-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_model.py
47 lines (37 loc) · 1.26 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import logging, logging.config
from lib.utils.log import LOG_CONFIG
logging.config.dictConfig(LOG_CONFIG)
from lib.utils.cli import CustomCli
import sys
sys.path.append("..")
from lib import testing
from lib.models import *
from lib.datasets import *
def main():
logger = logging.getLogger()
cli = CustomCli(
BoneAgeModel,
HandDatamodule,
run=False,
parser_kwargs={"default_config_files": ["configs/defaults.yml"],},
)
cli.setup_callbacks()
cli.log_info()
try:
cli.examples_to_tb()
logger.info(f"{'=' * 10} start training {'=' * 10}")
cli.trainer.fit(cli.model, cli.datamodule)
cli.log_train_stats()
logger.info(f"{'=' * 10} Testing model {'=' * 10}")
test_ckp_path = cli.get_model_weights()
except Exception:
logger.exception("No training samples, testing only")
test_ckp_path = cli.config["trainer"]["resume_from_checkpoint"]
log_dict = testing.evaluate_bone_age_model(
test_ckp_path, cli.config, cli.trainer.logger.log_dir, cli.trainer
)
cli.model.logger.log_metrics(log_dict)
cli.model.logger.save()
logger.info(f"======= END =========")
if __name__ == "__main__":
main()