-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_q-wyborcy_v2.py
306 lines (251 loc) · 13.4 KB
/
model_q-wyborcy_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import random
from tkinter.constants import BOTTOM, RIGHT, TOP, LEFT
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import tkinter as tk
from tkinter import BooleanVar, DoubleVar, ttk
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from assets import *
from matplotlib.figure import Figure
import matplotlib.animation as animation
def init(percentage, L):
"""Initialize net.
Args:
percentage (float): the ratio of the number of people with a positive opinion to everyone,
L (int): net size.
Returns:
[numpy array]: net with a structured opinion.
"""
N = L**2
p = percentage*N
voters = np.random.permutation([1]*round(p) + [-1]*(N - round(p)))
return voters.reshape((L, L))
def qVoter_model(initialization, opinion, L, q, p, replace, independence=False, anticonformity=False, f=0):
"""Generate q-voter model for one Monte Carlo step.
Args:
initialization (numpy array): init net,
opinion (array): list of average opinions for MC steps,
L (int): net size,
q (int): influence group size,
p (float): probability of nonconformity,
replace (bool): draw neighbors with repeating (when True) and without repeating (when False),
independence (bool, optional): if independence is chosen. Defaults to False.
anticonformity (bool, optional): if anticonformity is chosen. Defaults to False.
f (float, optional): probability of change opinion when independence.
Returns:
[list of arrays]: voters net, avaerage opinion array.
"""
N = L**2
voters = initialization
plus_opinion = np.count_nonzero(voters == 1) #liczymy wyborców z opinią 1
opinion_value = (plus_opinion + (-1)*(N-plus_opinion))/N
opinion.append(opinion_value) #średnia opinia w czasie
for __ in range(N):
#losujemy wyborcę
x, y = random.randint(-1, L-2), random.randint(-1, L-2)
neighbours = [[x-1, y], [x+1, y], [x, y-1], [x, y+1]]
#grupa wpływów = tablica współrzędnych sąsiadów, ich ilość to q, replace odpowiada za powtarzanie losowania sąsiadów
#brzegi
group_of_influence = [neighbours[m] for m in np.random.choice([0,1,2,3], q, replace=replace)]
U = random.random() #losujemy zmienną z przedziału (0, 1)
#jeżeli zmienna jest większa niż prawdopodobieństwo nonkonformizmu, to robimy konformizm
if U > p:
#sumujemy wszystkie opinie sąsiadów i jeżeli grupa jest zgodna, to zmieniamy opinię na opinię grupy
if abs(sum([voters[group_of_influence[i][0], group_of_influence[i][1]] for i in range(q)])) == q:
voters[x, y] = voters[group_of_influence[0][0], group_of_influence[0][1]]
#w przeciwnym wypadku robimy nonkonformizm
else:
if independence == True:
U2 = random.random()
#f - prawdopodobieństwo z jakim zmieniamy opinię
if U2 < f:
voters[x, y] *= -1
#antykonfomizm - jeżeli grupa jest zgodna, to zmieniamy opinię na przeciwną, niż grupa
elif anticonformity == True:
if abs(sum([voters[group_of_influence[i][0], group_of_influence[i][1]] for i in range(q)])) == q:
voters[x, y] = (-1)*voters[group_of_influence[0][0], group_of_influence[0][1]]
return voters, opinion #zwracamy siatkę po jednym kroku, średnią opinię po czasie
class Application(tk.Frame):
"""Create q-voter model application."""
def __init__(self, master=None):
super().__init__(master)
self.master = master
self.master.title("Model Q-wyborcy")
self.master.geometry('950x650')
self.master.configure(background=background_color)
self.pack()
self.stop = False
self.created_labels_and_entry_fields()
self.created_draw_btn()
self.created_stop_btn()
self.created_button_quit()
self.created_continue_btn()
figure = Figure(figsize=(3.5, 3.5), facecolor=background_color)
self.fig = figure
self.ax1 = figure.subplots()
self.ax1.axis("off")
def created_labels_and_entry_fields(self):
"""Create application window elements."""
self.size = tk.Label(self.master, text="Rozmiar układu", background=background_color, font=label_font, justify='center')
self.size.pack(side=TOP)
self.size.place(x=25, y=5)
self.L = tk.IntVar()
self.entry_size = tk.Entry(self.master, width=26, textvariable=self.L, font=label_font, justify='center', border=False)
self.entry_size.pack(side=BOTTOM)
self.entry_size.place(x=25, y=32)
self.influence_size = tk.Label(self.master, text="Rozmiar grupy wpływu", background=background_color, font=label_font, justify='center')
self.influence_size.pack(side=TOP)
self.influence_size.place(x=25, y=67)
self.q = tk.IntVar()
self.entry_influence = ttk.Combobox(self.master, width=21, textvariable=self.q)
self.entry_influence['value'] = (1, 2, 3, 4)
self.entry_influence.current(0)
self.entry_influence.pack(side=BOTTOM)
self.entry_influence.place(x=25, y=90)
self.check_value = BooleanVar()
self.check_repeatment = tk.Checkbutton(self.master, text="Powtarzanie losowania sąsiadów", font=label_font, variable = self.check_value, onvalue = True, offvalue = False, background=background_color)
self.check_repeatment.pack()
self.check_repeatment.place(x=25, y=115)
self.init_positve_opinion = tk.Label(self.master, text="Początkowe zagęszczenie pozytywnej opini", font=label_font, background=background_color)
self.init_positve_opinion.pack()
self.init_positve_opinion.place(x=25, y=155)
self.positive_opinion = DoubleVar()
self.positive_opinion_slider = tk.Scale(self.master, from_ = 0.0, to = 1.0,
orient='horizontal', resolution=0.1, variable=self.positive_opinion, length=200)
self.positive_opinion_slider.pack()
self.positive_opinion_slider.place(x=25, y=179)
self.nonkonfonism_prob = tk.Label(self.master, text="Prawdopodobieństwo nonkonformizu", font=label_font, background=background_color)
self.nonkonfonism_prob.pack()
self.nonkonfonism_prob.place(x=25, y=232)
self.nonkonf_prob = DoubleVar()
self.nonkonf_prob_slider = tk.Scale(self.master, from_ = 0.0, to = 1.0,
orient='horizontal', resolution=0.1, variable=self.nonkonf_prob, length=200)
self.nonkonf_prob_slider.pack()
self.nonkonf_prob_slider.place(x=25, y=256)
self.nonkonfornism_type= tk.Label(self.master, text="Typ nonkonformizu", font=label_font, background=background_color)
self.nonkonfornism_type.pack()
self.nonkonfornism_type.place(x=25, y=305)
self.anticonformity = BooleanVar()
self.check_antykonf = tk.Radiobutton(self.master, text="antykonformizm",font=radiobutton_font, variable=self.anticonformity, value=True, background=background_color)
self.check_antykonf.select()
self.check_antykonf.pack(side=LEFT)
self.check_antykonf.place(x=25, y=327)
self.check_independence = tk.Radiobutton(self.master, text="niezależność", font=radiobutton_font, variable=self.anticonformity, value=False, background=background_color)
self.check_independence.select()
self.check_independence.pack(side=RIGHT)
self.check_independence.place(x=150, y=327)
self.independence_prob = tk.Label(self.master, text="Prawdopodobieństwo zmiany opini przy niezależności",font=label_font, background=background_color)
self.independence_prob.pack()
self.independence_prob.place(x=25, y=360)
self.f= DoubleVar()
self.indepen_prob_slider = tk.Scale(self.master, from_ = 0.0, to = 1.0,
orient='horizontal', resolution=0.1, variable=self.f, length=200)
self.indepen_prob_slider.pack()
self.indepen_prob_slider.place(x=25, y=384)
self.frame = tk.Frame(self.master)
self.frame.place(x=360, y=0)
def animate(self, fig):
"""Generate animation."""
for widget in self.frame.winfo_children():
widget.destroy()
self.independence = not(self.anticonformity.get())
anim = AnimationModel(fig, self.nonkonf_prob.get(), self.positive_opinion.get(), self.check_value.get(), self.L.get(),
self.f.get(), self.q.get(), self.independence, self.anticonformity.get())
return anim
def animation_display(self):
"""Display animation."""
fig = Figure(facecolor=background_color)
self.anim = self.animate(fig)
self.canvas = FigureCanvasTkAgg(fig, master=self.frame)
self.canvas.get_tk_widget().pack()
self.anim.simulation_show()
def pause(self):
"""Pause animation."""
self.anim.anim.event_source.stop()
def continue_anim(self):
"""Start animation after pause."""
self.anim.anim.event_source.start()
def created_draw_btn(self):
"""Create button to start animation."""
self.draw_btn = tk.Button(self.master, text="START", font=('Roboto', 12, 'bold'), foreground=button_text_color, relief="ridge", activebackground=light_green, background=green,
command=self.animation_display)
self.draw_btn.pack()
self.draw_btn.place(x=25, y=450)
def created_stop_btn(self):
""""Create button to stop animation."""
self.stop_btn = tk.Button(self.master, text="STOP", font=('Roboto', 12, 'bold'), foreground=button_text_color, activebackground=light_red, background=red, relief="ridge", command=self.pause)
self.stop_btn.pack()
self.stop_btn.place(x=115, y=450)
def created_continue_btn(self):
"""Create button to continue animation."""
self.continue_btn = tk.Button(self.master, text="WZNÓW", font=('Roboto', 12, 'bold'), foreground=button_text_color, relief="ridge", activebackground=light_orange, background=orange, command=self.continue_anim)
self.continue_btn.pack()
self.continue_btn.place(x=180, y=450)
def created_button_quit(self):
self.quit_btn = tk.Button(self.master, command=self.master.quit, text="ZAKOŃCZ", font=('Roboto', 12, 'bold'), foreground=button_text_color, relief="ridge", activebackground=light_blue, background=dark_blue)
self.quit_btn.pack()
self.quit_btn.place(x=25, y=500)
class AnimationModel:
"""Create q-voter model animation."""
def __init__(self, fig, p, percentege, replace, L, f, q, independence, anticonformity):
self.fig = fig
self.p = p
self.percentege = percentege
self.replace = replace
self.L = L
self.q = q
self.f = f
self.independence = independence
self.anticonformity = anticonformity
self.time = 0
self.opinion = []
self.cmap = matplotlib.colors.ListedColormap([cmap_min_color, cmap_max_color])
self.time_range = [0]
self.initial_plot_set_up()
def initial_plot_set_up(self):
"""Set initial plot parameters."""
self.fig.set_figheight(6)
self.fig.set_figwidth(6)
self.ax1 = self.fig.add_subplot(211)
self.ax1.axis("off")
self.ax2 = self.fig.add_subplot(212)
self.ax2.set_ylim(-1.01, 1.01)
self.ax2.set_title("Średnia opinia zmieniająca się w czasie")
self.ax2.set_ylabel("średnia opinia")
def animate_func(self, j):
"""Create animation."""
#sprawdzamy czy to początek symulacji
if self.time == 0:
#inicjalizacja warunków początkowych
#self.opinion = []
self.initialization = init(self.percentege, self.L)
self.plus_opinion = np.count_nonzero(self.initialization == 1) #liczymy wyborców z opinią 1
self.opinion.append((self.plus_opinion + (-1)*((self.L**2)-self.plus_opinion))/(self.L**2))
self.heat_map = self.ax1.imshow(self.initialization, vmin=-1, vmax=1, cmap=self.cmap)
self.opinion_plot, = self.ax2.plot(self.time_range, self.opinion, color="purple")
else:
self.initialization, self.opinion = qVoter_model(self.initialization, self.opinion, self.L, self.q, self.p, self.replace, independence=self.independence, anticonformity=self.anticonformity, f=self.f)
#ustawienia heatmapy
self.ax1.set_title("{time} [MCS]".format(time=self.time))
self.heat_map.set_array(np.copy(self.initialization)) #aktualizacja heatmapy
#ustawienia wykresu opini
self.ax2.set_xlabel("time [MCS]")
self.ax2.set_xlim(0, self.time)
self.opinion_plot.set_data(np.array(self.time_range), np.array(self.opinion))
self.time += 1
self.time_range.append(self.time) #zakres czasu
return [self.heat_map], self.opinion_plot,
def simulation_show(self):
"""Show animation"""
self.anim = animation.FuncAnimation(
self.fig,
self.animate_func,
interval = 5,
repeat = False,
)
plt.show()
if __name__ == "__main__":
root = tk.Tk()
app = Application(master=root)
app.mainloop()