forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConditionalHelpers.cpp
274 lines (239 loc) · 10.5 KB
/
ConditionalHelpers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "ConditionalHelpers.hpp"
#include "ModelImporter.hpp"
#include "importerUtils.hpp"
#include "toposort.hpp"
namespace onnx2trt
{
using NodeName = std::string;
using LayerName = std::string;
using InputIndex = int32_t;
// A SubgraphPortsMap maps either the inputs or outputs ports of each node in an ONNX graph.
using SubgraphPortsMap = std::unordered_map<nvinfer1::ITensor*, std::set<InputIndex>>;
// An InputsMap tracks which IIfConditionalInputLayer we've added to a layer's inputs,
// so that we can reuse them if needed.
using InputsMap = std::unordered_map<LayerName, nvinfer1::IIfConditionalInputLayer*>;
// Search for a network Layer name in a SubgraphPortsMap using partial (prefix) name matching.
// ONNX nodes are matched to network layers using prefix-matching because an ONNX node may have
// several network layers associcated with it.
SubgraphPortsMap::const_iterator findLayer(const SubgraphPortsMap& inputs, const std::string layerName)
{
return std::find_if(inputs.begin(), inputs.end(), [&](const auto& item) {
std::string const key = item.first->getName();
return layerName.compare(0, key.size(), key) == 0;
});
}
// Add an ConditionalInputLayer between `layer` and its inputs.
// I.e. input[inIdx] -> layer ==> input[inIdx] -> ConditionalInputLayer -> layer.
Status addConditionalInputLayer(ImporterContext* ctx, nvinfer1::IIfConditional* conditional, InputsMap& inputsMap,
nvinfer1::ILayer& layer, int32_t inIdx)
{
auto input = layer.getInput(inIdx);
if (input == nullptr)
{
// Phantom input (an input that is really constant weights).
return Status::success();
}
if (layer.getType() == nvinfer1::LayerType::kCONDITIONAL_OUTPUT)
{
return Status::success();
}
auto const name = input->getName();
auto it = inputsMap.find(name);
nvinfer1::IIfConditionalInputLayer* inputLayer = nullptr;
if (it == inputsMap.end())
{
inputLayer = N_CHECK(conditional->addInput(*input));
inputsMap[name] = inputLayer;
const std::string inputLayerName(name);
ctx->registerLayer(inputLayer, inputLayerName + "_InputLayer", nullptr);
// Note: Since multiple conditionals may use the same external tensor, check unique names for output tensors of
// IfConditionalInputLayers to avoid tensor name duplication.
ctx->registerTensor(
TensorOrWeights{N_CHECK(inputLayer->getOutput(0))}, inputLayerName + "_InputLayer_output", /*checkUniqueName*/ true);
}
else
{
// An InputLayer may in the inputsMap if it has several consumers.
inputLayer = it->second;
}
auto ifOutput = N_CHECK(inputLayer->getOutput(0));
layer.setInput(inIdx, *ifOutput);
return Status::success();
};
// Take a snapshot of the network before and after parsing the subgraph and return a list
// of newly added network layers.
Status importSubgraph(ImporterContext* ctx, ::ONNX_NAMESPACE::GraphProto const& subgraph,
std::vector<nvinfer1::ILayer*>& newLayers, std::vector<TensorOrWeights>& subgraphTensors)
{
auto net = ctx->network();
int32_t beforeSubgraph = net->getNbLayers();
// Establish scope for names local to the subgraph.
NameScope nameScope(*ctx);
std::vector<Status> errors{};
CHECK_STATUS(onnx2trt::parseGraph(ctx, subgraph, errors));
for (int32_t i = 0; i < subgraph.output_size(); ++i)
{
std::string name = subgraph.output(i).name();
subgraphTensors.push_back(ctx->tensors().at(name));
}
for (int32_t i = beforeSubgraph; i < net->getNbLayers(); i++)
{
newLayers.push_back(net->getLayer(i));
}
return Status::success();
}
// Add an IConditionalInputLayer to `layer`'s inputs, if they don't already exist.
Status addConditionalInputIfNeeded(ImporterContext* ctx, nvinfer1::IIfConditional* conditional, InputsMap& inputsMap,
nvinfer1::ILayer& layer, SubgraphPortsMap subgraphInputsMap)
{
// Return all of the layer's inputs that are external to the subgraph that
// that the layer belongs to.
auto getLayerExternalInputs = [&](std::string const& layerName) {
std::set<int32_t> inIndices;
auto iter = findLayer(subgraphInputsMap, layerName);
if (iter != subgraphInputsMap.end())
{
const auto& indicesSet = iter->second;
inIndices.insert(indicesSet.begin(), indicesSet.end());
}
return inIndices;
};
const auto inIndices = getLayerExternalInputs(layer.getName());
for (auto inIdx : inIndices)
{
LOG_VERBOSE("Adding Input layer for " << layer.getName());
addConditionalInputLayer(ctx, conditional, inputsMap, layer, inIdx);
}
return Status::success();
}
// Add IConditionalInputLayers to `layer`'s inputs.
Status addIfInputLayers(ImporterContext* ctx, nvinfer1::IIfConditional* conditional, InputsMap& inputsMap,
const std::vector<nvinfer1::ILayer*>& newLayers)
{
// Find all of the tensors entering the subgraph.
// The node-names are from the ONNX context.
using InputIndex = int32_t;
std::unordered_map<nvinfer1::ITensor*, std::set<InputIndex>> subgraphInputsMap;
getSubgraphInputs(newLayers, subgraphInputsMap);
// Add a ConditionalInputLayer in front of each input that is external to the subgraph.
for (const auto& layer : newLayers)
{
addConditionalInputIfNeeded(ctx, conditional, inputsMap, *layer, subgraphInputsMap);
}
return Status::success();
}
// Given a subgraph, find all of its external inputs/outputs (tensors entering/exiting the subgraph).
Status getSubgraphTensors(const std::vector<nvinfer1::ILayer*>& newLayers,
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>>& externalOutputs, bool extractOutputs,
const std::vector<std::string>* reportedOutputs = nullptr)
{
using NodeName = std::string;
using TensorName = std::string;
using PortIndex = int32_t;
using Port = std::pair<NodeName, PortIndex>;
using TensorsSet = std::unordered_set<nvinfer1::ITensor*>;
TensorsSet outputTensors;
TensorsSet inputTensors;
// To determine which tensors are entering or exiting the given graph, we first collect the sets of all input and
// output tensors. Then we categorize the tensors according to this logic:
// Entering tensors := {inputs} - {outputs}
// Exiting tensors := {outputs} - {inputs}
// Collect all input and output tensors belonging to nodes in the graph.
auto getTensors = [](nvinfer1::ILayer const* l, bool const input, auto inserter) {
auto const count = input ? l->getNbInputs() : l->getNbOutputs();
for (int32_t i = 0; i < count; i++)
{
inserter(input ? l->getInput(i) : l->getOutput(i));
}
};
for (const auto& l : newLayers)
{
getTensors(l, false, [&](nvinfer1::ITensor* t) { outputTensors.insert(t); });
getTensors(l, true, [&](nvinfer1::ITensor* t) { inputTensors.insert(t); });
}
using TensorsVec = std::vector<nvinfer1::ITensor*>;
auto getOutputs = [&](nvinfer1::ILayer const* l, TensorsVec& res) {
getTensors(l, false, [&](nvinfer1::ITensor* t) { res.emplace_back(t); });
};
auto getInputs = [&](nvinfer1::ILayer const* l, TensorsVec& res) {
getTensors(l, true, [&](nvinfer1::ITensor* t) { res.emplace_back(t); });
};
// Retrieve the list of tensors either exiting or entering the subgraph.
std::unordered_map<nvinfer1::ITensor*, std::vector<Port>> externalPortsMap;
auto filterTensors = [&](TensorsSet const& tensors, auto getNodeAccessor) {
for (nvinfer1::ILayer const* l : newLayers)
{
const auto& nodeName = l->getName();
PortIndex i = 0;
TensorsVec nodeAccessor;
getNodeAccessor(l, nodeAccessor);
for (const auto& tensor : nodeAccessor)
{
if (tensor == nullptr)
{
continue;
}
if (tensors.count(tensor) == 0)
{
TensorName tensorName = tensor->getName();
auto prefixFound = false;
if (reportedOutputs)
{
// reportedOutputs are the names of the outputs as reported by the ONNX parser and help
// us further filter the output tensors.
// Exiting tensors := {outputs} - {inputs} - {unreported tensors}
// An example: a Split node is internal to a subgraph and has 4 outputs, but only two are
// connected to the rest of the graph. To prevent mistaking the 2 unused outputs as subgraph
// outputs, we look for them in reportedOutputs which leads us to ignore the 2 tensors.
const auto iter = std::find_if(
reportedOutputs->begin(), reportedOutputs->end(), [&](const auto& outputName) {
// Prefix name matching.
return tensorName.compare(0, outputName.size(), outputName) == 0;
});
prefixFound = iter != reportedOutputs->end();
}
if (!reportedOutputs || prefixFound)
{
externalPortsMap[tensor].push_back(std::make_pair(nodeName, i));
}
}
i++;
}
}
};
if (extractOutputs)
{
filterTensors(inputTensors, getOutputs);
}
else
{
filterTensors(outputTensors, getInputs);
}
// Create the user's view of the external inputs, which uses the node-name as the key for
// looking up input/output port index.
for (auto const& input : externalPortsMap)
{
for (const Port& inPort : input.second)
{
auto* tensor = input.first;
auto const portIndex = inPort.second;
externalOutputs[tensor].insert(portIndex);
}
}
return Status::success();
}
Status getSubgraphOutputs(const std::vector<nvinfer1::ILayer*>& newLayers,
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>>& externalOutputs,
const std::vector<std::string>& reportedOutputs)
{
return getSubgraphTensors(newLayers, externalOutputs, true, &reportedOutputs);
}
Status getSubgraphInputs(const std::vector<nvinfer1::ILayer*>& newLayers,
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>>& externalInputs)
{
return getSubgraphTensors(newLayers, externalInputs, false);
}
} // namespace onnx2trt