From 6ae327add500be47777f594a6639d89a63232e0c Mon Sep 17 00:00:00 2001 From: calpt Date: Sat, 11 Nov 2023 12:18:07 +0100 Subject: [PATCH 1/8] Automatically convert heads when loading with XAdapterModel (#594) Changes loading logic of XAdapterModel classes such that static heads of loaded checkpoint will be automatically converted. Limitation: Not working for sharded checkpoints. --- src/adapters/heads/base.py | 46 +++++++++++++++++++++++ src/adapters/loading.py | 40 ++++++++++++++++++++ tests_adapters/test_adapter_conversion.py | 36 ++++++++++++++++++ 3 files changed, 122 insertions(+) diff --git a/src/adapters/heads/base.py b/src/adapters/heads/base.py index d9c7386fec..201dd9bac7 100644 --- a/src/adapters/heads/base.py +++ b/src/adapters/heads/base.py @@ -20,6 +20,7 @@ from ..composition import AdapterCompositionBlock, BatchSplit, Parallel, parse_heads_from_composition from ..context import AdapterSetup, ForwardContext +from ..loading import PredictionHeadLoader from ..methods.modeling import Activation_Function_Class from ..model_mixin import ModelWithHeadsAdaptersMixin @@ -891,3 +892,48 @@ def get_labels(self, head_name=None): return None else: return list(label_dict.values()) + + # This method is called during model loading in from_pretrained() to apply the state_dict to the model. + # Override it to inject adapter head logic. + @classmethod + def _load_pretrained_model( + cls, + model, + state_dict, + loaded_keys, + *args, + **kwargs, + ): + # Filter only weights not part of base model + if state_dict is not None: + head_state_dict = { + key: value for key, value in state_dict.items() if not key.startswith(cls.base_model_prefix) + } + else: + head_state_dict = None + head_name = "default" + loader = PredictionHeadLoader(model, error_on_missing=False, convert_to_flex_head=True) + head_config, new_head_state_dict = loader.convert_static_to_flex_head(head_state_dict, load_as=head_name) + + if head_config is not None: + # add head from config + if head_name in model.heads: + logger.warning("Overwriting existing head '{}'".format(head_name)) + + model.add_prediction_head_from_config(head_name, head_config, overwrite_ok=True) + + if new_head_state_dict is not None: + for k in head_state_dict: + del state_dict[k] + loaded_keys.remove(k) + for k in new_head_state_dict: + state_dict[k] = new_head_state_dict[k] + loaded_keys.append(k) + + return super()._load_pretrained_model( + model, + state_dict, + loaded_keys, + *args, + **kwargs, + ) diff --git a/src/adapters/loading.py b/src/adapters/loading.py index 57d03ea62f..25ad7e4fc1 100644 --- a/src/adapters/loading.py +++ b/src/adapters/loading.py @@ -766,3 +766,43 @@ def load(self, save_directory, load_as=None, loading_info=None, **kwargs): ) return save_directory, head_name + + def convert_static_to_flex_head(self, state_dict, load_as="default"): + """ + Loads a prediction head module from the given state dict, which contains a static head checkpoint. + + Args: + state_dict (dict): The static head checkpoint from which to load the head module. Can be None. + load_as (str, optional): Load the weights with this name. Defaults to None. + + Returns: + Tuple[dict, dict]: A tuple consisting of the head config and the state dict of the loaded weights. + """ + assert self.convert_to_flex_head, "load_from_state_dict() can only be used with convert_to_flex_head=True." + assert hasattr(self.model, "heads"), "load_from_state_dict() can only be used with flex heads model class." + + conversion_rename_func = None + + original_model_class = self.model.config.architectures[0] if self.model.config.architectures else None + if original_model_class in STATIC_TO_FLEX_HEAD_MAP: + head_config, conversion_rename_func = get_head_config_and_rename_list( + original_model_class, + load_as, + getattr(self.model.config, "label2id"), + ) + elif self.error_on_missing: + raise ValueError( + f"Cannot automatically convert prediction head of model class {original_model_class} to flex head." + ) + else: + return None, None + + # Load head weights + if state_dict is not None: + new_state_dict = {} + for k, v in state_dict.items(): + new_k = conversion_rename_func(k) + new_state_dict[new_k] = v + else: + new_state_dict = None + return head_config, new_state_dict diff --git a/tests_adapters/test_adapter_conversion.py b/tests_adapters/test_adapter_conversion.py index ac57daa315..df209c12ba 100644 --- a/tests_adapters/test_adapter_conversion.py +++ b/tests_adapters/test_adapter_conversion.py @@ -198,3 +198,39 @@ def test_equivalent_language_generation(self): self.assertEquals(model_gen.shape, flex_model_gen.shape) self.assertTrue(torch.equal(model_gen, flex_model_gen)) + + def test_full_model_conversion(self): + if self.config_class not in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING: + self.skipTest("No sequence classification class.") + + static_head_model = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING[self.config_class](self.config()) + adapters.init(static_head_model) + static_head_model.eval() + + with tempfile.TemporaryDirectory() as temp_dir: + static_head_model.save_pretrained(temp_dir) + + flex_head_model, loading_info = AutoAdapterModel.from_pretrained(temp_dir, output_loading_info=True) + + # Roberta-based models always have a pooler, which is not used by the tested head + keys_to_ignore = ["roberta.pooler.dense.weight", "roberta.pooler.dense.bias"] + + missing_keys = [k for k in loading_info["missing_keys"] if k not in keys_to_ignore] + + self.assertEqual(0, len(missing_keys), "Missing keys: {}".format(", ".join(missing_keys))) + self.assertEqual( + 0, + len(loading_info["unexpected_keys"]), + "Unexpected keys: {}".format(", ".join(loading_info["unexpected_keys"])), + ) + + # static head is re-loaded as "default" + self.assertIn("default", flex_head_model.heads) + + # check equal output + in_data = self.get_input_samples(config=flex_head_model.config) + static_head_model.to(torch_device) + flex_head_model.to(torch_device) + output1 = static_head_model(**in_data) + output2 = flex_head_model(**in_data, head="default") + self.assertTrue(torch.allclose(output1.logits, output2.logits)) From 6ec40c829792d1c2802cc0b568b9246727378830 Mon Sep 17 00:00:00 2001 From: calpt Date: Tue, 14 Nov 2023 21:50:00 +0100 Subject: [PATCH 2/8] Prepare readme and docs for release --- README.md | 34 +--------------------------------- docs/_static/custom.css | 5 +++++ docs/conf.py | 6 +++--- docs/index.rst | 18 ++++++++++++++---- 4 files changed, 23 insertions(+), 40 deletions(-) diff --git a/README.md b/README.md index 1b320ef50b..612f864e1c 100644 --- a/README.md +++ b/README.md @@ -14,39 +14,7 @@ See the License for the specific language governing permissions and limitations under the License. --> -## `adapters` Library - -This branch contains the development version of `adapters`, the next-generation library for parameter-efficient and modular transfer learning. - -> **Note**: For the stable version of `adapter-transformers`, please switch to the [master branch of the repo](https://github.com/adapter-hub/adapter-transformers). - -### Changes compared to `adapter-transformers` - -- `adapters` is a standalone package, using `transformers` as an external dependency but not patching it directly -- All adapter-related classes now are imported via `adapters` namespace, e.g.: - ```python - from adapters import BertAdapterModel - # ... - ``` -- Built-in HF model classes can be adapted for usage with adapters via a wrapper method, e.g.: - ```python - import adapters - from transformers import BertModel - - model = BertModel.from_pretrained("bert-base-uncased") - adapters.init(model) - ``` - -Features not (yet) working: - -- Loading model + adapter checkpoints using HF classes -- Using Transformers pipelines with adapters -- Using HF language modeling classes with invertible adapters - -## Documentation -To read the documentation of _Adapters_, follow the steps in [docs/README.md](docs/README.md). Currently, the documentation is **not** yet available from https://docs.adapterhub.ml/. - ---- +> **Note**: This repository holds the codebase of the _Adapters_ library, which has replaced `adapter-transformers`. For the legacy codebase, go to: https://github.com/adapter-hub/adapter-transformers-legacy.

diff --git a/docs/_static/custom.css b/docs/_static/custom.css index 680ab48e88..e4ba5749a4 100644 --- a/docs/_static/custom.css +++ b/docs/_static/custom.css @@ -31,3 +31,8 @@ a { .wy-side-scroll { padding-bottom: 1em; } + +/* override table no-wrap */ +.wy-table-responsive table td, .wy-table-responsive table th { + white-space: normal; +} diff --git a/docs/conf.py b/docs/conf.py index 83e1403c6c..5f73a52d99 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -19,9 +19,9 @@ # -- Project information ----------------------------------------------------- -project = "adapters" -copyright = "2020-2022, Adapter-Hub Team" -author = "Adapter-Hub Team" +project = "AdapterHub" +copyright = "2020-2023, AdapterHub Team" +author = "AdapterHub Team" docs_versions = [ "adapters1.1.1", diff --git a/docs/index.rst b/docs/index.rst index 323913cf7b..fdddf228ec 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -6,19 +6,29 @@ AdapterHub Documentation ================================================ +.. note:: + This documentation is based on the new *Adapters* library. + + The documentation based on the legacy *adapter-transformers* library can be found at: `https://docs-legacy.adapterhub.ml `_. + *AdapterHub* is a framework simplifying the integration, training and usage of adapters and other efficient fine-tuning methods for Transformer-based language models. For a full list of currently implemented methods, see the `table in our repository `_. The framework consists of two main components: -- ``adapters``, an extension of Hugging Face's `Transformers `_ library that adds adapter components to transformer models +.. list-table:: + :widths: 50 50 + :header-rows: 1 -- `The Hub `_, a central repository collecting pre-trained adapter modules + * - `Adapters `_ + - `AdapterHub.ml `_ + * - an add-on to Hugging Face's `Transformers `_ library that adds adapters into transformer models + - a central collection of pre-trained adapter modules Currently, we support the PyTorch versions of all models as listed on the `Model Overview `_ page. .. toctree:: - :maxdepth: 2 + :maxdepth: 1 :caption: Getting Started installation @@ -79,7 +89,7 @@ Currently, we support the PyTorch versions of all models as listed on the `Model classes/models/xmod .. toctree:: - :maxdepth: 2 + :maxdepth: 1 :caption: Adapter-Related Classes classes/adapter_config From a6055d0b2c05938e4dfcc6c9429ad19dbc670a24 Mon Sep 17 00:00:00 2001 From: calpt Date: Wed, 15 Nov 2023 17:34:28 +0100 Subject: [PATCH 3/8] Fix training T5 adapter models with Trainer (#599) --- src/adapters/models/__init__.py | 11 ++++++++--- src/adapters/models/t5/mixin_t5.py | 30 +++++++++++++++++++++++++++--- 2 files changed, 35 insertions(+), 6 deletions(-) diff --git a/src/adapters/models/__init__.py b/src/adapters/models/__init__.py index 11da5d325e..dd48552d23 100644 --- a/src/adapters/models/__init__.py +++ b/src/adapters/models/__init__.py @@ -18,7 +18,12 @@ from .gpt2.mixin_gpt2 import GPT2ModelAdapterMixin from .gptj.mixin_gptj import GPTJMLPAdaptersMixin, GPTJModelAdapterMixin from .llama.mixin_llama import LlamaModelAdapterMixin -from .t5.mixin_t5 import T5BlockAdaptersMixin, T5ModelAdaptersMixin, T5ModelAdaptersWithHeadsMixin +from .t5.mixin_t5 import ( + T5BlockAdaptersMixin, + T5ForCondiditionalGenerationWithHeadsMixin, + T5ForQuestionAnsweringWithHeadsMixin, + T5ModelAdaptersMixin, +) from .vit.mixin_vit import ViTIntermediateAdaptersMixin, ViTModelAdaptersMixin from .xmod.mixin_xmod import XmodModelAdaptersMixin @@ -57,8 +62,8 @@ "RobertaModel": BertModelAdaptersMixin, "T5Block": T5BlockAdaptersMixin, "T5Model": T5ModelAdaptersMixin, - "T5ForConditionalGeneration": T5ModelAdaptersWithHeadsMixin, - "T5ForQuestionAnswering": T5ModelAdaptersWithHeadsMixin, + "T5ForConditionalGeneration": T5ForCondiditionalGenerationWithHeadsMixin, + "T5ForQuestionAnswering": T5ForQuestionAnsweringWithHeadsMixin, "T5EncoderModel": T5ModelAdaptersMixin, "ViTIntermediate": ViTIntermediateAdaptersMixin, "ViTModel": ViTModelAdaptersMixin, diff --git a/src/adapters/models/t5/mixin_t5.py b/src/adapters/models/t5/mixin_t5.py index a5c39acaa6..832dfd185d 100644 --- a/src/adapters/models/t5/mixin_t5.py +++ b/src/adapters/models/t5/mixin_t5.py @@ -1,5 +1,6 @@ -from typing import Iterable, Tuple +from typing import Iterable, Optional, Tuple +import torch import torch.nn as nn from ...methods.bottleneck import BottleneckLayer @@ -99,5 +100,28 @@ def iter_layers(self) -> Iterable[Tuple[int, nn.Module]]: yield i, layer -class T5ModelAdaptersWithHeadsMixin(ModelWithHeadsAdaptersMixin, T5ModelAdaptersMixin): - pass +# Stating "labels" and "input_ids" explicitly is required for training using Trainer class +class T5ForCondiditionalGenerationWithHeadsMixin(ModelWithHeadsAdaptersMixin, T5ModelAdaptersMixin): + def forward( + self, + *args, + input_ids: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + **kwargs, + ): + return super().forward(*args, input_ids=input_ids, labels=labels, **kwargs) + + +# Stating "start_positions"/"end_positions" and "input_ids" explicitly is required for training using Trainer class +class T5ForQuestionAnsweringWithHeadsMixin(ModelWithHeadsAdaptersMixin, T5ModelAdaptersMixin): + def forward( + self, + *args, + input_ids: Optional[torch.LongTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + **kwargs, + ): + return super().forward( + *args, input_ids=input_ids, start_positions=start_positions, end_positions=end_positions, **kwargs + ) From 841ce181428336bfdf652da139b78e74b3c75780 Mon Sep 17 00:00:00 2001 From: TimoImhof <62378375+TimoImhof@users.noreply.github.com> Date: Wed, 15 Nov 2023 17:35:06 +0100 Subject: [PATCH 4/8] Backwards Compatibility Tests (#596) ## Pull Request: Backward Compatibility Testing ### Description This Pull Request introduces backward compatibility tests to ensure that different branches produce identical model outputs under the same conditions. The primary goal of these tests is to confirm that there are no regressions or inconsistencies in the model's behavior when developing or refactoring features on a development branch based on the main branch. ### Changes - Added a new shell script `compare.sh` for running backward compatibility tests. - The script sets a reference output directory that must be located outside the adapters repository to ensure it's available when switching branches. - Created two Python scripts, `create_outputs.py` and `compare_outputs.py`, to generate and compare reference model outputs. - The script performs the following steps: 1. Installs the adapters version of the current branch. 2. Creates reference model outputs using `create_outputs.py`. 3. Checks out the target branch to be tested. 4. Installs the adapters version of the target branch. 5. Compares the model outputs produced by the target branch with the reference outputs using `compare_outputs.py`. ### How to Use 1. Navigate to the `back_comp` directory in the terminal 2. Run the following command: `sh compare.sh` --- .gitignore | 3 + utils/back_comp/README.md | 26 ++ utils/back_comp/Utils.py | 498 +++++++++++++++++++++++++++++ utils/back_comp/compare.sh | 31 ++ utils/back_comp/compare_outputs.py | 43 +++ utils/back_comp/create_outputs.py | 64 ++++ 6 files changed, 665 insertions(+) create mode 100644 utils/back_comp/README.md create mode 100644 utils/back_comp/Utils.py create mode 100644 utils/back_comp/compare.sh create mode 100644 utils/back_comp/compare_outputs.py create mode 100644 utils/back_comp/create_outputs.py diff --git a/.gitignore b/.gitignore index e0d065aeab..b403149cc0 100644 --- a/.gitignore +++ b/.gitignore @@ -172,3 +172,6 @@ scripts/git-strip-merge # DS_Store (MacOS) .DS_Store tests_adapters/backwards_compatibility/Ref_Out + +# backwards compatibility +model_outputs \ No newline at end of file diff --git a/utils/back_comp/README.md b/utils/back_comp/README.md new file mode 100644 index 0000000000..14896c613a --- /dev/null +++ b/utils/back_comp/README.md @@ -0,0 +1,26 @@ +# Backwards Compatibility Tests + +## Motivation + +This directory contains a set of tests that can be run to ensure that newly introduced changes or refactorings do not break existing functionalities. These tests verify model output consistency between two branches; here, we use the names `dev` and `main` for demonstration purposes, but these tests can be performed between any two branches where the `back_comp` directory with tests is available. +For this, the test script performs a forward pass for each supported model and compares the outputs between `dev` and `main` to identify any differences. + +## Requirements + +To execute these tests, you must meet the following requirements: + +- Ability to run bash scripts (in-built on Linux/macOS; for Windows, consider using third-party software like [GNU Bash](https://www.gnu.org/software/bash/)). +- Git as the version control system to switch between branches. +- The ability to check out the desired branch. If the branch is from another fork, you may need to add the repository as a remote. Refer to [GitHub's instructions](https://docs.github.com/en/get-started/getting-started-with-git/managing-remote-repositories) for details. +- A Python virtual environment to modify the installed package version of `adapters`. + +## Procedure + +To perform the compatibility tests, follow these steps: + +1. Determine a directory where you want to save the model output generated by the tests. Save this directory path to the variable `SaveDir` in the shell script `compare.sh`. (Careful: select a directory OUTSIDE of the repository; otherwise, the saved model output is no longer available when changing the branch.) +2. Select the branch you want to compare with `main` and save its name to the variable `Branch`. +3. Make sure you are checked out in `main` before starting the test script. +4. In your command line, navigate to the `back_comp` directory and execute the script by running `sh compare.sh`. + +The results will be displayed in the command line for visualization. \ No newline at end of file diff --git a/utils/back_comp/Utils.py b/utils/back_comp/Utils.py new file mode 100644 index 0000000000..8ed482130c --- /dev/null +++ b/utils/back_comp/Utils.py @@ -0,0 +1,498 @@ +import os +import random +from typing import Any, Union + +import numpy as np +import torch +from PIL import Image +from torch import squeeze + +import jsonlines +import requests +import transformers +from adapters import AutoAdapterModel, init +from transformers import ( + AlbertConfig, + BartConfig, + BatchEncoding, + BeitConfig, + BeitImageProcessor, + BertConfig, + CLIPProcessor, + CLIPVisionConfig, + CLIPVisionModelWithProjection, + DebertaConfig, + DebertaV2Config, + DistilBertConfig, + EncoderDecoderConfig, + EncoderDecoderModel, + GPT2Config, + GPTJConfig, + MBartConfig, + RobertaConfig, + T5Config, + ViTConfig, + ViTImageProcessor, + XLMRobertaConfig, +) + + +def create_output(model: Any, model_name: str): + """Given a model run a forward pass with some dummy data. + Args: + model: The model for which the forward pass is run. + model_name: The name of the model. + Returns: + The model output.""" + + dummy_data = generate_dummy_data(model_name) + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available + model.to(device) + dummy_data.to(device) + with torch.no_grad(): + model_output = model(**dummy_data) + + return model_output + + +def load_model(model_name: str, model_save_dir: str): + """Loads a pre-trained model from a specified path based on the specified model_name. + Args: + model_name (str): The name of the model to be loaded. + model_save_dir (str): The directory path where the pre-trained model is saved. + Returns: + Any: The loaded pre-trained model.""" + if model_name == "clip": + model = CLIPVisionModelWithProjection.from_pretrained(model_save_dir) + init(model) + elif model_name == "encoder_decoder": + model = EncoderDecoderModel.from_pretrained(model_save_dir) + init(model) + else: + model = AutoAdapterModel.from_pretrained(model_save_dir) + model.eval() + init(model) + return model + + +def get_old_adapter_config_strings(): + """Returns a list of strings representing old adapter configuration strings.""" + return [ + "pfeiffer", + "houlsby", + "pfeiffer+inv", + "houlsby+inv", + "parallel", + "scaled_parallel", + "compacter", + "compacter++", + "prefix_tuning", + "prefix_tuning_flat", + "lora", + "ia3", + "mam", + "unipelt", + ] + + +def get_new_adapter_config_strings(): + """Returns a list of strings representing new adapter configurations.""" + return [ + "seq_bn", + "double_seq_bn", + "seq_bn_inv", + "double_seq_bn_inv", + "par_bn", + "scaled_par_bn", + "compacter", + "compacter++", + "prefix_tuning", + "prefix_tuning_flat", + "lora", + "ia3", + "mam", + "unipelt", + ] + + +def get_model_names(): + """Returns a list of strings representing the testable model names.""" + return [ + "bart", + "albert", + "beit", + "bert", + "clip", + "deberta", + "debertaV2", + "distilbert", + "encoder_decoder", + "gpt2", + "gptj", + "mbart", + "roberta", + "t5", + "vit", + "xlm-r", + ] + + +def create_model(model_name: str, model_class: Any) -> Any: + """Creates and returns an instance of a specified test model. + Args: + model_name (str): Specifies which model to instantiate. + Raises: + NotImplementedError: If the specified model type is not implemented.""" + + if model_name == "bart": + bart_config = BartConfig( + d_model=16, + encoder_layers=2, + decoder_layers=2, + encoder_attention_heads=4, + decoder_attention_heads=4, + encoder_ffn_dim=4, + decoder_ffn_dim=4, + ) + model = model_class.from_config(bart_config) + + elif model_name == "albert": + albert_config = AlbertConfig( + embedding_size=16, + hidden_size=64, + num_hidden_layers=5, + num_attention_heads=4, + intermediate_size=37, + num_hidden_groups=2, + ) + model = model_class.from_config(albert_config) + + elif model_name == "beit": + beit_config = BeitConfig( + image_size=224, + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + ) + model = model_class.from_config(beit_config) + + elif model_name == "bert": + bert_config = BertConfig( + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + ) + model = model_class.from_config(bert_config) + + elif model_name == "clip": + clip_config = CLIPVisionConfig( + image_size=30, + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + ) + model = CLIPVisionModelWithProjection(clip_config) + + elif model_name == "deberta": + deberta_config = DebertaConfig( + hidden_size=32, + num_hidden_layers=5, + num_attention_heads=4, + intermediate_size=37, + hidden_act="gelu", + relative_attention=True, + pos_att_type="p2c|c2p", + ) + model = model_class.from_config(deberta_config) + + elif model_name == "debertaV2": + debertaV2_config = DebertaV2Config( + hidden_size=32, + num_hidden_layers=5, + num_attention_heads=4, + intermediate_size=37, + hidden_act="gelu", + relative_attention=True, + pos_att_type="p2c|c2p", + ) + model = model_class.from_config(debertaV2_config) + + elif model_name == "distilbert": + distilbert_config = DistilBertConfig( + dim=32, + n_layers=4, + n_heads=4, + hidden_dim=37, + ) + model = model_class.from_config(distilbert_config) + + elif model_name == "encoder_decoder": + enc_dec_config = EncoderDecoderConfig.from_encoder_decoder_configs( + BertConfig( + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + ), + BertConfig( + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + is_decoder=True, + add_cross_attention=True, + ), + ) + model = EncoderDecoderModel(enc_dec_config) + + elif model_name == "gpt2": + gpt2_config = GPT2Config( + n_embd=32, + n_layer=4, + n_head=4, + # set pad token to eos token + pad_token_id=50256, + ) + model = model_class.from_config(gpt2_config) + + elif model_name == "gptj": + gptj_config = GPTJConfig( + n_embd=32, + n_layer=4, + n_head=4, + rotary_dim=4, + # set pad token to eos token + pad_token_id=50256, + resid_pdrop=0.1, + ) + model = model_class.from_config(gptj_config) + + elif model_name == "mbart": + mbart_config = MBartConfig( + d_model=16, + encoder_layers=2, + decoder_layers=2, + encoder_attention_heads=4, + decoder_attention_heads=4, + encoder_ffn_dim=4, + decoder_ffn_dim=4, + vocab_size=250027, + ) + model = model_class.from_config(mbart_config) + + elif model_name == "roberta": + roberta_config = RobertaConfig( + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + vocab_size=50265, + ) + model = model_class.from_config(roberta_config) + + elif model_name == "t5": + t5_config = T5Config( + d_model=16, + num_layers=2, + num_decoder_layers=2, + num_heads=4, + d_ff=4, + d_kv=16 // 4, + tie_word_embeddings=False, + decoder_start_token_id=0, + ) + model = model_class.from_config(t5_config) + + elif model_name == "vit": + vit_config = ViTConfig( + image_size=224, + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + ) + model = model_class.from_config(vit_config) + + elif model_name == "xlm-r": + xlm_config = XLMRobertaConfig( + hidden_size=32, + num_hidden_layers=4, + num_attention_heads=4, + intermediate_size=37, + vocab_size=250002, + ) + model = model_class.from_config(xlm_config) + + else: + raise NotImplementedError("The specified model type is not implemented.") + + return model + + +def generate_dummy_data(model: str = ""): + """Generates dummy data for text and vision transformers. + Args: + model (str, optional): The name of the transformer model. Defaults to an empty string.""" + # For the vision models load an image and process it + if model == "beit" or model == "clip" or model == "vit": + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + image = Image.open(requests.get(url, stream=True).raw) + if model == "beit": + processor = BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") + if model == "clip": + processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") + if model == "vit": + processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") + return processor(images=image, return_tensors="pt") + + # For text just create and process a dummy string. + else: + input_ids = [i for i in range(20)] + attention_mask = [1 for i in range(len(input_ids))] + input_ids_tensor = torch.tensor([input_ids]) + attention_mask_tensor = torch.tensor([attention_mask]) + if model == "t5" or model == "encoder_decoder": + return BatchEncoding( + { + "input_ids": input_ids_tensor, + "decoder_input_ids": input_ids_tensor, + "attention_mask": attention_mask_tensor, + } + ) + return BatchEncoding({"input_ids": input_ids_tensor, "attention_mask": attention_mask_tensor}) + + +def fix_seeds(seed: int = 42): + """Sets seeds manually. + Args: + seed (int, optional): The seed value to use for random number generation.""" + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + +def decode_tuple(tuple_to_decode: tuple): + """Reconstructs a potentially nested tuple of type `torch.Tensor` as a nested list. + Args: + tuple_to_decode (tuple): The tuple to decode. + Returns: + list: A nested list containing the same values as the input tuple. + Raises: + TypeError: If the tuple holds values of different type than `tuple` or `torch.Tensor`.""" + inner_model_output = [] + if isinstance(tuple_to_decode, torch.Tensor): + return tuple_to_decode.cpu().numpy().astype(np.float32).tolist() + elif isinstance(tuple_to_decode, tuple): + for value in tuple_to_decode: + inner_model_output.append(decode_tuple(value)) + return inner_model_output + else: + raise TypeError( + "ERROR occured during decoding of output tensors! The tuple holds values of different type " + "than `tuple` or `torch.Tensor`." + ) + + +def convert_tensors_to_list(model_output: transformers.utils.ModelOutput): + """Converts the model output, which consists of a Tuple of Tensors to a Tuple of lists, while preserving the + original dimensions. The converted output is returned. + Args: + model_output (transformers.utils.ModelOutput): The model's output of the forward pass. + Returns: + The converted model output as a tuple of lists and the last hidden state tensor also seperately. + Raises: + TypeError: If the model output is not a tuple of tensors.""" + # Model ouputs can't be unpacked directly, convert to tuple first + model_output_tensors = model_output.to_tuple() + model_output_numpy = [] + + # Recursively search each tuple entry + for output_value in model_output_tensors: + if isinstance(output_value, torch.Tensor): + model_output_numpy.append(squeeze(output_value.cpu()).numpy().astype(np.float32).tolist()) + + elif isinstance(output_value, tuple): + model_output_numpy.append(decode_tuple(output_value)) + + return model_output_numpy, model_output_tensors[0].cpu() + + +def save_to_jsonl(model_output: list, adapter_config: str, file_path: str): + """Save model output to a JSON Lines (.jsonl) file as a dictionary. Each line represents one model, where the key is the model name (specified by adapter_config) + and the value is the model output stored as a list of lists. If an output for a model already exists, it is overwritten. + Args: + model_output (list): The model's output as a list. + adapter_config (str): The model name, serving as the key for the dictionary. + file_path (str): The path of the file to save the new entry.""" + # Check if the file exists + if os.path.exists(file_path): + # Load content from .jsonl file + with jsonlines.open(file_path, mode="r") as f: + data = [line for line in f] + # Create empty list if file doesn't exist + else: + data = [] + + # Update result with new one if unique_id already exists in the file + for i, line in enumerate(data): + if adapter_config in line: + data[i] = {adapter_config: model_output} + break + # Add new result to the list if unique_id doesn't exist in the file + else: + data.append({adapter_config: model_output}) + with jsonlines.open(file_path, mode="w") as writer: + writer.write_all(data) + + +def compare_lists_close(a: list, b: list, rtol=1e-05, atol=1e-08): + """Reimplementation of `allclose()` for lists.""" + # Check if list a and b are numbers + if isinstance(a, (int, float)) and isinstance(b, (int, float)): + bad = abs(a - b) <= atol + rtol * abs(b) + if not bad: + print(f"Old package = {a}, New package = {b}") + print(f"Value diff: {abs(a - b)}") + return bad + + # Check if a and b are lists + if isinstance(a, list) and isinstance(b, list): + # Check if lenghts of the lists are equal + if len(a) != len(b): + return False + + for i in range(len(a)): + if not compare_lists_close(a[i], b[i], rtol=rtol, atol=atol): + return False + + return True + # If the inputs are not compatible types + return False + + +def restore_from_jsonl(config: str, file_path: str) -> Union[int, list]: + """Restores the model output from a JSON Lines (.jsonl) file as a list of lists for the specified model. + Args: + config (str): Name of the adapter config to restore the output for. + file_path (str): Path to the .jsonl file containing the model outputs. + Returns: + A list of lists representing the model output for the specified model. + Returns -1 if there is no output for the specified model in the file.""" + # Check if the file exists + if os.path.exists(file_path): + # Load content from .jsonl file + with jsonlines.open(file_path, mode="r") as f: + data = [line for line in f] + else: + raise FileExistsError(f"There exists no file at the specified path. \npath:{file_path}") + # Get result of specified model + for i, line in enumerate(data): + if config in line: + return data[i][config] + else: + print(f"File does not contain an output for the model {config}.") + return -1 diff --git a/utils/back_comp/compare.sh b/utils/back_comp/compare.sh new file mode 100644 index 0000000000..b4236192bd --- /dev/null +++ b/utils/back_comp/compare.sh @@ -0,0 +1,31 @@ +#!/bin/bash + +# This script performs backward compatibility tests by comparing adapter versions of different branches. +# The goal is to check if the model output produced under the same conditions is identical between branches. +# To do this, we need to determine a directory path to save the reference output produced by the current branch. +# It's important that this directory is outside the adapters repository to remain accessible when switching branches. + +# Select a directory to save the reference outputs (must be outside the repository!) +SaveDir="" + +# Now, determine the branch you want to compare against. +Branch= + +# After setting these variables, you can execute this script from the back_comp directory using the command: `sh compare.sh` + + +cd .. +pip install -e ".[dev]" # # Ensure that the adapters version of the current branch is installed +cd back_comp + +echo "Creating reference outputs..." +python create_outputs.py --path="$SaveDir" +cd .. + + +git checkout $Branch # Switch branch +pip install -e ".[dev]" # Install the other adapter version + +cd back_comp +echo "Comparing to reference outputs..." +python compare_outputs.py --path="$SaveDir" \ No newline at end of file diff --git a/utils/back_comp/compare_outputs.py b/utils/back_comp/compare_outputs.py new file mode 100644 index 0000000000..0775bf1bd0 --- /dev/null +++ b/utils/back_comp/compare_outputs.py @@ -0,0 +1,43 @@ +import argparse +import os + +from Utils import ( + compare_lists_close, + convert_tensors_to_list, + create_output, + fix_seeds, + get_model_names, + get_new_adapter_config_strings, + load_model, + restore_from_jsonl, +) + + +parser = argparse.ArgumentParser() +parser.add_argument("--path", type=str) +args = parser.parse_args() + + +# Create the root path +base_dir = os.path.join(args.path, "model_outputs") +fix_seeds() + +for model_name in get_model_names(): + # Load the reference model + print(f"Model = {model_name}") + model_dir = os.path.join(base_dir, model_name) + model = load_model(model_name, os.path.join(model_dir, "model_weights")) + + for adapter_config in get_new_adapter_config_strings(): + # Create a new model output + adapter_name = model.load_adapter(os.path.join(model_dir, "weights_" + adapter_config)) + model.set_active_adapters(adapter_name) + model_output = create_output(model, model_name) + + # Compare the model output to the reference output + model_output_n, last_hidden_state = convert_tensors_to_list(model_output) + ref_output = restore_from_jsonl(config=adapter_config, file_path=os.path.join(model_dir, "output.jsonl")) + is_equal = compare_lists_close(ref_output, model_output_n, rtol=1e-05, atol=1e-08) + print(f"Adapter: {adapter_config} -> {is_equal}") + + model.delete_adapter(adapter_name) diff --git a/utils/back_comp/create_outputs.py b/utils/back_comp/create_outputs.py new file mode 100644 index 0000000000..8476b5746a --- /dev/null +++ b/utils/back_comp/create_outputs.py @@ -0,0 +1,64 @@ +import argparse +import os + +from adapters import AutoAdapterModel, CompacterConfig, CompacterPlusPlusConfig +from Utils import ( + convert_tensors_to_list, + create_model, + create_output, + fix_seeds, + get_model_names, + get_new_adapter_config_strings, + load_model, + save_to_jsonl, +) + + +parser = argparse.ArgumentParser() +parser.add_argument("--path", type=str) +args = parser.parse_args() + + +# Create the root path +base_dir = os.path.join(args.path, "model_outputs") +fix_seeds() + +for model_name in get_model_names(): + print(f"Model = {model_name}") + # Create the dir to contain model- and adapter-weights and model outputs + model_dir = os.path.join(base_dir, model_name) + os.makedirs(model_dir, exist_ok=True) + + model = create_model(model_name=model_name, model_class=AutoAdapterModel) + # Save the model weights to reuse later + model_save_dir = os.path.join(model_dir, "model_weights") + os.makedirs(model_save_dir, exist_ok=True) + model.save_pretrained(model_save_dir, from_pt=True) # save the base model + + for config in get_new_adapter_config_strings(): + # Load the reference model + model = load_model(model_name, os.path.join(model_dir, "model_weights")) + + # Add the adapter which is tested + # For the compacter style adapters the phm_dim and reduction factor are set manually to ensure that the bottleneck dimension is divisible by phm_dim + if config == "compacter++": + adapter_config = CompacterPlusPlusConfig(phm_dim=2, reduction_factor=8) + elif config == "compacter": + adapter_config = CompacterConfig(phm_dim=2, reduction_factor=8) + else: + adapter_config = config + adapter_name = "weights_" + config + model.add_adapter(adapter_name, config=adapter_config) + model.set_active_adapters(adapter_name) + + model_output = create_output(model, model_name) + + # Process and save the output + model_output_n, last_hidden_state = convert_tensors_to_list(model_output) + save_to_jsonl(model_output_n, config, os.path.join(model_dir, "output.jsonl")) + + # Save the adapter weights + adapter_save_dir = os.path.join(model_dir, adapter_name) + os.makedirs(adapter_save_dir, exist_ok=True) + model.save_adapter(save_directory=adapter_save_dir, adapter_name=adapter_name) + model.delete_adapter(adapter_name) From d95ef372f5108ae156c1f968c509d47df342acd2 Mon Sep 17 00:00:00 2001 From: calpt Date: Thu, 16 Nov 2023 09:54:39 +0100 Subject: [PATCH 5/8] Make sure output embeddings are frozen when training adapters (#600) Port of #537 to new codebase. --- src/adapters/heads/base.py | 30 ++++++++++++++++++---------- src/adapters/model_mixin.py | 14 +++++++++++++ tests_adapters/test_adapter_heads.py | 19 ++++++++++++++++++ 3 files changed, 53 insertions(+), 10 deletions(-) diff --git a/src/adapters/heads/base.py b/src/adapters/heads/base.py index 201dd9bac7..b3116a7b9a 100644 --- a/src/adapters/heads/base.py +++ b/src/adapters/heads/base.py @@ -523,20 +523,30 @@ def _init_head_modules(self): # The following methods are required for handling LM heads - def get_output_embeddings(self): + def get_output_embeddings(self) -> Union[nn.Module, List[nn.Module]]: # Only gets the output embeddings for the currently active head - if self.active_head in self.heads: - head = self.heads[self.active_head] - return head.get_output_embeddings() - else: + embeddings = [] + for head_name in self._active_heads: + if head_name in self.heads: + head = self.heads[head_name] + output_embeddings = head.get_output_embeddings() + embeddings.append(output_embeddings) + + if len(embeddings) == 1: + return embeddings[0] + elif len(embeddings) == 0 or all([e is None for e in embeddings]): return None + else: + return embeddings - def set_output_embeddings(self, new_embeddings): + def set_output_embeddings(self, new_embeddings: Union[nn.Module, List[nn.Module]]): # Only sets the output embeddings for the currently active head - if self.active_head in self.heads: - head = self.heads[self.active_head] - if head.get_output_embeddings() is not None: - head.set_output_embeddings(new_embeddings) + if not isinstance(new_embeddings, list): + new_embeddings = [new_embeddings] * len(self._active_heads) + for head_name, emb in zip(self._active_heads, new_embeddings): + if head_name in self.heads: + head = self.heads[head_name] + head.set_output_embeddings(emb) def tie_weights(self): """ diff --git a/src/adapters/model_mixin.py b/src/adapters/model_mixin.py index be5e30cd93..ca31958ded 100644 --- a/src/adapters/model_mixin.py +++ b/src/adapters/model_mixin.py @@ -1317,6 +1317,7 @@ def train_adapter(self, adapter_setup: Union[list, AdapterCompositionBlock], tra super().train_adapter(adapter_setup, train_embeddings) else: self.base_model.train_adapter(adapter_setup, train_embeddings) + self.freeze_embeddings() def train_adapter_fusion(self, adapter_setup: Union[list, AdapterCompositionBlock], unfreeze_adapters=False): """ @@ -1327,6 +1328,7 @@ def train_adapter_fusion(self, adapter_setup: Union[list, AdapterCompositionBloc super().train_adapter_fusion(adapter_setup, unfreeze_adapters=unfreeze_adapters) else: self.base_model.train_adapter_fusion(adapter_setup, unfreeze_adapters=unfreeze_adapters) + self.freeze_embeddings() def save_head(self, save_directory: str, head_name: str = None): loader = PredictionHeadLoader(self) @@ -1497,3 +1499,15 @@ def get_adapter(self, name): return super().get_adapter(name) else: return self.base_model.get_adapter(name) + + def freeze_embeddings(self, freeze=True): + # If model has prediction head with embeddings, ensure these are frozen + if self.get_output_embeddings() is not None: + output_embeddings = self.get_output_embeddings() + if isinstance(output_embeddings, list): + for output_embedding in output_embeddings: + for p in output_embedding.parameters(): + p.requires_grad = not freeze + else: + for p in self.get_output_embeddings().parameters(): + p.requires_grad = not freeze diff --git a/tests_adapters/test_adapter_heads.py b/tests_adapters/test_adapter_heads.py index 078cd6e095..b69aec2d98 100644 --- a/tests_adapters/test_adapter_heads.py +++ b/tests_adapters/test_adapter_heads.py @@ -192,6 +192,25 @@ def test_masked_lm_head(self): label_dict=label_dict, ) + def test_lm_head_freeze_output_embeddings(self): + if self.config_class not in ADAPTER_MODEL_MAPPING or ( + not hasattr(ADAPTER_MODEL_MAPPING[self.config_class], "add_seq2seq_lm_head") + and not hasattr(ADAPTER_MODEL_MAPPING[self.config_class], "add_causal_lm_head") + ): + self.skipTest("No seq2seq or causal language model head") + + model1 = AutoAdapterModel.from_config(self.config()) + model1.add_adapter("adapter1") + if hasattr(model1, "add_seq2seq_lm_head"): + model1.add_seq2seq_lm_head("adapter1") + else: + model1.add_causal_lm_head("adapter1") + + model1.train_adapter("adapter1") + + for n, p in model1.get_output_embeddings().named_parameters(): + self.assertFalse(p.requires_grad, f"Parameter {n} should not be trainable.") + def test_dependency_parsing_head(self): if not hasattr(ADAPTER_MODEL_MAPPING[self.config_class], "add_dependency_parsing_head"): self.skipTest("No dependency parsing head") From 5e9dda55166858bf91c6cb87baba8b995055ad9a Mon Sep 17 00:00:00 2001 From: Hannah Sterz Date: Thu, 16 Nov 2023 17:16:54 +0000 Subject: [PATCH 6/8] Rename AdapterConfigBase to AdapterConfig (#603) --- docs/classes/adapter_config.rst | 2 +- docs/contributing/adding_adapter_methods.md | 4 +- docs/overview.md | 2 +- docs/training.md | 2 +- docs/transitioning.md | 6 + .../pytorch/dependency-parsing/run_udp.py | 8 +- notebooks/04_Cross_Lingual_Transfer.ipynb | 6578 ++++++++--------- notebooks/08_NER_Wikiann.ipynb | 462 +- src/adapters/__init__.py | 4 +- src/adapters/configuration/adapter_config.py | 30 +- .../configuration/adapter_fusion_config.py | 4 +- .../configuration/model_adapters_config.py | 14 +- src/adapters/loading.py | 4 +- src/adapters/model_mixin.py | 6 +- src/adapters/training.py | 6 +- tests_adapters/methods/test_compacter.py | 2 +- tests_adapters/test_adapter_config.py | 22 +- tests_adapters/test_adapter_fusion_common.py | 4 +- tests_adapters/test_adapter_hub.py | 8 +- 19 files changed, 3585 insertions(+), 3583 deletions(-) diff --git a/docs/classes/adapter_config.rst b/docs/classes/adapter_config.rst index 44fff5a0f2..911a3fade2 100644 --- a/docs/classes/adapter_config.rst +++ b/docs/classes/adapter_config.rst @@ -6,7 +6,7 @@ Classes representing the architectures of adapter modules and fusion layers. Single (bottleneck) adapters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. autoclass:: adapters.AdapterConfigBase +.. autoclass:: adapters.AdapterConfig :members: .. autoclass:: adapters.BnConfig diff --git a/docs/contributing/adding_adapter_methods.md b/docs/contributing/adding_adapter_methods.md index 29a7801579..9e5f53b560 100644 --- a/docs/contributing/adding_adapter_methods.md +++ b/docs/contributing/adding_adapter_methods.md @@ -18,14 +18,14 @@ Therefore, the described steps might not be applicable to each implementation. These module classes then have to be inserted into the correct locations within the Transformer model implementation. Thus, each adapter method implementation at least should provide two classes: -- a configuration class deriving from `AdapterConfigBase` that provides attributes for all configuration options of the method +- a configuration class deriving from `AdapterConfig` that provides attributes for all configuration options of the method - a module class deriving from the abstract `AdapterLayerBase` that provides the method parameters and a set of standard adapter management functions - modules supporting [adapter composition](https://docs.adapterhub.ml/adapter_composition.html) should instead derive from `ComposableAdapterLayerBase` ### Configuration All configuration classes reside in `src/adapters/configuration/adapter_config.py`. -- To add a new configuration class for a new method, create a new subclass of [`AdapterConfigBase`](adapters.AdapterConfigBase). +- To add a new configuration class for a new method, create a new subclass of [`AdapterConfig`](adapters.AdapterConfig). Make sure to set the `architecture` attribute in your class. - Finally, also make sure the config class is added to the `__init__.py` files in `src/adapters`. diff --git a/docs/overview.md b/docs/overview.md index c9af902693..a282df20d2 100644 --- a/docs/overview.md +++ b/docs/overview.md @@ -64,7 +64,7 @@ Identifiers and configuration classes are explained in more detail in the [next ## Configuration All supported adapter methods can be added, trained, saved and shared using the same set of model class functions (see [class documentation](adapters.ModelAdaptersMixin)). -Each method is specified and configured using a specific configuration class, all of which derive from the common [`AdapterConfigBase`](adapters.AdapterConfigBase) class. +Each method is specified and configured using a specific configuration class, all of which derive from the common [`AdapterConfig`](adapters.AdapterConfig) class. E.g., adding one of the supported adapter methods to an existing model instance follows this scheme: ```python model.add_adapter("name", config=) diff --git a/docs/training.md b/docs/training.md index bc070f9b96..649ace6e28 100644 --- a/docs/training.md +++ b/docs/training.md @@ -59,7 +59,7 @@ Compared to fine-tuning the entire model, we have to make only one significant a # task adapter - only add if not existing if task_name not in model.adapters_config: # resolve the adapter config - adapter_config = AdapterConfigBase.load(adapter_args.adapter_config) + adapter_config = AdapterConfig.load(adapter_args.adapter_config) # add a new adapter model.add_adapter(task_name, config=adapter_config) # Enable adapter training diff --git a/docs/transitioning.md b/docs/transitioning.md index 0df55eec44..d2f9e5481a 100644 --- a/docs/transitioning.md +++ b/docs/transitioning.md @@ -50,6 +50,12 @@ The `adapters` library supports the configuration of adapters using [config stri For a complete list of config strings and classes see [here](https://docs.adapterhub.ml/overview.html). We strongly recommend using the new config strings, but we will continue to support the old config strings for the time being to make the transition easier. Note that with the config strings the coresponding adapter config classes have changed, e.g. `PfeifferConfig` -> `SeqBnConfig`. +Another consequence of this that the `AdapterConfig` class is now not only for the bottleneck adapters anymore, but the base class of all the configurations (previously `AdapterConfigBase`). Hence the function this class serves has changed. However, you can still load adapter configs with: +``` +adapter_config = AdapterConfig.load("lora") +``` + + ## Features that are not supported by `adapters` Compared to `adapter-transformers`, there are a few features that are no longer supported by the `adapters` library: diff --git a/examples/pytorch/dependency-parsing/run_udp.py b/examples/pytorch/dependency-parsing/run_udp.py index 1980d6ada6..8fefe1f49c 100644 --- a/examples/pytorch/dependency-parsing/run_udp.py +++ b/examples/pytorch/dependency-parsing/run_udp.py @@ -13,7 +13,7 @@ import adapters import adapters.composition as ac -from adapters import AdapterArguments, AdapterConfigBase, AutoAdapterModel, setup_adapter_training +from adapters import AdapterArguments, AdapterConfig, AutoAdapterModel, setup_adapter_training from preprocessing import preprocess_dataset from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, set_seed from utils_udp import UD_HEAD_LABELS, DependencyParsingAdapterTrainer, DependencyParsingTrainer, UDTrainingArguments @@ -252,7 +252,7 @@ def main(): logger.info("Loading best model for predictions.") if adapter_args.train_adapter: - adapter_config = AdapterConfigBase.load(adapter_args.adapter_config, **adapter_config_kwargs) + adapter_config = AdapterConfig.load(adapter_args.adapter_config, **adapter_config_kwargs) model.load_adapter( os.path.join(training_args.output_dir, "best_model", task_name) if training_args.do_train @@ -262,9 +262,7 @@ def main(): **adapter_load_kwargs, ) if adapter_args.load_lang_adapter: - lang_adapter_config = AdapterConfigBase.load( - adapter_args.lang_adapter_config, **adapter_config_kwargs - ) + lang_adapter_config = AdapterConfig.load(adapter_args.lang_adapter_config, **adapter_config_kwargs) lang_adapter_name = model.load_adapter( os.path.join(training_args.output_dir, "best_model", lang_adapter_name) if training_args.do_train diff --git a/notebooks/04_Cross_Lingual_Transfer.ipynb b/notebooks/04_Cross_Lingual_Transfer.ipynb index c951107590..4cebb3e54a 100644 --- a/notebooks/04_Cross_Lingual_Transfer.ipynb +++ b/notebooks/04_Cross_Lingual_Transfer.ipynb @@ -34,20 +34,20 @@ "cell_type": "code", "execution_count": 1, "metadata": { + "ExecuteTime": { + "end_time": "2023-08-17T09:24:50.921564600Z", + "start_time": "2023-08-17T09:24:44.078877400Z" + }, "colab": { "base_uri": "https://localhost:8080/" }, "id": "qL3Sq1HQynCq", - "outputId": "aa36636a-e484-4ca8-bc6e-b54b37b098b7", - "ExecuteTime": { - "end_time": "2023-08-17T09:24:50.921564600Z", - "start_time": "2023-08-17T09:24:44.078877400Z" - } + "outputId": "aa36636a-e484-4ca8-bc6e-b54b37b098b7" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m204.3/204.3 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m61.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", @@ -84,6 +84,10 @@ "cell_type": "code", "execution_count": 2, "metadata": { + "ExecuteTime": { + "end_time": "2023-08-17T09:25:09.494858700Z", + "start_time": "2023-08-17T09:25:06.870881400Z" + }, "colab": { "base_uri": "https://localhost:8080/", "height": 258, @@ -168,120 +172,116 @@ ] }, "id": "INW7UEhC-I6b", - "outputId": "7f22b72b-0c63-4152-f6c2-01da36af2824", - "ExecuteTime": { - "end_time": "2023-08-17T09:25:09.494858700Z", - "start_time": "2023-08-17T09:25:06.870881400Z" - } + "outputId": "7f22b72b-0c63-4152-f6c2-01da36af2824" }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Downloading builder script: 0%| | 0.00/30.7k [00:00" - ], "text/html": [ "\n", "

\n", @@ -905,19 +901,23 @@ " \n", " \n", "

" + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "execute_result", "data": { "text/plain": [ "TrainOutput(global_step=128, training_loss=0.6968793570995331, metrics={'train_runtime': 55.5306, 'train_samples_per_second': 72.032, 'train_steps_per_second': 2.305, 'total_flos': 293495135040000.0, 'train_loss': 0.6968793570995331, 'epoch': 8.0})" ] }, + "execution_count": 10, "metadata": {}, - "execution_count": 10 + "output_type": "execute_result" } ], "source": [ @@ -940,6 +940,10 @@ "cell_type": "code", "execution_count": 11, "metadata": { + "ExecuteTime": { + "end_time": "2023-08-17T09:34:08.620963600Z", + "start_time": "2023-08-17T09:34:04.407241200Z" + }, "colab": { "base_uri": "https://localhost:8080/", "height": 426, @@ -1057,16 +1061,12 @@ ] }, "id": "cMgM1supdxpw", - "outputId": "e7dbf1f2-60f8-480d-8cd6-b601cecd697c", - "ExecuteTime": { - "end_time": "2023-08-17T09:34:08.620963600Z", - "start_time": "2023-08-17T09:34:04.407241200Z" - } + "outputId": "e7dbf1f2-60f8-480d-8cd6-b601cecd697c" }, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/datasets/load.py:2080: FutureWarning: 'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.\n", "You can remove this warning by passing 'verification_mode=no_checks' instead.\n", @@ -1074,148 +1074,148 @@ ] }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Downloading builder script: 0%| | 0.00/3.90k [00:00" - ], "text/html": [ "\n", "

\n", @@ -1290,12 +1286,15 @@ " [63/63 00:04]\n", "
\n", " " + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "execute_result", "data": { "text/plain": [ "{'eval_loss': 0.6925755739212036,\n", @@ -1305,8 +1304,9 @@ " 'eval_steps_per_second': 12.682}" ] }, + "execution_count": 13, "metadata": {}, - "execution_count": 13 + "output_type": "execute_result" } ], "source": [ @@ -1338,10 +1338,11 @@ } ], "metadata": { + "accelerator": "GPU", "colab": { + "gpuType": "T4", "provenance": [], - "toc_visible": true, - "gpuType": "T4" + "toc_visible": true }, "kernelspec": { "display_name": "Python 3", @@ -1370,98 +1371,47 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "660b81766f7044b6a1ce2f8c2c45f461": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1250b158a5b945da8d19b0ecdfefde34", - "IPY_MODEL_6b2003198e274ef7a474ec222624be1c", - "IPY_MODEL_8ee881038ff4488382ca006a07c9ed6d" - ], - "layout": "IPY_MODEL_4fa6d2b22bbe4c1a87cb436dfecefe0c" - } - }, - "1250b158a5b945da8d19b0ecdfefde34": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0ac38ac59979437196a82149dab2fb14", - "placeholder": "​", - "style": "IPY_MODEL_7815c3cab73740b29687228f3e0d1fa7", - "value": "Downloading builder script: 100%" - } - }, - "6b2003198e274ef7a474ec222624be1c": { + "006b4341bbea4f29a9f5c053045df606": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38411915569f487c9bc36f29c292935e", - "max": 30733, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c601dba9e79840aeb7f832732564128c", - "value": 30733 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "8ee881038ff4488382ca006a07c9ed6d": { + "017e9f5721174b169f12cff28faee34d": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0781ed37deef4341a2c37fa0bbb3bac1", - "placeholder": "​", - "style": "IPY_MODEL_a7e4a4dfb7054ca8bfcf7358999ae34c", - "value": " 30.7k/30.7k [00:00<00:00, 1.37MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9be4c5e49284455fbc1afb8a360de1b0", + "IPY_MODEL_e4fc0ef10700445ba9a49390c45a5716", + "IPY_MODEL_5abb6e6728184cdb9450ed543aea8936" + ], + "layout": "IPY_MODEL_4d231168533a4bf4a63ffbc0d53271cc" } }, - "4fa6d2b22bbe4c1a87cb436dfecefe0c": { + "0243ae5e50fb4186989be9966c9962c4": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1510,10 +1460,10 @@ "width": null } }, - "0ac38ac59979437196a82149dab2fb14": { + "0280590b0bfe4e8390f172a0f7ea3f12": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1562,25 +1512,34 @@ "width": null } }, - "7815c3cab73740b29687228f3e0d1fa7": { + "03cb547ad56b4c1db3fb373969eacf85": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2c3e773ab524ad381102340a59c7e9f", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_11e1cbaec2fb4276b7e0f53465f214ee", + "value": 2 } }, - "38411915569f487c9bc36f29c292935e": { + "053917bbf7fc43a0887752403a972737": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1629,26 +1588,31 @@ "width": null } }, - "c601dba9e79840aeb7f832732564128c": { + "060c7ff1420142b09b701ea4d9010e55": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf728e3f4516450aa5bf3c928d188d88", + "placeholder": "​", + "style": "IPY_MODEL_7768ac1f0f97461bafe3db188fe0c2a7", + "value": " 100/100 [00:00<00:00, 1931.92 examples/s]" } }, - "0781ed37deef4341a2c37fa0bbb3bac1": { + "06db73f59d764ac2b52cec52fdcd1d04": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1697,117 +1661,66 @@ "width": null } }, - "a7e4a4dfb7054ca8bfcf7358999ae34c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", + "0781ed37deef4341a2c37fa0bbb3bac1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "017e9f5721174b169f12cff28faee34d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", + "07ff9bc229874e51b085d015bb1c433e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9be4c5e49284455fbc1afb8a360de1b0", - "IPY_MODEL_e4fc0ef10700445ba9a49390c45a5716", - "IPY_MODEL_5abb6e6728184cdb9450ed543aea8936" - ], - "layout": "IPY_MODEL_4d231168533a4bf4a63ffbc0d53271cc" - } - }, - "9be4c5e49284455fbc1afb8a360de1b0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_920ccb52e17a4a18a329bb756c9c35b3", - "placeholder": "​", - "style": "IPY_MODEL_1e62c62899b8448f8969500f0db73d92", - "value": "Downloading metadata: 100%" - } - }, - "e4fc0ef10700445ba9a49390c45a5716": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eaeb678c01ef4c89b31db675a724d377", - "max": 38726, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_516d0dc1bfc34d0392930e884fac47ae", - "value": 38726 - } - }, - "5abb6e6728184cdb9450ed543aea8936": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2973c0914c2c409585aa45ac477d8f5c", - "placeholder": "​", - "style": "IPY_MODEL_27654c501e7a4484805ecffdafdcd185", - "value": " 38.7k/38.7k [00:00<00:00, 2.15MB/s]" - } - }, - "4d231168533a4bf4a63ffbc0d53271cc": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -1852,10 +1765,34 @@ "width": null } }, - "920ccb52e17a4a18a329bb756c9c35b3": { + "0aa649b5e9b2461093c9958fc03f0af8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab991f7fb1504bd5b6fca2c8357e4c83", + "max": 43986, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e4d7e53bea847819dd5b72b49a80e9e", + "value": 43986 + } + }, + "0ac38ac59979437196a82149dab2fb14": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1904,10 +1841,10 @@ "width": null } }, - "1e62c62899b8448f8969500f0db73d92": { + "0b8adcc5ad1148ba847f3a0eb07ff354": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1919,10 +1856,31 @@ "description_width": "" } }, - "eaeb678c01ef4c89b31db675a724d377": { + "0c622cfb456f4317a2952fb781738e80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b901332db22e401e905cdef9f9083a7f", + "placeholder": "​", + "style": "IPY_MODEL_2fd02c7a887e40829d1bb16304a14b22", + "value": " 500/500 [00:00<00:00, 5114.24 examples/s]" + } + }, + "0cb39e011e5b4373a25d2e4d0f158b30": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1971,26 +1929,10 @@ "width": null } }, - "516d0dc1bfc34d0392930e884fac47ae": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2973c0914c2c409585aa45ac477d8f5c": { + "0efe23c68b3d4b9b92c5f89648656910": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2039,47 +1981,31 @@ "width": null } }, - "27654c501e7a4484805ecffdafdcd185": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "79ddbccc453643689f129740e5148e24": { + "0f07f12c5f8a4e158aed6db3b6a5c719": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22e8d2d6a5f1402fa49a849521d137b1", - "IPY_MODEL_7060341f58854fbf8621a0aef79b4f0c", - "IPY_MODEL_f481c31c5e0d493c943d489409178d11" - ], - "layout": "IPY_MODEL_3945de5d21e24d8d8f1e9f02d596b46c" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef81ac8f601d43dc8dc9f63e86ce6d5e", + "placeholder": "​", + "style": "IPY_MODEL_761012fd1a874580b2292b344e90aa36", + "value": " 9.10M/9.10M [00:00<00:00, 18.9MB/s]" } }, - "22e8d2d6a5f1402fa49a849521d137b1": { + "0f4c24c2eaa84981a51ca8043e881218": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2091,61 +2017,56 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_117ee29d11ff46d3a77d07d1676e64a1", + "layout": "IPY_MODEL_99360f3c8571451f958c1dd73283674e", "placeholder": "​", - "style": "IPY_MODEL_6ba212cc0c384d3b88498ebc5fe7b60d", - "value": "Downloading readme: 100%" + "style": "IPY_MODEL_1cc3cec507844485850a5b95d3db6e9d", + "value": " 100/100 [00:00<00:00, 2548.99 examples/s]" } }, - "7060341f58854fbf8621a0aef79b4f0c": { + "1014511855324a61a1c90e299470f4b9": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_efefa88ed4c64045b05db81984e8a3e7", - "max": 14813, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c22dbe3bce3d44f397ab8a427609c1e0", - "value": 14813 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f481c31c5e0d493c943d489409178d11": { + "11717755bc314c7fa47765a8042a5bc5": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_78ce2352d3e14733bb5459a59d94f2bb", - "placeholder": "​", - "style": "IPY_MODEL_7ded086d37894a9e94142d6775d78b91", - "value": " 14.8k/14.8k [00:00<00:00, 921kB/s]" + "layout": "IPY_MODEL_0cb39e011e5b4373a25d2e4d0f158b30", + "max": 9096718, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a6e4ccabfd9f42d99d66848938467f2d", + "value": 9096718 } }, - "3945de5d21e24d8d8f1e9f02d596b46c": { + "117ee29d11ff46d3a77d07d1676e64a1": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2194,77 +2115,68 @@ "width": null } }, - "117ee29d11ff46d3a77d07d1676e64a1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "11b11def7bff484191999b63753e780b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee1a05c0abb94b3fabbbbcbbc44833b8", + "placeholder": "​", + "style": "IPY_MODEL_740f9bd6524f4af0bc79be53039a7961", + "value": " 60.6k/60.6k [00:00<00:00, 3.29MB/s]" } }, - "6ba212cc0c384d3b88498ebc5fe7b60d": { + "11e1cbaec2fb4276b7e0f53465f214ee": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "efefa88ed4c64045b05db81984e8a3e7": { + "1250b158a5b945da8d19b0ecdfefde34": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ac38ac59979437196a82149dab2fb14", + "placeholder": "​", + "style": "IPY_MODEL_7815c3cab73740b29687228f3e0d1fa7", + "value": "Downloading builder script: 100%" + } + }, + "145203b1303a40f6beb445c853de4a7d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2313,26 +2225,54 @@ "width": null } }, - "c22dbe3bce3d44f397ab8a427609c1e0": { + "15c65deba3fa46ea914c95f86dbc01eb": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_afc89fd0f8f2469a8e787389fb8896b0", + "IPY_MODEL_0aa649b5e9b2461093c9958fc03f0af8", + "IPY_MODEL_45dd2cc789e24b958c9055248889db41" + ], + "layout": "IPY_MODEL_f3827cc78cd149408fcb4a38eb7794f6" } }, - "78ce2352d3e14733bb5459a59d94f2bb": { + "1759469306854432b2d4d6618fc45776": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf257fbfb5824f99af08146161fb0f67", + "IPY_MODEL_03cb547ad56b4c1db3fb373969eacf85", + "IPY_MODEL_f2619549195c4090a453c551710cdb65" + ], + "layout": "IPY_MODEL_988ea2ed503f44b5bc8ff16844967d48" + } + }, + "17b4e1697bb848ad9b1c74993a05b64d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2381,10 +2321,10 @@ "width": null } }, - "7ded086d37894a9e94142d6775d78b91": { + "1883a118e9ab4e8b96e0941113d9c240": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2396,10 +2336,10 @@ "description_width": "" } }, - "15c65deba3fa46ea914c95f86dbc01eb": { + "1937074f179040e2b96d7972dc1a6998": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2411,17 +2351,17 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_afc89fd0f8f2469a8e787389fb8896b0", - "IPY_MODEL_0aa649b5e9b2461093c9958fc03f0af8", - "IPY_MODEL_45dd2cc789e24b958c9055248889db41" + "IPY_MODEL_cb4f9dccc08c4caab16774ea9a133b2b", + "IPY_MODEL_7917c44d3ec94fc7ad80e1657fc1627b", + "IPY_MODEL_11b11def7bff484191999b63753e780b" ], - "layout": "IPY_MODEL_f3827cc78cd149408fcb4a38eb7794f6" + "layout": "IPY_MODEL_7e23d208fd96406186ea49ddc340eaa0" } }, - "afc89fd0f8f2469a8e787389fb8896b0": { + "19a6a0e0d1af471b8066ad37f12475e7": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2433,61 +2373,47 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0280590b0bfe4e8390f172a0f7ea3f12", + "layout": "IPY_MODEL_87c4fc3dca7f433ca231128105a54666", "placeholder": "​", - "style": "IPY_MODEL_d4b15a4562e2489c8509f7b45b167575", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_378ee4cd7535482289464c78fdfccff5", + "value": " 5.07M/5.07M [00:00<00:00, 13.7MB/s]" } }, - "0aa649b5e9b2461093c9958fc03f0af8": { + "1a555ff033ce47f389abc112b42475e9": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ab991f7fb1504bd5b6fca2c8357e4c83", - "max": 43986, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e4d7e53bea847819dd5b72b49a80e9e", - "value": 43986 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "45dd2cc789e24b958c9055248889db41": { + "1a5d8044a2254d0881d854c0b01d7141": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f4bcca5b6b7643c99a520db52b769784", - "placeholder": "​", - "style": "IPY_MODEL_44f12b979f684345995cb8694ac2f30f", - "value": " 44.0k/44.0k [00:00<00:00, 1.69MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f3827cc78cd149408fcb4a38eb7794f6": { + "1b1634fa3d4a4faa80555ee6f1672600": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2536,10 +2462,40 @@ "width": null } }, - "0280590b0bfe4e8390f172a0f7ea3f12": { + "1bb95488e26d4cc9865b91d1af06e792": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1cc3cec507844485850a5b95d3db6e9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1d634f5a0ee34c3f8ca0edb228bc9ed9": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2588,10 +2544,10 @@ "width": null } }, - "d4b15a4562e2489c8509f7b45b167575": { + "1e62c62899b8448f8969500f0db73d92": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2603,10 +2559,10 @@ "description_width": "" } }, - "ab991f7fb1504bd5b6fca2c8357e4c83": { + "1eabfe440e39437190c7a466b0967798": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2655,14 +2611,491 @@ "width": null } }, - "2e4d7e53bea847819dd5b72b49a80e9e": { + "1f47605b01224bcfa8464c6d498fa1d1": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "216fc1dd69b840788de0425040d646a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9ab974ee666c47b0ac46d5112d5abdf5", + "IPY_MODEL_e500b37792734768892e8548250ca1a5", + "IPY_MODEL_24e3f9dc7a9742eaafad98f423a550df" + ], + "layout": "IPY_MODEL_c475cfa85927479b9604bb4a33183957" + } + }, + "221597e24fd14a0e8e67321692f615b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "22e8d2d6a5f1402fa49a849521d137b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_117ee29d11ff46d3a77d07d1676e64a1", + "placeholder": "​", + "style": "IPY_MODEL_6ba212cc0c384d3b88498ebc5fe7b60d", + "value": "Downloading readme: 100%" + } + }, + "236e4fb59b3e418993ed329310de2457": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f96be3d44ed4d37b73dcc358a5756be", + "placeholder": "​", + "style": "IPY_MODEL_355075984c274acba555a874dc51f987", + "value": "Downloading (…)lm-roberta-base.json: " + } + }, + "23e490b5be9d45f682030f7193b740fc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "240b1eb858834defb5f1069f017e859e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24e3f9dc7a9742eaafad98f423a550df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4af55acfc6274c88b14c8441dd395df2", + "placeholder": "​", + "style": "IPY_MODEL_fcd662335f9447cb87bd66b55fea1f41", + "value": " 3.90k/3.90k [00:00<00:00, 264kB/s]" + } + }, + "24e6ff03c6b04b94bd729a09a93d4841": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25962637853646f0a19e320bee136091": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddd3c45654f4476eb1eb2d30e621f6a3", + "placeholder": "​", + "style": "IPY_MODEL_bae3fdd732764d08a5e417f76a94b17d", + "value": "Downloading data: " + } + }, + "26b04e0848d74b20988237710bb52aa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "26b4f219a8ef4d52a4c34ee304e31fd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "27654c501e7a4484805ecffdafdcd185": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "289f94db4e314211aad1ac6a6be977f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d77b2877257b4b379f74165434212dd4", + "placeholder": "​", + "style": "IPY_MODEL_0b8adcc5ad1148ba847f3a0eb07ff354", + "value": "Generating test split: 100%" + } + }, + "2973c0914c2c409585aa45ac477d8f5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ac898ff598e40a1a28ef7b5350f3f57": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2bc1eb041c624197b006ca3c29e6819d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2da273f7585c4b45a36f55d5f112e581": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2dcbf0d434494c4ca36c74fb97be7df5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_befb2622d31b436f8d8cb25d35243989", + "placeholder": "​", + "style": "IPY_MODEL_26b4f219a8ef4d52a4c34ee304e31fd1", + "value": "Generating test split: 100%" + } + }, + "2e4d7e53bea847819dd5b72b49a80e9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -2671,10 +3104,216 @@ "description_width": "" } }, - "f4bcca5b6b7643c99a520db52b769784": { + "2e9e85dcb24941468f9a1de54f613ce0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e9fd37ed5e143fab800eb002c8da795": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69d1a3bfc69e48a986a1f53ea68ffdd3", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a5b9bfd0475045f885fb0f77accb9952", + "value": 100 + } + }, + "2f5bd7a50398424da94c61c6f8e3a125": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fbc66f9f17043be8b03fe8cb84ac0d6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fd02c7a887e40829d1bb16304a14b22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "30a08ac6bd9445508d6fd68ca162bd49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_80ebeea5e6ba46a0a228965232996340", + "max": 29562325, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_398722250162461dbd886d13a8e93257", + "value": 29562325 + } + }, + "3153dae8974246a8ba3217a47ce8ee7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6fae67869ca04721bd03f4995c3259d6", + "max": 1115567652, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dfb749a8532d422f87e9c8bd4302a4a0", + "value": 1115567652 + } + }, + "327bfa1cb0e54c95993ce8fe01be7abc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2723,113 +3362,85 @@ "width": null } }, - "44f12b979f684345995cb8694ac2f30f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "52b2e86553c14b148d37d3dddc3bc464": { + "3501ed620e24462ebe622aceabb3bd3d": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d282ec102d7340b897516669788ed66a", - "IPY_MODEL_d58b2c69a73f406d9115f23d302e2ef9", - "IPY_MODEL_f99308f66ebd4ee38efc60edc7dd2899" - ], - "layout": "IPY_MODEL_7c4822defba54fe3954f7dadfe04b000" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73bcd540ea0242c78f8fdddb348fff3e", + "max": 5323, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1014511855324a61a1c90e299470f4b9", + "value": 5323 } }, - "d282ec102d7340b897516669788ed66a": { + "355075984c274acba555a874dc51f987": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_145203b1303a40f6beb445c853de4a7d", - "placeholder": "​", - "style": "IPY_MODEL_8ae31dae07bf40e1914b4fb238d65716", - "value": "Generating train split: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d58b2c69a73f406d9115f23d302e2ef9": { + "370bb26be7b34dc181ea88756f99afa3": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1b1634fa3d4a4faa80555ee6f1672600", - "max": 400, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_b03b50388e9d4327ba761b26b4bb113d", - "value": 400 + "layout": "IPY_MODEL_2fbc66f9f17043be8b03fe8cb84ac0d6", + "placeholder": "​", + "style": "IPY_MODEL_24e6ff03c6b04b94bd729a09a93d4841", + "value": " 100/100 [00:00<00:00, 903.57 examples/s]" } }, - "f99308f66ebd4ee38efc60edc7dd2899": { + "378ee4cd7535482289464c78fdfccff5": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a22f62bc57c4c78840c1ef51c621996", - "placeholder": "​", - "style": "IPY_MODEL_adbd936819104e65a5a6e94817f928f0", - "value": " 400/400 [00:00<00:00, 2500.62 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7c4822defba54fe3954f7dadfe04b000": { + "37b69881a6aa453bb5aca22fa5364c23": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2878,10 +3489,10 @@ "width": null } }, - "145203b1303a40f6beb445c853de4a7d": { + "38411915569f487c9bc36f29c292935e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2930,25 +3541,34 @@ "width": null } }, - "8ae31dae07bf40e1914b4fb238d65716": { + "387711b2140f4b9ebbcb363e1067d6f7": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4f63dba0f0df41748b523ada60679496", + "max": 23273, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5994264c53e54ca5b50a06cd8ef2556b", + "value": 23273 } }, - "1b1634fa3d4a4faa80555ee6f1672600": { + "3945de5d21e24d8d8f1e9f02d596b46c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2997,10 +3617,10 @@ "width": null } }, - "b03b50388e9d4327ba761b26b4bb113d": { + "398722250162461dbd886d13a8e93257": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -3013,10 +3633,10 @@ "description_width": "" } }, - "5a22f62bc57c4c78840c1ef51c621996": { + "3b26ab59e14a4b4c891c7bcb50cf495a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3065,25 +3685,10 @@ "width": null } }, - "adbd936819104e65a5a6e94817f928f0": { + "3bf4f93b8e7e4b4aa8d4af2fd8683a56": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7501aa4a0a5f43f49d6dc10857e33317": { - "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3095,83 +3700,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_95035ec41d6d4a1489b02a4967d2c398", - "IPY_MODEL_2e9fd37ed5e143fab800eb002c8da795", - "IPY_MODEL_060c7ff1420142b09b701ea4d9010e55" + "IPY_MODEL_764a4f006ad3411680dc35ab7f77f4d0", + "IPY_MODEL_75f861994a384edcba5991e24ec0acb2", + "IPY_MODEL_81f029f951bf4dd4bbbc7ee6e4cc4d9e" ], - "layout": "IPY_MODEL_a916f7891d984a0d9b77cd53f31b7e67" - } - }, - "95035ec41d6d4a1489b02a4967d2c398": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ae7b293071124a9abe156fe6067678d3", - "placeholder": "​", - "style": "IPY_MODEL_c3e2364139bc48379e2089a5c9c475be", - "value": "Generating validation split: 100%" - } - }, - "2e9fd37ed5e143fab800eb002c8da795": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_69d1a3bfc69e48a986a1f53ea68ffdd3", - "max": 100, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a5b9bfd0475045f885fb0f77accb9952", - "value": 100 + "layout": "IPY_MODEL_e9e86e5e4a1341d592f72110112f276d" } }, - "060c7ff1420142b09b701ea4d9010e55": { + "3c36d64114264fcb82a159f580585096": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bf728e3f4516450aa5bf3c928d188d88", - "placeholder": "​", - "style": "IPY_MODEL_7768ac1f0f97461bafe3db188fe0c2a7", - "value": " 100/100 [00:00<00:00, 1931.92 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a916f7891d984a0d9b77cd53f31b7e67": { + "3d013291a7df403f8c9b30e2beffedb8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3220,10 +3774,10 @@ "width": null } }, - "ae7b293071124a9abe156fe6067678d3": { + "3ec325fb22fe42df8d6564ca93a66bc2": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3272,10 +3826,54 @@ "width": null } }, - "c3e2364139bc48379e2089a5c9c475be": { + "40c2e934eb384c8c8d3f19a9779b28d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b3788c01be44040893f782e6aa12e7b", + "IPY_MODEL_3501ed620e24462ebe622aceabb3bd3d", + "IPY_MODEL_ded200a20be94aea92af5d408156fcca" + ], + "layout": "IPY_MODEL_06db73f59d764ac2b52cec52fdcd1d04" + } + }, + "421306178c18489abcdb27c1265ba6aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f47ee50ce7bd4024b15381bcf4ed0213", + "IPY_MODEL_3153dae8974246a8ba3217a47ce8ee7c", + "IPY_MODEL_f4fc3e122b954a949448b09630857ec0" + ], + "layout": "IPY_MODEL_6ae390407899480292d8a0ec2e245bae" + } + }, + "44f12b979f684345995cb8694ac2f30f": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -3287,10 +3885,10 @@ "description_width": "" } }, - "69d1a3bfc69e48a986a1f53ea68ffdd3": { + "452e52e81511403db6036d7f610eaa7f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3339,26 +3937,31 @@ "width": null } }, - "a5b9bfd0475045f885fb0f77accb9952": { + "45dd2cc789e24b958c9055248889db41": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f4bcca5b6b7643c99a520db52b769784", + "placeholder": "​", + "style": "IPY_MODEL_44f12b979f684345995cb8694ac2f30f", + "value": " 44.0k/44.0k [00:00<00:00, 1.69MB/s]" } }, - "bf728e3f4516450aa5bf3c928d188d88": { + "495b95595ddd4f15997ea0e6b573fde5": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3407,10 +4010,10 @@ "width": null } }, - "7768ac1f0f97461bafe3db188fe0c2a7": { + "4aa1ebeecbba4de59fe0104150245fae": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -3422,98 +4025,62 @@ "description_width": "" } }, - "c4e3a3c37ff3462ca9251f86efe35fd5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_289f94db4e314211aad1ac6a6be977f6", - "IPY_MODEL_b0ed87168a41425ab3e3ce9c19d5f6cd", - "IPY_MODEL_0c622cfb456f4317a2952fb781738e80" - ], - "layout": "IPY_MODEL_e21b6208bbc24dfaa77bbc50637bc2ab" - } - }, - "289f94db4e314211aad1ac6a6be977f6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d77b2877257b4b379f74165434212dd4", - "placeholder": "​", - "style": "IPY_MODEL_0b8adcc5ad1148ba847f3a0eb07ff354", - "value": "Generating test split: 100%" - } - }, - "b0ed87168a41425ab3e3ce9c19d5f6cd": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8100412933fc4f67a8413b2c7a5f9f9f", - "max": 500, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7c115c8d0b0142febe517f91d8b91f16", - "value": 500 - } - }, - "0c622cfb456f4317a2952fb781738e80": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", + "4af55acfc6274c88b14c8441dd395df2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b901332db22e401e905cdef9f9083a7f", - "placeholder": "​", - "style": "IPY_MODEL_2fd02c7a887e40829d1bb16304a14b22", - "value": " 500/500 [00:00<00:00, 5114.24 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e21b6208bbc24dfaa77bbc50637bc2ab": { + "4d231168533a4bf4a63ffbc0d53271cc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3562,10 +4129,52 @@ "width": null } }, - "d77b2877257b4b379f74165434212dd4": { + "4ee4a536f1ae46529aa5cc6688bc5f2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_327bfa1cb0e54c95993ce8fe01be7abc", + "placeholder": "​", + "style": "IPY_MODEL_e20cfd11370548d284ae8b6530911e0d", + "value": "Downloading readme: 100%" + } + }, + "4f144677ebd54a87a6b493a8be5486c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b26ab59e14a4b4c891c7bcb50cf495a", + "placeholder": "​", + "style": "IPY_MODEL_cda3c917778848c98dbd7752d798989b", + "value": " 29.6M/29.6M [00:02<00:00, 12.8MB/s]" + } + }, + "4f63dba0f0df41748b523ada60679496": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3614,25 +4223,10 @@ "width": null } }, - "0b8adcc5ad1148ba847f3a0eb07ff354": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8100412933fc4f67a8413b2c7a5f9f9f": { + "4fa6d2b22bbe4c1a87cb436dfecefe0c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3681,26 +4275,10 @@ "width": null } }, - "7c115c8d0b0142febe517f91d8b91f16": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b901332db22e401e905cdef9f9083a7f": { + "500d52783fdd4008a5e02b5439bcd5f0": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3749,25 +4327,26 @@ "width": null } }, - "2fd02c7a887e40829d1bb16304a14b22": { + "516d0dc1bfc34d0392930e884fac47ae": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "9a088b764a214b95a00fac01005eb726": { + "5221149fd81940099402d651f8dce8d5": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3779,62 +4358,60 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9620833757c54c9fb1b1216c40372459", - "IPY_MODEL_97392a3c7c244bacb931a81947acca06", - "IPY_MODEL_57c0e7dd3f644dfa8cbb34e79ee695a3" + "IPY_MODEL_b1897978affa4617b5d58c3ce0ef5e44", + "IPY_MODEL_ed690821c13c49df9c559d5ae1240fd6", + "IPY_MODEL_623a5955ba01446c837cb851465a1c2a" ], - "layout": "IPY_MODEL_83b01f9793e540e6bcf40f3c65f5359f" + "layout": "IPY_MODEL_ac4fe7baf6524bd1902212b1a71cbbdf" } }, - "9620833757c54c9fb1b1216c40372459": { + "52b2e86553c14b148d37d3dddc3bc464": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_495b95595ddd4f15997ea0e6b573fde5", - "placeholder": "​", - "style": "IPY_MODEL_faed48642f37415ea41a4f6155311666", - "value": "Downloading (…)lve/main/config.json: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d282ec102d7340b897516669788ed66a", + "IPY_MODEL_d58b2c69a73f406d9115f23d302e2ef9", + "IPY_MODEL_f99308f66ebd4ee38efc60edc7dd2899" + ], + "layout": "IPY_MODEL_7c4822defba54fe3954f7dadfe04b000" } }, - "97392a3c7c244bacb931a81947acca06": { + "55350a29295a4e049f8c386412667a1c": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_811085599e73470c9cc3b228f0cf2ce4", - "max": 615, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6e1f35bea40044e5864d0b14c402bd9e", - "value": 615 + "layout": "IPY_MODEL_ffe9e9464031467c93450fb974f9a3b3", + "placeholder": "​", + "style": "IPY_MODEL_97638ea222754090ba4ca37063de36c6", + "value": "Downloading (…)/main/tokenizer.json: 100%" } }, - "57c0e7dd3f644dfa8cbb34e79ee695a3": { + "568e8a9bb41841a99c608485e4a67ec8": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3846,68 +4423,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cb44cb18f2904a4a8379b42f4597b591", + "layout": "IPY_MODEL_053917bbf7fc43a0887752403a972737", "placeholder": "​", - "style": "IPY_MODEL_effcf408a606435286f6b74b52d127c7", - "value": " 615/615 [00:00<00:00, 23.3kB/s]" + "style": "IPY_MODEL_221597e24fd14a0e8e67321692f615b8", + "value": " 500/500 [00:00<00:00, 5115.13 examples/s]" } }, - "83b01f9793e540e6bcf40f3c65f5359f": { + "57853bbe0e9942cf8c3e73778f8ff2fc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "495b95595ddd4f15997ea0e6b573fde5": { - "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", - "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3956,77 +4481,47 @@ "width": null } }, - "faed48642f37415ea41a4f6155311666": { + "57c0e7dd3f644dfa8cbb34e79ee695a3": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "811085599e73470c9cc3b228f0cf2ce4": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb44cb18f2904a4a8379b42f4597b591", + "placeholder": "​", + "style": "IPY_MODEL_effcf408a606435286f6b74b52d127c7", + "value": " 615/615 [00:00<00:00, 23.3kB/s]" } }, - "6e1f35bea40044e5864d0b14c402bd9e": { + "5992e3e857704d62a5ceb8135ed90f78": { "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5994264c53e54ca5b50a06cd8ef2556b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4039,10 +4534,10 @@ "description_width": "" } }, - "cb44cb18f2904a4a8379b42f4597b591": { + "5a22f62bc57c4c78840c1ef51c621996": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4091,47 +4586,26 @@ "width": null } }, - "effcf408a606435286f6b74b52d127c7": { + "5a6333761660446084db896cf8fa3aed": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bf7d06fbfb7d45c98dde0900cebc16a3": { + "5abb6e6728184cdb9450ed543aea8936": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8d6236259648404b99bd6ea9e19d7c48", - "IPY_MODEL_cea20d44ab3b408c8b41c2a475d75113", - "IPY_MODEL_19a6a0e0d1af471b8066ad37f12475e7" - ], - "layout": "IPY_MODEL_74accac847e04f60ae59ca1367c59b71" - } - }, - "8d6236259648404b99bd6ea9e19d7c48": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4143,40 +4617,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b29700bab9bc499dbbeba804bccc2cce", + "layout": "IPY_MODEL_2973c0914c2c409585aa45ac477d8f5c", "placeholder": "​", - "style": "IPY_MODEL_3c36d64114264fcb82a159f580585096", - "value": "Downloading (…)tencepiece.bpe.model: 100%" + "style": "IPY_MODEL_27654c501e7a4484805ecffdafdcd185", + "value": " 38.7k/38.7k [00:00<00:00, 2.15MB/s]" } }, - "cea20d44ab3b408c8b41c2a475d75113": { + "5d2e7a7f5e6d43d38e5d9a839bad6618": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1d634f5a0ee34c3f8ca0edb228bc9ed9", - "max": 5069051, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c96d20da080847cdb20534fbf761b5b6", - "value": 5069051 - } - }, - "19a6a0e0d1af471b8066ad37f12475e7": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4188,16 +4638,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_87c4fc3dca7f433ca231128105a54666", + "layout": "IPY_MODEL_a8fb3390bc7e4f489a1eed8855249780", "placeholder": "​", - "style": "IPY_MODEL_378ee4cd7535482289464c78fdfccff5", - "value": " 5.07M/5.07M [00:00<00:00, 13.7MB/s]" + "style": "IPY_MODEL_b82099eefb964f83bc2a99ecaf6b21d8", + "value": "Map: 100%" } }, - "74accac847e04f60ae59ca1367c59b71": { + "5ecc0a746abb44cdb1566203edb307f4": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4246,10 +4696,10 @@ "width": null } }, - "b29700bab9bc499dbbeba804bccc2cce": { + "5f4b4f5191754b4eb8aebd5af6c7942d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4298,25 +4748,10 @@ "width": null } }, - "3c36d64114264fcb82a159f580585096": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1d634f5a0ee34c3f8ca0edb228bc9ed9": { + "5f96be3d44ed4d37b73dcc358a5756be": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4365,10 +4800,46 @@ "width": null } }, - "c96d20da080847cdb20534fbf761b5b6": { + "623a5955ba01446c837cb851465a1c2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_500d52783fdd4008a5e02b5439bcd5f0", + "placeholder": "​", + "style": "IPY_MODEL_9397f9387c6d4edf8e0296a26da23db7", + "value": " 400/400 [00:00<00:00, 2156.01 examples/s]" + } + }, + "63aa346b6a1b491183dc78bfd5127ea3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "65090b4bf9a84377adaf0b965a42d254": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4381,10 +4852,91 @@ "description_width": "" } }, - "87c4fc3dca7f433ca231128105a54666": { + "650cc1472a394fdc854f7fcac4594317": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_25962637853646f0a19e320bee136091", + "IPY_MODEL_387711b2140f4b9ebbcb363e1067d6f7", + "IPY_MODEL_cd09018d44c34714aeb6e90b19729303" + ], + "layout": "IPY_MODEL_b5c42155aeb843b98172b25e79cbc811" + } + }, + "6557f70fcb2e475495dc88ebec7e6dd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "660b81766f7044b6a1ce2f8c2c45f461": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1250b158a5b945da8d19b0ecdfefde34", + "IPY_MODEL_6b2003198e274ef7a474ec222624be1c", + "IPY_MODEL_8ee881038ff4488382ca006a07c9ed6d" + ], + "layout": "IPY_MODEL_4fa6d2b22bbe4c1a87cb436dfecefe0c" + } + }, + "66881711810a4ad28f08bff9bd15e6fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2dcbf0d434494c4ca36c74fb97be7df5", + "IPY_MODEL_8e6c82700dc74db3bd6d3946f93c956c", + "IPY_MODEL_568e8a9bb41841a99c608485e4a67ec8" + ], + "layout": "IPY_MODEL_af6b21dc6f3f48c7ae5c240b403b3c91" + } + }, + "69d1a3bfc69e48a986a1f53ea68ffdd3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4433,113 +4985,10 @@ "width": null } }, - "378ee4cd7535482289464c78fdfccff5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "785aa76f50cb44cea93bc8d26c8fe117": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55350a29295a4e049f8c386412667a1c", - "IPY_MODEL_11717755bc314c7fa47765a8042a5bc5", - "IPY_MODEL_0f07f12c5f8a4e158aed6db3b6a5c719" - ], - "layout": "IPY_MODEL_7d6e7b8946c4475bb45c4b8635eaedb8" - } - }, - "55350a29295a4e049f8c386412667a1c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ffe9e9464031467c93450fb974f9a3b3", - "placeholder": "​", - "style": "IPY_MODEL_97638ea222754090ba4ca37063de36c6", - "value": "Downloading (…)/main/tokenizer.json: 100%" - } - }, - "11717755bc314c7fa47765a8042a5bc5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cb39e011e5b4373a25d2e4d0f158b30", - "max": 9096718, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6e4ccabfd9f42d99d66848938467f2d", - "value": 9096718 - } - }, - "0f07f12c5f8a4e158aed6db3b6a5c719": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ef81ac8f601d43dc8dc9f63e86ce6d5e", - "placeholder": "​", - "style": "IPY_MODEL_761012fd1a874580b2292b344e90aa36", - "value": " 9.10M/9.10M [00:00<00:00, 18.9MB/s]" - } - }, - "7d6e7b8946c4475bb45c4b8635eaedb8": { + "6ae390407899480292d8a0ec2e245bae": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4588,10 +5037,34 @@ "width": null } }, - "ffe9e9464031467c93450fb974f9a3b3": { + "6b2003198e274ef7a474ec222624be1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_38411915569f487c9bc36f29c292935e", + "max": 30733, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c601dba9e79840aeb7f832732564128c", + "value": 30733 + } + }, + "6b303cc91755460190a5ae0466d82d1a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4640,10 +5113,10 @@ "width": null } }, - "97638ea222754090ba4ca37063de36c6": { + "6ba212cc0c384d3b88498ebc5fe7b60d": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4655,10 +5128,10 @@ "description_width": "" } }, - "0cb39e011e5b4373a25d2e4d0f158b30": { + "6c27af5311e247a3976cdf5b03c0b717": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4707,26 +5180,10 @@ "width": null } }, - "a6e4ccabfd9f42d99d66848938467f2d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef81ac8f601d43dc8dc9f63e86ce6d5e": { + "6c94041132c241b19e0b0d697b044b58": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4775,113 +5232,96 @@ "width": null } }, - "761012fd1a874580b2292b344e90aa36": { + "6cfed16922c443988ab647765ebbd801": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5221149fd81940099402d651f8dce8d5": { + "6e1f35bea40044e5864d0b14c402bd9e": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b1897978affa4617b5d58c3ce0ef5e44", - "IPY_MODEL_ed690821c13c49df9c559d5ae1240fd6", - "IPY_MODEL_623a5955ba01446c837cb851465a1c2a" - ], - "layout": "IPY_MODEL_ac4fe7baf6524bd1902212b1a71cbbdf" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b1897978affa4617b5d58c3ce0ef5e44": { + "6e64c9f038fa4e57a374802726b5db3d": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a1d0d1e41daf4862a5f5f1d681fc009c", - "placeholder": "​", - "style": "IPY_MODEL_8fa6ba880e6342deb538327b05151f78", - "value": "Map: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af0166beb7444cab8f012a8b4df18475", + "IPY_MODEL_dae6332c719c479c91156d8651c3c59f", + "IPY_MODEL_370bb26be7b34dc181ea88756f99afa3" + ], + "layout": "IPY_MODEL_57853bbe0e9942cf8c3e73778f8ff2fc" } }, - "ed690821c13c49df9c559d5ae1240fd6": { + "6e6e76fa032f4e579653bf46846f885f": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6b303cc91755460190a5ae0466d82d1a", - "max": 400, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5992e3e857704d62a5ceb8135ed90f78", - "value": 400 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "623a5955ba01446c837cb851465a1c2a": { + "6f88804f321b4e2d81ee387fd7299799": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_500d52783fdd4008a5e02b5439bcd5f0", - "placeholder": "​", - "style": "IPY_MODEL_9397f9387c6d4edf8e0296a26da23db7", - "value": " 400/400 [00:00<00:00, 2156.01 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ac4fe7baf6524bd1902212b1a71cbbdf": { + "6fae67869ca04721bd03f4995c3259d6": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4930,10 +5370,85 @@ "width": null } }, - "a1d0d1e41daf4862a5f5f1d681fc009c": { + "6ff76b8372584d09a7df7bb52fccd176": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7006b0c1017a411e97b8a4d203a4b046": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7060341f58854fbf8621a0aef79b4f0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_efefa88ed4c64045b05db81984e8a3e7", + "max": 14813, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c22dbe3bce3d44f397ab8a427609c1e0", + "value": 14813 + } + }, + "72c0d49772d9407db838009434d8caa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ec325fb22fe42df8d6564ca93a66bc2", + "placeholder": "​", + "style": "IPY_MODEL_1a555ff033ce47f389abc112b42475e9", + "value": " 10.3k/? [00:00<00:00, 331kB/s]" + } + }, + "72d73ed65b4b4f30a80b21cedc8cf3e1": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4982,25 +5497,10 @@ "width": null } }, - "8fa6ba880e6342deb538327b05151f78": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6b303cc91755460190a5ae0466d82d1a": { + "73bcd540ea0242c78f8fdddb348fff3e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5049,26 +5549,25 @@ "width": null } }, - "5992e3e857704d62a5ceb8135ed90f78": { + "740f9bd6524f4af0bc79be53039a7961": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "500d52783fdd4008a5e02b5439bcd5f0": { + "74accac847e04f60ae59ca1367c59b71": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5117,25 +5616,10 @@ "width": null } }, - "9397f9387c6d4edf8e0296a26da23db7": { + "7501aa4a0a5f43f49d6dc10857e33317": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a1aa441180e7414bbd30b297a9105643": { - "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -5147,62 +5631,56 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5d2e7a7f5e6d43d38e5d9a839bad6618", - "IPY_MODEL_b8b21b05ffca4ddba8e0e4256b79e46d", - "IPY_MODEL_a9fb5ea6bd2f4a4d94a120cd67a952c6" + "IPY_MODEL_95035ec41d6d4a1489b02a4967d2c398", + "IPY_MODEL_2e9fd37ed5e143fab800eb002c8da795", + "IPY_MODEL_060c7ff1420142b09b701ea4d9010e55" ], - "layout": "IPY_MODEL_452e52e81511403db6036d7f610eaa7f" + "layout": "IPY_MODEL_a916f7891d984a0d9b77cd53f31b7e67" } }, - "5d2e7a7f5e6d43d38e5d9a839bad6618": { + "75f861994a384edcba5991e24ec0acb2": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a8fb3390bc7e4f489a1eed8855249780", - "placeholder": "​", - "style": "IPY_MODEL_b82099eefb964f83bc2a99ecaf6b21d8", - "value": "Map: 100%" + "layout": "IPY_MODEL_b36a3e769ea946d9b3a2eee4145d858a", + "max": 500, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbc6b3b9564940098f971fc7c711d61b", + "value": 500 } }, - "b8b21b05ffca4ddba8e0e4256b79e46d": { + "761012fd1a874580b2292b344e90aa36": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3d013291a7df403f8c9b30e2beffedb8", - "max": 100, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a6333761660446084db896cf8fa3aed", - "value": 100 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a9fb5ea6bd2f4a4d94a120cd67a952c6": { + "764a4f006ad3411680dc35ab7f77f4d0": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -5214,120 +5692,31 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0efe23c68b3d4b9b92c5f89648656910", + "layout": "IPY_MODEL_17b4e1697bb848ad9b1c74993a05b64d", "placeholder": "​", - "style": "IPY_MODEL_4aa1ebeecbba4de59fe0104150245fae", - "value": " 100/100 [00:00<00:00, 1272.45 examples/s]" - } - }, - "452e52e81511403db6036d7f610eaa7f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "style": "IPY_MODEL_b68f616e1ec54acbbd6c70f2ee9282cd", + "value": "Map: 100%" } }, - "a8fb3390bc7e4f489a1eed8855249780": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "7768ac1f0f97461bafe3db188fe0c2a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "b82099eefb964f83bc2a99ecaf6b21d8": { + "7815c3cab73740b29687228f3e0d1fa7": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -5339,10 +5728,32 @@ "description_width": "" } }, - "3d013291a7df403f8c9b30e2beffedb8": { + "785aa76f50cb44cea93bc8d26c8fe117": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55350a29295a4e049f8c386412667a1c", + "IPY_MODEL_11717755bc314c7fa47765a8042a5bc5", + "IPY_MODEL_0f07f12c5f8a4e158aed6db3b6a5c719" + ], + "layout": "IPY_MODEL_7d6e7b8946c4475bb45c4b8635eaedb8" + } + }, + "78ce2352d3e14733bb5459a59d94f2bb": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5391,26 +5802,71 @@ "width": null } }, - "5a6333761660446084db896cf8fa3aed": { + "7917c44d3ec94fc7ad80e1657fc1627b": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72d73ed65b4b4f30a80b21cedc8cf3e1", + "max": 60610, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_65090b4bf9a84377adaf0b965a42d254", + "value": 60610 + } + }, + "79ddbccc453643689f129740e5148e24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_22e8d2d6a5f1402fa49a849521d137b1", + "IPY_MODEL_7060341f58854fbf8621a0aef79b4f0c", + "IPY_MODEL_f481c31c5e0d493c943d489409178d11" + ], + "layout": "IPY_MODEL_3945de5d21e24d8d8f1e9f02d596b46c" + } + }, + "7b0315b98dd74398b562b753b00703da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "0efe23c68b3d4b9b92c5f89648656910": { + "7bc54b222b06474196c44e429ffb0f05": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5459,113 +5915,26 @@ "width": null } }, - "4aa1ebeecbba4de59fe0104150245fae": { + "7c115c8d0b0142febe517f91d8b91f16": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "fe314b1f2e5d4671bb820bfe16c197e6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8707b73e0a354d0a965cde671dbd7404", - "IPY_MODEL_ff1a5195281d45ef80af3773331cef74", - "IPY_MODEL_fc53327bb651457eaaef2bfd17888253" - ], - "layout": "IPY_MODEL_37b69881a6aa453bb5aca22fa5364c23" - } - }, - "8707b73e0a354d0a965cde671dbd7404": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ca6f26f9b3dc40309fd6f9ee9ead26bb", - "placeholder": "​", - "style": "IPY_MODEL_ad10e12012414b5695cc6977ffd6a9be", - "value": "Map: 100%" - } - }, - "ff1a5195281d45ef80af3773331cef74": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5f4b4f5191754b4eb8aebd5af6c7942d", - "max": 500, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6e6e76fa032f4e579653bf46846f885f", - "value": 500 - } - }, - "fc53327bb651457eaaef2bfd17888253": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_95d531c8744d4a71b228cd0177b72568", - "placeholder": "​", - "style": "IPY_MODEL_2e9e85dcb24941468f9a1de54f613ce0", - "value": " 500/500 [00:00<00:00, 2543.50 examples/s]" - } - }, - "37b69881a6aa453bb5aca22fa5364c23": { + "7c4822defba54fe3954f7dadfe04b000": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5614,10 +5983,10 @@ "width": null } }, - "ca6f26f9b3dc40309fd6f9ee9ead26bb": { + "7d0e3446543f4eb7ac827c94c0947f2a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5657,34 +6026,19 @@ "object_position": null, "order": null, "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ad10e12012414b5695cc6977ffd6a9be": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5f4b4f5191754b4eb8aebd5af6c7942d": { + "7d6e7b8946c4475bb45c4b8635eaedb8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5733,26 +6087,25 @@ "width": null } }, - "6e6e76fa032f4e579653bf46846f885f": { + "7ded086d37894a9e94142d6775d78b91": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "95d531c8744d4a71b228cd0177b72568": { + "7e23d208fd96406186ea49ddc340eaa0": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5801,113 +6154,10 @@ "width": null } }, - "2e9e85dcb24941468f9a1de54f613ce0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "421306178c18489abcdb27c1265ba6aa": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f47ee50ce7bd4024b15381bcf4ed0213", - "IPY_MODEL_3153dae8974246a8ba3217a47ce8ee7c", - "IPY_MODEL_f4fc3e122b954a949448b09630857ec0" - ], - "layout": "IPY_MODEL_6ae390407899480292d8a0ec2e245bae" - } - }, - "f47ee50ce7bd4024b15381bcf4ed0213": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_807ae90cbea448d5aa02c4e9418acdaf", - "placeholder": "​", - "style": "IPY_MODEL_9aa53ebe612b42c5a29ca0fc32a28c71", - "value": "Downloading model.safetensors: 100%" - } - }, - "3153dae8974246a8ba3217a47ce8ee7c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6fae67869ca04721bd03f4995c3259d6", - "max": 1115567652, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_dfb749a8532d422f87e9c8bd4302a4a0", - "value": 1115567652 - } - }, - "f4fc3e122b954a949448b09630857ec0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c713c1586a344d3da06b0d87764b4afb", - "placeholder": "​", - "style": "IPY_MODEL_6ff76b8372584d09a7df7bb52fccd176", - "value": " 1.12G/1.12G [00:06<00:00, 96.5MB/s]" - } - }, - "6ae390407899480292d8a0ec2e245bae": { + "7e550ac5e8c5475e875eb58a9adfac56": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5956,10 +6206,32 @@ "width": null } }, + "7f9ef06955b74b1d95011fe7c38c4cb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d429427bc4804c96bf1dab8b52d3fef1", + "IPY_MODEL_cf19ebd836b24130b22bb9d2290d59a3", + "IPY_MODEL_0f4c24c2eaa84981a51ca8043e881218" + ], + "layout": "IPY_MODEL_7bc54b222b06474196c44e429ffb0f05" + } + }, "807ae90cbea448d5aa02c4e9418acdaf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6008,25 +6280,10 @@ "width": null } }, - "9aa53ebe612b42c5a29ca0fc32a28c71": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6fae67869ca04721bd03f4995c3259d6": { + "80ebeea5e6ba46a0a228965232996340": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6075,26 +6332,10 @@ "width": null } }, - "dfb749a8532d422f87e9c8bd4302a4a0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c713c1586a344d3da06b0d87764b4afb": { + "8100412933fc4f67a8413b2c7a5f9f9f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6135,100 +6376,70 @@ "order": null, "overflow": null, "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6ff76b8372584d09a7df7bb52fccd176": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d8492798e90e4e1c9d52dad2abfff1a2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_236e4fb59b3e418993ed329310de2457", - "IPY_MODEL_868cc846c7684641bc1c25f491c3d2b0", - "IPY_MODEL_72c0d49772d9407db838009434d8caa6" - ], - "layout": "IPY_MODEL_07ff9bc229874e51b085d015bb1c433e" - } - }, - "236e4fb59b3e418993ed329310de2457": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5f96be3d44ed4d37b73dcc358a5756be", - "placeholder": "​", - "style": "IPY_MODEL_355075984c274acba555a874dc51f987", - "value": "Downloading (…)lm-roberta-base.json: " + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "868cc846c7684641bc1c25f491c3d2b0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", + "811085599e73470c9cc3b228f0cf2ce4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0243ae5e50fb4186989be9966c9962c4", - "max": 609, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6cfed16922c443988ab647765ebbd801", - "value": 609 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "72c0d49772d9407db838009434d8caa6": { + "81f029f951bf4dd4bbbc7ee6e4cc4d9e": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -6240,16 +6451,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3ec325fb22fe42df8d6564ca93a66bc2", + "layout": "IPY_MODEL_6c94041132c241b19e0b0d697b044b58", "placeholder": "​", - "style": "IPY_MODEL_1a555ff033ce47f389abc112b42475e9", - "value": " 10.3k/? [00:00<00:00, 331kB/s]" + "style": "IPY_MODEL_2bc1eb041c624197b006ca3c29e6819d", + "value": " 500/500 [00:00<00:00, 1808.74 examples/s]" } }, - "07ff9bc229874e51b085d015bb1c433e": { + "83b01f9793e540e6bcf40f3c65f5359f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6298,10 +6509,34 @@ "width": null } }, - "5f96be3d44ed4d37b73dcc358a5756be": { + "868cc846c7684641bc1c25f491c3d2b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0243ae5e50fb4186989be9966c9962c4", + "max": 609, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6cfed16922c443988ab647765ebbd801", + "value": 609 + } + }, + "86e49105023c4ed99f80342f2d48fbc7": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6350,25 +6585,31 @@ "width": null } }, - "355075984c274acba555a874dc51f987": { + "8707b73e0a354d0a965cde671dbd7404": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca6f26f9b3dc40309fd6f9ee9ead26bb", + "placeholder": "​", + "style": "IPY_MODEL_ad10e12012414b5695cc6977ffd6a9be", + "value": "Map: 100%" } }, - "0243ae5e50fb4186989be9966c9962c4": { + "87c4fc3dca7f433ca231128105a54666": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6417,26 +6658,68 @@ "width": null } }, - "6cfed16922c443988ab647765ebbd801": { + "8a3dbcf2432e4473acffdc3cd2d7c287": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_afa0e74f7eb24520863fe56ad5ac4ef3", + "placeholder": "​", + "style": "IPY_MODEL_1883a118e9ab4e8b96e0941113d9c240", + "value": " 29.6M/29.6M [00:02<00:00, 13.6MB/s]" + } + }, + "8ae31dae07bf40e1914b4fb238d65716": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "3ec325fb22fe42df8d6564ca93a66bc2": { + "8b2b2f05acac4711a1e31018247dda4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ee4a536f1ae46529aa5cc6688bc5f2a", + "IPY_MODEL_cd606aea6d57434398ff3202414c33f0", + "IPY_MODEL_9fc643b1837342a18126cacc88b6b46d" + ], + "layout": "IPY_MODEL_7e550ac5e8c5475e875eb58a9adfac56" + } + }, + "8b2ef4dfe5024e339037b0dad137c689": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6485,47 +6768,31 @@ "width": null } }, - "1a555ff033ce47f389abc112b42475e9": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ee1dd3ac0e364a9d81211fb48e3a63c2": { + "8b3788c01be44040893f782e6aa12e7b": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a6c03bbb26874ef786886e3874b96f45", - "IPY_MODEL_ed31165ad7b943d8a48a0d82d99627c8", - "IPY_MODEL_8a3dbcf2432e4473acffdc3cd2d7c287" - ], - "layout": "IPY_MODEL_2f5bd7a50398424da94c61c6f8e3a125" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ecc0a746abb44cdb1566203edb307f4", + "placeholder": "​", + "style": "IPY_MODEL_1bb95488e26d4cc9865b91d1af06e792", + "value": "Downloading data: " } }, - "a6c03bbb26874ef786886e3874b96f45": { + "8d6236259648404b99bd6ea9e19d7c48": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -6537,16 +6804,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6c27af5311e247a3976cdf5b03c0b717", + "layout": "IPY_MODEL_b29700bab9bc499dbbeba804bccc2cce", "placeholder": "​", - "style": "IPY_MODEL_1f47605b01224bcfa8464c6d498fa1d1", - "value": "Downloading (…)eiffer/en_relu_2.zip: 100%" + "style": "IPY_MODEL_3c36d64114264fcb82a159f580585096", + "value": "Downloading (…)tencepiece.bpe.model: 100%" } }, - "ed31165ad7b943d8a48a0d82d99627c8": { + "8e6c82700dc74db3bd6d3946f93c956c": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -6559,18 +6826,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f8805f4f95ab43cca5aa05fc81eaba06", - "max": 29562325, + "layout": "IPY_MODEL_907db8b968a64827a2f4783657949128", + "max": 500, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6f88804f321b4e2d81ee387fd7299799", - "value": 29562325 + "style": "IPY_MODEL_edeb97603ab34a499516c6589a04a711", + "value": 500 } }, - "8a3dbcf2432e4473acffdc3cd2d7c287": { + "8ee881038ff4488382ca006a07c9ed6d": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -6582,16 +6849,47 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_afa0e74f7eb24520863fe56ad5ac4ef3", + "layout": "IPY_MODEL_0781ed37deef4341a2c37fa0bbb3bac1", "placeholder": "​", - "style": "IPY_MODEL_1883a118e9ab4e8b96e0941113d9c240", - "value": " 29.6M/29.6M [00:02<00:00, 13.6MB/s]" + "style": "IPY_MODEL_a7e4a4dfb7054ca8bfcf7358999ae34c", + "value": " 30.7k/30.7k [00:00<00:00, 1.37MB/s]" } }, - "2f5bd7a50398424da94c61c6f8e3a125": { + "8fa6ba880e6342deb538327b05151f78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "901698bb5b8f4a3ea00848f0f2b5046c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "907db8b968a64827a2f4783657949128": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6640,10 +6938,10 @@ "width": null } }, - "6c27af5311e247a3976cdf5b03c0b717": { + "920ccb52e17a4a18a329bb756c9c35b3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6692,10 +6990,10 @@ "width": null } }, - "1f47605b01224bcfa8464c6d498fa1d1": { + "9397f9387c6d4edf8e0296a26da23db7": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -6707,78 +7005,31 @@ "description_width": "" } }, - "f8805f4f95ab43cca5aa05fc81eaba06": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6f88804f321b4e2d81ee387fd7299799": { + "95035ec41d6d4a1489b02a4967d2c398": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ae7b293071124a9abe156fe6067678d3", + "placeholder": "​", + "style": "IPY_MODEL_c3e2364139bc48379e2089a5c9c475be", + "value": "Generating validation split: 100%" } }, - "afa0e74f7eb24520863fe56ad5ac4ef3": { + "95d531c8744d4a71b228cd0177b72568": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6827,47 +7078,10 @@ "width": null } }, - "1883a118e9ab4e8b96e0941113d9c240": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a1c8238ae1e441e9a525141b41997c1c": { + "9620833757c54c9fb1b1216c40372459": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d4e33eaaad674df0ac7483d68aa46033", - "IPY_MODEL_30a08ac6bd9445508d6fd68ca162bd49", - "IPY_MODEL_4f144677ebd54a87a6b493a8be5486c0" - ], - "layout": "IPY_MODEL_9cf949851039440990727c62b9710e6b" - } - }, - "d4e33eaaad674df0ac7483d68aa46033": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -6879,16 +7093,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2ac898ff598e40a1a28ef7b5350f3f57", + "layout": "IPY_MODEL_495b95595ddd4f15997ea0e6b573fde5", "placeholder": "​", - "style": "IPY_MODEL_7b0315b98dd74398b562b753b00703da", - "value": "Downloading (…)eiffer/zh_relu_2.zip: 100%" + "style": "IPY_MODEL_faed48642f37415ea41a4f6155311666", + "value": "Downloading (…)lve/main/config.json: 100%" } }, - "30a08ac6bd9445508d6fd68ca162bd49": { + "97392a3c7c244bacb931a81947acca06": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -6901,39 +7115,33 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_80ebeea5e6ba46a0a228965232996340", - "max": 29562325, + "layout": "IPY_MODEL_811085599e73470c9cc3b228f0cf2ce4", + "max": 615, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_398722250162461dbd886d13a8e93257", - "value": 29562325 + "style": "IPY_MODEL_6e1f35bea40044e5864d0b14c402bd9e", + "value": 615 } }, - "4f144677ebd54a87a6b493a8be5486c0": { + "97638ea222754090ba4ca37063de36c6": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3b26ab59e14a4b4c891c7bcb50cf495a", - "placeholder": "​", - "style": "IPY_MODEL_cda3c917778848c98dbd7752d798989b", - "value": " 29.6M/29.6M [00:02<00:00, 12.8MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9cf949851039440990727c62b9710e6b": { + "988ea2ed503f44b5bc8ff16844967d48": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6982,10 +7190,10 @@ "width": null } }, - "2ac898ff598e40a1a28ef7b5350f3f57": { + "99360f3c8571451f958c1dd73283674e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7034,10 +7242,68 @@ "width": null } }, - "7b0315b98dd74398b562b753b00703da": { + "9a088b764a214b95a00fac01005eb726": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9620833757c54c9fb1b1216c40372459", + "IPY_MODEL_97392a3c7c244bacb931a81947acca06", + "IPY_MODEL_57c0e7dd3f644dfa8cbb34e79ee695a3" + ], + "layout": "IPY_MODEL_83b01f9793e540e6bcf40f3c65f5359f" + } + }, + "9aa53ebe612b42c5a29ca0fc32a28c71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9ab974ee666c47b0ac46d5112d5abdf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_afe95ec0dfc043f5ab02bb91f224ae4a", + "placeholder": "​", + "style": "IPY_MODEL_006b4341bbea4f29a9f5c053045df606", + "value": "Downloading builder script: 100%" + } + }, + "9ad5687370ed4164a905809751571663": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -7049,10 +7315,31 @@ "description_width": "" } }, - "80ebeea5e6ba46a0a228965232996340": { + "9be4c5e49284455fbc1afb8a360de1b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_920ccb52e17a4a18a329bb756c9c35b3", + "placeholder": "​", + "style": "IPY_MODEL_1e62c62899b8448f8969500f0db73d92", + "value": "Downloading metadata: 100%" + } + }, + "9cf949851039440990727c62b9710e6b": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7101,26 +7388,75 @@ "width": null } }, - "398722250162461dbd886d13a8e93257": { + "9fc643b1837342a18126cacc88b6b46d": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d0e3446543f4eb7ac827c94c0947f2a", + "placeholder": "​", + "style": "IPY_MODEL_6557f70fcb2e475495dc88ebec7e6dd8", + "value": " 19.0k/19.0k [00:00<00:00, 1.03MB/s]" } }, - "3b26ab59e14a4b4c891c7bcb50cf495a": { + "a1aa441180e7414bbd30b297a9105643": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d2e7a7f5e6d43d38e5d9a839bad6618", + "IPY_MODEL_b8b21b05ffca4ddba8e0e4256b79e46d", + "IPY_MODEL_a9fb5ea6bd2f4a4d94a120cd67a952c6" + ], + "layout": "IPY_MODEL_452e52e81511403db6036d7f610eaa7f" + } + }, + "a1c8238ae1e441e9a525141b41997c1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4e33eaaad674df0ac7483d68aa46033", + "IPY_MODEL_30a08ac6bd9445508d6fd68ca162bd49", + "IPY_MODEL_4f144677ebd54a87a6b493a8be5486c0" + ], + "layout": "IPY_MODEL_9cf949851039440990727c62b9710e6b" + } + }, + "a1d0d1e41daf4862a5f5f1d681fc009c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7169,47 +7505,26 @@ "width": null } }, - "cda3c917778848c98dbd7752d798989b": { + "a5b9bfd0475045f885fb0f77accb9952": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "216fc1dd69b840788de0425040d646a3": { + "a6c03bbb26874ef786886e3874b96f45": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ab974ee666c47b0ac46d5112d5abdf5", - "IPY_MODEL_e500b37792734768892e8548250ca1a5", - "IPY_MODEL_24e3f9dc7a9742eaafad98f423a550df" - ], - "layout": "IPY_MODEL_c475cfa85927479b9604bb4a33183957" - } - }, - "9ab974ee666c47b0ac46d5112d5abdf5": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -7221,61 +7536,47 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_afe95ec0dfc043f5ab02bb91f224ae4a", + "layout": "IPY_MODEL_6c27af5311e247a3976cdf5b03c0b717", "placeholder": "​", - "style": "IPY_MODEL_006b4341bbea4f29a9f5c053045df606", - "value": "Downloading builder script: 100%" + "style": "IPY_MODEL_1f47605b01224bcfa8464c6d498fa1d1", + "value": "Downloading (…)eiffer/en_relu_2.zip: 100%" } }, - "e500b37792734768892e8548250ca1a5": { + "a6e4ccabfd9f42d99d66848938467f2d": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c47290facbb34126bf648a58041b7110", - "max": 3902, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2da273f7585c4b45a36f55d5f112e581", - "value": 3902 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "24e3f9dc7a9742eaafad98f423a550df": { + "a7e4a4dfb7054ca8bfcf7358999ae34c": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4af55acfc6274c88b14c8441dd395df2", - "placeholder": "​", - "style": "IPY_MODEL_fcd662335f9447cb87bd66b55fea1f41", - "value": " 3.90k/3.90k [00:00<00:00, 264kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "c475cfa85927479b9604bb4a33183957": { + "a8fb3390bc7e4f489a1eed8855249780": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7324,10 +7625,10 @@ "width": null } }, - "afe95ec0dfc043f5ab02bb91f224ae4a": { + "a916f7891d984a0d9b77cd53f31b7e67": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7376,25 +7677,83 @@ "width": null } }, - "006b4341bbea4f29a9f5c053045df606": { + "a9fb5ea6bd2f4a4d94a120cd67a952c6": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0efe23c68b3d4b9b92c5f89648656910", + "placeholder": "​", + "style": "IPY_MODEL_4aa1ebeecbba4de59fe0104150245fae", + "value": " 100/100 [00:00<00:00, 1272.45 examples/s]" + } + }, + "ab991f7fb1504bd5b6fca2c8357e4c83": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c47290facbb34126bf648a58041b7110": { + "ac4fe7baf6524bd1902212b1a71cbbdf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7443,26 +7802,10 @@ "width": null } }, - "2da273f7585c4b45a36f55d5f112e581": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4af55acfc6274c88b14c8441dd395df2": { + "ac877b5528c744b7b841c17b7516b879": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7511,10 +7854,10 @@ "width": null } }, - "fcd662335f9447cb87bd66b55fea1f41": { + "ad10e12012414b5695cc6977ffd6a9be": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -7526,98 +7869,25 @@ "description_width": "" } }, - "1937074f179040e2b96d7972dc1a6998": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb4f9dccc08c4caab16774ea9a133b2b", - "IPY_MODEL_7917c44d3ec94fc7ad80e1657fc1627b", - "IPY_MODEL_11b11def7bff484191999b63753e780b" - ], - "layout": "IPY_MODEL_7e23d208fd96406186ea49ddc340eaa0" - } - }, - "cb4f9dccc08c4caab16774ea9a133b2b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8b2ef4dfe5024e339037b0dad137c689", - "placeholder": "​", - "style": "IPY_MODEL_d99b8bb92a4c450caffc46a8a132c986", - "value": "Downloading metadata: 100%" - } - }, - "7917c44d3ec94fc7ad80e1657fc1627b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_72d73ed65b4b4f30a80b21cedc8cf3e1", - "max": 60610, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_65090b4bf9a84377adaf0b965a42d254", - "value": 60610 - } - }, - "11b11def7bff484191999b63753e780b": { + "adbd936819104e65a5a6e94817f928f0": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ee1a05c0abb94b3fabbbbcbbc44833b8", - "placeholder": "​", - "style": "IPY_MODEL_740f9bd6524f4af0bc79be53039a7961", - "value": " 60.6k/60.6k [00:00<00:00, 3.29MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7e23d208fd96406186ea49ddc340eaa0": { + "ae7b293071124a9abe156fe6067678d3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7666,10 +7936,31 @@ "width": null } }, - "8b2ef4dfe5024e339037b0dad137c689": { + "af0166beb7444cab8f012a8b4df18475": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac877b5528c744b7b841c17b7516b879", + "placeholder": "​", + "style": "IPY_MODEL_9ad5687370ed4164a905809751571663", + "value": "Map: 100%" + } + }, + "af6b21dc6f3f48c7ae5c240b403b3c91": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7718,25 +8009,10 @@ "width": null } }, - "d99b8bb92a4c450caffc46a8a132c986": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "72d73ed65b4b4f30a80b21cedc8cf3e1": { + "afa0e74f7eb24520863fe56ad5ac4ef3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7785,26 +8061,31 @@ "width": null } }, - "65090b4bf9a84377adaf0b965a42d254": { + "afc89fd0f8f2469a8e787389fb8896b0": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0280590b0bfe4e8390f172a0f7ea3f12", + "placeholder": "​", + "style": "IPY_MODEL_d4b15a4562e2489c8509f7b45b167575", + "value": "Downloading data: 100%" } }, - "ee1a05c0abb94b3fabbbbcbbc44833b8": { + "afe95ec0dfc043f5ab02bb91f224ae4a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -7853,68 +8134,26 @@ "width": null } }, - "740f9bd6524f4af0bc79be53039a7961": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8b2b2f05acac4711a1e31018247dda4b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ee4a536f1ae46529aa5cc6688bc5f2a", - "IPY_MODEL_cd606aea6d57434398ff3202414c33f0", - "IPY_MODEL_9fc643b1837342a18126cacc88b6b46d" - ], - "layout": "IPY_MODEL_7e550ac5e8c5475e875eb58a9adfac56" - } - }, - "4ee4a536f1ae46529aa5cc6688bc5f2a": { + "b03b50388e9d4327ba761b26b4bb113d": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_327bfa1cb0e54c95993ce8fe01be7abc", - "placeholder": "​", - "style": "IPY_MODEL_e20cfd11370548d284ae8b6530911e0d", - "value": "Downloading readme: 100%" + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "cd606aea6d57434398ff3202414c33f0": { + "b0ed87168a41425ab3e3ce9c19d5f6cd": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -7927,18 +8166,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d06d4b63f0a84e9d8831d8f6f0d773ee", - "max": 19045, + "layout": "IPY_MODEL_8100412933fc4f67a8413b2c7a5f9f9f", + "max": 500, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_1a5d8044a2254d0881d854c0b01d7141", - "value": 19045 + "style": "IPY_MODEL_7c115c8d0b0142febe517f91d8b91f16", + "value": 500 } }, - "9fc643b1837342a18126cacc88b6b46d": { + "b1897978affa4617b5d58c3ce0ef5e44": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -7950,16 +8189,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7d0e3446543f4eb7ac827c94c0947f2a", + "layout": "IPY_MODEL_a1d0d1e41daf4862a5f5f1d681fc009c", "placeholder": "​", - "style": "IPY_MODEL_6557f70fcb2e475495dc88ebec7e6dd8", - "value": " 19.0k/19.0k [00:00<00:00, 1.03MB/s]" + "style": "IPY_MODEL_8fa6ba880e6342deb538327b05151f78", + "value": "Map: 100%" } }, - "7e550ac5e8c5475e875eb58a9adfac56": { + "b29700bab9bc499dbbeba804bccc2cce": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8008,10 +8247,10 @@ "width": null } }, - "327bfa1cb0e54c95993ce8fe01be7abc": { + "b2c3e773ab524ad381102340a59c7e9f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8060,25 +8299,10 @@ "width": null } }, - "e20cfd11370548d284ae8b6530911e0d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d06d4b63f0a84e9d8831d8f6f0d773ee": { + "b36a3e769ea946d9b3a2eee4145d858a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8127,26 +8351,10 @@ "width": null } }, - "1a5d8044a2254d0881d854c0b01d7141": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7d0e3446543f4eb7ac827c94c0947f2a": { + "b5c42155aeb843b98172b25e79cbc811": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8195,10 +8403,10 @@ "width": null } }, - "6557f70fcb2e475495dc88ebec7e6dd8": { + "b68f616e1ec54acbbd6c70f2ee9282cd": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -8210,53 +8418,25 @@ "description_width": "" } }, - "1759469306854432b2d4d6618fc45776": { + "b82099eefb964f83bc2a99ecaf6b21d8": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf257fbfb5824f99af08146161fb0f67", - "IPY_MODEL_03cb547ad56b4c1db3fb373969eacf85", - "IPY_MODEL_f2619549195c4090a453c551710cdb65" - ], - "layout": "IPY_MODEL_988ea2ed503f44b5bc8ff16844967d48" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "cf257fbfb5824f99af08146161fb0f67": { + "b8b21b05ffca4ddba8e0e4256b79e46d": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_23e490b5be9d45f682030f7193b740fc", - "placeholder": "​", - "style": "IPY_MODEL_7006b0c1017a411e97b8a4d203a4b046", - "value": "Downloading data files: 100%" - } - }, - "03cb547ad56b4c1db3fb373969eacf85": { - "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -8269,39 +8449,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b2c3e773ab524ad381102340a59c7e9f", - "max": 2, + "layout": "IPY_MODEL_3d013291a7df403f8c9b30e2beffedb8", + "max": 100, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_11e1cbaec2fb4276b7e0f53465f214ee", - "value": 2 - } - }, - "f2619549195c4090a453c551710cdb65": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_240b1eb858834defb5f1069f017e859e", - "placeholder": "​", - "style": "IPY_MODEL_26b04e0848d74b20988237710bb52aa6", - "value": " 2/2 [00:01<00:00, 1.75it/s]" + "style": "IPY_MODEL_5a6333761660446084db896cf8fa3aed", + "value": 100 } }, - "988ea2ed503f44b5bc8ff16844967d48": { + "b901332db22e401e905cdef9f9083a7f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8350,77 +8509,41 @@ "width": null } }, - "23e490b5be9d45f682030f7193b740fc": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "bae3fdd732764d08a5e417f76a94b17d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "7006b0c1017a411e97b8a4d203a4b046": { + "bbc6b3b9564940098f971fc7c711d61b": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "b2c3e773ab524ad381102340a59c7e9f": { + "befb2622d31b436f8d8cb25d35243989": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8453,42 +8576,26 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "11e1cbaec2fb4276b7e0f53465f214ee": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "240b1eb858834defb5f1069f017e859e": { + "bf728e3f4516450aa5bf3c928d188d88": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8537,25 +8644,10 @@ "width": null } }, - "26b04e0848d74b20988237710bb52aa6": { + "bf7d06fbfb7d45c98dde0900cebc16a3": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "40c2e934eb384c8c8d3f19a9779b28d9": { - "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -8567,83 +8659,48 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8b3788c01be44040893f782e6aa12e7b", - "IPY_MODEL_3501ed620e24462ebe622aceabb3bd3d", - "IPY_MODEL_ded200a20be94aea92af5d408156fcca" + "IPY_MODEL_8d6236259648404b99bd6ea9e19d7c48", + "IPY_MODEL_cea20d44ab3b408c8b41c2a475d75113", + "IPY_MODEL_19a6a0e0d1af471b8066ad37f12475e7" ], - "layout": "IPY_MODEL_06db73f59d764ac2b52cec52fdcd1d04" - } - }, - "8b3788c01be44040893f782e6aa12e7b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5ecc0a746abb44cdb1566203edb307f4", - "placeholder": "​", - "style": "IPY_MODEL_1bb95488e26d4cc9865b91d1af06e792", - "value": "Downloading data: " + "layout": "IPY_MODEL_74accac847e04f60ae59ca1367c59b71" } }, - "3501ed620e24462ebe622aceabb3bd3d": { + "c22dbe3bce3d44f397ab8a427609c1e0": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_73bcd540ea0242c78f8fdddb348fff3e", - "max": 5323, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1014511855324a61a1c90e299470f4b9", - "value": 5323 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ded200a20be94aea92af5d408156fcca": { + "c3e2364139bc48379e2089a5c9c475be": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1eabfe440e39437190c7a466b0967798", - "placeholder": "​", - "style": "IPY_MODEL_63aa346b6a1b491183dc78bfd5127ea3", - "value": " 19.6k/? [00:00<00:00, 913kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "06db73f59d764ac2b52cec52fdcd1d04": { + "c47290facbb34126bf648a58041b7110": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8692,10 +8749,10 @@ "width": null } }, - "5ecc0a746abb44cdb1566203edb307f4": { + "c475cfa85927479b9604bb4a33183957": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8744,77 +8801,32 @@ "width": null } }, - "1bb95488e26d4cc9865b91d1af06e792": { + "c4e3a3c37ff3462ca9251f86efe35fd5": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "73bcd540ea0242c78f8fdddb348fff3e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_289f94db4e314211aad1ac6a6be977f6", + "IPY_MODEL_b0ed87168a41425ab3e3ce9c19d5f6cd", + "IPY_MODEL_0c622cfb456f4317a2952fb781738e80" + ], + "layout": "IPY_MODEL_e21b6208bbc24dfaa77bbc50637bc2ab" } }, - "1014511855324a61a1c90e299470f4b9": { + "c601dba9e79840aeb7f832732564128c": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -8827,10 +8839,10 @@ "description_width": "" } }, - "1eabfe440e39437190c7a466b0967798": { + "c713c1586a344d3da06b0d87764b4afb": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -8879,113 +8891,41 @@ "width": null } }, - "63aa346b6a1b491183dc78bfd5127ea3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "650cc1472a394fdc854f7fcac4594317": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_25962637853646f0a19e320bee136091", - "IPY_MODEL_387711b2140f4b9ebbcb363e1067d6f7", - "IPY_MODEL_cd09018d44c34714aeb6e90b19729303" - ], - "layout": "IPY_MODEL_b5c42155aeb843b98172b25e79cbc811" - } - }, - "25962637853646f0a19e320bee136091": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ddd3c45654f4476eb1eb2d30e621f6a3", - "placeholder": "​", - "style": "IPY_MODEL_bae3fdd732764d08a5e417f76a94b17d", - "value": "Downloading data: " - } - }, - "387711b2140f4b9ebbcb363e1067d6f7": { + "c760f0df4bbd49f9a7dda28bb0ac3482": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4f63dba0f0df41748b523ada60679496", - "max": 23273, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5994264c53e54ca5b50a06cd8ef2556b", - "value": 23273 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "cd09018d44c34714aeb6e90b19729303": { + "c96d20da080847cdb20534fbf761b5b6": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed61eabf01c5432a90c3de5c67039746", - "placeholder": "​", - "style": "IPY_MODEL_c760f0df4bbd49f9a7dda28bb0ac3482", - "value": " 95.4k/? [00:00<00:00, 3.42MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b5c42155aeb843b98172b25e79cbc811": { + "ca6f26f9b3dc40309fd6f9ee9ead26bb": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9034,10 +8974,10 @@ "width": null } }, - "ddd3c45654f4476eb1eb2d30e621f6a3": { + "cb44cb18f2904a4a8379b42f4597b591": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9086,10 +9026,76 @@ "width": null } }, - "bae3fdd732764d08a5e417f76a94b17d": { + "cb4f9dccc08c4caab16774ea9a133b2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b2ef4dfe5024e339037b0dad137c689", + "placeholder": "​", + "style": "IPY_MODEL_d99b8bb92a4c450caffc46a8a132c986", + "value": "Downloading metadata: 100%" + } + }, + "cd09018d44c34714aeb6e90b19729303": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed61eabf01c5432a90c3de5c67039746", + "placeholder": "​", + "style": "IPY_MODEL_c760f0df4bbd49f9a7dda28bb0ac3482", + "value": " 95.4k/? [00:00<00:00, 3.42MB/s]" + } + }, + "cd606aea6d57434398ff3202414c33f0": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d06d4b63f0a84e9d8831d8f6f0d773ee", + "max": 19045, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a5d8044a2254d0881d854c0b01d7141", + "value": 19045 + } + }, + "cda3c917778848c98dbd7752d798989b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -9101,10 +9107,34 @@ "description_width": "" } }, - "4f63dba0f0df41748b523ada60679496": { + "cea20d44ab3b408c8b41c2a475d75113": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d634f5a0ee34c3f8ca0edb228bc9ed9", + "max": 5069051, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c96d20da080847cdb20534fbf761b5b6", + "value": 5069051 + } + }, + "ceaa596549fd423189786aff7d865a99": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9153,26 +9183,55 @@ "width": null } }, - "5994264c53e54ca5b50a06cd8ef2556b": { + "cf19ebd836b24130b22bb9d2290d59a3": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9b6e4363f1b4e3392d1da9f3814f9cc", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_901698bb5b8f4a3ea00848f0f2b5046c", + "value": 100 } }, - "ed61eabf01c5432a90c3de5c67039746": { + "cf257fbfb5824f99af08146161fb0f67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23e490b5be9d45f682030f7193b740fc", + "placeholder": "​", + "style": "IPY_MODEL_7006b0c1017a411e97b8a4d203a4b046", + "value": "Downloading data files: 100%" + } + }, + "d06d4b63f0a84e9d8831d8f6f0d773ee": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9221,10 +9280,10 @@ "width": null } }, - "c760f0df4bbd49f9a7dda28bb0ac3482": { + "d0ea922e12434bdfbb500d6c883589bf": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -9236,32 +9295,67 @@ "description_width": "" } }, - "7f9ef06955b74b1d95011fe7c38c4cb2": { + "d282ec102d7340b897516669788ed66a": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d429427bc4804c96bf1dab8b52d3fef1", - "IPY_MODEL_cf19ebd836b24130b22bb9d2290d59a3", - "IPY_MODEL_0f4c24c2eaa84981a51ca8043e881218" - ], - "layout": "IPY_MODEL_7bc54b222b06474196c44e429ffb0f05" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_145203b1303a40f6beb445c853de4a7d", + "placeholder": "​", + "style": "IPY_MODEL_8ae31dae07bf40e1914b4fb238d65716", + "value": "Generating train split: 100%" + } + }, + "d429427bc4804c96bf1dab8b52d3fef1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_86e49105023c4ed99f80342f2d48fbc7", + "placeholder": "​", + "style": "IPY_MODEL_d0ea922e12434bdfbb500d6c883589bf", + "value": "Generating validation split: 100%" + } + }, + "d4b15a4562e2489c8509f7b45b167575": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d429427bc4804c96bf1dab8b52d3fef1": { + "d4e33eaaad674df0ac7483d68aa46033": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -9273,16 +9367,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_86e49105023c4ed99f80342f2d48fbc7", + "layout": "IPY_MODEL_2ac898ff598e40a1a28ef7b5350f3f57", "placeholder": "​", - "style": "IPY_MODEL_d0ea922e12434bdfbb500d6c883589bf", - "value": "Generating validation split: 100%" + "style": "IPY_MODEL_7b0315b98dd74398b562b753b00703da", + "value": "Downloading (…)eiffer/zh_relu_2.zip: 100%" } }, - "cf19ebd836b24130b22bb9d2290d59a3": { + "d58b2c69a73f406d9115f23d302e2ef9": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -9295,39 +9389,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f9b6e4363f1b4e3392d1da9f3814f9cc", - "max": 100, + "layout": "IPY_MODEL_1b1634fa3d4a4faa80555ee6f1672600", + "max": 400, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_901698bb5b8f4a3ea00848f0f2b5046c", - "value": 100 - } - }, - "0f4c24c2eaa84981a51ca8043e881218": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_99360f3c8571451f958c1dd73283674e", - "placeholder": "​", - "style": "IPY_MODEL_1cc3cec507844485850a5b95d3db6e9d", - "value": " 100/100 [00:00<00:00, 2548.99 examples/s]" + "style": "IPY_MODEL_b03b50388e9d4327ba761b26b4bb113d", + "value": 400 } }, - "7bc54b222b06474196c44e429ffb0f05": { + "d77b2877257b4b379f74165434212dd4": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9376,62 +9449,32 @@ "width": null } }, - "86e49105023c4ed99f80342f2d48fbc7": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "d8492798e90e4e1c9d52dad2abfff1a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_236e4fb59b3e418993ed329310de2457", + "IPY_MODEL_868cc846c7684641bc1c25f491c3d2b0", + "IPY_MODEL_72c0d49772d9407db838009434d8caa6" + ], + "layout": "IPY_MODEL_07ff9bc229874e51b085d015bb1c433e" } }, - "d0ea922e12434bdfbb500d6c883589bf": { + "d99b8bb92a4c450caffc46a8a132c986": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -9443,10 +9486,34 @@ "description_width": "" } }, - "f9b6e4363f1b4e3392d1da9f3814f9cc": { + "dae6332c719c479c91156d8651c3c59f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ceaa596549fd423189786aff7d865a99", + "max": 100, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee67317d933c47d48d3e46cb52e02324", + "value": 100 + } + }, + "ddd3c45654f4476eb1eb2d30e621f6a3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9495,10 +9562,31 @@ "width": null } }, - "901698bb5b8f4a3ea00848f0f2b5046c": { + "ded200a20be94aea92af5d408156fcca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1eabfe440e39437190c7a466b0967798", + "placeholder": "​", + "style": "IPY_MODEL_63aa346b6a1b491183dc78bfd5127ea3", + "value": " 19.6k/? [00:00<00:00, 913kB/s]" + } + }, + "dfb749a8532d422f87e9c8bd4302a4a0": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -9511,10 +9599,25 @@ "description_width": "" } }, - "99360f3c8571451f958c1dd73283674e": { + "e20cfd11370548d284ae8b6530911e0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e21b6208bbc24dfaa77bbc50637bc2ab": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9563,68 +9666,10 @@ "width": null } }, - "1cc3cec507844485850a5b95d3db6e9d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "66881711810a4ad28f08bff9bd15e6fd": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2dcbf0d434494c4ca36c74fb97be7df5", - "IPY_MODEL_8e6c82700dc74db3bd6d3946f93c956c", - "IPY_MODEL_568e8a9bb41841a99c608485e4a67ec8" - ], - "layout": "IPY_MODEL_af6b21dc6f3f48c7ae5c240b403b3c91" - } - }, - "2dcbf0d434494c4ca36c74fb97be7df5": { + "e4fc0ef10700445ba9a49390c45a5716": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_befb2622d31b436f8d8cb25d35243989", - "placeholder": "​", - "style": "IPY_MODEL_26b4f219a8ef4d52a4c34ee304e31fd1", - "value": "Generating test split: 100%" - } - }, - "8e6c82700dc74db3bd6d3946f93c956c": { - "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -9637,39 +9682,42 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_907db8b968a64827a2f4783657949128", - "max": 500, + "layout": "IPY_MODEL_eaeb678c01ef4c89b31db675a724d377", + "max": 38726, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_edeb97603ab34a499516c6589a04a711", - "value": 500 + "style": "IPY_MODEL_516d0dc1bfc34d0392930e884fac47ae", + "value": 38726 } }, - "568e8a9bb41841a99c608485e4a67ec8": { + "e500b37792734768892e8548250ca1a5": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_053917bbf7fc43a0887752403a972737", - "placeholder": "​", - "style": "IPY_MODEL_221597e24fd14a0e8e67321692f615b8", - "value": " 500/500 [00:00<00:00, 5115.13 examples/s]" + "layout": "IPY_MODEL_c47290facbb34126bf648a58041b7110", + "max": 3902, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2da273f7585c4b45a36f55d5f112e581", + "value": 3902 } }, - "af6b21dc6f3f48c7ae5c240b403b3c91": { + "e9e86e5e4a1341d592f72110112f276d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9718,10 +9766,10 @@ "width": null } }, - "befb2622d31b436f8d8cb25d35243989": { + "eaeb678c01ef4c89b31db675a724d377": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9770,25 +9818,34 @@ "width": null } }, - "26b4f219a8ef4d52a4c34ee304e31fd1": { + "ed31165ad7b943d8a48a0d82d99627c8": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8805f4f95ab43cca5aa05fc81eaba06", + "max": 29562325, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f88804f321b4e2d81ee387fd7299799", + "value": 29562325 } }, - "907db8b968a64827a2f4783657949128": { + "ed61eabf01c5432a90c3de5c67039746": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9837,10 +9894,34 @@ "width": null } }, + "ed690821c13c49df9c559d5ae1240fd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6b303cc91755460190a5ae0466d82d1a", + "max": 400, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5992e3e857704d62a5ceb8135ed90f78", + "value": 400 + } + }, "edeb97603ab34a499516c6589a04a711": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -9853,10 +9934,10 @@ "description_width": "" } }, - "053917bbf7fc43a0887752403a972737": { + "ee1a05c0abb94b3fabbbbcbbc44833b8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -9905,25 +9986,10 @@ "width": null } }, - "221597e24fd14a0e8e67321692f615b8": { + "ee1dd3ac0e364a9d81211fb48e3a63c2": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6e64c9f038fa4e57a374802726b5db3d": { - "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -9935,83 +10001,33 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_af0166beb7444cab8f012a8b4df18475", - "IPY_MODEL_dae6332c719c479c91156d8651c3c59f", - "IPY_MODEL_370bb26be7b34dc181ea88756f99afa3" + "IPY_MODEL_a6c03bbb26874ef786886e3874b96f45", + "IPY_MODEL_ed31165ad7b943d8a48a0d82d99627c8", + "IPY_MODEL_8a3dbcf2432e4473acffdc3cd2d7c287" ], - "layout": "IPY_MODEL_57853bbe0e9942cf8c3e73778f8ff2fc" - } - }, - "af0166beb7444cab8f012a8b4df18475": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ac877b5528c744b7b841c17b7516b879", - "placeholder": "​", - "style": "IPY_MODEL_9ad5687370ed4164a905809751571663", - "value": "Map: 100%" - } - }, - "dae6332c719c479c91156d8651c3c59f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ceaa596549fd423189786aff7d865a99", - "max": 100, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee67317d933c47d48d3e46cb52e02324", - "value": 100 + "layout": "IPY_MODEL_2f5bd7a50398424da94c61c6f8e3a125" } }, - "370bb26be7b34dc181ea88756f99afa3": { + "ee67317d933c47d48d3e46cb52e02324": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2fbc66f9f17043be8b03fe8cb84ac0d6", - "placeholder": "​", - "style": "IPY_MODEL_24e6ff03c6b04b94bd729a09a93d4841", - "value": " 100/100 [00:00<00:00, 903.57 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "57853bbe0e9942cf8c3e73778f8ff2fc": { + "ef81ac8f601d43dc8dc9f63e86ce6d5e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10060,10 +10076,10 @@ "width": null } }, - "ac877b5528c744b7b841c17b7516b879": { + "efefa88ed4c64045b05db81984e8a3e7": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10112,10 +10128,10 @@ "width": null } }, - "9ad5687370ed4164a905809751571663": { + "effcf408a606435286f6b74b52d127c7": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -10127,78 +10143,31 @@ "description_width": "" } }, - "ceaa596549fd423189786aff7d865a99": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ee67317d933c47d48d3e46cb52e02324": { + "f2619549195c4090a453c551710cdb65": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_240b1eb858834defb5f1069f017e859e", + "placeholder": "​", + "style": "IPY_MODEL_26b04e0848d74b20988237710bb52aa6", + "value": " 2/2 [00:01<00:00, 1.75it/s]" } }, - "2fbc66f9f17043be8b03fe8cb84ac0d6": { + "f3827cc78cd149408fcb4a38eb7794f6": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10247,47 +10216,10 @@ "width": null } }, - "24e6ff03c6b04b94bd729a09a93d4841": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3bf4f93b8e7e4b4aa8d4af2fd8683a56": { + "f47ee50ce7bd4024b15381bcf4ed0213": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_764a4f006ad3411680dc35ab7f77f4d0", - "IPY_MODEL_75f861994a384edcba5991e24ec0acb2", - "IPY_MODEL_81f029f951bf4dd4bbbc7ee6e4cc4d9e" - ], - "layout": "IPY_MODEL_e9e86e5e4a1341d592f72110112f276d" - } - }, - "764a4f006ad3411680dc35ab7f77f4d0": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -10299,40 +10231,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_17b4e1697bb848ad9b1c74993a05b64d", + "layout": "IPY_MODEL_807ae90cbea448d5aa02c4e9418acdaf", "placeholder": "​", - "style": "IPY_MODEL_b68f616e1ec54acbbd6c70f2ee9282cd", - "value": "Map: 100%" + "style": "IPY_MODEL_9aa53ebe612b42c5a29ca0fc32a28c71", + "value": "Downloading model.safetensors: 100%" } }, - "75f861994a384edcba5991e24ec0acb2": { + "f481c31c5e0d493c943d489409178d11": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b36a3e769ea946d9b3a2eee4145d858a", - "max": 500, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_bbc6b3b9564940098f971fc7c711d61b", - "value": 500 - } - }, - "81f029f951bf4dd4bbbc7ee6e4cc4d9e": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -10344,16 +10252,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6c94041132c241b19e0b0d697b044b58", + "layout": "IPY_MODEL_78ce2352d3e14733bb5459a59d94f2bb", "placeholder": "​", - "style": "IPY_MODEL_2bc1eb041c624197b006ca3c29e6819d", - "value": " 500/500 [00:00<00:00, 1808.74 examples/s]" + "style": "IPY_MODEL_7ded086d37894a9e94142d6775d78b91", + "value": " 14.8k/14.8k [00:00<00:00, 921kB/s]" } }, - "e9e86e5e4a1341d592f72110112f276d": { + "f4bcca5b6b7643c99a520db52b769784": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10402,10 +10310,31 @@ "width": null } }, - "17b4e1697bb848ad9b1c74993a05b64d": { + "f4fc3e122b954a949448b09630857ec0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c713c1586a344d3da06b0d87764b4afb", + "placeholder": "​", + "style": "IPY_MODEL_6ff76b8372584d09a7df7bb52fccd176", + "value": " 1.12G/1.12G [00:06<00:00, 96.5MB/s]" + } + }, + "f8805f4f95ab43cca5aa05fc81eaba06": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10454,25 +10383,31 @@ "width": null } }, - "b68f616e1ec54acbbd6c70f2ee9282cd": { + "f99308f66ebd4ee38efc60edc7dd2899": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a22f62bc57c4c78840c1ef51c621996", + "placeholder": "​", + "style": "IPY_MODEL_adbd936819104e65a5a6e94817f928f0", + "value": " 400/400 [00:00<00:00, 2500.62 examples/s]" } }, - "b36a3e769ea946d9b3a2eee4145d858a": { + "f9b6e4363f1b4e3392d1da9f3814f9cc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10521,26 +10456,107 @@ "width": null } }, - "bbc6b3b9564940098f971fc7c711d61b": { + "faed48642f37415ea41a4f6155311666": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "6c94041132c241b19e0b0d697b044b58": { + "fc53327bb651457eaaef2bfd17888253": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95d531c8744d4a71b228cd0177b72568", + "placeholder": "​", + "style": "IPY_MODEL_2e9e85dcb24941468f9a1de54f613ce0", + "value": " 500/500 [00:00<00:00, 2543.50 examples/s]" + } + }, + "fcd662335f9447cb87bd66b55fea1f41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe314b1f2e5d4671bb820bfe16c197e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8707b73e0a354d0a965cde671dbd7404", + "IPY_MODEL_ff1a5195281d45ef80af3773331cef74", + "IPY_MODEL_fc53327bb651457eaaef2bfd17888253" + ], + "layout": "IPY_MODEL_37b69881a6aa453bb5aca22fa5364c23" + } + }, + "ff1a5195281d45ef80af3773331cef74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f4b4f5191754b4eb8aebd5af6c7942d", + "max": 500, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6e6e76fa032f4e579653bf46846f885f", + "value": 500 + } + }, + "ffe9e9464031467c93450fb974f9a3b3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -10588,26 +10604,10 @@ "visibility": null, "width": null } - }, - "2bc1eb041c624197b006ca3c29e6819d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } } } - }, - "accelerator": "GPU" + } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/notebooks/08_NER_Wikiann.ipynb b/notebooks/08_NER_Wikiann.ipynb index 422bf2ba83..dcb0f83d2e 100644 --- a/notebooks/08_NER_Wikiann.ipynb +++ b/notebooks/08_NER_Wikiann.ipynb @@ -26,20 +26,20 @@ "cell_type": "code", "execution_count": 1, "metadata": { + "ExecuteTime": { + "end_time": "2023-08-17T12:18:02.087873100Z", + "start_time": "2023-08-17T12:17:54.490601100Z" + }, "colab": { "base_uri": "https://localhost:8080/" }, "id": "3AJLS4197g-i", - "outputId": "58e147cd-538d-498c-ae67-7b6f7ce3e21a", - "ExecuteTime": { - "end_time": "2023-08-17T12:18:02.087873100Z", - "start_time": "2023-08-17T12:17:54.490601100Z" - } + "outputId": "58e147cd-538d-498c-ae67-7b6f7ce3e21a" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/251.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.4/251.2 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m \u001b[32m245.8/251.2 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m251.2/251.2 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h" @@ -66,28 +66,28 @@ "cell_type": "code", "execution_count": 2, "metadata": { + "ExecuteTime": { + "end_time": "2023-08-17T10:54:31.730170400Z", + "start_time": "2023-08-17T10:54:28.844625500Z" + }, "colab": { "base_uri": "https://localhost:8080/" }, "id": "vgQ5DC_48_r_", - "outputId": "bb2d049b-6746-43e9-bd32-3a066536dac1", - "ExecuteTime": { - "end_time": "2023-08-17T10:54:31.730170400Z", - "start_time": "2023-08-17T10:54:28.844625500Z" - } + "outputId": "bb2d049b-6746-43e9-bd32-3a066536dac1" }, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-multilingual-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']\n" ] @@ -127,19 +127,19 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "id": "gZj6Jt-P7Ysd", "ExecuteTime": { "end_time": "2023-08-17T10:55:18.106652Z", "start_time": "2023-08-17T10:55:07.121375100Z" - } + }, + "id": "gZj6Jt-P7Ysd" }, "outputs": [], "source": [ - "from adapters import AdapterConfigBase\n", + "from adapters import AdapterConfig\n", "target_language = \"gn\" # Choose any language that a bert-base-multilingual-cased language adapter is available for\n", "source_language = \"en\" # We support \"en\", \"ja\", \"zh\", and \"ar\"\n", "\n", - "adapter_config = AdapterConfigBase.load(\n", + "adapter_config = AdapterConfig.load(\n", " None,\n", " leave_out=[11]\n", ")\n", @@ -172,11 +172,11 @@ "cell_type": "code", "execution_count": 4, "metadata": { - "id": "o-SUUa367TBr", "ExecuteTime": { "end_time": "2023-08-17T10:56:49.120227700Z", "start_time": "2023-08-17T10:55:35.178236700Z" - } + }, + "id": "o-SUUa367TBr" }, "outputs": [], "source": [ @@ -205,11 +205,11 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "id": "bbfMD2EM8OAs", "ExecuteTime": { "end_time": "2023-08-17T10:57:18.725260400Z", "start_time": "2023-08-17T10:57:18.709640900Z" - } + }, + "id": "bbfMD2EM8OAs" }, "outputs": [], "source": [ @@ -262,6 +262,10 @@ "cell_type": "code", "execution_count": 6, "metadata": { + "ExecuteTime": { + "end_time": "2023-08-17T10:57:33.497198700Z", + "start_time": "2023-08-17T10:57:33.406508100Z" + }, "colab": { "base_uri": "https://localhost:8080/", "height": 49, @@ -280,26 +284,22 @@ ] }, "id": "xrnTO-hV8pRc", - "outputId": "f6bd5820-c176-475e-fa10-8f449009587d", - "ExecuteTime": { - "end_time": "2023-08-17T10:57:33.497198700Z", - "start_time": "2023-08-17T10:57:33.406508100Z" - } + "outputId": "f6bd5820-c176-475e-fa10-8f449009587d" }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "Map: 0%| | 0/100 [00:00:7: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n", " metric = load_metric(\"seqeval\")\n" ] }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Downloading builder script: 0%| | 0.00/2.47k [00:00" - ], "text/html": [ "\n", "
\n", @@ -463,12 +459,15 @@ " [2/2 00:00]\n", "
\n", " " + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "execute_result", "data": { "text/plain": [ "{'eval_loss': 1.0064687728881836,\n", @@ -481,8 +480,9 @@ " 'eval_steps_per_second': 0.375}" ] }, + "execution_count": 8, "metadata": {}, - "execution_count": 8 + "output_type": "execute_result" } ], "source": [ @@ -512,79 +512,21 @@ "pygments_lexer": "ipython3", "version": "3.8.10" }, + "pycharm": { + "stem_cell": { + "cell_type": "raw", + "metadata": { + "collapsed": false + }, + "source": [] + } + }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "d7bc633f2ede464aacc1e72fcfa12f7a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9bbc7b3250bb413d87fd92481fbc124e", - "IPY_MODEL_9cd70a43ebb94a70acbba42eec2da49c", - "IPY_MODEL_b3d0bdd16c204efb821770b14e2cad90" - ], - "layout": "IPY_MODEL_22da358e24834033a9f58897fcb5c8bc" - } - }, - "9bbc7b3250bb413d87fd92481fbc124e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_738643294a6a4c82a3b1302ac5c3eeae", - "placeholder": "​", - "style": "IPY_MODEL_f3c854026aaa4a0489a2077af93ebb15", - "value": "Map: 100%" - } - }, - "9cd70a43ebb94a70acbba42eec2da49c": { + "044148eb2ee6451c9f1fbb0137f59ac9": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_df5aafeed72b4be9996671e9541ac56a", - "max": 100, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4dc17f1d57684fc398a2834d6b39bf02", - "value": 100 - } - }, - "b3d0bdd16c204efb821770b14e2cad90": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -596,16 +538,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b75ef14b0a7d4925ad06f22172a3b290", + "layout": "IPY_MODEL_cd1abe7ae13e418c8e3e04c9b26dfe9d", "placeholder": "​", - "style": "IPY_MODEL_5311b979ae3b4fba870e2de76d4e17cd", - "value": " 100/100 [00:00<00:00, 704.21 examples/s]" + "style": "IPY_MODEL_3dad54731ab948ddb4b80a0d43a8c0a6", + "value": "Downloading builder script: " } }, - "22da358e24834033a9f58897fcb5c8bc": { + "06507f5e6d2c4319847750520af267e2": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -654,10 +596,34 @@ "width": null } }, - "738643294a6a4c82a3b1302ac5c3eeae": { + "0c6a31da49c5480d9a949da992bd95cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf106e11f0a749b182fc3f0e2df5429d", + "max": 2472, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e02dd0f353047be90dbaf0fa2ecf0c3", + "value": 2472 + } + }, + "22da358e24834033a9f58897fcb5c8bc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -706,10 +672,57 @@ "width": null } }, - "f3c854026aaa4a0489a2077af93ebb15": { + "3dad54731ab948ddb4b80a0d43a8c0a6": { "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4dc17f1d57684fc398a2834d6b39bf02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e02dd0f353047be90dbaf0fa2ecf0c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5311b979ae3b4fba870e2de76d4e17cd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -721,10 +734,31 @@ "description_width": "" } }, - "df5aafeed72b4be9996671e9541ac56a": { + "545bcd6670154ef18cb9603877cb707f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8872e1de590e49e7a648435eea7b4fe0", + "placeholder": "​", + "style": "IPY_MODEL_c1845d1d27864c1887ff7b4882d06a6e", + "value": " 6.33k/? [00:00<00:00, 365kB/s]" + } + }, + "738643294a6a4c82a3b1302ac5c3eeae": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -773,26 +807,32 @@ "width": null } }, - "4dc17f1d57684fc398a2834d6b39bf02": { + "874cf4195a8e4c90ba6fcc7f36cb9483": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_044148eb2ee6451c9f1fbb0137f59ac9", + "IPY_MODEL_0c6a31da49c5480d9a949da992bd95cd", + "IPY_MODEL_545bcd6670154ef18cb9603877cb707f" + ], + "layout": "IPY_MODEL_06507f5e6d2c4319847750520af267e2" } }, - "b75ef14b0a7d4925ad06f22172a3b290": { + "8872e1de590e49e7a648435eea7b4fe0": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -841,47 +881,10 @@ "width": null } }, - "5311b979ae3b4fba870e2de76d4e17cd": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "874cf4195a8e4c90ba6fcc7f36cb9483": { + "9bbc7b3250bb413d87fd92481fbc124e": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_044148eb2ee6451c9f1fbb0137f59ac9", - "IPY_MODEL_0c6a31da49c5480d9a949da992bd95cd", - "IPY_MODEL_545bcd6670154ef18cb9603877cb707f" - ], - "layout": "IPY_MODEL_06507f5e6d2c4319847750520af267e2" - } - }, - "044148eb2ee6451c9f1fbb0137f59ac9": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -893,16 +896,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cd1abe7ae13e418c8e3e04c9b26dfe9d", + "layout": "IPY_MODEL_738643294a6a4c82a3b1302ac5c3eeae", "placeholder": "​", - "style": "IPY_MODEL_3dad54731ab948ddb4b80a0d43a8c0a6", - "value": "Downloading builder script: " + "style": "IPY_MODEL_f3c854026aaa4a0489a2077af93ebb15", + "value": "Map: 100%" } }, - "0c6a31da49c5480d9a949da992bd95cd": { + "9cd70a43ebb94a70acbba42eec2da49c": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -915,18 +918,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf106e11f0a749b182fc3f0e2df5429d", - "max": 2472, + "layout": "IPY_MODEL_df5aafeed72b4be9996671e9541ac56a", + "max": 100, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_4e02dd0f353047be90dbaf0fa2ecf0c3", - "value": 2472 + "style": "IPY_MODEL_4dc17f1d57684fc398a2834d6b39bf02", + "value": 100 } }, - "545bcd6670154ef18cb9603877cb707f": { + "b3d0bdd16c204efb821770b14e2cad90": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -938,16 +941,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8872e1de590e49e7a648435eea7b4fe0", + "layout": "IPY_MODEL_b75ef14b0a7d4925ad06f22172a3b290", "placeholder": "​", - "style": "IPY_MODEL_c1845d1d27864c1887ff7b4882d06a6e", - "value": " 6.33k/? [00:00<00:00, 365kB/s]" + "style": "IPY_MODEL_5311b979ae3b4fba870e2de76d4e17cd", + "value": " 100/100 [00:00<00:00, 704.21 examples/s]" } }, - "06507f5e6d2c4319847750520af267e2": { + "b75ef14b0a7d4925ad06f22172a3b290": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -996,10 +999,10 @@ "width": null } }, - "cd1abe7ae13e418c8e3e04c9b26dfe9d": { + "bf106e11f0a749b182fc3f0e2df5429d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1048,10 +1051,10 @@ "width": null } }, - "3dad54731ab948ddb4b80a0d43a8c0a6": { + "c1845d1d27864c1887ff7b4882d06a6e": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1063,10 +1066,10 @@ "description_width": "" } }, - "bf106e11f0a749b182fc3f0e2df5429d": { + "cd1abe7ae13e418c8e3e04c9b26dfe9d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1115,26 +1118,32 @@ "width": null } }, - "4e02dd0f353047be90dbaf0fa2ecf0c3": { + "d7bc633f2ede464aacc1e72fcfa12f7a": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9bbc7b3250bb413d87fd92481fbc124e", + "IPY_MODEL_9cd70a43ebb94a70acbba42eec2da49c", + "IPY_MODEL_b3d0bdd16c204efb821770b14e2cad90" + ], + "layout": "IPY_MODEL_22da358e24834033a9f58897fcb5c8bc" } }, - "8872e1de590e49e7a648435eea7b4fe0": { + "df5aafeed72b4be9996671e9541ac56a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1183,10 +1192,10 @@ "width": null } }, - "c1845d1d27864c1887ff7b4882d06a6e": { + "f3c854026aaa4a0489a2077af93ebb15": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1199,17 +1208,8 @@ } } } - }, - "pycharm": { - "stem_cell": { - "cell_type": "raw", - "source": [], - "metadata": { - "collapsed": false - } - } } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/src/adapters/__init__.py b/src/adapters/__init__.py index bd78dee5de..a02be1d420 100644 --- a/src/adapters/__init__.py +++ b/src/adapters/__init__.py @@ -39,7 +39,7 @@ "ADAPTERFUSION_CONFIG_MAP", "DEFAULT_ADAPTER_CONFIG", "DEFAULT_ADAPTERFUSION_CONFIG", - "AdapterConfigBase", + "AdapterConfig", "AdapterFusionConfig", "BnConfig", "CompacterConfig", @@ -146,7 +146,7 @@ ADAPTERFUSION_CONFIG_MAP, DEFAULT_ADAPTER_CONFIG, DEFAULT_ADAPTERFUSION_CONFIG, - AdapterConfigBase, + AdapterConfig, AdapterFusionConfig, BnConfig, CompacterConfig, diff --git a/src/adapters/configuration/adapter_config.py b/src/adapters/configuration/adapter_config.py index 0d72f08377..22b6c8101f 100644 --- a/src/adapters/configuration/adapter_config.py +++ b/src/adapters/configuration/adapter_config.py @@ -9,7 +9,7 @@ logger = logging.getLogger(__name__) -class AdapterConfigBase(Mapping): +class AdapterConfig(Mapping): """ Base class for all adaptation methods. This class does not define specific configuration keys, but only provides some common helper methods. @@ -21,7 +21,7 @@ class AdapterConfigBase(Mapping): architecture: Optional[str] = None def __init__(self): - raise TypeError("AdapterConfigBase is an abstract class and cannot be instantiated.") + raise TypeError("AdapterConfig is an abstract class and cannot be instantiated.") # We want to emulate a simple form of immutability while keeping the ability to add custom attributes. # Therefore, we don't allow changing attribute values if set once. @@ -57,7 +57,7 @@ def replace(self, **changes): @classmethod def from_dict(cls, config): """Creates a config class from a Python dict.""" - if isinstance(config, AdapterConfigBase): + if isinstance(config, AdapterConfig): return config # the constructor does not accept additional kwargs, so add them separately @@ -92,7 +92,7 @@ def _get_config_class(config_dict): @classmethod def load(cls, config: Union[dict, str], download_kwargs=None, **kwargs): """ - Loads a given adapter configuration specifier into a full AdapterConfigBase instance. + Loads a given adapter configuration specifier into a full AdapterConfig instance. Args: config (Union[dict, str]): The configuration to load. Can be either: @@ -117,7 +117,7 @@ def load(cls, config: Union[dict, str], download_kwargs=None, **kwargs): else: config_dict = resolve_adapter_config(config, local_map=local_map) # convert back to dict to allow attr overrides - if isinstance(config_dict, AdapterConfigBase): + if isinstance(config_dict, AdapterConfig): cls_new = config_dict.__class__ config_dict = config_dict.to_dict() else: @@ -128,7 +128,7 @@ def load(cls, config: Union[dict, str], download_kwargs=None, **kwargs): @dataclass(eq=False) -class BnConfig(AdapterConfigBase): +class BnConfig(AdapterConfig): """ Base class that models the architecture of a bottleneck adapter. @@ -359,7 +359,7 @@ class ParBnConfig(BnConfig): @dataclass(eq=False) -class PrefixTuningConfig(AdapterConfigBase): +class PrefixTuningConfig(AdapterConfig): """ The Prefix Tuning architecture proposed by Li & Liang (2021). See https://arxiv.org/pdf/2101.00190.pdf. @@ -396,7 +396,7 @@ class PrefixTuningConfig(AdapterConfigBase): @dataclass(eq=False) -class LoRAConfig(AdapterConfigBase): +class LoRAConfig(AdapterConfig): """ The Low-Rank Adaptation (LoRA) architecture proposed by Hu et al. (2021). See https://arxiv.org/pdf/2106.09685.pdf. LoRA adapts a model by reparametrizing the weights of a layer matrix. You can merge the additional weights with the @@ -462,7 +462,7 @@ class IA3Config(LoRAConfig): use_gating: bool = False -class ConfigUnion(AdapterConfigBase): +class ConfigUnion(AdapterConfig): """ Composes multiple adaptation method configurations into one. This class can be used to define complex adaptation method setups. @@ -470,9 +470,9 @@ class ConfigUnion(AdapterConfigBase): architecture: Optional[str] = "union" - configs: List[AdapterConfigBase] + configs: List[AdapterConfig] - def __init__(self, *configs: List[AdapterConfigBase]): + def __init__(self, *configs: List[AdapterConfig]): self.validate(configs) self.configs = configs @@ -483,7 +483,7 @@ def validate(configs): setup. Args: - configs (List[AdapterConfigBase]): list of configs to check. + configs (List[AdapterConfig]): list of configs to check. Raises: TypeError: One of the configurations has a wrong type. ValueError: At least two given configurations @@ -491,8 +491,8 @@ def validate(configs): """ # perform single config checks for config in configs: - if not isinstance(config, AdapterConfigBase): - raise TypeError(f"{config} is not an instance of AdapterConfigBase") + if not isinstance(config, AdapterConfig): + raise TypeError(f"{config} is not an instance of AdapterConfig") elif isinstance(config, ConfigUnion): raise TypeError(f"{config} of type {type(config)} is not supported in a config union.") # perform pairwise check @@ -539,7 +539,7 @@ def replace(self, **changes): @classmethod def from_dict(cls, config): - if isinstance(config, AdapterConfigBase): + if isinstance(config, AdapterConfig): return config configs = [] diff --git a/src/adapters/configuration/adapter_fusion_config.py b/src/adapters/configuration/adapter_fusion_config.py index afda2964c8..552bcdbe61 100644 --- a/src/adapters/configuration/adapter_fusion_config.py +++ b/src/adapters/configuration/adapter_fusion_config.py @@ -2,11 +2,11 @@ from typing import Union from ..utils import resolve_adapter_config -from .adapter_config import AdapterConfigBase +from .adapter_config import AdapterConfig @dataclass(eq=False) -class AdapterFusionConfig(AdapterConfigBase): +class AdapterFusionConfig(AdapterConfig): """Base class that models the architecture of an adapter fusion layer.""" key: bool diff --git a/src/adapters/configuration/model_adapters_config.py b/src/adapters/configuration/model_adapters_config.py index aeb89d493f..3f4c3023da 100644 --- a/src/adapters/configuration/model_adapters_config.py +++ b/src/adapters/configuration/model_adapters_config.py @@ -6,7 +6,7 @@ from .. import __version__ from ..composition import AdapterCompositionBlock from ..utils import get_adapter_config_hash -from .adapter_config import ADAPTER_CONFIG_MAP, DEFAULT_ADAPTER_CONFIG, AdapterConfigBase, ConfigUnion +from .adapter_config import ADAPTER_CONFIG_MAP, DEFAULT_ADAPTER_CONFIG, AdapterConfig, ConfigUnion from .adapter_fusion_config import ADAPTERFUSION_CONFIG_MAP, DEFAULT_ADAPTERFUSION_CONFIG @@ -77,8 +77,8 @@ def match( config = self.get(adapter_name) if config is None: return None - elif not isinstance(config, AdapterConfigBase): - config = AdapterConfigBase.load(config) + elif not isinstance(config, AdapterConfig): + config = AdapterConfig.load(config) if isinstance(config, config_type): leave_out = config.get("leave_out", []) @@ -125,7 +125,7 @@ def add(self, adapter_name: str, config: Optional[Union[str, dict]] = None): # if it's a dict, compute it's hash and add a new entry to the config map elif isinstance(config, Mapping): config_name = get_adapter_config_hash(config) - self.config_map[config_name] = AdapterConfigBase.load(config) + self.config_map[config_name] = AdapterConfig.load(config) else: raise ValueError("Invalid adapter config: {}".format(config)) self.adapters[adapter_name] = config_name @@ -207,14 +207,14 @@ def to_dict(self): output_dict["adapters"] = copy.deepcopy(self.adapters) output_dict["config_map"] = {} for k, v in self.config_map.items(): - if isinstance(v, AdapterConfigBase): + if isinstance(v, AdapterConfig): output_dict["config_map"][k] = v.to_dict() else: output_dict["config_map"][k] = copy.deepcopy(v) output_dict["fusions"] = copy.deepcopy(self.fusions) output_dict["fusion_config_map"] = {} for k, v in self.fusion_config_map.items(): - if isinstance(v, AdapterConfigBase): + if isinstance(v, AdapterConfig): output_dict["fusion_config_map"][k] = v.to_dict() else: output_dict["fusion_config_map"][k] = copy.deepcopy(v) @@ -233,7 +233,7 @@ def build_full_config(adapter_config, model_config, save_id2label=False, **kwarg config_dict.update(kwargs) if not hasattr(model_config, "prediction_heads") and save_id2label: config_dict["label2id"] = model_config.label2id - if isinstance(adapter_config, AdapterConfigBase): + if isinstance(adapter_config, AdapterConfig): config_dict["config"] = adapter_config.to_dict() else: config_dict["config"] = adapter_config diff --git a/src/adapters/loading.py b/src/adapters/loading.py index 25ad7e4fc1..f189a120a8 100644 --- a/src/adapters/loading.py +++ b/src/adapters/loading.py @@ -7,7 +7,7 @@ import torch -from .configuration import AdapterConfigBase, build_full_config +from .configuration import AdapterConfig, build_full_config from .head_utils import STATIC_TO_FLEX_HEAD_MAP, get_head_config_and_rename_list from .utils import ( ACTIVATION_RENAME, @@ -420,7 +420,7 @@ def load( Tuple[str, str]: A tuple consisting of the local file system directory from which the weights where loaded and the name of the loaded weights. """ - requested_config = AdapterConfigBase.load(config) if config else None + requested_config = AdapterConfig.load(config) if config else None # Resolve the weights to be loaded based on the given identifier and the current adapter config model_name = self.model.model_name or model_name resolved_folder = resolve_adapter_path( diff --git a/src/adapters/model_mixin.py b/src/adapters/model_mixin.py index ca31958ded..078086ece8 100644 --- a/src/adapters/model_mixin.py +++ b/src/adapters/model_mixin.py @@ -13,7 +13,7 @@ from transformers.modeling_outputs import ModelOutput from .composition import AdapterCompositionBlock, Fuse, Stack, parse_composition -from .configuration import ADAPTER_CONFIG_MAP, AdapterConfigBase, AdapterFusionConfig, BnConfig +from .configuration import ADAPTER_CONFIG_MAP, AdapterConfig, AdapterFusionConfig, BnConfig from .context import AdapterSetup, ForwardContext from .hub_mixin import PushAdapterToHubMixin from .loading import AdapterFusionLoader, AdapterLoader, PredictionHeadLoader, WeightsLoader @@ -518,7 +518,7 @@ def add_adapter(self, adapter_name: str, config=None, overwrite_ok: bool = False Args: adapter_name (str): The name of the adapter module to be added. - config (str or dict or AdapterConfigBase, optional): The adapter configuration, can be either: + config (str or dict or AdapterConfig, optional): The adapter configuration, can be either: - the string identifier of a pre-defined configuration dictionary - a configuration dictionary specifying the full config @@ -529,7 +529,7 @@ def add_adapter(self, adapter_name: str, config=None, overwrite_ok: bool = False Set the adapter to be the active one. By default (False), the adapter is added but not activated. """ - config = AdapterConfigBase.load(config) # ensure config is ok and up-to-date + config = AdapterConfig.load(config) # ensure config is ok and up-to-date # In case adapter already exists and we allow overwriting, explicitly delete the existing one first if overwrite_ok and adapter_name in self.adapters_config: self.delete_adapter(adapter_name) diff --git a/src/adapters/training.py b/src/adapters/training.py index b959dff101..8316011398 100644 --- a/src/adapters/training.py +++ b/src/adapters/training.py @@ -2,7 +2,7 @@ from typing import Optional from .composition import Stack -from .configuration import AdapterConfigBase +from .configuration import AdapterConfig @dataclass @@ -57,7 +57,7 @@ def setup_adapter_training( # Setup adapters if adapter_args.train_adapter: # resolve the adapter config - adapter_config = AdapterConfigBase.load(adapter_args.adapter_config, **adapter_config_kwargs) + adapter_config = AdapterConfig.load(adapter_args.adapter_config, **adapter_config_kwargs) # load a pre-trained from Hub if specified # note: this logic has changed in versions > 3.1.0: adapter is also loaded if it already exists if adapter_args.load_adapter: @@ -73,7 +73,7 @@ def setup_adapter_training( # optionally load a pre-trained language adapter if adapter_args.load_lang_adapter: # resolve the language adapter config - lang_adapter_config = AdapterConfigBase.load(adapter_args.lang_adapter_config, **adapter_config_kwargs) + lang_adapter_config = AdapterConfig.load(adapter_args.lang_adapter_config, **adapter_config_kwargs) # load the language adapter from Hub lang_adapter_name = model.load_adapter( adapter_args.load_lang_adapter, diff --git a/tests_adapters/methods/test_compacter.py b/tests_adapters/methods/test_compacter.py index 82c9acddbc..253b0fbf4f 100644 --- a/tests_adapters/methods/test_compacter.py +++ b/tests_adapters/methods/test_compacter.py @@ -30,7 +30,7 @@ def test_forward_compacter(self): def test_forward_shared_phm_compacter(self): model = self.get_model() - adapter_config = CompacterPlusPlusConfig(phm_dim=2, shared_W_phm=True, reduction_factor=8) + adapter_config = CompacterPlusPlusConfig(phm_dim=4, shared_W_phm=True, reduction_factor=4) self.run_forward_test(model, adapter_config) def test_load_compacter(self): diff --git a/tests_adapters/test_adapter_config.py b/tests_adapters/test_adapter_config.py index fe47c0c25b..5667213683 100644 --- a/tests_adapters/test_adapter_config.py +++ b/tests_adapters/test_adapter_config.py @@ -4,7 +4,7 @@ from adapters import ( ADAPTER_CONFIG_MAP, - AdapterConfigBase, + AdapterConfig, ConfigUnion, DoubleSeqBnConfig, LoRAConfig, @@ -23,14 +23,12 @@ def test_config_load(self): # TODO still uses the old config names as only these are available on the Hub for config_name in ["pfeiffer", "houlsby"]: with self.subTest(config_name=config_name): - config = AdapterConfigBase.load( - config_name, download_kwargs=download_kwargs, non_linearity="leakyrelu" - ) - self.assertTrue(isinstance(config, AdapterConfigBase)) + config = AdapterConfig.load(config_name, download_kwargs=download_kwargs, non_linearity="leakyrelu") + self.assertTrue(isinstance(config, AdapterConfig)) self.assertEqual(config.non_linearity, "leakyrelu") def test_config_immutable(self): - def set_attr(config: AdapterConfigBase): + def set_attr(config: AdapterConfig): config.non_linearity = "dummy" config.r = -1 # for LoRA @@ -56,8 +54,8 @@ class CustomAdapterConfig(SeqBnConfig): config = CustomAdapterConfig() config_dict = config.to_dict() self.assertEqual(config_dict["custom_attr"], "test_value") - # When calling load on an AdapterConfigBase instance, don't change the class of the config. - config = AdapterConfigBase.load(config, custom_attr="test_value_2") + # When calling load on an AdapterConfig instance, don't change the class of the config. + config = AdapterConfig.load(config, custom_attr="test_value_2") self.assertTrue(isinstance(config, CustomAdapterConfig)) self.assertEqual(config["custom_attr"], "test_value_2") @@ -79,8 +77,8 @@ def test_config_union_valid(self): config_new = ConfigUnion.from_dict(config_dict) self.assertEqual(config, config_new) - self.assertIsInstance(config_new[0], AdapterConfigBase) - self.assertIsInstance(config_new[1], AdapterConfigBase) + self.assertIsInstance(config_new[0], AdapterConfig) + self.assertIsInstance(config_new[1], AdapterConfig) def test_config_union_invalid(self): unions = [ @@ -113,7 +111,7 @@ def test_config_string_valid(self): ] for config_str, config in to_test: with self.subTest(config_str=config_str): - config_new = AdapterConfigBase.load(config_str) + config_new = AdapterConfig.load(config_str) self.assertEqual(config, config_new) def test_config_string_invalid(self): @@ -125,4 +123,4 @@ def test_config_string_invalid(self): ] for config_str, error_type in to_test: with self.subTest(config_str=config_str): - self.assertRaises(error_type, AdapterConfigBase.load, config_str) + self.assertRaises(error_type, AdapterConfig.load, config_str) diff --git a/tests_adapters/test_adapter_fusion_common.py b/tests_adapters/test_adapter_fusion_common.py index 474752eb6e..4ee25fa06a 100644 --- a/tests_adapters/test_adapter_fusion_common.py +++ b/tests_adapters/test_adapter_fusion_common.py @@ -5,7 +5,7 @@ import torch -from adapters import ADAPTER_MODEL_MAPPING, ADAPTERFUSION_CONFIG_MAP, AdapterConfigBase, AutoAdapterModel, SeqBnConfig +from adapters import ADAPTER_MODEL_MAPPING, ADAPTERFUSION_CONFIG_MAP, AdapterConfig, AutoAdapterModel, SeqBnConfig from adapters.composition import Fuse from adapters.utils import ADAPTERFUSION_WEIGHTS_NAME from adapters.wrappers import load_model @@ -16,7 +16,7 @@ class AdapterFusionModelTestMixin: def test_add_adapter_fusion(self): config_name = "seq_bn" - adapter_config = AdapterConfigBase.load(config_name) + adapter_config = AdapterConfig.load(config_name) for adater_fusion_config_name, adapter_fusion_config in ADAPTERFUSION_CONFIG_MAP.items(): model = self.get_model() diff --git a/tests_adapters/test_adapter_hub.py b/tests_adapters/test_adapter_hub.py index cf07bd6e0a..28a47136aa 100644 --- a/tests_adapters/test_adapter_hub.py +++ b/tests_adapters/test_adapter_hub.py @@ -4,7 +4,7 @@ import numpy as np import adapters -from adapters import ADAPTER_CONFIG_MAP, AdapterConfigBase, BertAdapterModel, get_adapter_config_hash +from adapters import ADAPTER_CONFIG_MAP, AdapterConfig, BertAdapterModel, get_adapter_config_hash from adapters.trainer import AdapterTrainer as Trainer from adapters.utils import find_in_index from tests.test_modeling_common import ids_tensor @@ -65,7 +65,7 @@ def test_load_task_adapter_from_hub(self): self.assertNotIn(adapter_name, model.base_model.invertible_adapters) # check if config is valid - expected_hash = get_adapter_config_hash(AdapterConfigBase.load(config)) + expected_hash = get_adapter_config_hash(AdapterConfig.load(config)) real_hash = get_adapter_config_hash(model.adapters_config.get(adapter_name)) self.assertEqual(expected_hash, real_hash) @@ -115,7 +115,7 @@ def test_load_lang_adapter_from_hub(self): with self.subTest(config=config): model = AutoModel.from_pretrained("bert-base-multilingual-cased") adapters.init(model) - config = AdapterConfigBase.load(config, non_linearity="gelu", reduction_factor=2) + config = AdapterConfig.load(config, non_linearity="gelu", reduction_factor=2) loading_info = {} adapter_name = model.load_adapter( @@ -154,7 +154,7 @@ def test_load_adapter_with_head_from_hub(self): self.assertIn(adapter_name, model.adapters_config.adapters) # check if config is valid - expected_hash = get_adapter_config_hash(AdapterConfigBase.load("houlsby")) + expected_hash = get_adapter_config_hash(AdapterConfig.load("houlsby")) real_hash = get_adapter_config_hash(model.adapters_config.get(adapter_name)) self.assertEqual(expected_hash, real_hash) From 2d98a4fae5f590adcc5526dd9b2ae9d0ec0c10f2 Mon Sep 17 00:00:00 2001 From: calpt Date: Thu, 16 Nov 2023 21:41:17 +0100 Subject: [PATCH 7/8] Add code examples to readme --- README.md | 71 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 70 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 612f864e1c..d5a0a54c12 100644 --- a/README.md +++ b/README.md @@ -51,7 +51,76 @@ cd adapters pip install . ``` -## Getting Started +## Quick Tour + +#### Load pre-trained adapters: + +```python +from adapters import AutoAdapterModel +from transformers import AutoTokenizer + +model = AutoAdapterModel.from_pretrained("roberta-base") +tokenizer = AutoTokenizer.from_pretrained("roberta-base") + +model.load_adapter("AdapterHub/roberta-base-pf-imdb", source="hf", set_active=True) + +print(model(**tokenizer("This works great!", return_tensors="pt")).logits) +``` + +**[Learn More](https://docs.adapterhub.ml/loading.html)** + +#### Adapt existing model setups: + +```python +import adapters +from transformers import AutoModelForSequenceClassification + +model = AutoModelForSequenceClassification.from_pretrained("t5-base") + +adapters.init(model) + +model.add_adapter("my_lora_adapter", config="lora") +model.train_adapter("my_lora_adapter") + +# Your regular training loop... +``` + +**[Learn More](https://docs.adapterhub.ml/quickstart.html)** + +#### Flexibly configure adapters: + +```python +from adapters import ConfigUnion, PrefixTuningConfig, ParBnConfig, AutoAdapterModel + +model = AutoAdapterModel.from_pretrained("microsoft/deberta-v3-base") + +adapter_config = ConfigUnion( + PrefixTuningConfig(prefix_length=20), + ParBnConfig(reduction_factor=4), +) +model.add_adapter("my_adapter", config=adapter_config, set_active=True) +``` + +**[Learn More](https://docs.adapterhub.ml/overview.html)** + +#### Easily compose adapters in a single model: + +```python +from adapters import AdapterSetup, AutoAdapterModel +import adapters.composition as ac + +model = AutoAdapterModel.from_pretrained("roberta-base") + +qc = model.load_adapter("AdapterHub/roberta-base-pf-trec") +sent = model.load_adapter("AdapterHub/roberta-base-pf-imdb") + +with AdapterSetup(ac.Parallel(qc, sent)): + print(model(**tokenizer("What is AdapterHub?", return_tensors="pt"))) +``` + +**[Learn More](https://docs.adapterhub.ml/adapter_composition.html)** + +## Useful Resources HuggingFace's great documentation on getting started with _Transformers_ can be found [here](https://huggingface.co/transformers/index.html). `adapters` is fully compatible with _Transformers_. From d6d44cdecc4d6c0024385e650ed3dfcf34b54acc Mon Sep 17 00:00:00 2001 From: calpt Date: Fri, 17 Nov 2023 15:42:37 +0100 Subject: [PATCH 8/8] Readme fixes --- LICENSE | 2 +- README.md | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/LICENSE b/LICENSE index b5395aa1fa..27465606a2 100644 --- a/LICENSE +++ b/LICENSE @@ -1,4 +1,4 @@ -Copyright 2018-2021 The Hugging Face Team and The AdapterHub Team. All rights reserved. +Copyright 2020-2023 The AdapterHub Team. All rights reserved. Apache License Version 2.0, January 2004 diff --git a/README.md b/README.md index d5a0a54c12..8ec212943c 100644 --- a/README.md +++ b/README.md @@ -17,7 +17,7 @@ limitations under the License. > **Note**: This repository holds the codebase of the _Adapters_ library, which has replaced `adapter-transformers`. For the legacy codebase, go to: https://github.com/adapter-hub/adapter-transformers-legacy.

- +

Adapters @@ -27,8 +27,8 @@ limitations under the License. A Unified Library for Parameter-Efficient and Modular Transfer Learning

-![Tests](https://github.com/Adapter-Hub/adapter-transformers/workflows/Tests/badge.svg?branch=adapters) -[![GitHub](https://img.shields.io/github/license/adapter-hub/adapter-transformers.svg?color=blue)](https://github.com/adapter-hub/adapter-transformers/blob/adapters/LICENSE) +![Tests](https://github.com/Adapter-Hub/adapters/workflows/Tests/badge.svg?branch=adapters) +[![GitHub](https://img.shields.io/github/license/adapter-hub/adapters.svg?color=blue)](https://github.com/adapter-hub/adapters/blob/main/LICENSE) [![PyPI](https://img.shields.io/pypi/v/adapters)](https://pypi.org/project/adapters/) `adapters` is an add-on to [HuggingFace's Transformers](https://github.com/huggingface/transformers) library, integrating adapters into state-of-the-art language models by incorporating **[AdapterHub](https://adapterhub.ml)**, a central repository for pre-trained adapter modules. @@ -45,7 +45,7 @@ pip install -U adapters ... or from source by cloning the repository: ``` -git clone https://github.com/adapter-hub/adapter-transformers.git +git clone https://github.com/adapter-hub/adapters.git git checkout adapters cd adapters pip install .