-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
349 lines (260 loc) · 11.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import theano
from theano import shared
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
import numpy as np
from lasagne.init import GlorotNormal
from raccoon.layers.attention import PositionAttentionLayer
from raccoon.layers.reccurrent import GRULayer
from raccoon.layers.utils import create_uneven_weight
theano.config.floatX = 'float32'
floatX = theano.config.floatX
def logsumexp(x, axis=None):
"""
Efficient log of a sum of exponentials
"""
x_max = T.max(x, axis=axis, keepdims=True)
z = T.log(T.sum(T.exp(x - x_max), axis=axis, keepdims=True)) + x_max
return z.sum(axis=axis)
class MixtureGaussians2D:
def __init__(self, ls_n_in, n_mixtures, initializer, eps=1e-5):
if not isinstance(ls_n_in, (tuple, list)):
ls_n_in = [ls_n_in]
self.n_in = sum(ls_n_in)
self.n_mixtures = n_mixtures
self.eps = eps
self.n_out = (n_mixtures + # proportions
n_mixtures * 2 + # means
n_mixtures * 2 + # stds
n_mixtures + # correlations
1) # bernoulli
w_in_mat = create_uneven_weight(ls_n_in, self.n_out, initializer)
self.w = shared(w_in_mat, 'w_mixt')
self.b = shared(np.random.normal(
0, 0.001, size=(self.n_out,)).astype(floatX), 'b_mixt')
self.params = [self.w, self.b]
def compute_parameters(self, h, bias):
"""
h: (batch or batch*seq, features)
"""
n = self.n_mixtures
out = T.dot(h, self.w) + self.b
prop = T.nnet.softmax(out[:, :n]*(1 + bias))
mean_x = out[:, n:n*2]
mean_y = out[:, n*2:n*3]
std_x = T.exp(out[:, n*3:n*4] - bias) + self.eps
std_y = T.exp(out[:, n*4:n*5] - bias) + self.eps
rho = T.tanh(out[:, n*5:n*6])
rho = (1+rho + self.eps) / (2 + 2*self.eps) - 1
bernoulli = T.nnet.sigmoid(out[:, -1])
bernoulli = (bernoulli + self.eps) / (1 + 2*self.eps)
return prop, mean_x, mean_y, std_x, std_y, rho, bernoulli
def prediction(self, h, bias):
srng = RandomStreams(seed=42)
prop, mean_x, mean_y, std_x, std_y, rho, bernoulli = \
self.compute_parameters(h, bias)
mode = T.argmax(srng.multinomial(pvals=prop, dtype=prop.dtype), axis=1)
v = T.arange(0, mean_x.shape[0])
m_x = mean_x[v, mode]
m_y = mean_y[v, mode]
s_x = std_x[v, mode]
s_y = std_y[v, mode]
r = rho[v, mode]
# cov = r * (s_x * s_y)
normal = srng.normal((h.shape[0], 2))
x = normal[:, 0]
y = normal[:, 1]
# x_n = T.shape_padright(s_x * x + cov * y + m_x)
# y_n = T.shape_padright(s_y * y + cov * x + m_y)
x_n = T.shape_padright(m_x + s_x * x)
y_n = T.shape_padright(m_y + s_y * (x * r + y * T.sqrt(1.-r**2)))
uniform = srng.uniform((h.shape[0],))
pin = T.shape_padright(T.cast(bernoulli > uniform, floatX))
return T.concatenate([x_n, y_n, pin], axis=1)
def apply(self, h_seq, mask_seq, tg_seq):
"""
h_seq: (seq, batch, features)
mask_seq: (seq, batch)
tg_seq: (seq, batch, features=3)
"""
h_seq = T.reshape(h_seq, (-1, h_seq.shape[-1]))
tg_seq = T.reshape(tg_seq, (-1, tg_seq.shape[-1]))
mask_seq = T.reshape(mask_seq, (-1,))
prop, mean_x, mean_y, std_x, std_y, rho, bernoulli = \
self.compute_parameters(h_seq, .0)
tg_x = T.addbroadcast(tg_seq[:, 0:1], 1)
tg_y = T.addbroadcast(tg_seq[:, 1:2], 1)
tg_pin = tg_seq[:, 2]
tg_x_s = (tg_x - mean_x) / std_x
tg_y_s = (tg_y - mean_y) / std_y
z = tg_x_s**2 + tg_y_s**2 - 2*rho*tg_x_s*tg_y_s
buff = 1-rho**2
tmp = (-z / (2 * buff) -
T.log(2*np.pi) - T.log(std_x) - T.log(std_y) - 0.5*T.log(buff) +
T.log(prop))
c = (-logsumexp(tmp, axis=1) -
tg_pin * T.log(bernoulli) -
(1-tg_pin) * T.log(1 - bernoulli))
c = T.sum(c * mask_seq) / T.sum(mask_seq)
c.name = 'negll'
max_prop = T.argmax(prop, axis=1).mean()
max_prop.name = 'max_prop'
std_max_prop = T.argmax(prop, axis=1).std()
std_max_prop.name = 'std_max_prop'
return c, [c, max_prop, std_max_prop]
class UnconditionedModel:
def __init__(self, gain_ini, n_hidden, n_mixtures):
ini = GlorotNormal(gain_ini)
self.gru_layer = GRULayer(3, n_hidden, ini)
self.mixture = MixtureGaussians2D(n_hidden, n_mixtures, ini)
self.params = self.gru_layer.params + self.mixture.params
def apply(self, seq_pt, seq_mask, seq_tg, h_ini):
seq_h, scan_updates = self.gru_layer.apply(seq_pt, seq_mask, h_ini)
loss, monitoring = self.mixture.apply(seq_h, seq_mask, seq_tg)
h_mean = seq_h.mean()
h_mean.name = 'h_mean'
monitoring.append(h_mean)
return loss, [(h_ini, seq_h[-1])] + scan_updates, monitoring
def prediction(self, pt_ini, h_ini, bias=.0, n_steps=500):
def gru_step(pt_pre, h_pre):
h = self.gru_layer.step(pt_pre, h_pre,
mask=None, process_inputs=True)
pt = self.mixture.prediction(h, bias)
return pt, h
res, scan_updates = theano.scan(
fn=gru_step,
outputs_info=[pt_ini, h_ini],
n_steps=n_steps)
return res[0], scan_updates
class ConditionedModel:
def __init__(self, gain_ini, n_hidden, n_chars, n_mixt_attention,
n_mixtures):
"""
Parameters
----------
n_mixt_attention: int
Number of mixtures used by the attention mechanism
n_chars: int
Number of different characters
n_mixtures: int
Number of mixtures in the Gaussian Mixture model
"""
self.n_hidden = n_hidden
self.n_chars = n_chars
self.n_mixt_attention = n_mixt_attention
self.n_mixtures = n_mixtures
ini = GlorotNormal(gain_ini)
self.pos_layer = PositionAttentionLayer(
GRULayer([3, self.n_chars], n_hidden, ini),
self.n_chars,
self.n_mixt_attention, ini)
self.mixture = MixtureGaussians2D([n_hidden, self.n_chars],
n_mixtures, ini)
self.params = self.pos_layer.params + self.mixture.params
def apply(self, seq_pt, seq_mask, seq_tg, seq_str, seq_str_mask,
h_ini, k_ini, w_ini):
"""
Parameters
----------
seq_pt: (length_pt_seq, batch_size, 3)
seq_mask: (length_pt_seq, batch_size)
seq_tg: (length_pt_seq, batch_size, 3)
seq_str: (length_str_seq, batch_size)
Each character is represented by an integer
seq_str_mask: (length_str_seq, batch_size)
h_ini: (batch_size, n_hidden)
k_ini: (batch_size, n_mixture_attention)
w_ini: (batch_size, n_chars)
"""
# Convert the integers representing chars into one-hot encodings
# seq_str will have shape (seq_length, batch_size, n_chars)
seq_str = T.eye(self.n_chars, dtype=floatX)[seq_str]
(seq_h, seq_k, seq_w), scan_updates = self.pos_layer.apply(
seq_pt, seq_mask, seq_str, seq_str_mask,
h_ini, k_ini, w_ini)
seq_h_conc = T.concatenate([seq_h, seq_w], axis=-1)
loss, monitoring = self.mixture.apply(seq_h_conc, seq_mask, seq_tg)
updates = [(h_ini, seq_h[-1]), (k_ini, seq_k[-1]), (w_ini, seq_w[-1])]
# Monitoring variables
monitoring.extend(
self.create_monitoring_variables(seq_h, seq_k, seq_w, seq_mask))
return loss, updates + scan_updates, monitoring
def prediction(self, pt_ini, seq_str, seq_str_mask,
h_ini, k_ini, w_ini, bias=.0, n_steps=10000):
"""
Parameters
----------
pt_ini: (batch_size, 3)
seq_str: (length_str_seq, batch_size)
seq_str_mask: (length_str_seq, batch_size)
h_ini: (batch_size, n_hidden)
k_ini: (batch_size, n_mixture_attention)
w_ini: (batch_size, n_chars)
bias: float
The bias that controls the variance of the generation
n_steps: int
The maximal number of generation steps.
"""
# Convert the integers representing chars into one-hot encodings
# seq_str will have shape (seq_length, batch_size, n_chars)
seq_str = T.eye(self.n_chars, dtype=floatX)[seq_str]
batch_size = pt_ini.shape[0]
def scan_step(pt_pre, h_pre, k_pre, w_pre, mask,
seq_str, seq_str_mask, bias):
h, a, k, p, w = self.pos_layer.step(
pt_pre, h_pre, k_pre, w_pre,
seq_str, seq_str_mask, mask=mask)
h_conc = T.concatenate([h, w], axis=-1)
pt = self.mixture.prediction(h_conc, bias)
# ending condition
last_char = T.cast(T.sum(seq_str_mask, axis=0)-1, 'int32')
last_phi = p[last_char, T.arange(last_char.shape[0])]
max_phi = T.max(p, axis=0)
condition = last_phi >= 0.95*max_phi
mask = T.switch(condition, .0, mask)
return ((pt, h, a, k, p, w, mask),
theano.scan_module.until(T.all(mask < 1.)))
(seq_pt, _, seq_a, seq_k, seq_p, seq_w, seq_mask), scan_updates = \
theano.scan(
fn=scan_step,
outputs_info=[pt_ini, h_ini, None, k_ini, None, w_ini,
T.alloc(1., batch_size)],
non_sequences=[seq_str, seq_str_mask, bias],
n_steps=n_steps)
return (seq_pt, seq_a, seq_k, seq_p, seq_w, seq_mask), scan_updates
def create_monitoring_variables(self, seq_h, seq_k, seq_w, seq_mask):
"""
seq_h: (length_pt_seq, batch_size, n_hidden)
seq_k: (length_pt_seq, batch_size, n_mixt)
"""
seq_h = seq_h * seq_mask[:, :, None]
seq_k = seq_k * seq_mask[:, :, None]
seq_w = seq_w * seq_mask[:, :, None]
n = seq_mask[:, :, None].sum()
seq_h_mean = T.sum(seq_h.mean(axis=-1)) / n
seq_h_mean.name = 'seq_h_mean'
seq_k_mean = T.sum(seq_k.mean(axis=-1)) / n
seq_k_mean.name = 'seq_k_mean'
seq_w_mean = T.sum(seq_w.mean(axis=-1)) / n
seq_w_mean.name = 'seq_w_mean'
return [seq_h_mean, seq_k_mean, seq_w_mean]
def create_shared_init_states(self, batch_size):
def create_shared(size, name):
return theano.shared(np.zeros(size, floatX), name)
h_ini = create_shared((batch_size, self.n_hidden), 'h_ini')
k_ini = create_shared((batch_size, self.n_mixt_attention), 'k_ini')
w_ini = create_shared((batch_size, self.n_chars), 'w_ini')
return h_ini, k_ini, w_ini
def reset_shared_init_states(self, h_ini, k_ini, w_ini, batch_size):
def set_value(var, size):
var.set_value(np.zeros(size, dtype=floatX))
set_value(h_ini, (batch_size, self.n_hidden))
set_value(k_ini, (batch_size, self.n_mixt_attention))
set_value(w_ini, (batch_size, self.n_chars))
def create_sym_init_states(self):
pt_ini = T.matrix('pt_pred', floatX)
h_ini_pred = T.matrix('h_ini_pred', floatX)
k_ini_pred = T.matrix('k_ini_pred', floatX)
w_ini_pred = T.matrix('w_ini_pred', floatX)
bias = T.scalar('bias_generation_pred', floatX)
return pt_ini, h_ini_pred, k_ini_pred, w_ini_pred, bias