43a0887752403a972737",
- "placeholder": "",
- "style": "IPY_MODEL_221597e24fd14a0e8e67321692f615b8",
- "value": " 500/500 [00:00<00:00, 5115.13 examples/s]"
+ "layout": "IPY_MODEL_c47290facbb34126bf648a58041b7110",
+ "max": 3902,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2da273f7585c4b45a36f55d5f112e581",
+ "value": 3902
}
},
- "af6b21dc6f3f48c7ae5c240b403b3c91": {
+ "e9e86e5e4a1341d592f72110112f276d": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9718,10 +9766,10 @@
"width": null
}
},
- "befb2622d31b436f8d8cb25d35243989": {
+ "eaeb678c01ef4c89b31db675a724d377": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9770,25 +9818,34 @@
"width": null
}
},
- "26b4f219a8ef4d52a4c34ee304e31fd1": {
+ "ed31165ad7b943d8a48a0d82d99627c8": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f8805f4f95ab43cca5aa05fc81eaba06",
+ "max": 29562325,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6f88804f321b4e2d81ee387fd7299799",
+ "value": 29562325
}
},
- "907db8b968a64827a2f4783657949128": {
+ "ed61eabf01c5432a90c3de5c67039746": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9837,10 +9894,34 @@
"width": null
}
},
+ "ed690821c13c49df9c559d5ae1240fd6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6b303cc91755460190a5ae0466d82d1a",
+ "max": 400,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5992e3e857704d62a5ceb8135ed90f78",
+ "value": 400
+ }
+ },
"edeb97603ab34a499516c6589a04a711": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -9853,10 +9934,10 @@
"description_width": ""
}
},
- "053917bbf7fc43a0887752403a972737": {
+ "ee1a05c0abb94b3fabbbbcbbc44833b8": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -9905,25 +9986,10 @@
"width": null
}
},
- "221597e24fd14a0e8e67321692f615b8": {
+ "ee1dd3ac0e364a9d81211fb48e3a63c2": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6e64c9f038fa4e57a374802726b5db3d": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -9935,83 +10001,33 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_af0166beb7444cab8f012a8b4df18475",
- "IPY_MODEL_dae6332c719c479c91156d8651c3c59f",
- "IPY_MODEL_370bb26be7b34dc181ea88756f99afa3"
+ "IPY_MODEL_a6c03bbb26874ef786886e3874b96f45",
+ "IPY_MODEL_ed31165ad7b943d8a48a0d82d99627c8",
+ "IPY_MODEL_8a3dbcf2432e4473acffdc3cd2d7c287"
],
- "layout": "IPY_MODEL_57853bbe0e9942cf8c3e73778f8ff2fc"
- }
- },
- "af0166beb7444cab8f012a8b4df18475": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ac877b5528c744b7b841c17b7516b879",
- "placeholder": "",
- "style": "IPY_MODEL_9ad5687370ed4164a905809751571663",
- "value": "Map: 100%"
- }
- },
- "dae6332c719c479c91156d8651c3c59f": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ceaa596549fd423189786aff7d865a99",
- "max": 100,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_ee67317d933c47d48d3e46cb52e02324",
- "value": 100
+ "layout": "IPY_MODEL_2f5bd7a50398424da94c61c6f8e3a125"
}
},
- "370bb26be7b34dc181ea88756f99afa3": {
+ "ee67317d933c47d48d3e46cb52e02324": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2fbc66f9f17043be8b03fe8cb84ac0d6",
- "placeholder": "",
- "style": "IPY_MODEL_24e6ff03c6b04b94bd729a09a93d4841",
- "value": " 100/100 [00:00<00:00, 903.57 examples/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "57853bbe0e9942cf8c3e73778f8ff2fc": {
+ "ef81ac8f601d43dc8dc9f63e86ce6d5e": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -10060,10 +10076,10 @@
"width": null
}
},
- "ac877b5528c744b7b841c17b7516b879": {
+ "efefa88ed4c64045b05db81984e8a3e7": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -10112,10 +10128,10 @@
"width": null
}
},
- "9ad5687370ed4164a905809751571663": {
+ "effcf408a606435286f6b74b52d127c7": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -10127,78 +10143,31 @@
"description_width": ""
}
},
- "ceaa596549fd423189786aff7d865a99": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ee67317d933c47d48d3e46cb52e02324": {
+ "f2619549195c4090a453c551710cdb65": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_240b1eb858834defb5f1069f017e859e",
+ "placeholder": "",
+ "style": "IPY_MODEL_26b04e0848d74b20988237710bb52aa6",
+ "value": " 2/2 [00:01<00:00, 1.75it/s]"
}
},
- "2fbc66f9f17043be8b03fe8cb84ac0d6": {
+ "f3827cc78cd149408fcb4a38eb7794f6": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -10247,47 +10216,10 @@
"width": null
}
},
- "24e6ff03c6b04b94bd729a09a93d4841": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3bf4f93b8e7e4b4aa8d4af2fd8683a56": {
+ "f47ee50ce7bd4024b15381bcf4ed0213": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_764a4f006ad3411680dc35ab7f77f4d0",
- "IPY_MODEL_75f861994a384edcba5991e24ec0acb2",
- "IPY_MODEL_81f029f951bf4dd4bbbc7ee6e4cc4d9e"
- ],
- "layout": "IPY_MODEL_e9e86e5e4a1341d592f72110112f276d"
- }
- },
- "764a4f006ad3411680dc35ab7f77f4d0": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -10299,40 +10231,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_17b4e1697bb848ad9b1c74993a05b64d",
+ "layout": "IPY_MODEL_807ae90cbea448d5aa02c4e9418acdaf",
"placeholder": "",
- "style": "IPY_MODEL_b68f616e1ec54acbbd6c70f2ee9282cd",
- "value": "Map: 100%"
+ "style": "IPY_MODEL_9aa53ebe612b42c5a29ca0fc32a28c71",
+ "value": "Downloading model.safetensors: 100%"
}
},
- "75f861994a384edcba5991e24ec0acb2": {
+ "f481c31c5e0d493c943d489409178d11": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b36a3e769ea946d9b3a2eee4145d858a",
- "max": 500,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_bbc6b3b9564940098f971fc7c711d61b",
- "value": 500
- }
- },
- "81f029f951bf4dd4bbbc7ee6e4cc4d9e": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -10344,16 +10252,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6c94041132c241b19e0b0d697b044b58",
+ "layout": "IPY_MODEL_78ce2352d3e14733bb5459a59d94f2bb",
"placeholder": "",
- "style": "IPY_MODEL_2bc1eb041c624197b006ca3c29e6819d",
- "value": " 500/500 [00:00<00:00, 1808.74 examples/s]"
+ "style": "IPY_MODEL_7ded086d37894a9e94142d6775d78b91",
+ "value": " 14.8k/14.8k [00:00<00:00, 921kB/s]"
}
},
- "e9e86e5e4a1341d592f72110112f276d": {
+ "f4bcca5b6b7643c99a520db52b769784": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -10402,10 +10310,31 @@
"width": null
}
},
- "17b4e1697bb848ad9b1c74993a05b64d": {
+ "f4fc3e122b954a949448b09630857ec0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c713c1586a344d3da06b0d87764b4afb",
+ "placeholder": "",
+ "style": "IPY_MODEL_6ff76b8372584d09a7df7bb52fccd176",
+ "value": " 1.12G/1.12G [00:06<00:00, 96.5MB/s]"
+ }
+ },
+ "f8805f4f95ab43cca5aa05fc81eaba06": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -10454,25 +10383,31 @@
"width": null
}
},
- "b68f616e1ec54acbbd6c70f2ee9282cd": {
+ "f99308f66ebd4ee38efc60edc7dd2899": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5a22f62bc57c4c78840c1ef51c621996",
+ "placeholder": "",
+ "style": "IPY_MODEL_adbd936819104e65a5a6e94817f928f0",
+ "value": " 400/400 [00:00<00:00, 2500.62 examples/s]"
}
},
- "b36a3e769ea946d9b3a2eee4145d858a": {
+ "f9b6e4363f1b4e3392d1da9f3814f9cc": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -10521,26 +10456,107 @@
"width": null
}
},
- "bbc6b3b9564940098f971fc7c711d61b": {
+ "faed48642f37415ea41a4f6155311666": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "6c94041132c241b19e0b0d697b044b58": {
+ "fc53327bb651457eaaef2bfd17888253": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_95d531c8744d4a71b228cd0177b72568",
+ "placeholder": "",
+ "style": "IPY_MODEL_2e9e85dcb24941468f9a1de54f613ce0",
+ "value": " 500/500 [00:00<00:00, 2543.50 examples/s]"
+ }
+ },
+ "fcd662335f9447cb87bd66b55fea1f41": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fe314b1f2e5d4671bb820bfe16c197e6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8707b73e0a354d0a965cde671dbd7404",
+ "IPY_MODEL_ff1a5195281d45ef80af3773331cef74",
+ "IPY_MODEL_fc53327bb651457eaaef2bfd17888253"
+ ],
+ "layout": "IPY_MODEL_37b69881a6aa453bb5aca22fa5364c23"
+ }
+ },
+ "ff1a5195281d45ef80af3773331cef74": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5f4b4f5191754b4eb8aebd5af6c7942d",
+ "max": 500,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6e6e76fa032f4e579653bf46846f885f",
+ "value": 500
+ }
+ },
+ "ffe9e9464031467c93450fb974f9a3b3": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -10588,26 +10604,10 @@
"visibility": null,
"width": null
}
- },
- "2bc1eb041c624197b006ca3c29e6819d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
}
}
- },
- "accelerator": "GPU"
+ }
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/notebooks/08_NER_Wikiann.ipynb b/notebooks/08_NER_Wikiann.ipynb
index 422bf2ba83..dcb0f83d2e 100644
--- a/notebooks/08_NER_Wikiann.ipynb
+++ b/notebooks/08_NER_Wikiann.ipynb
@@ -26,20 +26,20 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-08-17T12:18:02.087873100Z",
+ "start_time": "2023-08-17T12:17:54.490601100Z"
+ },
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3AJLS4197g-i",
- "outputId": "58e147cd-538d-498c-ae67-7b6f7ce3e21a",
- "ExecuteTime": {
- "end_time": "2023-08-17T12:18:02.087873100Z",
- "start_time": "2023-08-17T12:17:54.490601100Z"
- }
+ "outputId": "58e147cd-538d-498c-ae67-7b6f7ce3e21a"
},
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/251.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.4/251.2 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m \u001b[32m245.8/251.2 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m251.2/251.2 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h"
@@ -66,28 +66,28 @@
"cell_type": "code",
"execution_count": 2,
"metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-08-17T10:54:31.730170400Z",
+ "start_time": "2023-08-17T10:54:28.844625500Z"
+ },
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vgQ5DC_48_r_",
- "outputId": "bb2d049b-6746-43e9-bd32-3a066536dac1",
- "ExecuteTime": {
- "end_time": "2023-08-17T10:54:31.730170400Z",
- "start_time": "2023-08-17T10:54:28.844625500Z"
- }
+ "outputId": "bb2d049b-6746-43e9-bd32-3a066536dac1"
},
"outputs": [
{
- "output_type": "stream",
"name": "stderr",
+ "output_type": "stream",
"text": [
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-multilingual-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
},
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']\n"
]
@@ -127,19 +127,19 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {
- "id": "gZj6Jt-P7Ysd",
"ExecuteTime": {
"end_time": "2023-08-17T10:55:18.106652Z",
"start_time": "2023-08-17T10:55:07.121375100Z"
- }
+ },
+ "id": "gZj6Jt-P7Ysd"
},
"outputs": [],
"source": [
- "from adapters import AdapterConfigBase\n",
+ "from adapters import AdapterConfig\n",
"target_language = \"gn\" # Choose any language that a bert-base-multilingual-cased language adapter is available for\n",
"source_language = \"en\" # We support \"en\", \"ja\", \"zh\", and \"ar\"\n",
"\n",
- "adapter_config = AdapterConfigBase.load(\n",
+ "adapter_config = AdapterConfig.load(\n",
" None,\n",
" leave_out=[11]\n",
")\n",
@@ -172,11 +172,11 @@
"cell_type": "code",
"execution_count": 4,
"metadata": {
- "id": "o-SUUa367TBr",
"ExecuteTime": {
"end_time": "2023-08-17T10:56:49.120227700Z",
"start_time": "2023-08-17T10:55:35.178236700Z"
- }
+ },
+ "id": "o-SUUa367TBr"
},
"outputs": [],
"source": [
@@ -205,11 +205,11 @@
"cell_type": "code",
"execution_count": 5,
"metadata": {
- "id": "bbfMD2EM8OAs",
"ExecuteTime": {
"end_time": "2023-08-17T10:57:18.725260400Z",
"start_time": "2023-08-17T10:57:18.709640900Z"
- }
+ },
+ "id": "bbfMD2EM8OAs"
},
"outputs": [],
"source": [
@@ -262,6 +262,10 @@
"cell_type": "code",
"execution_count": 6,
"metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-08-17T10:57:33.497198700Z",
+ "start_time": "2023-08-17T10:57:33.406508100Z"
+ },
"colab": {
"base_uri": "https://localhost:8080/",
"height": 49,
@@ -280,26 +284,22 @@
]
},
"id": "xrnTO-hV8pRc",
- "outputId": "f6bd5820-c176-475e-fa10-8f449009587d",
- "ExecuteTime": {
- "end_time": "2023-08-17T10:57:33.497198700Z",
- "start_time": "2023-08-17T10:57:33.406508100Z"
- }
+ "outputId": "f6bd5820-c176-475e-fa10-8f449009587d"
},
"outputs": [
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Map: 0%| | 0/100 [00:00, ? examples/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "d7bc633f2ede464aacc1e72fcfa12f7a",
"version_major": 2,
- "version_minor": 0,
- "model_id": "d7bc633f2ede464aacc1e72fcfa12f7a"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/100 [00:00, ? examples/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
@@ -326,6 +326,10 @@
"cell_type": "code",
"execution_count": 7,
"metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-08-17T10:57:37.702784100Z",
+ "start_time": "2023-08-17T10:57:36.269889400Z"
+ },
"colab": {
"base_uri": "https://localhost:8080/",
"height": 84,
@@ -344,34 +348,30 @@
]
},
"id": "H07g_-if9xb0",
- "outputId": "6c824656-0017-4eae-e630-506b71079647",
- "ExecuteTime": {
- "end_time": "2023-08-17T10:57:37.702784100Z",
- "start_time": "2023-08-17T10:57:36.269889400Z"
- }
+ "outputId": "6c824656-0017-4eae-e630-506b71079647"
},
"outputs": [
{
- "output_type": "stream",
"name": "stderr",
+ "output_type": "stream",
"text": [
":7: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
" metric = load_metric(\"seqeval\")\n"
]
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "Downloading builder script: 0%| | 0.00/2.47k [00:00, ?B/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "874cf4195a8e4c90ba6fcc7f36cb9483",
"version_major": 2,
- "version_minor": 0,
- "model_id": "874cf4195a8e4c90ba6fcc7f36cb9483"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading builder script: 0%| | 0.00/2.47k [00:00, ?B/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
@@ -430,31 +430,27 @@
"cell_type": "code",
"execution_count": 8,
"metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-08-17T10:57:57.481411100Z",
+ "start_time": "2023-08-17T10:57:47.722377900Z"
+ },
"colab": {
"base_uri": "https://localhost:8080/",
"height": 193
},
"id": "HAxswwN3hmyw",
- "outputId": "84383f0c-8b7a-4c8d-b89b-4d6a4d240fbd",
- "ExecuteTime": {
- "end_time": "2023-08-17T10:57:57.481411100Z",
- "start_time": "2023-08-17T10:57:47.722377900Z"
- }
+ "outputId": "84383f0c-8b7a-4c8d-b89b-4d6a4d240fbd"
},
"outputs": [
{
- "output_type": "stream",
"name": "stderr",
+ "output_type": "stream",
"text": [
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
]
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- ""
- ],
"text/html": [
"\n",
" \n",
@@ -463,12 +459,15 @@
" [2/2 00:00]\n",
"
\n",
" "
+ ],
+ "text/plain": [
+ ""
]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"{'eval_loss': 1.0064687728881836,\n",
@@ -481,8 +480,9 @@
" 'eval_steps_per_second': 0.375}"
]
},
+ "execution_count": 8,
"metadata": {},
- "execution_count": 8
+ "output_type": "execute_result"
}
],
"source": [
@@ -512,79 +512,21 @@
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
+ "pycharm": {
+ "stem_cell": {
+ "cell_type": "raw",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": []
+ }
+ },
"widgets": {
"application/vnd.jupyter.widget-state+json": {
- "d7bc633f2ede464aacc1e72fcfa12f7a": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9bbc7b3250bb413d87fd92481fbc124e",
- "IPY_MODEL_9cd70a43ebb94a70acbba42eec2da49c",
- "IPY_MODEL_b3d0bdd16c204efb821770b14e2cad90"
- ],
- "layout": "IPY_MODEL_22da358e24834033a9f58897fcb5c8bc"
- }
- },
- "9bbc7b3250bb413d87fd92481fbc124e": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_738643294a6a4c82a3b1302ac5c3eeae",
- "placeholder": "",
- "style": "IPY_MODEL_f3c854026aaa4a0489a2077af93ebb15",
- "value": "Map: 100%"
- }
- },
- "9cd70a43ebb94a70acbba42eec2da49c": {
+ "044148eb2ee6451c9f1fbb0137f59ac9": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_df5aafeed72b4be9996671e9541ac56a",
- "max": 100,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4dc17f1d57684fc398a2834d6b39bf02",
- "value": 100
- }
- },
- "b3d0bdd16c204efb821770b14e2cad90": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -596,16 +538,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b75ef14b0a7d4925ad06f22172a3b290",
+ "layout": "IPY_MODEL_cd1abe7ae13e418c8e3e04c9b26dfe9d",
"placeholder": "",
- "style": "IPY_MODEL_5311b979ae3b4fba870e2de76d4e17cd",
- "value": " 100/100 [00:00<00:00, 704.21 examples/s]"
+ "style": "IPY_MODEL_3dad54731ab948ddb4b80a0d43a8c0a6",
+ "value": "Downloading builder script: "
}
},
- "22da358e24834033a9f58897fcb5c8bc": {
+ "06507f5e6d2c4319847750520af267e2": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -654,10 +596,34 @@
"width": null
}
},
- "738643294a6a4c82a3b1302ac5c3eeae": {
+ "0c6a31da49c5480d9a949da992bd95cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bf106e11f0a749b182fc3f0e2df5429d",
+ "max": 2472,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_4e02dd0f353047be90dbaf0fa2ecf0c3",
+ "value": 2472
+ }
+ },
+ "22da358e24834033a9f58897fcb5c8bc": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -706,10 +672,57 @@
"width": null
}
},
- "f3c854026aaa4a0489a2077af93ebb15": {
+ "3dad54731ab948ddb4b80a0d43a8c0a6": {
"model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4dc17f1d57684fc398a2834d6b39bf02": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "4e02dd0f353047be90dbaf0fa2ecf0c3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5311b979ae3b4fba870e2de76d4e17cd": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -721,10 +734,31 @@
"description_width": ""
}
},
- "df5aafeed72b4be9996671e9541ac56a": {
+ "545bcd6670154ef18cb9603877cb707f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8872e1de590e49e7a648435eea7b4fe0",
+ "placeholder": "",
+ "style": "IPY_MODEL_c1845d1d27864c1887ff7b4882d06a6e",
+ "value": " 6.33k/? [00:00<00:00, 365kB/s]"
+ }
+ },
+ "738643294a6a4c82a3b1302ac5c3eeae": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -773,26 +807,32 @@
"width": null
}
},
- "4dc17f1d57684fc398a2834d6b39bf02": {
+ "874cf4195a8e4c90ba6fcc7f36cb9483": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_044148eb2ee6451c9f1fbb0137f59ac9",
+ "IPY_MODEL_0c6a31da49c5480d9a949da992bd95cd",
+ "IPY_MODEL_545bcd6670154ef18cb9603877cb707f"
+ ],
+ "layout": "IPY_MODEL_06507f5e6d2c4319847750520af267e2"
}
},
- "b75ef14b0a7d4925ad06f22172a3b290": {
+ "8872e1de590e49e7a648435eea7b4fe0": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -841,47 +881,10 @@
"width": null
}
},
- "5311b979ae3b4fba870e2de76d4e17cd": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "874cf4195a8e4c90ba6fcc7f36cb9483": {
+ "9bbc7b3250bb413d87fd92481fbc124e": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_044148eb2ee6451c9f1fbb0137f59ac9",
- "IPY_MODEL_0c6a31da49c5480d9a949da992bd95cd",
- "IPY_MODEL_545bcd6670154ef18cb9603877cb707f"
- ],
- "layout": "IPY_MODEL_06507f5e6d2c4319847750520af267e2"
- }
- },
- "044148eb2ee6451c9f1fbb0137f59ac9": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -893,16 +896,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_cd1abe7ae13e418c8e3e04c9b26dfe9d",
+ "layout": "IPY_MODEL_738643294a6a4c82a3b1302ac5c3eeae",
"placeholder": "",
- "style": "IPY_MODEL_3dad54731ab948ddb4b80a0d43a8c0a6",
- "value": "Downloading builder script: "
+ "style": "IPY_MODEL_f3c854026aaa4a0489a2077af93ebb15",
+ "value": "Map: 100%"
}
},
- "0c6a31da49c5480d9a949da992bd95cd": {
+ "9cd70a43ebb94a70acbba42eec2da49c": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -915,18 +918,18 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_bf106e11f0a749b182fc3f0e2df5429d",
- "max": 2472,
+ "layout": "IPY_MODEL_df5aafeed72b4be9996671e9541ac56a",
+ "max": 100,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_4e02dd0f353047be90dbaf0fa2ecf0c3",
- "value": 2472
+ "style": "IPY_MODEL_4dc17f1d57684fc398a2834d6b39bf02",
+ "value": 100
}
},
- "545bcd6670154ef18cb9603877cb707f": {
+ "b3d0bdd16c204efb821770b14e2cad90": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -938,16 +941,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_8872e1de590e49e7a648435eea7b4fe0",
+ "layout": "IPY_MODEL_b75ef14b0a7d4925ad06f22172a3b290",
"placeholder": "",
- "style": "IPY_MODEL_c1845d1d27864c1887ff7b4882d06a6e",
- "value": " 6.33k/? [00:00<00:00, 365kB/s]"
+ "style": "IPY_MODEL_5311b979ae3b4fba870e2de76d4e17cd",
+ "value": " 100/100 [00:00<00:00, 704.21 examples/s]"
}
},
- "06507f5e6d2c4319847750520af267e2": {
+ "b75ef14b0a7d4925ad06f22172a3b290": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -996,10 +999,10 @@
"width": null
}
},
- "cd1abe7ae13e418c8e3e04c9b26dfe9d": {
+ "bf106e11f0a749b182fc3f0e2df5429d": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1048,10 +1051,10 @@
"width": null
}
},
- "3dad54731ab948ddb4b80a0d43a8c0a6": {
+ "c1845d1d27864c1887ff7b4882d06a6e": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -1063,10 +1066,10 @@
"description_width": ""
}
},
- "bf106e11f0a749b182fc3f0e2df5429d": {
+ "cd1abe7ae13e418c8e3e04c9b26dfe9d": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1115,26 +1118,32 @@
"width": null
}
},
- "4e02dd0f353047be90dbaf0fa2ecf0c3": {
+ "d7bc633f2ede464aacc1e72fcfa12f7a": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9bbc7b3250bb413d87fd92481fbc124e",
+ "IPY_MODEL_9cd70a43ebb94a70acbba42eec2da49c",
+ "IPY_MODEL_b3d0bdd16c204efb821770b14e2cad90"
+ ],
+ "layout": "IPY_MODEL_22da358e24834033a9f58897fcb5c8bc"
}
},
- "8872e1de590e49e7a648435eea7b4fe0": {
+ "df5aafeed72b4be9996671e9541ac56a": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1183,10 +1192,10 @@
"width": null
}
},
- "c1845d1d27864c1887ff7b4882d06a6e": {
+ "f3c854026aaa4a0489a2077af93ebb15": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -1199,17 +1208,8 @@
}
}
}
- },
- "pycharm": {
- "stem_cell": {
- "cell_type": "raw",
- "source": [],
- "metadata": {
- "collapsed": false
- }
- }
}
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/src/adapters/__init__.py b/src/adapters/__init__.py
index 8c32027aa7..2b1524734d 100644
--- a/src/adapters/__init__.py
+++ b/src/adapters/__init__.py
@@ -39,7 +39,7 @@
"ADAPTERFUSION_CONFIG_MAP",
"DEFAULT_ADAPTER_CONFIG",
"DEFAULT_ADAPTERFUSION_CONFIG",
- "AdapterConfigBase",
+ "AdapterConfig",
"AdapterFusionConfig",
"BnConfig",
"CompacterConfig",
@@ -147,7 +147,7 @@
ADAPTERFUSION_CONFIG_MAP,
DEFAULT_ADAPTER_CONFIG,
DEFAULT_ADAPTERFUSION_CONFIG,
- AdapterConfigBase,
+ AdapterConfig,
AdapterFusionConfig,
BnConfig,
CompacterConfig,
diff --git a/src/adapters/configuration/adapter_config.py b/src/adapters/configuration/adapter_config.py
index b4aafd364f..63039a8459 100644
--- a/src/adapters/configuration/adapter_config.py
+++ b/src/adapters/configuration/adapter_config.py
@@ -9,7 +9,7 @@
logger = logging.getLogger(__name__)
-class AdapterConfigBase(Mapping):
+class AdapterConfig(Mapping):
"""
Base class for all adaptation methods. This class does not define specific configuration keys, but only provides
some common helper methods.
@@ -21,7 +21,7 @@ class AdapterConfigBase(Mapping):
architecture: Optional[str] = None
def __init__(self):
- raise TypeError("AdapterConfigBase is an abstract class and cannot be instantiated.")
+ raise TypeError("AdapterConfig is an abstract class and cannot be instantiated.")
# We want to emulate a simple form of immutability while keeping the ability to add custom attributes.
# Therefore, we don't allow changing attribute values if set once.
@@ -57,7 +57,7 @@ def replace(self, **changes):
@classmethod
def from_dict(cls, config):
"""Creates a config class from a Python dict."""
- if isinstance(config, AdapterConfigBase):
+ if isinstance(config, AdapterConfig):
return config
# the constructor does not accept additional kwargs, so add them separately
@@ -94,7 +94,7 @@ def _get_config_class(config_dict):
@classmethod
def load(cls, config: Union[dict, str], download_kwargs=None, **kwargs):
"""
- Loads a given adapter configuration specifier into a full AdapterConfigBase instance.
+ Loads a given adapter configuration specifier into a full AdapterConfig instance.
Args:
config (Union[dict, str]): The configuration to load. Can be either:
@@ -119,7 +119,7 @@ def load(cls, config: Union[dict, str], download_kwargs=None, **kwargs):
else:
config_dict = resolve_adapter_config(config, local_map=local_map)
# convert back to dict to allow attr overrides
- if isinstance(config_dict, AdapterConfigBase):
+ if isinstance(config_dict, AdapterConfig):
cls_new = config_dict.__class__
config_dict = config_dict.to_dict()
else:
@@ -130,7 +130,7 @@ def load(cls, config: Union[dict, str], download_kwargs=None, **kwargs):
@dataclass(eq=False)
-class BnConfig(AdapterConfigBase):
+class BnConfig(AdapterConfig):
"""
Base class that models the architecture of a bottleneck adapter.
@@ -361,7 +361,7 @@ class ParBnConfig(BnConfig):
@dataclass(eq=False)
-class PrefixTuningConfig(AdapterConfigBase):
+class PrefixTuningConfig(AdapterConfig):
"""
The Prefix Tuning architecture proposed by Li & Liang (2021). See https://arxiv.org/pdf/2101.00190.pdf.
@@ -398,7 +398,7 @@ class PrefixTuningConfig(AdapterConfigBase):
@dataclass(eq=False)
-class PromptTuningConfig(AdapterConfigBase):
+class PromptTuningConfig(AdapterConfig):
"""
The Prompt Tuning architecture proposed by Lester et al. (2021). See https://arxiv.org/pdf/2104.08691.pdf
@@ -425,7 +425,7 @@ class PromptTuningConfig(AdapterConfigBase):
@dataclass(eq=False)
-class LoRAConfig(AdapterConfigBase):
+class LoRAConfig(AdapterConfig):
"""
The Low-Rank Adaptation (LoRA) architecture proposed by Hu et al. (2021). See https://arxiv.org/pdf/2106.09685.pdf.
LoRA adapts a model by reparametrizing the weights of a layer matrix. You can merge the additional weights with the
@@ -491,7 +491,7 @@ class IA3Config(LoRAConfig):
use_gating: bool = False
-class ConfigUnion(AdapterConfigBase):
+class ConfigUnion(AdapterConfig):
"""
Composes multiple adaptation method configurations into one. This class can be used to define complex adaptation
method setups.
@@ -499,9 +499,9 @@ class ConfigUnion(AdapterConfigBase):
architecture: Optional[str] = "union"
- configs: List[AdapterConfigBase]
+ configs: List[AdapterConfig]
- def __init__(self, *configs: List[AdapterConfigBase]):
+ def __init__(self, *configs: List[AdapterConfig]):
self.validate(configs)
self.configs = configs
@@ -512,7 +512,7 @@ def validate(configs):
setup.
Args:
- configs (List[AdapterConfigBase]): list of configs to check.
+ configs (List[AdapterConfig]): list of configs to check.
Raises:
TypeError: One of the configurations has a wrong type. ValueError: At least two given configurations
@@ -520,8 +520,8 @@ def validate(configs):
"""
# perform single config checks
for config in configs:
- if not isinstance(config, AdapterConfigBase):
- raise TypeError(f"{config} is not an instance of AdapterConfigBase")
+ if not isinstance(config, AdapterConfig):
+ raise TypeError(f"{config} is not an instance of AdapterConfig")
elif isinstance(config, ConfigUnion):
raise TypeError(f"{config} of type {type(config)} is not supported in a config union.")
# perform pairwise check
@@ -568,7 +568,7 @@ def replace(self, **changes):
@classmethod
def from_dict(cls, config):
- if isinstance(config, AdapterConfigBase):
+ if isinstance(config, AdapterConfig):
return config
configs = []
diff --git a/src/adapters/configuration/adapter_fusion_config.py b/src/adapters/configuration/adapter_fusion_config.py
index afda2964c8..552bcdbe61 100644
--- a/src/adapters/configuration/adapter_fusion_config.py
+++ b/src/adapters/configuration/adapter_fusion_config.py
@@ -2,11 +2,11 @@
from typing import Union
from ..utils import resolve_adapter_config
-from .adapter_config import AdapterConfigBase
+from .adapter_config import AdapterConfig
@dataclass(eq=False)
-class AdapterFusionConfig(AdapterConfigBase):
+class AdapterFusionConfig(AdapterConfig):
"""Base class that models the architecture of an adapter fusion layer."""
key: bool
diff --git a/src/adapters/configuration/model_adapters_config.py b/src/adapters/configuration/model_adapters_config.py
index aeb89d493f..3f4c3023da 100644
--- a/src/adapters/configuration/model_adapters_config.py
+++ b/src/adapters/configuration/model_adapters_config.py
@@ -6,7 +6,7 @@
from .. import __version__
from ..composition import AdapterCompositionBlock
from ..utils import get_adapter_config_hash
-from .adapter_config import ADAPTER_CONFIG_MAP, DEFAULT_ADAPTER_CONFIG, AdapterConfigBase, ConfigUnion
+from .adapter_config import ADAPTER_CONFIG_MAP, DEFAULT_ADAPTER_CONFIG, AdapterConfig, ConfigUnion
from .adapter_fusion_config import ADAPTERFUSION_CONFIG_MAP, DEFAULT_ADAPTERFUSION_CONFIG
@@ -77,8 +77,8 @@ def match(
config = self.get(adapter_name)
if config is None:
return None
- elif not isinstance(config, AdapterConfigBase):
- config = AdapterConfigBase.load(config)
+ elif not isinstance(config, AdapterConfig):
+ config = AdapterConfig.load(config)
if isinstance(config, config_type):
leave_out = config.get("leave_out", [])
@@ -125,7 +125,7 @@ def add(self, adapter_name: str, config: Optional[Union[str, dict]] = None):
# if it's a dict, compute it's hash and add a new entry to the config map
elif isinstance(config, Mapping):
config_name = get_adapter_config_hash(config)
- self.config_map[config_name] = AdapterConfigBase.load(config)
+ self.config_map[config_name] = AdapterConfig.load(config)
else:
raise ValueError("Invalid adapter config: {}".format(config))
self.adapters[adapter_name] = config_name
@@ -207,14 +207,14 @@ def to_dict(self):
output_dict["adapters"] = copy.deepcopy(self.adapters)
output_dict["config_map"] = {}
for k, v in self.config_map.items():
- if isinstance(v, AdapterConfigBase):
+ if isinstance(v, AdapterConfig):
output_dict["config_map"][k] = v.to_dict()
else:
output_dict["config_map"][k] = copy.deepcopy(v)
output_dict["fusions"] = copy.deepcopy(self.fusions)
output_dict["fusion_config_map"] = {}
for k, v in self.fusion_config_map.items():
- if isinstance(v, AdapterConfigBase):
+ if isinstance(v, AdapterConfig):
output_dict["fusion_config_map"][k] = v.to_dict()
else:
output_dict["fusion_config_map"][k] = copy.deepcopy(v)
@@ -233,7 +233,7 @@ def build_full_config(adapter_config, model_config, save_id2label=False, **kwarg
config_dict.update(kwargs)
if not hasattr(model_config, "prediction_heads") and save_id2label:
config_dict["label2id"] = model_config.label2id
- if isinstance(adapter_config, AdapterConfigBase):
+ if isinstance(adapter_config, AdapterConfig):
config_dict["config"] = adapter_config.to_dict()
else:
config_dict["config"] = adapter_config
diff --git a/src/adapters/heads/base.py b/src/adapters/heads/base.py
index d907aba600..d45897df10 100644
--- a/src/adapters/heads/base.py
+++ b/src/adapters/heads/base.py
@@ -20,6 +20,7 @@
from ..composition import AdapterCompositionBlock, BatchSplit, Parallel, parse_heads_from_composition
from ..context import AdapterSetup, ForwardContext
+from ..loading import PredictionHeadLoader
from ..methods.modeling import Activation_Function_Class
from ..model_mixin import ModelWithHeadsAdaptersMixin
@@ -535,20 +536,30 @@ def _init_head_modules(self):
# The following methods are required for handling LM heads
- def get_output_embeddings(self):
+ def get_output_embeddings(self) -> Union[nn.Module, List[nn.Module]]:
# Only gets the output embeddings for the currently active head
- if self.active_head in self.heads:
- head = self.heads[self.active_head]
- return head.get_output_embeddings()
- else:
+ embeddings = []
+ for head_name in self._active_heads:
+ if head_name in self.heads:
+ head = self.heads[head_name]
+ output_embeddings = head.get_output_embeddings()
+ embeddings.append(output_embeddings)
+
+ if len(embeddings) == 1:
+ return embeddings[0]
+ elif len(embeddings) == 0 or all([e is None for e in embeddings]):
return None
+ else:
+ return embeddings
- def set_output_embeddings(self, new_embeddings):
+ def set_output_embeddings(self, new_embeddings: Union[nn.Module, List[nn.Module]]):
# Only sets the output embeddings for the currently active head
- if self.active_head in self.heads:
- head = self.heads[self.active_head]
- if head.get_output_embeddings() is not None:
- head.set_output_embeddings(new_embeddings)
+ if not isinstance(new_embeddings, list):
+ new_embeddings = [new_embeddings] * len(self._active_heads)
+ for head_name, emb in zip(self._active_heads, new_embeddings):
+ if head_name in self.heads:
+ head = self.heads[head_name]
+ head.set_output_embeddings(emb)
def tie_weights(self):
"""
@@ -917,3 +928,48 @@ def get_labels(self, head_name=None):
return None
else:
return list(label_dict.values())
+
+ # This method is called during model loading in from_pretrained() to apply the state_dict to the model.
+ # Override it to inject adapter head logic.
+ @classmethod
+ def _load_pretrained_model(
+ cls,
+ model,
+ state_dict,
+ loaded_keys,
+ *args,
+ **kwargs,
+ ):
+ # Filter only weights not part of base model
+ if state_dict is not None:
+ head_state_dict = {
+ key: value for key, value in state_dict.items() if not key.startswith(cls.base_model_prefix)
+ }
+ else:
+ head_state_dict = None
+ head_name = "default"
+ loader = PredictionHeadLoader(model, error_on_missing=False, convert_to_flex_head=True)
+ head_config, new_head_state_dict = loader.convert_static_to_flex_head(head_state_dict, load_as=head_name)
+
+ if head_config is not None:
+ # add head from config
+ if head_name in model.heads:
+ logger.warning("Overwriting existing head '{}'".format(head_name))
+
+ model.add_prediction_head_from_config(head_name, head_config, overwrite_ok=True)
+
+ if new_head_state_dict is not None:
+ for k in head_state_dict:
+ del state_dict[k]
+ loaded_keys.remove(k)
+ for k in new_head_state_dict:
+ state_dict[k] = new_head_state_dict[k]
+ loaded_keys.append(k)
+
+ return super()._load_pretrained_model(
+ model,
+ state_dict,
+ loaded_keys,
+ *args,
+ **kwargs,
+ )
diff --git a/src/adapters/loading.py b/src/adapters/loading.py
index ddd15c1724..8e22cfc128 100644
--- a/src/adapters/loading.py
+++ b/src/adapters/loading.py
@@ -7,7 +7,7 @@
import torch
-from .configuration import AdapterConfigBase, build_full_config
+from .configuration import AdapterConfig, build_full_config
from .head_utils import STATIC_TO_FLEX_HEAD_MAP, get_head_config_and_rename_list
from .utils import (
ACTIVATION_RENAME,
@@ -421,7 +421,7 @@ def load(
Tuple[str, str]: A tuple consisting of the local file system directory from which the weights where loaded
and the name of the loaded weights.
"""
- requested_config = AdapterConfigBase.load(config) if config else None
+ requested_config = AdapterConfig.load(config) if config else None
# Resolve the weights to be loaded based on the given identifier and the current adapter config
model_name = self.model.model_name or model_name
resolved_folder = resolve_adapter_path(
@@ -767,3 +767,43 @@ def load(self, save_directory, load_as=None, loading_info=None, **kwargs):
)
return save_directory, head_name
+
+ def convert_static_to_flex_head(self, state_dict, load_as="default"):
+ """
+ Loads a prediction head module from the given state dict, which contains a static head checkpoint.
+
+ Args:
+ state_dict (dict): The static head checkpoint from which to load the head module. Can be None.
+ load_as (str, optional): Load the weights with this name. Defaults to None.
+
+ Returns:
+ Tuple[dict, dict]: A tuple consisting of the head config and the state dict of the loaded weights.
+ """
+ assert self.convert_to_flex_head, "load_from_state_dict() can only be used with convert_to_flex_head=True."
+ assert hasattr(self.model, "heads"), "load_from_state_dict() can only be used with flex heads model class."
+
+ conversion_rename_func = None
+
+ original_model_class = self.model.config.architectures[0] if self.model.config.architectures else None
+ if original_model_class in STATIC_TO_FLEX_HEAD_MAP:
+ head_config, conversion_rename_func = get_head_config_and_rename_list(
+ original_model_class,
+ load_as,
+ getattr(self.model.config, "label2id"),
+ )
+ elif self.error_on_missing:
+ raise ValueError(
+ f"Cannot automatically convert prediction head of model class {original_model_class} to flex head."
+ )
+ else:
+ return None, None
+
+ # Load head weights
+ if state_dict is not None:
+ new_state_dict = {}
+ for k, v in state_dict.items():
+ new_k = conversion_rename_func(k)
+ new_state_dict[new_k] = v
+ else:
+ new_state_dict = None
+ return head_config, new_state_dict
diff --git a/src/adapters/model_mixin.py b/src/adapters/model_mixin.py
index b41a75cedd..a4a1b8d17c 100644
--- a/src/adapters/model_mixin.py
+++ b/src/adapters/model_mixin.py
@@ -13,7 +13,7 @@
from transformers.modeling_outputs import ModelOutput
from .composition import AdapterCompositionBlock, Fuse, Stack, parse_composition
-from .configuration import ADAPTER_CONFIG_MAP, AdapterConfigBase, AdapterFusionConfig, BnConfig
+from .configuration import ADAPTER_CONFIG_MAP, AdapterConfig, AdapterFusionConfig, BnConfig
from .context import AdapterSetup, ForwardContext
from .hub_mixin import PushAdapterToHubMixin
from .loading import AdapterFusionLoader, AdapterLoader, PredictionHeadLoader, WeightsLoader
@@ -542,7 +542,7 @@ def add_adapter(self, adapter_name: str, config=None, overwrite_ok: bool = False
Args:
adapter_name (str): The name of the adapter module to be added.
- config (str or dict or AdapterConfigBase, optional): The adapter configuration, can be either:
+ config (str or dict or AdapterConfig, optional): The adapter configuration, can be either:
- the string identifier of a pre-defined configuration dictionary
- a configuration dictionary specifying the full config
@@ -553,7 +553,7 @@ def add_adapter(self, adapter_name: str, config=None, overwrite_ok: bool = False
Set the adapter to be the active one. By default (False),
the adapter is added but not activated.
"""
- config = AdapterConfigBase.load(config) # ensure config is ok and up-to-date
+ config = AdapterConfig.load(config) # ensure config is ok and up-to-date
# In case adapter already exists and we allow overwriting, explicitly delete the existing one first
if overwrite_ok and adapter_name in self.adapters_config:
self.delete_adapter(adapter_name)
@@ -1363,6 +1363,7 @@ def train_adapter(self, adapter_setup: Union[list, AdapterCompositionBlock], tra
super().train_adapter(adapter_setup, train_embeddings)
else:
self.base_model.train_adapter(adapter_setup, train_embeddings)
+ self.freeze_embeddings()
def train_adapter_fusion(self, adapter_setup: Union[list, AdapterCompositionBlock], unfreeze_adapters=False):
"""
@@ -1373,6 +1374,7 @@ def train_adapter_fusion(self, adapter_setup: Union[list, AdapterCompositionBloc
super().train_adapter_fusion(adapter_setup, unfreeze_adapters=unfreeze_adapters)
else:
self.base_model.train_adapter_fusion(adapter_setup, unfreeze_adapters=unfreeze_adapters)
+ self.freeze_embeddings()
def save_head(self, save_directory: str, head_name: str = None):
loader = PredictionHeadLoader(self)
@@ -1543,3 +1545,15 @@ def get_adapter(self, name):
return super().get_adapter(name)
else:
return self.base_model.get_adapter(name)
+
+ def freeze_embeddings(self, freeze=True):
+ # If model has prediction head with embeddings, ensure these are frozen
+ if self.get_output_embeddings() is not None:
+ output_embeddings = self.get_output_embeddings()
+ if isinstance(output_embeddings, list):
+ for output_embedding in output_embeddings:
+ for p in output_embedding.parameters():
+ p.requires_grad = not freeze
+ else:
+ for p in self.get_output_embeddings().parameters():
+ p.requires_grad = not freeze
diff --git a/src/adapters/models/__init__.py b/src/adapters/models/__init__.py
index 11da5d325e..dd48552d23 100644
--- a/src/adapters/models/__init__.py
+++ b/src/adapters/models/__init__.py
@@ -18,7 +18,12 @@
from .gpt2.mixin_gpt2 import GPT2ModelAdapterMixin
from .gptj.mixin_gptj import GPTJMLPAdaptersMixin, GPTJModelAdapterMixin
from .llama.mixin_llama import LlamaModelAdapterMixin
-from .t5.mixin_t5 import T5BlockAdaptersMixin, T5ModelAdaptersMixin, T5ModelAdaptersWithHeadsMixin
+from .t5.mixin_t5 import (
+ T5BlockAdaptersMixin,
+ T5ForCondiditionalGenerationWithHeadsMixin,
+ T5ForQuestionAnsweringWithHeadsMixin,
+ T5ModelAdaptersMixin,
+)
from .vit.mixin_vit import ViTIntermediateAdaptersMixin, ViTModelAdaptersMixin
from .xmod.mixin_xmod import XmodModelAdaptersMixin
@@ -57,8 +62,8 @@
"RobertaModel": BertModelAdaptersMixin,
"T5Block": T5BlockAdaptersMixin,
"T5Model": T5ModelAdaptersMixin,
- "T5ForConditionalGeneration": T5ModelAdaptersWithHeadsMixin,
- "T5ForQuestionAnswering": T5ModelAdaptersWithHeadsMixin,
+ "T5ForConditionalGeneration": T5ForCondiditionalGenerationWithHeadsMixin,
+ "T5ForQuestionAnswering": T5ForQuestionAnsweringWithHeadsMixin,
"T5EncoderModel": T5ModelAdaptersMixin,
"ViTIntermediate": ViTIntermediateAdaptersMixin,
"ViTModel": ViTModelAdaptersMixin,
diff --git a/src/adapters/models/t5/mixin_t5.py b/src/adapters/models/t5/mixin_t5.py
index d1bcfbac4a..63cacfb8a7 100644
--- a/src/adapters/models/t5/mixin_t5.py
+++ b/src/adapters/models/t5/mixin_t5.py
@@ -1,5 +1,6 @@
-from typing import Iterable, Tuple
+from typing import Iterable, Optional, Tuple
+import torch
import torch.nn as nn
from ...methods.bottleneck import BottleneckLayer
@@ -105,5 +106,28 @@ def iter_layers(self) -> Iterable[Tuple[int, nn.Module]]:
yield i, layer
-class T5ModelAdaptersWithHeadsMixin(ModelWithHeadsAdaptersMixin, T5ModelAdaptersMixin):
- pass
+# Stating "labels" and "input_ids" explicitly is required for training using Trainer class
+class T5ForCondiditionalGenerationWithHeadsMixin(ModelWithHeadsAdaptersMixin, T5ModelAdaptersMixin):
+ def forward(
+ self,
+ *args,
+ input_ids: Optional[torch.LongTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ):
+ return super().forward(*args, input_ids=input_ids, labels=labels, **kwargs)
+
+
+# Stating "start_positions"/"end_positions" and "input_ids" explicitly is required for training using Trainer class
+class T5ForQuestionAnsweringWithHeadsMixin(ModelWithHeadsAdaptersMixin, T5ModelAdaptersMixin):
+ def forward(
+ self,
+ *args,
+ input_ids: Optional[torch.LongTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ):
+ return super().forward(
+ *args, input_ids=input_ids, start_positions=start_positions, end_positions=end_positions, **kwargs
+ )
diff --git a/src/adapters/training.py b/src/adapters/training.py
index b959dff101..8316011398 100644
--- a/src/adapters/training.py
+++ b/src/adapters/training.py
@@ -2,7 +2,7 @@
from typing import Optional
from .composition import Stack
-from .configuration import AdapterConfigBase
+from .configuration import AdapterConfig
@dataclass
@@ -57,7 +57,7 @@ def setup_adapter_training(
# Setup adapters
if adapter_args.train_adapter:
# resolve the adapter config
- adapter_config = AdapterConfigBase.load(adapter_args.adapter_config, **adapter_config_kwargs)
+ adapter_config = AdapterConfig.load(adapter_args.adapter_config, **adapter_config_kwargs)
# load a pre-trained from Hub if specified
# note: this logic has changed in versions > 3.1.0: adapter is also loaded if it already exists
if adapter_args.load_adapter:
@@ -73,7 +73,7 @@ def setup_adapter_training(
# optionally load a pre-trained language adapter
if adapter_args.load_lang_adapter:
# resolve the language adapter config
- lang_adapter_config = AdapterConfigBase.load(adapter_args.lang_adapter_config, **adapter_config_kwargs)
+ lang_adapter_config = AdapterConfig.load(adapter_args.lang_adapter_config, **adapter_config_kwargs)
# load the language adapter from Hub
lang_adapter_name = model.load_adapter(
adapter_args.load_lang_adapter,
diff --git a/tests_adapters/methods/test_compacter.py b/tests_adapters/methods/test_compacter.py
index 82c9acddbc..253b0fbf4f 100644
--- a/tests_adapters/methods/test_compacter.py
+++ b/tests_adapters/methods/test_compacter.py
@@ -30,7 +30,7 @@ def test_forward_compacter(self):
def test_forward_shared_phm_compacter(self):
model = self.get_model()
- adapter_config = CompacterPlusPlusConfig(phm_dim=2, shared_W_phm=True, reduction_factor=8)
+ adapter_config = CompacterPlusPlusConfig(phm_dim=4, shared_W_phm=True, reduction_factor=4)
self.run_forward_test(model, adapter_config)
def test_load_compacter(self):
diff --git a/tests_adapters/test_adapter_config.py b/tests_adapters/test_adapter_config.py
index 302fe8f697..2bce31c7e3 100644
--- a/tests_adapters/test_adapter_config.py
+++ b/tests_adapters/test_adapter_config.py
@@ -4,7 +4,7 @@
from adapters import (
ADAPTER_CONFIG_MAP,
- AdapterConfigBase,
+ AdapterConfig,
ConfigUnion,
DoubleSeqBnConfig,
LoRAConfig,
@@ -23,14 +23,12 @@ def test_config_load(self):
# TODO still uses the old config names as only these are available on the Hub
for config_name in ["pfeiffer", "houlsby"]:
with self.subTest(config_name=config_name):
- config = AdapterConfigBase.load(
- config_name, download_kwargs=download_kwargs, non_linearity="leakyrelu"
- )
- self.assertTrue(isinstance(config, AdapterConfigBase))
+ config = AdapterConfig.load(config_name, download_kwargs=download_kwargs, non_linearity="leakyrelu")
+ self.assertTrue(isinstance(config, AdapterConfig))
self.assertEqual(config.non_linearity, "leakyrelu")
def test_config_immutable(self):
- def set_attr(config: AdapterConfigBase):
+ def set_attr(config: AdapterConfig):
config.non_linearity = "dummy"
config.r = -1 # for LoRA
config.prompt_length = -1 # for PromptTuning
@@ -57,8 +55,8 @@ class CustomAdapterConfig(SeqBnConfig):
config = CustomAdapterConfig()
config_dict = config.to_dict()
self.assertEqual(config_dict["custom_attr"], "test_value")
- # When calling load on an AdapterConfigBase instance, don't change the class of the config.
- config = AdapterConfigBase.load(config, custom_attr="test_value_2")
+ # When calling load on an AdapterConfig instance, don't change the class of the config.
+ config = AdapterConfig.load(config, custom_attr="test_value_2")
self.assertTrue(isinstance(config, CustomAdapterConfig))
self.assertEqual(config["custom_attr"], "test_value_2")
@@ -80,8 +78,8 @@ def test_config_union_valid(self):
config_new = ConfigUnion.from_dict(config_dict)
self.assertEqual(config, config_new)
- self.assertIsInstance(config_new[0], AdapterConfigBase)
- self.assertIsInstance(config_new[1], AdapterConfigBase)
+ self.assertIsInstance(config_new[0], AdapterConfig)
+ self.assertIsInstance(config_new[1], AdapterConfig)
def test_config_union_invalid(self):
unions = [
@@ -114,7 +112,7 @@ def test_config_string_valid(self):
]
for config_str, config in to_test:
with self.subTest(config_str=config_str):
- config_new = AdapterConfigBase.load(config_str)
+ config_new = AdapterConfig.load(config_str)
self.assertEqual(config, config_new)
def test_config_string_invalid(self):
@@ -126,4 +124,4 @@ def test_config_string_invalid(self):
]
for config_str, error_type in to_test:
with self.subTest(config_str=config_str):
- self.assertRaises(error_type, AdapterConfigBase.load, config_str)
+ self.assertRaises(error_type, AdapterConfig.load, config_str)
diff --git a/tests_adapters/test_adapter_conversion.py b/tests_adapters/test_adapter_conversion.py
index ac57daa315..df209c12ba 100644
--- a/tests_adapters/test_adapter_conversion.py
+++ b/tests_adapters/test_adapter_conversion.py
@@ -198,3 +198,39 @@ def test_equivalent_language_generation(self):
self.assertEquals(model_gen.shape, flex_model_gen.shape)
self.assertTrue(torch.equal(model_gen, flex_model_gen))
+
+ def test_full_model_conversion(self):
+ if self.config_class not in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING:
+ self.skipTest("No sequence classification class.")
+
+ static_head_model = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING[self.config_class](self.config())
+ adapters.init(static_head_model)
+ static_head_model.eval()
+
+ with tempfile.TemporaryDirectory() as temp_dir:
+ static_head_model.save_pretrained(temp_dir)
+
+ flex_head_model, loading_info = AutoAdapterModel.from_pretrained(temp_dir, output_loading_info=True)
+
+ # Roberta-based models always have a pooler, which is not used by the tested head
+ keys_to_ignore = ["roberta.pooler.dense.weight", "roberta.pooler.dense.bias"]
+
+ missing_keys = [k for k in loading_info["missing_keys"] if k not in keys_to_ignore]
+
+ self.assertEqual(0, len(missing_keys), "Missing keys: {}".format(", ".join(missing_keys)))
+ self.assertEqual(
+ 0,
+ len(loading_info["unexpected_keys"]),
+ "Unexpected keys: {}".format(", ".join(loading_info["unexpected_keys"])),
+ )
+
+ # static head is re-loaded as "default"
+ self.assertIn("default", flex_head_model.heads)
+
+ # check equal output
+ in_data = self.get_input_samples(config=flex_head_model.config)
+ static_head_model.to(torch_device)
+ flex_head_model.to(torch_device)
+ output1 = static_head_model(**in_data)
+ output2 = flex_head_model(**in_data, head="default")
+ self.assertTrue(torch.allclose(output1.logits, output2.logits))
diff --git a/tests_adapters/test_adapter_fusion_common.py b/tests_adapters/test_adapter_fusion_common.py
index 474752eb6e..4ee25fa06a 100644
--- a/tests_adapters/test_adapter_fusion_common.py
+++ b/tests_adapters/test_adapter_fusion_common.py
@@ -5,7 +5,7 @@
import torch
-from adapters import ADAPTER_MODEL_MAPPING, ADAPTERFUSION_CONFIG_MAP, AdapterConfigBase, AutoAdapterModel, SeqBnConfig
+from adapters import ADAPTER_MODEL_MAPPING, ADAPTERFUSION_CONFIG_MAP, AdapterConfig, AutoAdapterModel, SeqBnConfig
from adapters.composition import Fuse
from adapters.utils import ADAPTERFUSION_WEIGHTS_NAME
from adapters.wrappers import load_model
@@ -16,7 +16,7 @@
class AdapterFusionModelTestMixin:
def test_add_adapter_fusion(self):
config_name = "seq_bn"
- adapter_config = AdapterConfigBase.load(config_name)
+ adapter_config = AdapterConfig.load(config_name)
for adater_fusion_config_name, adapter_fusion_config in ADAPTERFUSION_CONFIG_MAP.items():
model = self.get_model()
diff --git a/tests_adapters/test_adapter_heads.py b/tests_adapters/test_adapter_heads.py
index 078cd6e095..b69aec2d98 100644
--- a/tests_adapters/test_adapter_heads.py
+++ b/tests_adapters/test_adapter_heads.py
@@ -192,6 +192,25 @@ def test_masked_lm_head(self):
label_dict=label_dict,
)
+ def test_lm_head_freeze_output_embeddings(self):
+ if self.config_class not in ADAPTER_MODEL_MAPPING or (
+ not hasattr(ADAPTER_MODEL_MAPPING[self.config_class], "add_seq2seq_lm_head")
+ and not hasattr(ADAPTER_MODEL_MAPPING[self.config_class], "add_causal_lm_head")
+ ):
+ self.skipTest("No seq2seq or causal language model head")
+
+ model1 = AutoAdapterModel.from_config(self.config())
+ model1.add_adapter("adapter1")
+ if hasattr(model1, "add_seq2seq_lm_head"):
+ model1.add_seq2seq_lm_head("adapter1")
+ else:
+ model1.add_causal_lm_head("adapter1")
+
+ model1.train_adapter("adapter1")
+
+ for n, p in model1.get_output_embeddings().named_parameters():
+ self.assertFalse(p.requires_grad, f"Parameter {n} should not be trainable.")
+
def test_dependency_parsing_head(self):
if not hasattr(ADAPTER_MODEL_MAPPING[self.config_class], "add_dependency_parsing_head"):
self.skipTest("No dependency parsing head")
diff --git a/tests_adapters/test_adapter_hub.py b/tests_adapters/test_adapter_hub.py
index 24ac67c8b8..7ebf9acb6c 100644
--- a/tests_adapters/test_adapter_hub.py
+++ b/tests_adapters/test_adapter_hub.py
@@ -4,7 +4,7 @@
import numpy as np
import adapters
-from adapters import ADAPTER_CONFIG_MAP, AdapterConfigBase, BertAdapterModel, get_adapter_config_hash
+from adapters import ADAPTER_CONFIG_MAP, AdapterConfig, BertAdapterModel, get_adapter_config_hash
from adapters.trainer import AdapterTrainer as Trainer
from adapters.utils import find_in_index
from transformers import ( # get_adapter_config_hash,
@@ -66,7 +66,7 @@ def test_load_task_adapter_from_hub(self):
self.assertNotIn(adapter_name, model.base_model.invertible_adapters)
# check if config is valid
- expected_hash = get_adapter_config_hash(AdapterConfigBase.load(config))
+ expected_hash = get_adapter_config_hash(AdapterConfig.load(config))
real_hash = get_adapter_config_hash(model.adapters_config.get(adapter_name))
self.assertEqual(expected_hash, real_hash)
@@ -116,7 +116,7 @@ def test_load_lang_adapter_from_hub(self):
with self.subTest(config=config):
model = AutoModel.from_pretrained("bert-base-multilingual-cased")
adapters.init(model)
- config = AdapterConfigBase.load(config, non_linearity="gelu", reduction_factor=2)
+ config = AdapterConfig.load(config, non_linearity="gelu", reduction_factor=2)
loading_info = {}
adapter_name = model.load_adapter(
@@ -155,7 +155,7 @@ def test_load_adapter_with_head_from_hub(self):
self.assertIn(adapter_name, model.adapters_config.adapters)
# check if config is valid
- expected_hash = get_adapter_config_hash(AdapterConfigBase.load("houlsby"))
+ expected_hash = get_adapter_config_hash(AdapterConfig.load("houlsby"))
real_hash = get_adapter_config_hash(model.adapters_config.get(adapter_name))
self.assertEqual(expected_hash, real_hash)
diff --git a/utils/back_comp/README.md b/utils/back_comp/README.md
new file mode 100644
index 0000000000..14896c613a
--- /dev/null
+++ b/utils/back_comp/README.md
@@ -0,0 +1,26 @@
+# Backwards Compatibility Tests
+
+## Motivation
+
+This directory contains a set of tests that can be run to ensure that newly introduced changes or refactorings do not break existing functionalities. These tests verify model output consistency between two branches; here, we use the names `dev` and `main` for demonstration purposes, but these tests can be performed between any two branches where the `back_comp` directory with tests is available.
+For this, the test script performs a forward pass for each supported model and compares the outputs between `dev` and `main` to identify any differences.
+
+## Requirements
+
+To execute these tests, you must meet the following requirements:
+
+- Ability to run bash scripts (in-built on Linux/macOS; for Windows, consider using third-party software like [GNU Bash](https://www.gnu.org/software/bash/)).
+- Git as the version control system to switch between branches.
+- The ability to check out the desired branch. If the branch is from another fork, you may need to add the repository as a remote. Refer to [GitHub's instructions](https://docs.github.com/en/get-started/getting-started-with-git/managing-remote-repositories) for details.
+- A Python virtual environment to modify the installed package version of `adapters`.
+
+## Procedure
+
+To perform the compatibility tests, follow these steps:
+
+1. Determine a directory where you want to save the model output generated by the tests. Save this directory path to the variable `SaveDir` in the shell script `compare.sh`. (Careful: select a directory OUTSIDE of the repository; otherwise, the saved model output is no longer available when changing the branch.)
+2. Select the branch you want to compare with `main` and save its name to the variable `Branch`.
+3. Make sure you are checked out in `main` before starting the test script.
+4. In your command line, navigate to the `back_comp` directory and execute the script by running `sh compare.sh`.
+
+The results will be displayed in the command line for visualization.
\ No newline at end of file
diff --git a/utils/back_comp/Utils.py b/utils/back_comp/Utils.py
new file mode 100644
index 0000000000..8ed482130c
--- /dev/null
+++ b/utils/back_comp/Utils.py
@@ -0,0 +1,498 @@
+import os
+import random
+from typing import Any, Union
+
+import numpy as np
+import torch
+from PIL import Image
+from torch import squeeze
+
+import jsonlines
+import requests
+import transformers
+from adapters import AutoAdapterModel, init
+from transformers import (
+ AlbertConfig,
+ BartConfig,
+ BatchEncoding,
+ BeitConfig,
+ BeitImageProcessor,
+ BertConfig,
+ CLIPProcessor,
+ CLIPVisionConfig,
+ CLIPVisionModelWithProjection,
+ DebertaConfig,
+ DebertaV2Config,
+ DistilBertConfig,
+ EncoderDecoderConfig,
+ EncoderDecoderModel,
+ GPT2Config,
+ GPTJConfig,
+ MBartConfig,
+ RobertaConfig,
+ T5Config,
+ ViTConfig,
+ ViTImageProcessor,
+ XLMRobertaConfig,
+)
+
+
+def create_output(model: Any, model_name: str):
+ """Given a model run a forward pass with some dummy data.
+ Args:
+ model: The model for which the forward pass is run.
+ model_name: The name of the model.
+ Returns:
+ The model output."""
+
+ dummy_data = generate_dummy_data(model_name)
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available
+ model.to(device)
+ dummy_data.to(device)
+ with torch.no_grad():
+ model_output = model(**dummy_data)
+
+ return model_output
+
+
+def load_model(model_name: str, model_save_dir: str):
+ """Loads a pre-trained model from a specified path based on the specified model_name.
+ Args:
+ model_name (str): The name of the model to be loaded.
+ model_save_dir (str): The directory path where the pre-trained model is saved.
+ Returns:
+ Any: The loaded pre-trained model."""
+ if model_name == "clip":
+ model = CLIPVisionModelWithProjection.from_pretrained(model_save_dir)
+ init(model)
+ elif model_name == "encoder_decoder":
+ model = EncoderDecoderModel.from_pretrained(model_save_dir)
+ init(model)
+ else:
+ model = AutoAdapterModel.from_pretrained(model_save_dir)
+ model.eval()
+ init(model)
+ return model
+
+
+def get_old_adapter_config_strings():
+ """Returns a list of strings representing old adapter configuration strings."""
+ return [
+ "pfeiffer",
+ "houlsby",
+ "pfeiffer+inv",
+ "houlsby+inv",
+ "parallel",
+ "scaled_parallel",
+ "compacter",
+ "compacter++",
+ "prefix_tuning",
+ "prefix_tuning_flat",
+ "lora",
+ "ia3",
+ "mam",
+ "unipelt",
+ ]
+
+
+def get_new_adapter_config_strings():
+ """Returns a list of strings representing new adapter configurations."""
+ return [
+ "seq_bn",
+ "double_seq_bn",
+ "seq_bn_inv",
+ "double_seq_bn_inv",
+ "par_bn",
+ "scaled_par_bn",
+ "compacter",
+ "compacter++",
+ "prefix_tuning",
+ "prefix_tuning_flat",
+ "lora",
+ "ia3",
+ "mam",
+ "unipelt",
+ ]
+
+
+def get_model_names():
+ """Returns a list of strings representing the testable model names."""
+ return [
+ "bart",
+ "albert",
+ "beit",
+ "bert",
+ "clip",
+ "deberta",
+ "debertaV2",
+ "distilbert",
+ "encoder_decoder",
+ "gpt2",
+ "gptj",
+ "mbart",
+ "roberta",
+ "t5",
+ "vit",
+ "xlm-r",
+ ]
+
+
+def create_model(model_name: str, model_class: Any) -> Any:
+ """Creates and returns an instance of a specified test model.
+ Args:
+ model_name (str): Specifies which model to instantiate.
+ Raises:
+ NotImplementedError: If the specified model type is not implemented."""
+
+ if model_name == "bart":
+ bart_config = BartConfig(
+ d_model=16,
+ encoder_layers=2,
+ decoder_layers=2,
+ encoder_attention_heads=4,
+ decoder_attention_heads=4,
+ encoder_ffn_dim=4,
+ decoder_ffn_dim=4,
+ )
+ model = model_class.from_config(bart_config)
+
+ elif model_name == "albert":
+ albert_config = AlbertConfig(
+ embedding_size=16,
+ hidden_size=64,
+ num_hidden_layers=5,
+ num_attention_heads=4,
+ intermediate_size=37,
+ num_hidden_groups=2,
+ )
+ model = model_class.from_config(albert_config)
+
+ elif model_name == "beit":
+ beit_config = BeitConfig(
+ image_size=224,
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ )
+ model = model_class.from_config(beit_config)
+
+ elif model_name == "bert":
+ bert_config = BertConfig(
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ )
+ model = model_class.from_config(bert_config)
+
+ elif model_name == "clip":
+ clip_config = CLIPVisionConfig(
+ image_size=30,
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ )
+ model = CLIPVisionModelWithProjection(clip_config)
+
+ elif model_name == "deberta":
+ deberta_config = DebertaConfig(
+ hidden_size=32,
+ num_hidden_layers=5,
+ num_attention_heads=4,
+ intermediate_size=37,
+ hidden_act="gelu",
+ relative_attention=True,
+ pos_att_type="p2c|c2p",
+ )
+ model = model_class.from_config(deberta_config)
+
+ elif model_name == "debertaV2":
+ debertaV2_config = DebertaV2Config(
+ hidden_size=32,
+ num_hidden_layers=5,
+ num_attention_heads=4,
+ intermediate_size=37,
+ hidden_act="gelu",
+ relative_attention=True,
+ pos_att_type="p2c|c2p",
+ )
+ model = model_class.from_config(debertaV2_config)
+
+ elif model_name == "distilbert":
+ distilbert_config = DistilBertConfig(
+ dim=32,
+ n_layers=4,
+ n_heads=4,
+ hidden_dim=37,
+ )
+ model = model_class.from_config(distilbert_config)
+
+ elif model_name == "encoder_decoder":
+ enc_dec_config = EncoderDecoderConfig.from_encoder_decoder_configs(
+ BertConfig(
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ ),
+ BertConfig(
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ is_decoder=True,
+ add_cross_attention=True,
+ ),
+ )
+ model = EncoderDecoderModel(enc_dec_config)
+
+ elif model_name == "gpt2":
+ gpt2_config = GPT2Config(
+ n_embd=32,
+ n_layer=4,
+ n_head=4,
+ # set pad token to eos token
+ pad_token_id=50256,
+ )
+ model = model_class.from_config(gpt2_config)
+
+ elif model_name == "gptj":
+ gptj_config = GPTJConfig(
+ n_embd=32,
+ n_layer=4,
+ n_head=4,
+ rotary_dim=4,
+ # set pad token to eos token
+ pad_token_id=50256,
+ resid_pdrop=0.1,
+ )
+ model = model_class.from_config(gptj_config)
+
+ elif model_name == "mbart":
+ mbart_config = MBartConfig(
+ d_model=16,
+ encoder_layers=2,
+ decoder_layers=2,
+ encoder_attention_heads=4,
+ decoder_attention_heads=4,
+ encoder_ffn_dim=4,
+ decoder_ffn_dim=4,
+ vocab_size=250027,
+ )
+ model = model_class.from_config(mbart_config)
+
+ elif model_name == "roberta":
+ roberta_config = RobertaConfig(
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ vocab_size=50265,
+ )
+ model = model_class.from_config(roberta_config)
+
+ elif model_name == "t5":
+ t5_config = T5Config(
+ d_model=16,
+ num_layers=2,
+ num_decoder_layers=2,
+ num_heads=4,
+ d_ff=4,
+ d_kv=16 // 4,
+ tie_word_embeddings=False,
+ decoder_start_token_id=0,
+ )
+ model = model_class.from_config(t5_config)
+
+ elif model_name == "vit":
+ vit_config = ViTConfig(
+ image_size=224,
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ )
+ model = model_class.from_config(vit_config)
+
+ elif model_name == "xlm-r":
+ xlm_config = XLMRobertaConfig(
+ hidden_size=32,
+ num_hidden_layers=4,
+ num_attention_heads=4,
+ intermediate_size=37,
+ vocab_size=250002,
+ )
+ model = model_class.from_config(xlm_config)
+
+ else:
+ raise NotImplementedError("The specified model type is not implemented.")
+
+ return model
+
+
+def generate_dummy_data(model: str = ""):
+ """Generates dummy data for text and vision transformers.
+ Args:
+ model (str, optional): The name of the transformer model. Defaults to an empty string."""
+ # For the vision models load an image and process it
+ if model == "beit" or model == "clip" or model == "vit":
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ image = Image.open(requests.get(url, stream=True).raw)
+ if model == "beit":
+ processor = BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
+ if model == "clip":
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
+ if model == "vit":
+ processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
+ return processor(images=image, return_tensors="pt")
+
+ # For text just create and process a dummy string.
+ else:
+ input_ids = [i for i in range(20)]
+ attention_mask = [1 for i in range(len(input_ids))]
+ input_ids_tensor = torch.tensor([input_ids])
+ attention_mask_tensor = torch.tensor([attention_mask])
+ if model == "t5" or model == "encoder_decoder":
+ return BatchEncoding(
+ {
+ "input_ids": input_ids_tensor,
+ "decoder_input_ids": input_ids_tensor,
+ "attention_mask": attention_mask_tensor,
+ }
+ )
+ return BatchEncoding({"input_ids": input_ids_tensor, "attention_mask": attention_mask_tensor})
+
+
+def fix_seeds(seed: int = 42):
+ """Sets seeds manually.
+ Args:
+ seed (int, optional): The seed value to use for random number generation."""
+ random.seed(seed)
+ np.random.seed(seed)
+ torch.manual_seed(seed)
+ torch.cuda.manual_seed_all(seed)
+
+
+def decode_tuple(tuple_to_decode: tuple):
+ """Reconstructs a potentially nested tuple of type `torch.Tensor` as a nested list.
+ Args:
+ tuple_to_decode (tuple): The tuple to decode.
+ Returns:
+ list: A nested list containing the same values as the input tuple.
+ Raises:
+ TypeError: If the tuple holds values of different type than `tuple` or `torch.Tensor`."""
+ inner_model_output = []
+ if isinstance(tuple_to_decode, torch.Tensor):
+ return tuple_to_decode.cpu().numpy().astype(np.float32).tolist()
+ elif isinstance(tuple_to_decode, tuple):
+ for value in tuple_to_decode:
+ inner_model_output.append(decode_tuple(value))
+ return inner_model_output
+ else:
+ raise TypeError(
+ "ERROR occured during decoding of output tensors! The tuple holds values of different type "
+ "than `tuple` or `torch.Tensor`."
+ )
+
+
+def convert_tensors_to_list(model_output: transformers.utils.ModelOutput):
+ """Converts the model output, which consists of a Tuple of Tensors to a Tuple of lists, while preserving the
+ original dimensions. The converted output is returned.
+ Args:
+ model_output (transformers.utils.ModelOutput): The model's output of the forward pass.
+ Returns:
+ The converted model output as a tuple of lists and the last hidden state tensor also seperately.
+ Raises:
+ TypeError: If the model output is not a tuple of tensors."""
+ # Model ouputs can't be unpacked directly, convert to tuple first
+ model_output_tensors = model_output.to_tuple()
+ model_output_numpy = []
+
+ # Recursively search each tuple entry
+ for output_value in model_output_tensors:
+ if isinstance(output_value, torch.Tensor):
+ model_output_numpy.append(squeeze(output_value.cpu()).numpy().astype(np.float32).tolist())
+
+ elif isinstance(output_value, tuple):
+ model_output_numpy.append(decode_tuple(output_value))
+
+ return model_output_numpy, model_output_tensors[0].cpu()
+
+
+def save_to_jsonl(model_output: list, adapter_config: str, file_path: str):
+ """Save model output to a JSON Lines (.jsonl) file as a dictionary. Each line represents one model, where the key is the model name (specified by adapter_config)
+ and the value is the model output stored as a list of lists. If an output for a model already exists, it is overwritten.
+ Args:
+ model_output (list): The model's output as a list.
+ adapter_config (str): The model name, serving as the key for the dictionary.
+ file_path (str): The path of the file to save the new entry."""
+ # Check if the file exists
+ if os.path.exists(file_path):
+ # Load content from .jsonl file
+ with jsonlines.open(file_path, mode="r") as f:
+ data = [line for line in f]
+ # Create empty list if file doesn't exist
+ else:
+ data = []
+
+ # Update result with new one if unique_id already exists in the file
+ for i, line in enumerate(data):
+ if adapter_config in line:
+ data[i] = {adapter_config: model_output}
+ break
+ # Add new result to the list if unique_id doesn't exist in the file
+ else:
+ data.append({adapter_config: model_output})
+ with jsonlines.open(file_path, mode="w") as writer:
+ writer.write_all(data)
+
+
+def compare_lists_close(a: list, b: list, rtol=1e-05, atol=1e-08):
+ """Reimplementation of `allclose()` for lists."""
+ # Check if list a and b are numbers
+ if isinstance(a, (int, float)) and isinstance(b, (int, float)):
+ bad = abs(a - b) <= atol + rtol * abs(b)
+ if not bad:
+ print(f"Old package = {a}, New package = {b}")
+ print(f"Value diff: {abs(a - b)}")
+ return bad
+
+ # Check if a and b are lists
+ if isinstance(a, list) and isinstance(b, list):
+ # Check if lenghts of the lists are equal
+ if len(a) != len(b):
+ return False
+
+ for i in range(len(a)):
+ if not compare_lists_close(a[i], b[i], rtol=rtol, atol=atol):
+ return False
+
+ return True
+ # If the inputs are not compatible types
+ return False
+
+
+def restore_from_jsonl(config: str, file_path: str) -> Union[int, list]:
+ """Restores the model output from a JSON Lines (.jsonl) file as a list of lists for the specified model.
+ Args:
+ config (str): Name of the adapter config to restore the output for.
+ file_path (str): Path to the .jsonl file containing the model outputs.
+ Returns:
+ A list of lists representing the model output for the specified model.
+ Returns -1 if there is no output for the specified model in the file."""
+ # Check if the file exists
+ if os.path.exists(file_path):
+ # Load content from .jsonl file
+ with jsonlines.open(file_path, mode="r") as f:
+ data = [line for line in f]
+ else:
+ raise FileExistsError(f"There exists no file at the specified path. \npath:{file_path}")
+ # Get result of specified model
+ for i, line in enumerate(data):
+ if config in line:
+ return data[i][config]
+ else:
+ print(f"File does not contain an output for the model {config}.")
+ return -1
diff --git a/utils/back_comp/compare.sh b/utils/back_comp/compare.sh
new file mode 100644
index 0000000000..b4236192bd
--- /dev/null
+++ b/utils/back_comp/compare.sh
@@ -0,0 +1,31 @@
+#!/bin/bash
+
+# This script performs backward compatibility tests by comparing adapter versions of different branches.
+# The goal is to check if the model output produced under the same conditions is identical between branches.
+# To do this, we need to determine a directory path to save the reference output produced by the current branch.
+# It's important that this directory is outside the adapters repository to remain accessible when switching branches.
+
+# Select a directory to save the reference outputs (must be outside the repository!)
+SaveDir=""
+
+# Now, determine the branch you want to compare against.
+Branch=
+
+# After setting these variables, you can execute this script from the back_comp directory using the command: `sh compare.sh`
+
+
+cd ..
+pip install -e ".[dev]" # # Ensure that the adapters version of the current branch is installed
+cd back_comp
+
+echo "Creating reference outputs..."
+python create_outputs.py --path="$SaveDir"
+cd ..
+
+
+git checkout $Branch # Switch branch
+pip install -e ".[dev]" # Install the other adapter version
+
+cd back_comp
+echo "Comparing to reference outputs..."
+python compare_outputs.py --path="$SaveDir"
\ No newline at end of file
diff --git a/utils/back_comp/compare_outputs.py b/utils/back_comp/compare_outputs.py
new file mode 100644
index 0000000000..0775bf1bd0
--- /dev/null
+++ b/utils/back_comp/compare_outputs.py
@@ -0,0 +1,43 @@
+import argparse
+import os
+
+from Utils import (
+ compare_lists_close,
+ convert_tensors_to_list,
+ create_output,
+ fix_seeds,
+ get_model_names,
+ get_new_adapter_config_strings,
+ load_model,
+ restore_from_jsonl,
+)
+
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--path", type=str)
+args = parser.parse_args()
+
+
+# Create the root path
+base_dir = os.path.join(args.path, "model_outputs")
+fix_seeds()
+
+for model_name in get_model_names():
+ # Load the reference model
+ print(f"Model = {model_name}")
+ model_dir = os.path.join(base_dir, model_name)
+ model = load_model(model_name, os.path.join(model_dir, "model_weights"))
+
+ for adapter_config in get_new_adapter_config_strings():
+ # Create a new model output
+ adapter_name = model.load_adapter(os.path.join(model_dir, "weights_" + adapter_config))
+ model.set_active_adapters(adapter_name)
+ model_output = create_output(model, model_name)
+
+ # Compare the model output to the reference output
+ model_output_n, last_hidden_state = convert_tensors_to_list(model_output)
+ ref_output = restore_from_jsonl(config=adapter_config, file_path=os.path.join(model_dir, "output.jsonl"))
+ is_equal = compare_lists_close(ref_output, model_output_n, rtol=1e-05, atol=1e-08)
+ print(f"Adapter: {adapter_config} -> {is_equal}")
+
+ model.delete_adapter(adapter_name)
diff --git a/utils/back_comp/create_outputs.py b/utils/back_comp/create_outputs.py
new file mode 100644
index 0000000000..8476b5746a
--- /dev/null
+++ b/utils/back_comp/create_outputs.py
@@ -0,0 +1,64 @@
+import argparse
+import os
+
+from adapters import AutoAdapterModel, CompacterConfig, CompacterPlusPlusConfig
+from Utils import (
+ convert_tensors_to_list,
+ create_model,
+ create_output,
+ fix_seeds,
+ get_model_names,
+ get_new_adapter_config_strings,
+ load_model,
+ save_to_jsonl,
+)
+
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--path", type=str)
+args = parser.parse_args()
+
+
+# Create the root path
+base_dir = os.path.join(args.path, "model_outputs")
+fix_seeds()
+
+for model_name in get_model_names():
+ print(f"Model = {model_name}")
+ # Create the dir to contain model- and adapter-weights and model outputs
+ model_dir = os.path.join(base_dir, model_name)
+ os.makedirs(model_dir, exist_ok=True)
+
+ model = create_model(model_name=model_name, model_class=AutoAdapterModel)
+ # Save the model weights to reuse later
+ model_save_dir = os.path.join(model_dir, "model_weights")
+ os.makedirs(model_save_dir, exist_ok=True)
+ model.save_pretrained(model_save_dir, from_pt=True) # save the base model
+
+ for config in get_new_adapter_config_strings():
+ # Load the reference model
+ model = load_model(model_name, os.path.join(model_dir, "model_weights"))
+
+ # Add the adapter which is tested
+ # For the compacter style adapters the phm_dim and reduction factor are set manually to ensure that the bottleneck dimension is divisible by phm_dim
+ if config == "compacter++":
+ adapter_config = CompacterPlusPlusConfig(phm_dim=2, reduction_factor=8)
+ elif config == "compacter":
+ adapter_config = CompacterConfig(phm_dim=2, reduction_factor=8)
+ else:
+ adapter_config = config
+ adapter_name = "weights_" + config
+ model.add_adapter(adapter_name, config=adapter_config)
+ model.set_active_adapters(adapter_name)
+
+ model_output = create_output(model, model_name)
+
+ # Process and save the output
+ model_output_n, last_hidden_state = convert_tensors_to_list(model_output)
+ save_to_jsonl(model_output_n, config, os.path.join(model_dir, "output.jsonl"))
+
+ # Save the adapter weights
+ adapter_save_dir = os.path.join(model_dir, adapter_name)
+ os.makedirs(adapter_save_dir, exist_ok=True)
+ model.save_adapter(save_directory=adapter_save_dir, adapter_name=adapter_name)
+ model.delete_adapter(adapter_name)