-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCaptureReferenceImage.py
69 lines (56 loc) · 1.91 KB
/
CaptureReferenceImage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2 as cv
import time
# setting parameters
CONFIDENCE_THRESHOLD = 0.5
NMS_THRESHOLD = 0.5
# colors for object detected
COLORS = [(0, 255, 255), (255, 255, 0), (0, 255, 0), (255, 0, 0)]
GREEN = (0, 255, 0)
RED = (0, 0, 255)
PINK = (147, 20, 255)
ORANGE = (0, 69, 255)
fonts = cv.FONT_HERSHEY_COMPLEX
# reading class name from text file
class_names = []
with open("classes.txt", "r") as f:
class_names = [cname.strip() for cname in f.readlines()]
# setttng up opencv net
yoloNet = cv.dnn.readNet('yolov4-tiny.weights', 'yolov4-tiny.cfg')
yoloNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
yoloNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA_FP16)
model = cv.dnn_DetectionModel(yoloNet)
model.setInputParams(size=(416, 416), scale=1/255, swapRB=True)
# setting camera
def ObjectDetector(image):
classes, scores, boxes = model.detect(
image, CONFIDENCE_THRESHOLD, NMS_THRESHOLD)
for (classid, score, box) in zip(classes, scores, boxes):
color = COLORS[int(classid) % len(COLORS)]
label = "%s : %f" % (class_names[classid[0]], score)
cv.rectangle(image, box, color, 2)
cv.putText(frame, label, (box[0], box[1]-10), fonts, 0.5, color, 2)
camera = cv.VideoCapture(0)
counter = 0
capture = False
number = 0
while True:
ret, frame = camera.read()
orignal = frame.copy()
ObjectDetector(frame)
cv.imshow('oringal', orignal)
print(capture == True and counter < 10)
if capture == True and counter < 10:
counter += 1
cv.putText(
frame, f"Capturing Img No: {number}", (30, 30), fonts, 0.6, PINK, 2)
else:
counter = 0
cv.imshow('frame', frame)
key = cv.waitKey(1)
if key == ord('c'):
capture = True
number += 1
cv.imwrite(f'ReferenceImages/image{number}.png', orignal)
if key == ord('q'):
break
cv.destroyAllWindows()