-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlits_wa.py
35 lines (27 loc) · 1.07 KB
/
lits_wa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""
Our utility for evaluating LiTS dataset
"""
import os
import argparse
import numpy as np
import re
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model_name', type=str, default='1casLDR_ALDK_Liver')
args = parser.parse_args()
eval_results = os.listdir('evaluate')
full_metrics = list()
for eval_result in eval_results:
if eval_result.find('lits') != -1 and eval_result.find(args.model_name) != -1:
metrics, filename = list(), 'evaluate/' + eval_result
for line in reversed(list(open(filename))):
line = line.rstrip()
if line == "Summary":
full_metrics.append(metrics)
print('=========================')
break
print(line)
metrics.append(float(re.findall("\d+\.\d+", line)[0]) * 1.)
full_metrics = np.asarray(full_metrics, dtype=np.float)
final_eval_output = 'evaluate/' + args.model_name + '_lits.txt'
print("Jacob Det - Land dis - Jacc - Dice", file=open(final_eval_output, "w"))
print(np.mean(full_metrics, axis=0), file=open(final_eval_output, "a"))