forked from miladmozafari/SpykeTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
KheradpishehDeep.py
215 lines (190 loc) · 7.84 KB
/
KheradpishehDeep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
###################################################################################
# Reimplementation of the Digit Recognition Experiment (MNIST) Performed in: #
# https://www.sciencedirect.com/science/article/pii/S0893608017302903 #
# #
# Reference: #
# Kheradpisheh, Saeed Reza, et al. #
# "STDP-based spiking deep convolutional neural networks for object recognition." #
# Neural Networks 99 (2018): 56-67. #
# #
###################################################################################
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torch.nn.parameter import Parameter
import torchvision
import numpy as np
from SpykeTorch import snn
from SpykeTorch import functional as sf
from SpykeTorch import visualization as vis
from SpykeTorch import utils
from torchvision import transforms
use_cuda = True
class KheradpishehMNIST(nn.Module):
def __init__(self):
super(KheradpishehMNIST, self).__init__()
self.conv1 = snn.Convolution(2, 32, 5, 0.8, 0.05)
self.conv1_t = 10
self.k1 = 5
self.r1 = 2
self.conv2 = snn.Convolution(32, 150, 2, 0.8, 0.05)
self.conv2_t = 1
self.k2 = 8
self.r2 = 1
self.stdp1 = snn.STDP(self.conv1, (0.004, -0.003))
self.stdp2 = snn.STDP(self.conv2, (0.004, -0.003))
self.max_ap = Parameter(torch.Tensor([0.15]))
self.ctx = {"input_spikes":None, "potentials":None, "output_spikes":None, "winners":None}
self.spk_cnt1 = 0
self.spk_cnt2 = 0
def save_data(self, input_spike, potentials, output_spikes, winners):
self.ctx["input_spikes"] = input_spike
self.ctx["potentials"] = potentials
self.ctx["output_spikes"] = output_spikes
self.ctx["winners"] = winners
def forward(self, input, max_layer):
input = sf.pad(input.float(), (2,2,2,2), 0)
if self.training:
pot = self.conv1(input)
spk, pot = sf.fire(pot, self.conv1_t, True)
if max_layer == 1:
self.spk_cnt1 += 1
if self.spk_cnt1 >= 500:
self.spk_cnt1 = 0
ap = torch.tensor(self.stdp1.learning_rate[0][0].item(), device=self.stdp1.learning_rate[0][0].device) * 2
ap = torch.min(ap, self.max_ap)
an = ap * -0.75
self.stdp1.update_all_learning_rate(ap.item(), an.item())
pot = sf.pointwise_inhibition(pot)
spk = pot.sign()
winners = sf.get_k_winners(pot, self.k1, self.r1, spk)
self.save_data(input, pot, spk, winners)
return spk, pot
spk_in = sf.pad(sf.pooling(spk, 2, 2, 1), (1,1,1,1))
spk_in = sf.pointwise_inhibition(spk_in)
pot = self.conv2(spk_in)
spk, pot = sf.fire(pot, self.conv2_t, True)
if max_layer == 2:
pot = sf.pointwise_inhibition(pot)
spk = pot.sign()
winners = sf.get_k_winners(pot, self.k2, self.r2, spk)
self.save_data(spk_in, pot, spk, winners)
return spk, pot
spk_out = sf.pooling(spk, 2, 2, 1)
return spk_out
else:
pot = self.conv1(input)
spk, pot = sf.fire(pot, self.conv1_t, True)
pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2, 1), (1,1,1,1)))
spk, pot = sf.fire(pot, self.conv2_t, True)
spk = sf.pooling(spk, 2, 2, 1)
return spk
def stdp(self, layer_idx):
if layer_idx == 1:
self.stdp1(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
if layer_idx == 2:
self.stdp2(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"], self.ctx["winners"])
def train_unsupervise(network, data, layer_idx):
network.train()
for i in range(len(data)):
data_in = data[i]
if use_cuda:
data_in = data_in.cuda()
network(data_in, layer_idx)
network.stdp(layer_idx)
def test(network, data, target, layer_idx):
network.eval()
ans = [None] * len(data)
t = [None] * len(data)
for i in range(len(data)):
data_in = data[i]
if use_cuda:
data_in = data_in.cuda()
output,_ = network(data_in, layer_idx).max(dim = 0)
ans[i] = output.reshape(-1).cpu().numpy()
t[i] = target[i]
return np.array(ans), np.array(t)
class S1Transform:
def __init__(self, filter, timesteps = 15):
self.to_tensor = transforms.ToTensor()
self.filter = filter
self.temporal_transform = utils.Intensity2Latency(timesteps)
self.cnt = 0
def __call__(self, image):
if self.cnt % 1000 == 0:
print(self.cnt)
self.cnt+=1
image = self.to_tensor(image) * 255
image.unsqueeze_(0)
image = self.filter(image)
image = sf.local_normalization(image, 8)
temporal_image = self.temporal_transform(image)
return temporal_image.sign().byte()
kernels = [ utils.DoGKernel(7,1,2),
utils.DoGKernel(7,2,1),]
filter = utils.Filter(kernels, padding = 3, thresholds = 50)
s1 = S1Transform(filter)
data_root = "data"
MNIST_train = utils.CacheDataset(torchvision.datasets.MNIST(root=data_root, train=True, download=True, transform = s1))
MNIST_test = utils.CacheDataset(torchvision.datasets.MNIST(root=data_root, train=False, download=True, transform = s1))
MNIST_loader = DataLoader(MNIST_train, batch_size=len(MNIST_train), shuffle=False)
MNIST_testLoader = DataLoader(MNIST_test, batch_size=len(MNIST_test), shuffle=False)
kheradpisheh = KheradpishehMNIST()
if use_cuda:
kheradpisheh.cuda()
# Training The First Layer
print("Training the first layer")
if os.path.isfile("saved_l1.net"):
kheradpisheh.load_state_dict(torch.load("saved_l1.net"))
else:
for epoch in range(2):
print("Epoch", epoch)
iter = 0
for data,_ in MNIST_loader:
print("Iteration", iter)
train_unsupervise(kheradpisheh, data, 1)
print("Done!")
iter+=1
torch.save(kheradpisheh.state_dict(), "saved_l1.net")
# Training The Second Layer
print("Training the second layer")
if os.path.isfile("saved_l2.net"):
kheradpisheh.load_state_dict(torch.load("saved_l2.net"))
for epoch in range(20):
print("Epoch", epoch)
iter = 0
for data,_ in MNIST_loader:
print("Iteration", iter)
train_unsupervise(kheradpisheh, data, 2)
print("Done!")
iter+=1
torch.save(kheradpisheh.state_dict(), "saved_l2.net")
# Classification
# Get train data
for data,target in MNIST_loader:
train_X, train_y = test(kheradpisheh, data, target, 2)
# Get test data
for data,target in MNIST_testLoader:
test_X, test_y = test(kheradpisheh, data, target, 2)
# SVM
from sklearn.svm import LinearSVC
clf = LinearSVC(C=2.4)
clf.fit(train_X, train_y)
predict_train = clf.predict(train_X)
predict_test = clf.predict(test_X)
def get_performance(X, y, predictions):
correct = 0
silence = 0
for i in range(len(predictions)):
if X[i].sum() == 0:
silence += 1
else:
if predictions[i] == y[i]:
correct += 1
return (correct/len(X), (len(X)-(correct+silence))/len(X), silence/len(X))
print(get_performance(train_X, train_y, predict_train))
print(get_performance(test_X, test_y, predict_test))