diff --git a/Asthma Disease Detection/Models/README.md b/Asthma Disease Detection/Models/README.md new file mode 100644 index 000000000..0222a0acd --- /dev/null +++ b/Asthma Disease Detection/Models/README.md @@ -0,0 +1,59 @@ +# Asthma Disease Detection - Models + +## Models Implemented +- Logistic Regression +- Random Forest +- Gradient Boosting +- Support Vector Machine +- XGBoost +- K-Nearest Neighbors +- AdaBoost +- Extra Trees +- Bagging +- CatBoost +- LightGBM +- Naive Bayes +- Decision Tree +- Stacking Classifier + +## Performance of the Models based on Accuracy Scores +- Logistic Regression: 95.20% +- Random Forest: 95.20% +- Gradient Boosting: 94.99% +- Support Vector Machine: 95.20% +- XGBoost: 95.20% +- K-Nearest Neighbors: 95.20% +- AdaBoost: 95.20% +- Extra Trees: 95.20% +- Bagging: 94.78% +- CatBoost: 95.20% +- LightGBM: 95.20% +- Naive Bayes: 95.20% +- Decision Tree: 87.47% +- Stacking Classifier: 95.20% + +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_2.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_4.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_6.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_8.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_10.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_12.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_14.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_16.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_18.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_20.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_22.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_24.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_26.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___23_28.png?raw=true) +![EDA](https://github.com/adi271001/ML-Crate/blob/Asthma-Disease/Asthma%20Disease%20Detection/Images/__results___24_0.png?raw=true) + +## Conclusion +The Logistic Regression, Random Forest, Support Vector Machine, XGBoost, K-Nearest Neighbors, AdaBoost, Extra Trees, CatBoost, LightGBM, Naive Bayes, and Stacking Classifier all achieved the highest accuracy of 95.20%. The Decision Tree model performed the worst with an accuracy of 87.47%. Ensemble methods and gradient boosting techniques tend to perform well on this dataset, indicating their robustness in handling complex patterns and interactions within the data. + +## Signature +**Name:** Aditya D +**Github:** [https://www.github.com/adi271001](https://www.github.com/adi271001) +**LinkedIn:** [https://www.linkedin.com/in/aditya-d-23453a179/](https://www.linkedin.com/in/aditya-d-23453a179/) +**Topmate:** [https://topmate.io/aditya_d/](https://topmate.io/aditya_d/) +**Twitter:** [https://x.com/ADITYAD29257528](https://x.com/ADITYAD29257528)