From be989fbfec24155cb87f9b6aa7305305881103ec Mon Sep 17 00:00:00 2001 From: calpt Date: Wed, 6 Dec 2023 23:41:19 +0000 Subject: [PATCH] Update notebook 07 --- .../07_Complex_Adapter_Configuration.ipynb | 2410 ++++++++--------- notebooks/README.md | 5 +- 2 files changed, 1129 insertions(+), 1286 deletions(-) diff --git a/notebooks/07_Complex_Adapter_Configuration.ipynb b/notebooks/07_Complex_Adapter_Configuration.ipynb index 0a7fcc0624..82b994207d 100644 --- a/notebooks/07_Complex_Adapter_Configuration.ipynb +++ b/notebooks/07_Complex_Adapter_Configuration.ipynb @@ -8,7 +8,7 @@ "source": [ "# 7️⃣ Training Complex Adapter Combinations\n", "\n", - "In this notebook, we explore how to easily configure complex combinations of different adapter methods with `ConfigUnion`. We show how to re-build the adapter setups used in [He et al., 2022](https://arxiv.org/pdf/2110.04366.pdf) (Mix-and-Match adapter) and [Mao et al., 2022](https://arxiv.org/pdf/2110.07577.pdf) (UniPELT).\n", + "In this notebook, we explore how to easily configure complex combinations of different adapter methods with `ConfigUnion`. We show how to re-build the adapter setup used in Mao et al., 2022](https://arxiv.org/pdf/2110.07577.pdf) (UniPELT).\n", "For a basic introduction into the training setup with _Adapters_, please first refer to [the introductory training notebook](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/01_Adapter_Training.ipynb).\n", "\n", "As training task, we chose abstractive summarization on the **XSum** dataset ([Narayan et al., 2018](https://arxiv.org/pdf/1808.08745.pdf)). As base model, we select **T5**." @@ -37,8 +37,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Building wheel for rouge_score (setup.py) ... \u001b[?25l\u001b[?25hdone\n" @@ -57,12 +57,14 @@ "source": [ "## Dataset Preprocessing\n", "\n", - "Before we start to train our adapter, we first prepare the training data. Our training dataset can be loaded via HuggingFace `datasets` using one line of code:" + "Before we start to train our adapter, we first prepare the training data. The XSum dataset can be loaded via HuggingFace `datasets`.\n", + "\n", + "**Note:** To keep training time short in this notebook, we only load a small subset of the full dataset. For good results, make sure to train on the full dataset." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -161,130 +163,7 @@ "id": "LCLS9RYeK83s", "outputId": "f28e27b1-a459-47e1-e1cf-3f2283e893bb" }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Downloading builder script: 0%| | 0.00/5.76k [00:00\n", + "\n", + "\n", + "\n", + "We can see that UniPELT is built from three well-known single adapter methods: 1) LoRA, 2) Prefix Tuning and 3) Sequential Bottleneck.\n", + "\n", + "_Adapters_ provides an easy way to flexibly build these composed configurations: [`ConfigUnion`](https://docs.adapterhub.ml/classes/adapter_config.html#adapters.ConfigUnion). `ConfigUnion` basically acts as a container holding multiple child adapter configs. [Learn more](https://docs.adapterhub.ml/method_combinations.html).\n", + "\n", + "With `ConfigUnion`, we can define UniPELT as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from adapters import ConfigUnion, PrefixTuningConfig, SeqBnConfig, LoRAConfig\n", + "\n", + "config = ConfigUnion(\n", + " LoRAConfig(r=8, use_gating=True),\n", + " PrefixTuningConfig(prefix_length=10, use_gating=True),\n", + " SeqBnConfig(reduction_factor=16, use_gating=True),\n", + ")" + ] + }, { "cell_type": "markdown", "metadata": { "id": "QY4Xiy9iLOVO" }, "source": [ - "**Here comes the important part!**\n", "\n", - "We add a new adapter to our model by calling `add_adapter()`. We pass a name (`\"xsum\"`) and an adapter configuration. `\"bn_seq\"` denotes a [sequential bottleneck adapter](https://docs.adapterhub.ml/methods.html#bottleneck-adapters) configuration.\n", - "_Adapters_ supports a diverse range of different adapter configurations. For example, `config=\"lora\"` can be passed for training a [LoRA](https://docs.adapterhub.ml/methods.html#lora) adapter or `config=\"prefix_tuning\"` for a [prefix tuning](https://docs.adapterhub.ml/methods.html#prefix-tuning). You can find all currently supported configs [here](https://docs.adapterhub.ml/methods.html#prefix-tuning). In this case we use a complex `ConfigUnion` to combine multiple adapter methods to achieve a [unipelt setup](https://docs.adapterhub.ml/method_combinations.html#unipelt)\n", + "We now add a new adapter to our model by calling `add_adapter()`. We pass the name (`\"xsum\"`) and the adapter configuration we defined using `ConfigUnion`.\n", "\n", "Next, we add a seq2seq head. It's convenient to give the prediction head the same name as the adapter. This allows us to activate both together in the next step. The `train_adapter()` method does two things:\n", "\n", @@ -505,19 +395,8 @@ }, "outputs": [], "source": [ - "from adapters import ConfigUnion, PrefixTuningConfig, SeqBnConfig, LoRAConfig\n", - "\n", - "# Add a new unipelt adapter\n", - "config = ConfigUnion(\n", - " LoRAConfig(r=8, use_gating=True),\n", - " PrefixTuningConfig(prefix_length=10, use_gating=True),\n", - " SeqBnConfig(reduction_factor=16, use_gating=True),\n", - ")\n", "model.add_adapter(\"xsum\", config=config)\n", "\n", - "# Alternatively, e.g.:\n", - "# model.add_adapter(\"rotten_tomatoes\", config=\"lora\")\n", - "\n", "# Add a matching classification head\n", "model.add_seq2seq_lm_head(\"xsum\")\n", "\n", @@ -566,6 +445,13 @@ ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Some additional logic for computing metrics:" + ] + }, { "cell_type": "code", "execution_count": 290, @@ -578,6 +464,8 @@ "from evaluate import load\n", "import nltk\n", "\n", + "nltk.download(\"punkt\")\n", + "\n", "metric = load(\"rouge\")\n", "\n", "def compute_metrics(eval_pred):\n", @@ -625,41 +513,6 @@ ")" ] }, - { - "cell_type": "code", - "source": [ - "import nltk\n", - "nltk.download('punkt')" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "NEHYNBcGke4Q", - "outputId": "b09f85f4-c088-4313-b33f-75f61847451f" - }, - "execution_count": 292, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "[nltk_data] Downloading package punkt to /root/nltk_data...\n", - "[nltk_data] Package punkt is already up-to-date!\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "True" - ] - }, - "metadata": {}, - "execution_count": 292 - } - ] - }, { "cell_type": "markdown", "metadata": { @@ -682,11 +535,7 @@ }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "" - ], "text/html": [ "\n", "
\n", @@ -770,13 +619,17 @@ " \n", " \n", "

" + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1273: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n", " warnings.warn(\n", @@ -787,14 +640,14 @@ ] }, { - "output_type": "execute_result", "data": { "text/plain": [ "TrainOutput(global_step=1878, training_loss=3.978136690279927, metrics={'train_runtime': 985.7264, 'train_samples_per_second': 30.434, 'train_steps_per_second': 1.905, 'total_flos': 5071442595840000.0, 'train_loss': 3.978136690279927, 'epoch': 6.0})" ] }, + "execution_count": 293, "metadata": {}, - "execution_count": 293 + "output_type": "execute_result" } ], "source": [ @@ -823,11 +676,7 @@ }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "" - ], "text/html": [ "\n", "

\n", @@ -836,12 +685,15 @@ " [32/32 00:36]\n", "
\n", " " + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "execute_result", "data": { "text/plain": [ "{'eval_loss': 3.359184503555298,\n", @@ -856,8 +708,9 @@ " 'epoch': 6.0}" ] }, + "execution_count": 294, "metadata": {}, - "execution_count": 294 + "output_type": "execute_result" } ], "source": [ @@ -885,21 +738,21 @@ }, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ "The model 'T5AdapterModel' is not supported for . Supported models are ['BartForConditionalGeneration', 'BigBirdPegasusForConditionalGeneration', 'BlenderbotForConditionalGeneration', 'BlenderbotSmallForConditionalGeneration', 'EncoderDecoderModel', 'FSMTForConditionalGeneration', 'GPTSanJapaneseForConditionalGeneration', 'LEDForConditionalGeneration', 'LongT5ForConditionalGeneration', 'M2M100ForConditionalGeneration', 'MarianMTModel', 'MBartForConditionalGeneration', 'MT5ForConditionalGeneration', 'MvpForConditionalGeneration', 'NllbMoeForConditionalGeneration', 'PegasusForConditionalGeneration', 'PegasusXForConditionalGeneration', 'PLBartForConditionalGeneration', 'ProphetNetForConditionalGeneration', 'SeamlessM4TForTextToText', 'SwitchTransformersForConditionalGeneration', 'T5ForConditionalGeneration', 'UMT5ForConditionalGeneration', 'XLMProphetNetForConditionalGeneration'].\n" ] }, { - "output_type": "execute_result", "data": { "text/plain": [ "[{'summary_text': 'The Disney Princess has a new film that starred in the film \"The Darkness of'}]" ] }, + "execution_count": 295, "metadata": {}, - "execution_count": 295 + "output_type": "execute_result" } ], "source": [ @@ -965,16 +818,7 @@ "id": "78jqOTrLR8HN" }, "source": [ - "This will create a repository _my-awesome-adapter_ under your username, generate a default adapter card as README.md and upload the adapter named `rotten_tomatoes` together with the adapter card to the new repository. Passing `adapterhub_tag` is required to make sure your adapter is features on [adapterhub.ml/explore](https://adapterhub.ml/explore), our Hub page. [Learn more](https://docs.adapterhub.ml/huggingface_hub.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LLU5O1JER8HN" - }, - "source": [ - "➡️ Continue with [the next Colab notebook](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/02_Adapter_Inference.ipynb) to learn how to use adapters from the Hub." + "This will create a repository _my-awesome-adapter_ under your username, generate a default adapter card as README.md and upload the adapter named `xsum` together with the adapter card to the new repository. Passing `adapterhub_tag` is required to make sure your adapter is features on [adapterhub.ml/explore](https://adapterhub.ml/explore), our Hub page. [Learn more](https://docs.adapterhub.ml/huggingface_hub.html)." ] } ], @@ -1001,10 +845,10 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "799ddb94fff34164928166a3b9c1f25f": { + "000408980ba541df83a1bb54a38b791a": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1016,83 +860,71 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_21603eac1b8e46a0b6c29fabd51a3a1a", - "IPY_MODEL_be1d16ae210e4fb9aaec770966e37026", - "IPY_MODEL_da468c563ea94c519f1a4248a140c2ab" + "IPY_MODEL_0bd32de117a246419914e3c59965f402", + "IPY_MODEL_95036eb6c828446bad1aee5dd17258ba", + "IPY_MODEL_7bde20d36afe4ff494a7893def3c8de8" ], - "layout": "IPY_MODEL_4b6de7888ca34e86b7fc53af6c01f997" + "layout": "IPY_MODEL_9d2abdbccd5f491c8148a4e9e9fe811e" } }, - "21603eac1b8e46a0b6c29fabd51a3a1a": { + "07d59fe106324266b862a4258b40c555": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56061c37acae4359b16114d1538c6edf", - "placeholder": "​", - "style": "IPY_MODEL_09c631e83d0e4ce3bf53489dda4aaed0", - "value": "Downloading builder script: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "be1d16ae210e4fb9aaec770966e37026": { + "09c631e83d0e4ce3bf53489dda4aaed0": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_258fb1eaaf7c4eafbe5f27c15b91ac96", - "max": 5758, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f120e0ca40904eb685d71c192c46d085", - "value": 5758 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "da468c563ea94c519f1a4248a140c2ab": { + "0aa296e2ef1b4255bdf9b139c4d1f056": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_16f67d04ce674e3aa199d6c3f4ddeeb3", - "placeholder": "​", - "style": "IPY_MODEL_ac2d36ffcfc3449c9c58e227ac257fe3", - "value": " 5.76k/5.76k [00:00<00:00, 214kB/s]" + "layout": "IPY_MODEL_bfdbea35fa32485782507eb205a2826c", + "max": 1001503, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_93e8215cffc34c1cabeeeaca5848e6b8", + "value": 1001503 } }, - "4b6de7888ca34e86b7fc53af6c01f997": { + "0b7db13383f04f2bbf4746f754606e7a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1141,10 +973,31 @@ "width": null } }, - "56061c37acae4359b16114d1538c6edf": { + "0bd32de117a246419914e3c59965f402": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_66e6cbf4dc5748da89c5056761174998", + "placeholder": "​", + "style": "IPY_MODEL_63b3b86c7eb745d09f02b311f4fa80cd", + "value": "Generating train split: 100%" + } + }, + "0c7137af2b02449ba4f1845e23223261": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1193,25 +1046,10 @@ "width": null } }, - "09c631e83d0e4ce3bf53489dda4aaed0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "258fb1eaaf7c4eafbe5f27c15b91ac96": { + "0cc2cf4417c04091bcbd72d6fb92fe1c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1260,26 +1098,62 @@ "width": null } }, - "f120e0ca40904eb685d71c192c46d085": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", + "0d12ffaa0f65473ba30fac5f380e5631": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "16f67d04ce674e3aa199d6c3f4ddeeb3": { + "0f832da6510f4df694a9d76b36879e68": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1328,10 +1202,10 @@ "width": null } }, - "ac2d36ffcfc3449c9c58e227ac257fe3": { + "11ac8002832c46f3847e2582e85a9a08": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1343,32 +1217,62 @@ "description_width": "" } }, - "7e2da1d810d740e6a23079a795de3e5e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", + "143332052e7941ee92218479164d46bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_154457d60d0c454093b6c1e8803c5698", - "IPY_MODEL_46348706553b487b94c8185a780f22cf", - "IPY_MODEL_bc66d3376ba445549cb3555bdf0979f7" - ], - "layout": "IPY_MODEL_a395ba5eec914e4e96d2e4fb80c94125" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, "154457d60d0c454093b6c1e8803c5698": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1386,55 +1290,32 @@ "value": "Downloading readme: 100%" } }, - "46348706553b487b94c8185a780f22cf": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_143332052e7941ee92218479164d46bd", - "max": 6243, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_307b00fdf879406ab84903186619b328", - "value": 6243 - } - }, - "bc66d3376ba445549cb3555bdf0979f7": { + "155a28d0e35b41048302227e762f48a0": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b7e6c12f17c045a2a6da3473feb3a6c1", - "placeholder": "​", - "style": "IPY_MODEL_61126d24d0fc4833b255cf8f69443454", - "value": " 6.24k/6.24k [00:00<00:00, 287kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_535d678a3f4d48cbadb7f5515bc785b4", + "IPY_MODEL_177f01b58b63442884c6c9c295d16075", + "IPY_MODEL_bb7afe8dc54540588ae1ef1d3c33f011" + ], + "layout": "IPY_MODEL_f47b5fc8249145d98d376ae9847ed216" } }, - "a395ba5eec914e4e96d2e4fb80c94125": { + "16f67d04ce674e3aa199d6c3f4ddeeb3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1483,10 +1364,34 @@ "width": null } }, - "0c7137af2b02449ba4f1845e23223261": { + "177f01b58b63442884c6c9c295d16075": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f4477ba473f440ca3fc5110a533db3d", + "max": 11332, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fbe445ba51d54c9eb4f3731918c42749", + "value": 11332 + } + }, + "19a026a043ab4c3ca70e83268f6486d5": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1535,10 +1440,10 @@ "width": null } }, - "8cefcd5d608a4b9c9cf1e58a7a53fef5": { + "1a781022a9b448328ab70a7c17c0ae89": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1550,10 +1455,10 @@ "description_width": "" } }, - "143332052e7941ee92218479164d46bd": { + "1c79ce71b3d943f792e30b1ded57aecb": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1602,78 +1507,34 @@ "width": null } }, - "307b00fdf879406ab84903186619b328": { + "1fe067e9e9d04ecb98e93785a6d6f4f0": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b7e6c12f17c045a2a6da3473feb3a6c1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37c9ef85427e436b9be728f4862082c9", + "max": 500, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5304bffd1a354a4a8d15d4255bbf850d", + "value": 500 } }, - "61126d24d0fc4833b255cf8f69443454": { + "20627f86d26f4dfabebde438d1a14d41": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1685,32 +1546,25 @@ "description_width": "" } }, - "73d1cd4c73ea49039c1d9ce28d211777": { + "2087c4b4ae994af190399116f93a7437": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e361def49aae4a50868191d662fb7680", - "IPY_MODEL_a5f49a4ef173413b8683b1fddd2ee230", - "IPY_MODEL_7f48995a17e94f54b251011eb38a18c6" - ], - "layout": "IPY_MODEL_2b2e11219a7b40feb18817b8af5296e4" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e361def49aae4a50868191d662fb7680": { + "21603eac1b8e46a0b6c29fabd51a3a1a": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1722,40 +1576,38 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0f832da6510f4df694a9d76b36879e68", + "layout": "IPY_MODEL_56061c37acae4359b16114d1538c6edf", "placeholder": "​", - "style": "IPY_MODEL_952546b7838942ae995dd36116a0a804", - "value": "Downloading data files: 100%" + "style": "IPY_MODEL_09c631e83d0e4ce3bf53489dda4aaed0", + "value": "Downloading builder script: 100%" } }, - "a5f49a4ef173413b8683b1fddd2ee230": { + "2326ea1997844aec8f647dd0bd76949a": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f2ea54c688534830ab0f1bd393a8e228", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c860a847ab5e42a7835596cf83a1ac5f", - "value": 2 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f4a45be5c2174588a1fdf94db78a964a", + "IPY_MODEL_25d44943ec7240f49d956754902f1577", + "IPY_MODEL_232716d4002243b79fcd17107810af9d" + ], + "layout": "IPY_MODEL_f909ec0ef3414bbda0dbaadb5e26e775" } }, - "7f48995a17e94f54b251011eb38a18c6": { + "232716d4002243b79fcd17107810af9d": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1767,16 +1619,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4732e7d36fa047baa961f40e0eca9a44", + "layout": "IPY_MODEL_0cc2cf4417c04091bcbd72d6fb92fe1c", "placeholder": "​", - "style": "IPY_MODEL_383502ba723e4f0dbb3cd714e6994a28", - "value": " 2/2 [00:07<00:00, 3.29s/it]" + "style": "IPY_MODEL_11ac8002832c46f3847e2582e85a9a08", + "value": " 11334/11334 [00:25<00:00, 565.83 examples/s]" } }, - "2b2e11219a7b40feb18817b8af5296e4": { + "258fb1eaaf7c4eafbe5f27c15b91ac96": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1825,10 +1677,34 @@ "width": null } }, - "0f832da6510f4df694a9d76b36879e68": { + "25d44943ec7240f49d956754902f1577": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37c807db4d134069871b8c398650dd4f", + "max": 11334, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_85deadbf4aaa445bac59b09309654c4f", + "value": 11334 + } + }, + "26dea2fec67848368a84c74ef2489bd2": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1877,25 +1753,26 @@ "width": null } }, - "952546b7838942ae995dd36116a0a804": { + "2b0307168ba049d8abeafb1bf63db7d3": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "f2ea54c688534830ab0f1bd393a8e228": { + "2b2e11219a7b40feb18817b8af5296e4": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1944,10 +1821,31 @@ "width": null } }, - "c860a847ab5e42a7835596cf83a1ac5f": { + "2d5a0f2e25bf4ca3b0a13f3af9bd668d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_581a0acca27c4a9084ca32720b1c98ad", + "placeholder": "​", + "style": "IPY_MODEL_20627f86d26f4dfabebde438d1a14d41", + "value": "Map: 100%" + } + }, + "307b00fdf879406ab84903186619b328": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1960,10 +1858,10 @@ "description_width": "" } }, - "4732e7d36fa047baa961f40e0eca9a44": { + "37c807db4d134069871b8c398650dd4f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2012,117 +1910,14 @@ "width": null } }, - "383502ba723e4f0dbb3cd714e6994a28": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", + "37c9ef85427e436b9be728f4862082c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6fa3dad9dad1494e857cb69a063a9d85": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ae71c5392e364d67b725fb4d7215c912", - "IPY_MODEL_5bb84c5a5b1c48458eed1f949c873caa", - "IPY_MODEL_4af51b0bb25a4cf499c332ff0a8e6b75" - ], - "layout": "IPY_MODEL_78bf192c0c0b4a2db0f819a56b790284" - } - }, - "ae71c5392e364d67b725fb4d7215c912": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0b7db13383f04f2bbf4746f754606e7a", - "placeholder": "​", - "style": "IPY_MODEL_9262cb4684594fc3ba19da63f70e0e72", - "value": "Downloading data: 100%" - } - }, - "5bb84c5a5b1c48458eed1f949c873caa": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_26dea2fec67848368a84c74ef2489bd2", - "max": 254582292, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_cd30a514bc9d4568a03fa79d9d06295b", - "value": 254582292 - } - }, - "4af51b0bb25a4cf499c332ff0a8e6b75": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0d12ffaa0f65473ba30fac5f380e5631", - "placeholder": "​", - "style": "IPY_MODEL_8f7c2851a8af4657aa8cb4adb4d7be2a", - "value": " 255M/255M [00:05<00:00, 41.0MB/s]" - } - }, - "78bf192c0c0b4a2db0f819a56b790284": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -2167,10 +1962,25 @@ "width": null } }, - "0b7db13383f04f2bbf4746f754606e7a": { + "383502ba723e4f0dbb3cd714e6994a28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3e7dbe25791f49a4a2e22f818a93d3dc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2219,25 +2029,10 @@ "width": null } }, - "9262cb4684594fc3ba19da63f70e0e72": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "26dea2fec67848368a84c74ef2489bd2": { + "3f4477ba473f440ca3fc5110a533db3d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2286,26 +2081,10 @@ "width": null } }, - "cd30a514bc9d4568a03fa79d9d06295b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0d12ffaa0f65473ba30fac5f380e5631": { + "43901e3784cf4a28a31220355f1c0d2a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2354,10 +2133,10 @@ "width": null } }, - "8f7c2851a8af4657aa8cb4adb4d7be2a": { + "451c29326ed841538fd502e9b71513c7": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2369,53 +2148,10 @@ "description_width": "" } }, - "59dd13c441ce406b96147de93e2e4f85": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f407d6db93d04200a4393773a6c59619", - "IPY_MODEL_0aa296e2ef1b4255bdf9b139c4d1f056", - "IPY_MODEL_f68c4941385141efa44e5eb72311de7c" - ], - "layout": "IPY_MODEL_9e2abe8adaa64590b63049c3b2788b20" - } - }, - "f407d6db93d04200a4393773a6c59619": { + "46348706553b487b94c8185a780f22cf": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43901e3784cf4a28a31220355f1c0d2a", - "placeholder": "​", - "style": "IPY_MODEL_451c29326ed841538fd502e9b71513c7", - "value": "Downloading data: " - } - }, - "0aa296e2ef1b4255bdf9b139c4d1f056": { - "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2428,39 +2164,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bfdbea35fa32485782507eb205a2826c", - "max": 1001503, + "layout": "IPY_MODEL_143332052e7941ee92218479164d46bd", + "max": 6243, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_93e8215cffc34c1cabeeeaca5848e6b8", - "value": 1001503 - } - }, - "f68c4941385141efa44e5eb72311de7c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_19a026a043ab4c3ca70e83268f6486d5", - "placeholder": "​", - "style": "IPY_MODEL_dc41ed508fd141c994f6f3c119201c7e", - "value": " 2.72M/? [00:00<00:00, 13.5MB/s]" + "style": "IPY_MODEL_307b00fdf879406ab84903186619b328", + "value": 6243 } }, - "9e2abe8adaa64590b63049c3b2788b20": { + "4732e7d36fa047baa961f40e0eca9a44": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2509,10 +2224,31 @@ "width": null } }, - "43901e3784cf4a28a31220355f1c0d2a": { + "4af51b0bb25a4cf499c332ff0a8e6b75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0d12ffaa0f65473ba30fac5f380e5631", + "placeholder": "​", + "style": "IPY_MODEL_8f7c2851a8af4657aa8cb4adb4d7be2a", + "value": " 255M/255M [00:05<00:00, 41.0MB/s]" + } + }, + "4b6de7888ca34e86b7fc53af6c01f997": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2561,10 +2297,10 @@ "width": null } }, - "451c29326ed841538fd502e9b71513c7": { + "4df0bfb480cf48bc89b02462114692cc": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2576,11 +2312,48 @@ "description_width": "" } }, - "bfdbea35fa32485782507eb205a2826c": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { + "5304bffd1a354a4a8d15d4255bbf850d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "535d678a3f4d48cbadb7f5515bc785b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_704cb077d15646b9bdead4da478f022c", + "placeholder": "​", + "style": "IPY_MODEL_844c628f795d4f0aa19b389f086dd677", + "value": "Generating validation split: 100%" + } + }, + "558ca25096f34d738b6f3fcb4c942916": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", @@ -2628,26 +2401,84 @@ "width": null } }, - "93e8215cffc34c1cabeeeaca5848e6b8": { + "55eaee128e444763af7ea515be45ec0b": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d63286c4af6b4e639d0bdd040e08834b", + "IPY_MODEL_e9428933942946f987065015a3c1f0e7", + "IPY_MODEL_9435e13da75742a1aa9dbda76848822c" + ], + "layout": "IPY_MODEL_ada4e8599ffd4892baafe488c2230245" + } + }, + "56061c37acae4359b16114d1538c6edf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "19a026a043ab4c3ca70e83268f6486d5": { + "581a0acca27c4a9084ca32720b1c98ad": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2696,25 +2527,31 @@ "width": null } }, - "dc41ed508fd141c994f6f3c119201c7e": { + "58307b2ad68b40bab1102da1f638edc5": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab6a903089f24c908a8be45f0da8d857", + "placeholder": "​", + "style": "IPY_MODEL_2087c4b4ae994af190399116f93a7437", + "value": " 500/500 [00:02<00:00, 251.97 examples/s]" } }, - "000408980ba541df83a1bb54a38b791a": { + "59dd13c441ce406b96147de93e2e4f85": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2726,83 +2563,71 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0bd32de117a246419914e3c59965f402", - "IPY_MODEL_95036eb6c828446bad1aee5dd17258ba", - "IPY_MODEL_7bde20d36afe4ff494a7893def3c8de8" + "IPY_MODEL_f407d6db93d04200a4393773a6c59619", + "IPY_MODEL_0aa296e2ef1b4255bdf9b139c4d1f056", + "IPY_MODEL_f68c4941385141efa44e5eb72311de7c" ], - "layout": "IPY_MODEL_9d2abdbccd5f491c8148a4e9e9fe811e" + "layout": "IPY_MODEL_9e2abe8adaa64590b63049c3b2788b20" } }, - "0bd32de117a246419914e3c59965f402": { + "5bb84c5a5b1c48458eed1f949c873caa": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_66e6cbf4dc5748da89c5056761174998", - "placeholder": "​", - "style": "IPY_MODEL_63b3b86c7eb745d09f02b311f4fa80cd", - "value": "Generating train split: 100%" + "layout": "IPY_MODEL_26dea2fec67848368a84c74ef2489bd2", + "max": 254582292, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cd30a514bc9d4568a03fa79d9d06295b", + "value": 254582292 } }, - "95036eb6c828446bad1aee5dd17258ba": { + "61126d24d0fc4833b255cf8f69443454": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_558ca25096f34d738b6f3fcb4c942916", - "max": 204045, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b0307168ba049d8abeafb1bf63db7d3", - "value": 204045 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7bde20d36afe4ff494a7893def3c8de8": { + "63b3b86c7eb745d09f02b311f4fa80cd": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3e7dbe25791f49a4a2e22f818a93d3dc", - "placeholder": "​", - "style": "IPY_MODEL_4df0bfb480cf48bc89b02462114692cc", - "value": " 204045/204045 [01:00<00:00, 3355.22 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9d2abdbccd5f491c8148a4e9e9fe811e": { + "66e6cbf4dc5748da89c5056761174998": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2851,10 +2676,32 @@ "width": null } }, - "66e6cbf4dc5748da89c5056761174998": { + "6fa3dad9dad1494e857cb69a063a9d85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae71c5392e364d67b725fb4d7215c912", + "IPY_MODEL_5bb84c5a5b1c48458eed1f949c873caa", + "IPY_MODEL_4af51b0bb25a4cf499c332ff0a8e6b75" + ], + "layout": "IPY_MODEL_78bf192c0c0b4a2db0f819a56b790284" + } + }, + "704cb077d15646b9bdead4da478f022c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2903,93 +2750,48 @@ "width": null } }, - "63b3b86c7eb745d09f02b311f4fa80cd": { + "73c5cbeda45043199caed203c3164283": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "558ca25096f34d738b6f3fcb4c942916": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2b0307168ba049d8abeafb1bf63db7d3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", + "73d1cd4c73ea49039c1d9ce28d211777": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e361def49aae4a50868191d662fb7680", + "IPY_MODEL_a5f49a4ef173413b8683b1fddd2ee230", + "IPY_MODEL_7f48995a17e94f54b251011eb38a18c6" + ], + "layout": "IPY_MODEL_2b2e11219a7b40feb18817b8af5296e4" } }, - "3e7dbe25791f49a4a2e22f818a93d3dc": { + "78bf192c0c0b4a2db0f819a56b790284": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3038,25 +2840,10 @@ "width": null } }, - "4df0bfb480cf48bc89b02462114692cc": { + "799ddb94fff34164928166a3b9c1f25f": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "155a28d0e35b41048302227e762f48a0": { - "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3068,17 +2855,17 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_535d678a3f4d48cbadb7f5515bc785b4", - "IPY_MODEL_177f01b58b63442884c6c9c295d16075", - "IPY_MODEL_bb7afe8dc54540588ae1ef1d3c33f011" + "IPY_MODEL_21603eac1b8e46a0b6c29fabd51a3a1a", + "IPY_MODEL_be1d16ae210e4fb9aaec770966e37026", + "IPY_MODEL_da468c563ea94c519f1a4248a140c2ab" ], - "layout": "IPY_MODEL_f47b5fc8249145d98d376ae9847ed216" + "layout": "IPY_MODEL_4b6de7888ca34e86b7fc53af6c01f997" } }, - "535d678a3f4d48cbadb7f5515bc785b4": { + "7bde20d36afe4ff494a7893def3c8de8": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3090,40 +2877,38 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_704cb077d15646b9bdead4da478f022c", + "layout": "IPY_MODEL_3e7dbe25791f49a4a2e22f818a93d3dc", "placeholder": "​", - "style": "IPY_MODEL_844c628f795d4f0aa19b389f086dd677", - "value": "Generating validation split: 100%" + "style": "IPY_MODEL_4df0bfb480cf48bc89b02462114692cc", + "value": " 204045/204045 [01:00<00:00, 3355.22 examples/s]" } }, - "177f01b58b63442884c6c9c295d16075": { + "7e2da1d810d740e6a23079a795de3e5e": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3f4477ba473f440ca3fc5110a533db3d", - "max": 11332, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_fbe445ba51d54c9eb4f3731918c42749", - "value": 11332 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_154457d60d0c454093b6c1e8803c5698", + "IPY_MODEL_46348706553b487b94c8185a780f22cf", + "IPY_MODEL_bc66d3376ba445549cb3555bdf0979f7" + ], + "layout": "IPY_MODEL_a395ba5eec914e4e96d2e4fb80c94125" } }, - "bb7afe8dc54540588ae1ef1d3c33f011": { + "7f48995a17e94f54b251011eb38a18c6": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3135,68 +2920,47 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d1ab22f684c6496795498dea96456944", + "layout": "IPY_MODEL_4732e7d36fa047baa961f40e0eca9a44", "placeholder": "​", - "style": "IPY_MODEL_c6cf3b270f664262b01642c34d83aae0", - "value": " 11332/11332 [00:23<00:00, 549.42 examples/s]" + "style": "IPY_MODEL_383502ba723e4f0dbb3cd714e6994a28", + "value": " 2/2 [00:07<00:00, 3.29s/it]" } }, - "f47b5fc8249145d98d376ae9847ed216": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "844c628f795d4f0aa19b389f086dd677": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "704cb077d15646b9bdead4da478f022c": { + "85deadbf4aaa445bac59b09309654c4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "88e19c4a33be40c28280f219d5c3c515": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3245,10 +3009,25 @@ "width": null } }, - "844c628f795d4f0aa19b389f086dd677": { + "8cefcd5d608a4b9c9cf1e58a7a53fef5": { "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f7c2851a8af4657aa8cb4adb4d7be2a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -3260,10 +3039,101 @@ "description_width": "" } }, - "3f4477ba473f440ca3fc5110a533db3d": { + "9262cb4684594fc3ba19da63f70e0e72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "93e8215cffc34c1cabeeeaca5848e6b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9435e13da75742a1aa9dbda76848822c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c79ce71b3d943f792e30b1ded57aecb", + "placeholder": "​", + "style": "IPY_MODEL_b4edc69e40114db3a2b4b03e1b261e13", + "value": " 5000/5000 [00:19<00:00, 264.11 examples/s]" + } + }, + "95036eb6c828446bad1aee5dd17258ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_558ca25096f34d738b6f3fcb4c942916", + "max": 204045, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b0307168ba049d8abeafb1bf63db7d3", + "value": 204045 + } + }, + "952546b7838942ae995dd36116a0a804": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d2abdbccd5f491c8148a4e9e9fe811e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3312,26 +3182,10 @@ "width": null } }, - "fbe445ba51d54c9eb4f3731918c42749": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1ab22f684c6496795498dea96456944": { + "9e2abe8adaa64590b63049c3b2788b20": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3369,124 +3223,21 @@ "min_width": null, "object_fit": null, "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c6cf3b270f664262b01642c34d83aae0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2326ea1997844aec8f647dd0bd76949a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f4a45be5c2174588a1fdf94db78a964a", - "IPY_MODEL_25d44943ec7240f49d956754902f1577", - "IPY_MODEL_232716d4002243b79fcd17107810af9d" - ], - "layout": "IPY_MODEL_f909ec0ef3414bbda0dbaadb5e26e775" - } - }, - "f4a45be5c2174588a1fdf94db78a964a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fdb6e0bf0c4b440d81087050aac2d9b3", - "placeholder": "​", - "style": "IPY_MODEL_1a781022a9b448328ab70a7c17c0ae89", - "value": "Generating test split: 100%" - } - }, - "25d44943ec7240f49d956754902f1577": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_37c807db4d134069871b8c398650dd4f", - "max": 11334, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_85deadbf4aaa445bac59b09309654c4f", - "value": 11334 - } - }, - "232716d4002243b79fcd17107810af9d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cc2cf4417c04091bcbd72d6fb92fe1c", - "placeholder": "​", - "style": "IPY_MODEL_11ac8002832c46f3847e2582e85a9a08", - "value": " 11334/11334 [00:25<00:00, 565.83 examples/s]" + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f909ec0ef3414bbda0dbaadb5e26e775": { + "a395ba5eec914e4e96d2e4fb80c94125": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3535,10 +3286,34 @@ "width": null } }, - "fdb6e0bf0c4b440d81087050aac2d9b3": { + "a5f49a4ef173413b8683b1fddd2ee230": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2ea54c688534830ab0f1bd393a8e228", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c860a847ab5e42a7835596cf83a1ac5f", + "value": 2 + } + }, + "ab6a903089f24c908a8be45f0da8d857": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3587,10 +3362,10 @@ "width": null } }, - "1a781022a9b448328ab70a7c17c0ae89": { + "ac2d36ffcfc3449c9c58e227ac257fe3": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -3602,10 +3377,10 @@ "description_width": "" } }, - "37c807db4d134069871b8c398650dd4f": { + "ad5a27f51c68434ea7d80f609a8bd654": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3654,26 +3429,10 @@ "width": null } }, - "85deadbf4aaa445bac59b09309654c4f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0cc2cf4417c04091bcbd72d6fb92fe1c": { + "ada4e8599ffd4892baafe488c2230245": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3722,47 +3481,10 @@ "width": null } }, - "11ac8002832c46f3847e2582e85a9a08": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "55eaee128e444763af7ea515be45ec0b": { + "ae71c5392e364d67b725fb4d7215c912": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d63286c4af6b4e639d0bdd040e08834b", - "IPY_MODEL_e9428933942946f987065015a3c1f0e7", - "IPY_MODEL_9435e13da75742a1aa9dbda76848822c" - ], - "layout": "IPY_MODEL_ada4e8599ffd4892baafe488c2230245" - } - }, - "d63286c4af6b4e639d0bdd040e08834b": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3774,61 +3496,31 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cf6e028ad17e4f44910e85715ea55ac3", + "layout": "IPY_MODEL_0b7db13383f04f2bbf4746f754606e7a", "placeholder": "​", - "style": "IPY_MODEL_07d59fe106324266b862a4258b40c555", - "value": "Map: 100%" - } - }, - "e9428933942946f987065015a3c1f0e7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_88e19c4a33be40c28280f219d5c3c515", - "max": 5000, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_73c5cbeda45043199caed203c3164283", - "value": 5000 + "style": "IPY_MODEL_9262cb4684594fc3ba19da63f70e0e72", + "value": "Downloading data: 100%" } }, - "9435e13da75742a1aa9dbda76848822c": { + "b4edc69e40114db3a2b4b03e1b261e13": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1c79ce71b3d943f792e30b1ded57aecb", - "placeholder": "​", - "style": "IPY_MODEL_b4edc69e40114db3a2b4b03e1b261e13", - "value": " 5000/5000 [00:19<00:00, 264.11 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ada4e8599ffd4892baafe488c2230245": { + "b7e6c12f17c045a2a6da3473feb3a6c1": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3877,10 +3569,76 @@ "width": null } }, - "cf6e028ad17e4f44910e85715ea55ac3": { + "bb7afe8dc54540588ae1ef1d3c33f011": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d1ab22f684c6496795498dea96456944", + "placeholder": "​", + "style": "IPY_MODEL_c6cf3b270f664262b01642c34d83aae0", + "value": " 11332/11332 [00:23<00:00, 549.42 examples/s]" + } + }, + "bc66d3376ba445549cb3555bdf0979f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b7e6c12f17c045a2a6da3473feb3a6c1", + "placeholder": "​", + "style": "IPY_MODEL_61126d24d0fc4833b255cf8f69443454", + "value": " 6.24k/6.24k [00:00<00:00, 287kB/s]" + } + }, + "be1d16ae210e4fb9aaec770966e37026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_258fb1eaaf7c4eafbe5f27c15b91ac96", + "max": 5758, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f120e0ca40904eb685d71c192c46d085", + "value": 5758 + } + }, + "bfdbea35fa32485782507eb205a2826c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3929,25 +3687,79 @@ "width": null } }, - "07d59fe106324266b862a4258b40c555": { + "c6cf3b270f664262b01642c34d83aae0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c860a847ab5e42a7835596cf83a1ac5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cb9cedfacba14d5282b1478d55c2075a": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d5a0f2e25bf4ca3b0a13f3af9bd668d", + "IPY_MODEL_1fe067e9e9d04ecb98e93785a6d6f4f0", + "IPY_MODEL_58307b2ad68b40bab1102da1f638edc5" + ], + "layout": "IPY_MODEL_ad5a27f51c68434ea7d80f609a8bd654" + } + }, + "cd30a514bc9d4568a03fa79d9d06295b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "88e19c4a33be40c28280f219d5c3c515": { + "cf6e028ad17e4f44910e85715ea55ac3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3996,26 +3808,10 @@ "width": null } }, - "73c5cbeda45043199caed203c3164283": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1c79ce71b3d943f792e30b1ded57aecb": { + "d1ab22f684c6496795498dea96456944": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4064,47 +3860,67 @@ "width": null } }, - "b4edc69e40114db3a2b4b03e1b261e13": { + "d63286c4af6b4e639d0bdd040e08834b": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cf6e028ad17e4f44910e85715ea55ac3", + "placeholder": "​", + "style": "IPY_MODEL_07d59fe106324266b862a4258b40c555", + "value": "Map: 100%" } }, - "cb9cedfacba14d5282b1478d55c2075a": { + "da468c563ea94c519f1a4248a140c2ab": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2d5a0f2e25bf4ca3b0a13f3af9bd668d", - "IPY_MODEL_1fe067e9e9d04ecb98e93785a6d6f4f0", - "IPY_MODEL_58307b2ad68b40bab1102da1f638edc5" - ], - "layout": "IPY_MODEL_ad5a27f51c68434ea7d80f609a8bd654" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_16f67d04ce674e3aa199d6c3f4ddeeb3", + "placeholder": "​", + "style": "IPY_MODEL_ac2d36ffcfc3449c9c58e227ac257fe3", + "value": " 5.76k/5.76k [00:00<00:00, 214kB/s]" } }, - "2d5a0f2e25bf4ca3b0a13f3af9bd668d": { + "dc41ed508fd141c994f6f3c119201c7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e361def49aae4a50868191d662fb7680": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4116,16 +3932,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_581a0acca27c4a9084ca32720b1c98ad", + "layout": "IPY_MODEL_0f832da6510f4df694a9d76b36879e68", "placeholder": "​", - "style": "IPY_MODEL_20627f86d26f4dfabebde438d1a14d41", - "value": "Map: 100%" + "style": "IPY_MODEL_952546b7838942ae995dd36116a0a804", + "value": "Downloading data files: 100%" } }, - "1fe067e9e9d04ecb98e93785a6d6f4f0": { + "e9428933942946f987065015a3c1f0e7": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4138,39 +3954,34 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_37c9ef85427e436b9be728f4862082c9", - "max": 500, + "layout": "IPY_MODEL_88e19c4a33be40c28280f219d5c3c515", + "max": 5000, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5304bffd1a354a4a8d15d4255bbf850d", - "value": 500 + "style": "IPY_MODEL_73c5cbeda45043199caed203c3164283", + "value": 5000 } }, - "58307b2ad68b40bab1102da1f638edc5": { + "f120e0ca40904eb685d71c192c46d085": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ab6a903089f24c908a8be45f0da8d857", - "placeholder": "​", - "style": "IPY_MODEL_2087c4b4ae994af190399116f93a7437", - "value": " 500/500 [00:02<00:00, 251.97 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ad5a27f51c68434ea7d80f609a8bd654": { + "f2ea54c688534830ab0f1bd393a8e228": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4219,10 +4030,31 @@ "width": null } }, - "581a0acca27c4a9084ca32720b1c98ad": { + "f407d6db93d04200a4393773a6c59619": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43901e3784cf4a28a31220355f1c0d2a", + "placeholder": "​", + "style": "IPY_MODEL_451c29326ed841538fd502e9b71513c7", + "value": "Downloading data: " + } + }, + "f47b5fc8249145d98d376ae9847ed216": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4271,25 +4103,52 @@ "width": null } }, - "20627f86d26f4dfabebde438d1a14d41": { + "f4a45be5c2174588a1fdf94db78a964a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdb6e0bf0c4b440d81087050aac2d9b3", + "placeholder": "​", + "style": "IPY_MODEL_1a781022a9b448328ab70a7c17c0ae89", + "value": "Generating test split: 100%" + } + }, + "f68c4941385141efa44e5eb72311de7c": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_19a026a043ab4c3ca70e83268f6486d5", + "placeholder": "​", + "style": "IPY_MODEL_dc41ed508fd141c994f6f3c119201c7e", + "value": " 2.72M/? [00:00<00:00, 13.5MB/s]" } }, - "37c9ef85427e436b9be728f4862082c9": { + "f909ec0ef3414bbda0dbaadb5e26e775": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4338,10 +4197,10 @@ "width": null } }, - "5304bffd1a354a4a8d15d4255bbf850d": { + "fbe445ba51d54c9eb4f3731918c42749": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4354,10 +4213,10 @@ "description_width": "" } }, - "ab6a903089f24c908a8be45f0da8d857": { + "fdb6e0bf0c4b440d81087050aac2d9b3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4405,25 +4264,10 @@ "visibility": null, "width": null } - }, - "2087c4b4ae994af190399116f93a7437": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } } } } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/notebooks/README.md b/notebooks/README.md index 9063ded11d..996f20f378 100644 --- a/notebooks/README.md +++ b/notebooks/README.md @@ -11,8 +11,6 @@ As adapters is fully compatible with HuggingFace's Transformers, you can also us | Notebook | Description | | |:----------------|:---------------------|--:| | [1: Training an Adapter](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/01_Adapter_Training.ipynb) | How to train a task adapter for a Transformer model | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/01_Adapter_Training.ipynb) | -| [1.a: Text Generation](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/Text_Generation_Training.ipynb) | How to train an adapter for language generation. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/Text_Generation_Training.ipynb) | -| [1.b: Training a NER Adapter](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/Adapter_train_NER_with_id2label.ipynb) | How to train an adapter on a named entity recoginition task. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/Adapter_train_NER_with_id2label.ipynb) | | [2: Using Adapters for Inference](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/02_Adapter_Inference.ipynb) | How to download and use pre-trained adapters from AdapterHub | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/02_Adapter_Inference.ipynb) | ## Chapter 2: Modularity & Composition @@ -22,13 +20,14 @@ As adapters is fully compatible with HuggingFace's Transformers, you can also us | [3: Adapter Fusion](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/03_Adapter_Fusion.ipynb) | How to combine multiple pre-trained adapters on a new task using `Fuse` composition. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/03_Adapter_Fusion.ipynb) | | [4: Cross-lingual Transfer](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/04_Cross_Lingual_Transfer.ipynb) | How to perform zero-shot cross-lingual transfer between tasks using the MAD-X setup (`Stack`). | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/04_Cross_Lingual_Transfer.ipynb) | | [5: Parallel Adapter Inference](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/05_Parallel_Adapter_Inference.ipynb) | Using the `Parallel` composition block for inference. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/05_Parallel_Adapter_Inference.ipynb) | -| [6: Adapter Averaging](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/06_Adapter_Averaging.ipynb) | How to average parameters or outputs of multiple adapters during inference. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/06_Adapter_Averaging.ipynb) | | [7: Complex Adapter Configuration](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/07_Complex_Adapter_Configuration.ipynb) | How to flexibly combine multiple adapter methods in complex setups using `ConfigUnion`. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/07_Complex_Adapter_Configuration.ipynb) | ## Chapter 3: Additional Notebooks | Notebook | Description | | |:----------------|:---------------------|--:| +| [Text Generation](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/Text_Generation_Training.ipynb) | How to train an adapter for language generation. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/Text_Generation_Training.ipynb) | +| [Training a NER Adapter](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/Adapter_train_NER_with_id2label.ipynb) | How to train an adapter on a named entity recoginition task. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/Adapter_train_NER_with_id2label.ipynb) | | [Adapter Drop Training](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/Adapter_Drop_Training.ipynb) | How to train an adapter using AdapterDrop | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/Adapter_Drop_Training.ipynb) | | [Inference example for id2label](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/Adapter_train_NER_with_id2label.ipynb) | How to use the id2label dictionary for inference | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/Adapter_id2label_inference.ipynb) | | [NER on Wikiann](https://github.com/Adapter-Hub/adapters/blob/main/notebooks/08_NER_Wikiann.ipynb) | Evaluating adapters on NER on the wikiann dataset | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Adapter-Hub/adapters/blob/main/notebooks/08_NER_Wikiann.ipynb) |