-
Notifications
You must be signed in to change notification settings - Fork 640
/
r_learning_tensorflow.py
216 lines (178 loc) · 6.86 KB
/
r_learning_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gym
import numpy as np
import tensorflow as tf
import matplotlib.pylab as plt
import random
import math
MAX_EPSILON = 1
MIN_EPSILON = 0.01
LAMBDA = 0.0001
GAMMA = 0.99
BATCH_SIZE = 50
class Model:
def __init__(self, num_states, num_actions, batch_size):
self._num_states = num_states
self._num_actions = num_actions
self._batch_size = batch_size
# define the placeholders
self._states = None
self._actions = None
# the output operations
self._logits = None
self._optimizer = None
self._var_init = None
# now setup the model
self._define_model()
def _define_model(self):
self._states = tf.placeholder(shape=[None, self._num_states], dtype=tf.float32)
self._q_s_a = tf.placeholder(shape=[None, self._num_actions], dtype=tf.float32)
# create a couple of fully connected hidden layers
fc1 = tf.layers.dense(self._states, 50, activation=tf.nn.relu)
fc2 = tf.layers.dense(fc1, 50, activation=tf.nn.relu)
self._logits = tf.layers.dense(fc2, self._num_actions)
loss = tf.losses.mean_squared_error(self._q_s_a, self._logits)
self._optimizer = tf.train.AdamOptimizer().minimize(loss)
self._var_init = tf.global_variables_initializer()
def predict_one(self, state, sess):
return sess.run(self._logits, feed_dict={self._states:
state.reshape(1, self.num_states)})
def predict_batch(self, states, sess):
return sess.run(self._logits, feed_dict={self._states: states})
def train_batch(self, sess, x_batch, y_batch):
sess.run(self._optimizer, feed_dict={self._states: x_batch, self._q_s_a: y_batch})
@property
def num_states(self):
return self._num_states
@property
def num_actions(self):
return self._num_actions
@property
def batch_size(self):
return self._batch_size
@property
def var_init(self):
return self._var_init
class Memory:
def __init__(self, max_memory):
self._max_memory = max_memory
self._samples = []
def add_sample(self, sample):
self._samples.append(sample)
if len(self._samples) > self._max_memory:
self._samples.pop(0)
def sample(self, no_samples):
if no_samples > len(self._samples):
return random.sample(self._samples, len(self._samples))
else:
return random.sample(self._samples, no_samples)
class GameRunner:
def __init__(self, sess, model, env, memory, max_eps, min_eps,
decay, render=True):
self._sess = sess
self._env = env
self._model = model
self._memory = memory
self._render = render
self._max_eps = max_eps
self._min_eps = min_eps
self._decay = decay
self._eps = self._max_eps
self._steps = 0
self._reward_store = []
self._max_x_store = []
def run(self):
state = self._env.reset()
tot_reward = 0
max_x = -100
while True:
if self._render:
self._env.render()
action = self._choose_action(state)
next_state, reward, done, info = self._env.step(action)
if next_state[0] >= 0.1:
reward += 10
elif next_state[0] >= 0.25:
reward += 20
elif next_state[0] >= 0.5:
reward += 100
if next_state[0] > max_x:
max_x = next_state[0]
# is the game complete? If so, set the next state to
# None for storage sake
if done:
next_state = None
self._memory.add_sample((state, action, reward, next_state))
self._replay()
# exponentially decay the eps value
self._steps += 1
self._eps = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) \
* math.exp(-LAMBDA * self._steps)
# move the agent to the next state and accumulate the reward
state = next_state
tot_reward += reward
# if the game is done, break the loop
if done:
self._reward_store.append(tot_reward)
self._max_x_store.append(max_x)
break
print("Step {}, Total reward: {}, Eps: {}".format(self._steps, tot_reward, self._eps))
def _choose_action(self, state):
if random.random() < self._eps:
return random.randint(0, self._model.num_actions - 1)
else:
return np.argmax(self._model.predict_one(state, self._sess))
def _replay(self):
batch = self._memory.sample(self._model.batch_size)
states = np.array([val[0] for val in batch])
next_states = np.array([(np.zeros(self._model.num_states)
if val[3] is None else val[3]) for val in batch])
# predict Q(s,a) given the batch of states
q_s_a = self._model.predict_batch(states, self._sess)
# predict Q(s',a') - so that we can do gamma * max(Q(s'a')) below
q_s_a_d = self._model.predict_batch(next_states, self._sess)
# setup training arrays
x = np.zeros((len(batch), self._model.num_states))
y = np.zeros((len(batch), self._model.num_actions))
for i, b in enumerate(batch):
state, action, reward, next_state = b[0], b[1], b[2], b[3]
# get the current q values for all actions in state
current_q = q_s_a[i]
# update the q value for action
if next_state is None:
# in this case, the game completed after action, so there is no max Q(s',a')
# prediction possible
current_q[action] = reward
else:
current_q[action] = reward + GAMMA * np.amax(q_s_a_d[i])
x[i] = state
y[i] = current_q
self._model.train_batch(self._sess, x, y)
@property
def reward_store(self):
return self._reward_store
@property
def max_x_store(self):
return self._max_x_store
if __name__ == "__main__":
env_name = 'MountainCar-v0'
env = gym.make(env_name)
num_states = env.env.observation_space.shape[0]
num_actions = env.env.action_space.n
model = Model(num_states, num_actions, BATCH_SIZE)
mem = Memory(50000)
with tf.Session() as sess:
sess.run(model.var_init)
gr = GameRunner(sess, model, env, mem, MAX_EPSILON, MIN_EPSILON,
LAMBDA)
num_episodes = 300
cnt = 0
while cnt < num_episodes:
if cnt % 10 == 0:
print('Episode {} of {}'.format(cnt+1, num_episodes))
gr.run()
cnt += 1
plt.plot(gr.reward_store)
plt.show()
plt.close("all")
plt.plot(gr.max_x_store)
plt.show()